This file is indexed.

/usr/lib/python2.7/dist-packages/ceres.py is in python-ceres 0.10.0~git20150525-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
# Copyright 2011 Chris Davis
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#

# Ceres requires Python 2.6 or newer
import os
import struct
import json
import errno
from math import isnan
from itertools import izip
from os.path import isdir, exists, join, dirname, abspath, getsize, getmtime
from glob import glob
from bisect import bisect_left


TIMESTAMP_FORMAT = "!L"
TIMESTAMP_SIZE = struct.calcsize(TIMESTAMP_FORMAT)
DATAPOINT_FORMAT = "!d"
DATAPOINT_SIZE = struct.calcsize(DATAPOINT_FORMAT)
NAN = float('nan')
PACKED_NAN = struct.pack(DATAPOINT_FORMAT, NAN)
MAX_SLICE_GAP = 80
DEFAULT_TIMESTEP = 60
DEFAULT_SLICE_CACHING_BEHAVIOR = 'none'
SLICE_PERMS = 0644
DIR_PERMS = 0755


class CeresTree(object):
  """Represents a tree of Ceres metrics contained within a single path on disk
  This is the primary Ceres API.

  :param root: The directory root of the Ceres tree

  .. note:: Use :func:`createTree` to initialize and instantiate a new CeresTree

  .. seealso:: :func:`setDefaultSliceCachingBehavior` to adjust caching behavior
  """
  def __init__(self, root):
    if isdir(root):
      self.root = abspath(root)
    else:
      raise ValueError("Invalid root directory '%s'" % root)
    self.nodeCache = {}

  def __repr__(self):
    return "<CeresTree[0x%x]: %s>" % (id(self), self.root)
  __str__ = __repr__

  @classmethod
  def createTree(cls, root, **props):
    """Create and returns a new Ceres tree with the given properties

    :param root: The root directory of the new Ceres tree
    :param \*\*props: Arbitrary key-value properties to store as tree metadata

    :returns: :class:`CeresTree`
    """

    ceresDir = join(root, '.ceres-tree')
    if not isdir(ceresDir):
      os.makedirs(ceresDir, DIR_PERMS)

    for prop, value in props.items():
      propFile = join(ceresDir, prop)
      fh = open(propFile, 'w')
      fh.write(str(value))
      fh.close()

    return cls(root)

  def walk(self, **kwargs):
    """Iterate through the nodes contained in this :class:`CeresTree`

      :param \*\*kwargs: Options to pass to :func:`os.walk`

      :returns: An iterator yielding :class:`CeresNode` objects
    """
    for (fsPath, subdirs, filenames) in os.walk(self.root, **kwargs):
      if CeresNode.isNodeDir(fsPath):
        nodePath = self.getNodePath(fsPath)
        yield CeresNode(self, nodePath, fsPath)

  def getFilesystemPath(self, nodePath):
    """Get the on-disk path of a Ceres node given a metric name

    :param nodePath: A metric name e.g. ``carbon.agents.graphite-a.cpuUsage``

    :returns: The Ceres node path on disk"""
    return join(self.root, nodePath.replace('.', os.sep))

  def getNodePath(self, fsPath):
    """Get the metric name of a Ceres node given the on-disk path

    :param fsPath: The filesystem path of a Ceres node

    :returns: A metric name

    :raises ValueError: When `fsPath` is not a path within the :class:`CeresTree`
    """
    fsPath = abspath(fsPath)
    if not fsPath.startswith(self.root):
      raise ValueError("path '%s' not beneath tree root '%s'" % (fsPath, self.root))

    nodePath = fsPath[len(self.root):].strip(os.sep).replace(os.sep, '.')
    return nodePath

  def hasNode(self, nodePath):
    """Returns whether the Ceres tree contains the given metric

    :param nodePath: A metric name e.g. ``carbon.agents.graphite-a.cpuUsage``

    :returns: `True` or `False`"""
    return isdir(self.getFilesystemPath(nodePath))

  def getNode(self, nodePath):
    """Returns a Ceres node given a metric name

      :param nodePath: A metric name

      :returns: :class:`CeresNode` or `None`
    """
    if nodePath not in self.nodeCache:
      fsPath = self.getFilesystemPath(nodePath)
      if CeresNode.isNodeDir(fsPath):
        self.nodeCache[nodePath] = CeresNode(self, nodePath, fsPath)
      else:
        return None

    return self.nodeCache[nodePath]

  def find(self, nodePattern, fromTime=None, untilTime=None):
    """Find nodes which match a wildcard pattern, optionally filtering on
    a time range

      :param nodePattern: A glob-style metric wildcard
      :param fromTime: Optional interval start time in unix-epoch.
      :param untilTime: Optional interval end time in unix-epoch.

      :returns: An iterator yielding :class:`CeresNode` objects
    """
    for fsPath in glob(self.getFilesystemPath(nodePattern)):
      if CeresNode.isNodeDir(fsPath):
        nodePath = self.getNodePath(fsPath)
        node = self.getNode(nodePath)

        if fromTime is None and untilTime is None:
          yield node
        elif node.hasDataForInterval(fromTime, untilTime):
          yield node

  def createNode(self, nodePath, **properties):
    """Creates a new metric given a new metric name and optional per-node metadata
      :param nodePath: The new metric name.
      :param \*\*properties: Arbitrary key-value properties to store as metric metadata.

      :returns: :class:`CeresNode`
    """
    return CeresNode.create(self, nodePath, **properties)

  def store(self, nodePath, datapoints):
    """Store a list of datapoints associated with a metric
      :param nodePath: The metric name to write to e.g. ``carbon.agents.graphite-a.cpuUsage``
      :param datapoints: A list of datapoint tuples: ``[(timestamp, value), ...]``
    """
    node = self.getNode(nodePath)

    if node is None:
      raise NodeNotFound("The node '%s' does not exist in this tree" % nodePath)

    node.write(datapoints)

  def fetch(self, nodePath, fromTime, untilTime):
    """Fetch data within a given interval from the given metric

      :param nodePath: The metric name to fetch from
      :param fromTime: Requested interval start time in unix-epoch.
      :param untilTime: Requested interval end time in unix-epoch.

      :returns: :class:`TimeSeriesData`
      :raises: :class:`NodeNotFound`, :class:`InvalidRequest`
    """
    node = self.getNode(nodePath)

    if not node:
      raise NodeNotFound("the node '%s' does not exist in this tree" % nodePath)

    return node.read(fromTime, untilTime)


class CeresNode(object):
  """A :class:`CeresNode` represents a single time-series metric of a given `timeStep`
(its seconds-per-point resolution) and containing arbitrary key-value metadata.

A :class:`CeresNode` is associated with its most precise `timeStep`. This `timeStep` is the finest
resolution that can be used for writing, though a :class:`CeresNode` can contain and read data with
other, less-precise `timeStep` values in its underlying :class:`CeresSlice` data.

  :param tree: The :class:`CeresTree` this node is associated with
  :param nodePath: The name of the metric this node represents
  :param fsPath: The filesystem path of this metric

  .. note:: This class generally should be instantiated through use of :class:`CeresTree`. See
            :func:`CeresTree.createNode` and :func:`CeresTree.getNode`
  """
  __slots__ = ('tree', 'nodePath', 'fsPath',
               'metadataFile', 'timeStep',
               'sliceCache', 'sliceCachingBehavior')

  def __init__(self, tree, nodePath, fsPath):
    self.tree = tree
    self.nodePath = nodePath
    self.fsPath = fsPath
    self.metadataFile = join(fsPath, '.ceres-node')
    self.timeStep = None
    self.sliceCache = None
    self.sliceCachingBehavior = DEFAULT_SLICE_CACHING_BEHAVIOR

  def __repr__(self):
    return "<CeresNode[0x%x]: %s>" % (id(self), self.nodePath)
  __str__ = __repr__

  @classmethod
  def create(cls, tree, nodePath, **properties):
    """Create a new :class:`CeresNode` on disk with the specified properties.

    :param tree: The :class:`CeresTree` this node is associated with
    :param nodePath: The name of the metric this node represents
    :param \*\*properties: A set of key-value properties to be associated with this node

A :class:`CeresNode` always has the `timeStep` property which is an integer value representing
the precision of the node in seconds-per-datapoint. E.g. a value of ``60`` represents one datapoint
per minute. If no `timeStep` is specified at creation, the value of ``ceres.DEFAULT_TIMESTEP`` is
used

    :returns: :class:`CeresNode`
    """
    # Create the node directory
    fsPath = tree.getFilesystemPath(nodePath)
    os.makedirs(fsPath, DIR_PERMS)

    properties['timeStep'] = properties.get('timeStep', DEFAULT_TIMESTEP)
    # Create the initial metadata
    node = cls(tree, nodePath, fsPath)
    node.writeMetadata(properties)

    # Create the initial data file
    # timeStep = properties['timeStep']
    # now = int( time.time() )
    # baseTime = now - (now % timeStep)
    # slice = CeresSlice.create(node, baseTime, timeStep)

    return node

  @staticmethod
  def isNodeDir(path):
    """Tests whether the given path is a :class:`CeresNode`

    :param path: Path to test
    :returns `True` or `False`
    """
    return isdir(path) and exists(join(path, '.ceres-node'))

  @classmethod
  def fromFilesystemPath(cls, fsPath):
    """Instantiate a :class:`CeresNode` from the on-disk path of an existing node

    :params fsPath: The filesystem path of an existing node
    :returns: :class:`CeresNode`
    """
    dirPath = dirname(fsPath)

    while True:
      ceresDir = join(dirPath, '.ceres-tree')
      if isdir(ceresDir):
        tree = CeresTree(dirPath)
        nodePath = tree.getNodePath(fsPath)
        return cls(tree, nodePath, fsPath)

      dirPath = dirname(dirPath)

      if dirPath == '/':
        raise ValueError("the path '%s' is not in a ceres tree" % fsPath)

  @property
  def slice_info(self):
    """A property providing a list of current information about each slice

    :returns: ``[(startTime, endTime, timeStep), ...]``
    """
    return [(slice.startTime, slice.endTime, slice.timeStep) for slice in self.slices]

  def readMetadata(self):
    """Update node metadata from disk

    :raises: :class:`CorruptNode`
    """
    try:
      metadata = json.load(open(self.metadataFile, 'r'))
      self.timeStep = int(metadata['timeStep'])
      return metadata
    except (KeyError, IOError, ValueError), e:
      raise CorruptNode(self, "Unable to parse node metadata: %s" % e.message)

  def writeMetadata(self, metadata):
    """Writes new metadata to disk

    :param metadata: a JSON-serializable dict of node metadata
    """
    self.timeStep = int(metadata['timeStep'])

    f = open(self.metadataFile, 'w')
    json.dump(metadata, f)
    f.close()

  @property
  def slices(self):
    """A property providing access to information about this node's underlying slices. Because this
information is accessed in every read and write, a caching mechanism is provided. Cache behavior is
set using :func:`setSliceCachingBehavior` and defaults to the value set in
``DEFAULT_SLICE_CACHING_BEHAVIOR``

The following behaviors are available:

* `none` (default) - Slice information is read from the filesystem at every access
* `latest` - The latest slice is served from cache, all others from disk. Reads and writes of recent
  data are most likely to be in the latest slice
* `all` - All slices are cached. The cache is only refreshed on new slice creation or deletion

    :returns: ``[(startTime, timeStep), ...]``
    """
    if self.sliceCache:
      if self.sliceCachingBehavior == 'all':
        for slice in self.sliceCache:
          yield slice

      elif self.sliceCachingBehavior == 'latest':
        yield self.sliceCache
        infos = self.readSlices()
        for info in infos[1:]:
          yield CeresSlice(self, *info)

    else:
      if self.sliceCachingBehavior == 'all':
        self.sliceCache = [CeresSlice(self, *info) for info in self.readSlices()]
        for slice in self.sliceCache:
          yield slice

      elif self.sliceCachingBehavior == 'latest':
        infos = self.readSlices()
        if infos:
          self.sliceCache = CeresSlice(self, *infos[0])
          yield self.sliceCache

        for info in infos[1:]:
          yield CeresSlice(self, *info)

      elif self.sliceCachingBehavior == 'none':
        for info in self.readSlices():
          yield CeresSlice(self, *info)

      else:
        raise ValueError("invalid caching behavior configured '%s'" % self.sliceCachingBehavior)

  def readSlices(self):
    """Read slice information from disk

    :returns: ``[(startTime, timeStep), ...]``
    """
    if not exists(self.fsPath):
      raise NodeDeleted()

    slice_info = []
    for filename in os.listdir(self.fsPath):
      if filename.endswith('.slice'):
        startTime, timeStep = filename[:-6].split('@')
        slice_info.append((int(startTime), int(timeStep)))

    slice_info.sort(reverse=True)
    return slice_info

  def setSliceCachingBehavior(self, behavior):
    """Set slice caching behavior.

    :param behavior: See :func:`slices` for valid behavior values
    """
    behavior = behavior.lower()
    if behavior not in ('none', 'all', 'latest'):
      raise ValueError("invalid caching behavior '%s'" % behavior)

    self.sliceCachingBehavior = behavior
    self.sliceCache = None

  def clearSliceCache(self):
    """Clear slice cache, forcing a refresh from disk at the next access"""
    self.sliceCache = None

  def hasDataForInterval(self, fromTime, untilTime):
    """Test whether this node has any data in the given time interval. All slices are inspected
which will trigger a read of slice information from disk if slice cache behavior is set to `latest`
or `none` (See :func:`slices`)

    :param fromTime: Beginning of interval in unix epoch seconds
    :param untilTime: End of interval in unix epoch seconds
    :returns `True` or `False`
    """
    slices = list(self.slices)
    if not slices:
      return False

    earliestData = slices[-1].startTime
    latestData = slices[0].endTime

    return ((fromTime is None) or (fromTime < latestData)) and \
           ((untilTime is None) or (untilTime > earliestData))

  def read(self, fromTime, untilTime):
    """Read data from underlying slices and return as a single time-series

    :param fromTime: Beginning of interval in unix epoch seconds
    :param untilTime: End of interval in unix epoch seconds
    :returns: :class:`TimeSeriesData`
    """
    if self.timeStep is None:
      self.readMetadata()

    # Normalize the timestamps to fit proper intervals
    fromTime = int(fromTime - (fromTime % self.timeStep) + self.timeStep)
    untilTime = int(untilTime - (untilTime % self.timeStep) + self.timeStep)

    sliceBoundary = None  # to know when to split up queries across slices
    resultValues = []
    earliestData = None

    for slice in self.slices:
      # if the requested interval starts after the start of this slice
      if fromTime >= slice.startTime:
        try:
          series = slice.read(fromTime, untilTime)
        except NoData:
          break

        earliestData = series.startTime

        rightMissing = (untilTime - series.endTime) / self.timeStep
        rightNulls = [None for i in range(rightMissing - len(resultValues))]
        resultValues = series.values + rightNulls + resultValues
        break

      # or if slice contains data for part of the requested interval
      elif untilTime >= slice.startTime:
        # Split the request up if it straddles a slice boundary
        if (sliceBoundary is not None) and untilTime > sliceBoundary:
          requestUntilTime = sliceBoundary
        else:
          requestUntilTime = untilTime

        try:
          series = slice.read(slice.startTime, requestUntilTime)
        except NoData:
          continue

        earliestData = series.startTime

        rightMissing = (requestUntilTime - series.endTime) / self.timeStep
        rightNulls = [None for i in range(rightMissing)]
        resultValues = series.values + rightNulls + resultValues

      # this is the right-side boundary on the next iteration
      sliceBoundary = slice.startTime

    # The end of the requested interval predates all slices
    if earliestData is None:
      missing = int(untilTime - fromTime) / self.timeStep
      resultValues = [None for i in range(missing)]

    # Left pad nulls if the start of the requested interval predates all slices
    else:
      leftMissing = (earliestData - fromTime) / self.timeStep
      leftNulls = [None for i in range(leftMissing)]
      resultValues = leftNulls + resultValues

    return TimeSeriesData(fromTime, untilTime, self.timeStep, resultValues)

  def write(self, datapoints):
    """Writes datapoints to underlying slices. Datapoints that round to the same timestamp for the
node's `timeStep` will be treated as duplicates and dropped.

      :param datapoints: List of datapoint tuples ``[(timestamp, value), ...]``
    """
    if self.timeStep is None:
      self.readMetadata()

    if not datapoints:
      return

    sequences = self.compact(datapoints)
    needsEarlierSlice = []  # keep track of sequences that precede all existing slices

    while sequences:
      sequence = sequences.pop()
      timestamps = [t for t, v in sequence]
      beginningTime = timestamps[0]
      endingTime = timestamps[-1]
      sliceBoundary = None  # used to prevent writing sequences across slice boundaries
      slicesExist = False

      for slice in self.slices:
        if slice.timeStep != self.timeStep:
          continue

        slicesExist = True

        # truncate sequence so it doesn't cross the slice boundaries
        if beginningTime >= slice.startTime:
          if sliceBoundary is None:
            sequenceWithinSlice = sequence
          else:
            # index of highest timestamp that doesn't exceed sliceBoundary
            boundaryIndex = bisect_left(timestamps, sliceBoundary)
            sequenceWithinSlice = sequence[:boundaryIndex]

          try:
            slice.write(sequenceWithinSlice)
          except SliceGapTooLarge:
            newSlice = CeresSlice.create(self, beginningTime, slice.timeStep)
            newSlice.write(sequenceWithinSlice)
            self.sliceCache = None
          except SliceDeleted:
            self.sliceCache = None
            self.write(datapoints)  # recurse to retry
            return

          sequence = []
          break

        # sequence straddles the current slice, write the right side
        # left side will be taken up in the next slice down
        elif endingTime >= slice.startTime:
          # index of lowest timestamp that doesn't precede slice.startTime
          boundaryIndex = bisect_left(timestamps, slice.startTime)
          sequenceWithinSlice = sequence[boundaryIndex:]
          # write the leftovers on the next earlier slice
          sequence = sequence[:boundaryIndex]
          slice.write(sequenceWithinSlice)

        if not sequence:
          break

        sliceBoundary = slice.startTime

      else:  # slice list exhausted with stuff still to write
        needsEarlierSlice.append(sequence)

      if not slicesExist:
        sequences.append(sequence)
        needsEarlierSlice = sequences
        break

    for sequence in needsEarlierSlice:
      slice = CeresSlice.create(self, int(sequence[0][0]), self.timeStep)
      slice.write(sequence)
      self.clearSliceCache()

  def compact(self, datapoints):
    """Compacts datapoints into a list of contiguous, sorted lists of points with duplicate
timestamps and null values removed

      :param datapoints: List of datapoint tuples ``[(timestamp, value), ...]``

      :returns: A list of lists of contiguous sorted datapoint tuples
                ``[[(timestamp, value), ...], ...]``
    """
    datapoints = sorted((int(timestamp), float(value))
                        for timestamp, value in datapoints if value is not None)
    sequences = []
    sequence = []
    minimumTimestamp = 0  # used to avoid duplicate intervals

    for timestamp, value in datapoints:
      timestamp -= timestamp % self.timeStep  # round it down to a proper interval

      if not sequence:
        sequence.append((timestamp, value))

      else:
        if not timestamp > minimumTimestamp:  # drop duplicate intervals
          continue

        if timestamp == sequence[-1][0] + self.timeStep:  # append contiguous datapoints
          sequence.append((timestamp, value))

        else:  # start a new sequence if not contiguous
          sequences.append(sequence)
          sequence = [(timestamp, value)]

      minimumTimestamp = timestamp

    if sequence:
      sequences.append(sequence)

    return sequences


class CeresSlice(object):
  __slots__ = ('node', 'startTime', 'timeStep', 'fsPath')

  def __init__(self, node, startTime, timeStep):
    self.node = node
    self.startTime = startTime
    self.timeStep = timeStep
    self.fsPath = join(node.fsPath, '%d@%d.slice' % (startTime, timeStep))

  def __repr__(self):
    return "<CeresSlice[0x%x]: %s>" % (id(self), self.fsPath)
  __str__ = __repr__

  @property
  def isEmpty(self):
    return getsize(self.fsPath) == 0

  @property
  def endTime(self):
    return self.startTime + ((getsize(self.fsPath) / DATAPOINT_SIZE) * self.timeStep)

  @property
  def mtime(self):
    return getmtime(self.fsPath)

  @classmethod
  def create(cls, node, startTime, timeStep):
    slice = cls(node, startTime, timeStep)
    fileHandle = open(slice.fsPath, 'wb')
    fileHandle.close()
    os.chmod(slice.fsPath, SLICE_PERMS)
    return slice

  def read(self, fromTime, untilTime):
    timeOffset = int(fromTime) - self.startTime

    if timeOffset < 0:
      raise InvalidRequest("requested time range (%d, %d) precedes this slice: %d" % (
          fromTime, untilTime, self.startTime))

    pointOffset = timeOffset / self.timeStep
    byteOffset = pointOffset * DATAPOINT_SIZE

    if byteOffset >= getsize(self.fsPath):
      raise NoData()

    fileHandle = open(self.fsPath, 'rb')
    fileHandle.seek(byteOffset)

    timeRange = int(untilTime - fromTime)
    pointRange = timeRange / self.timeStep
    byteRange = pointRange * DATAPOINT_SIZE
    packedValues = fileHandle.read(byteRange)

    pointsReturned = len(packedValues) / DATAPOINT_SIZE
    format = '!' + ('d' * pointsReturned)
    values = struct.unpack(format, packedValues)
    values = [v if not isnan(v) else None for v in values]

    endTime = fromTime + (len(values) * self.timeStep)
    # print '[DEBUG slice.read] startTime=%s fromTime=%s untilTime=%s' % (
    #    self.startTime, fromTime, untilTime)
    # print '[DEBUG slice.read] timeInfo = (%s, %s, %s)' % (fromTime, endTime, self.timeStep)
    # print '[DEBUG slice.read] values = %s' % str(values)
    return TimeSeriesData(fromTime, endTime, self.timeStep, values)

  def write(self, sequence):
    beginningTime = sequence[0][0]
    timeOffset = beginningTime - self.startTime
    pointOffset = timeOffset / self.timeStep
    byteOffset = pointOffset * DATAPOINT_SIZE

    values = [v for t, v in sequence]
    format = '!' + ('d' * len(values))
    packedValues = struct.pack(format, *values)

    try:
      filesize = getsize(self.fsPath)
    except OSError, e:
      if e.errno == errno.ENOENT:
        raise SliceDeleted()
      else:
        raise

    byteGap = byteOffset - filesize
    if byteGap > 0:  # pad the allowable gap with nan's
      pointGap = byteGap / DATAPOINT_SIZE
      if pointGap > MAX_SLICE_GAP:
        raise SliceGapTooLarge()
      else:
        packedGap = PACKED_NAN * pointGap
        packedValues = packedGap + packedValues
        byteOffset -= byteGap

    with open(self.fsPath, 'r+b') as fileHandle:
      try:
        fileHandle.seek(byteOffset)
      except IOError:
        print " IOError: fsPath=%s byteOffset=%d size=%d sequence=%s" % (
            self.fsPath, byteOffset, filesize, sequence)
        raise
      fileHandle.write(packedValues)

  def deleteBefore(self, t):
    if not exists(self.fsPath):
      raise SliceDeleted()

    t = t - (t % self.timeStep)
    timeOffset = t - self.startTime
    if timeOffset < 0:
      return

    pointOffset = timeOffset / self.timeStep
    byteOffset = pointOffset * DATAPOINT_SIZE
    if not byteOffset:
      return

    self.node.clearSliceCache()
    with open(self.fsPath, 'r+b') as fileHandle:
      fileHandle.seek(byteOffset)
      fileData = fileHandle.read()
      if fileData:
        fileHandle.seek(0)
        fileHandle.write(fileData)
        fileHandle.truncate()
        fileHandle.close()
        newFsPath = join(dirname(self.fsPath), "%d@%d.slice" % (t, self.timeStep))
        os.rename(self.fsPath, newFsPath)
      else:
        os.unlink(self.fsPath)
        raise SliceDeleted()

  def __cmp__(self, other):
    return cmp(self.startTime, other.startTime)


class TimeSeriesData(object):
  __slots__ = ('startTime', 'endTime', 'timeStep', 'values')

  def __init__(self, startTime, endTime, timeStep, values):
    self.startTime = startTime
    self.endTime = endTime
    self.timeStep = timeStep
    self.values = values

  @property
  def timestamps(self):
    return xrange(self.startTime, self.endTime, self.timeStep)

  def __iter__(self):
    return izip(self.timestamps, self.values)

  def __len__(self):
    return len(self.values)

  def merge(self, other):
    for timestamp, value in other:
      if value is None:
        continue

      timestamp -= timestamp % self.timeStep
      if timestamp < self.startTime:
        continue

      index = int((timestamp - self.startTime) / self.timeStep)

      try:
        if self.values[index] is None:
          self.values[index] = value
      except IndexError:
        continue


class CorruptNode(Exception):
  def __init__(self, node, problem):
    Exception.__init__(self, problem)
    self.node = node
    self.problem = problem


class NoData(Exception):
  pass


class NodeNotFound(Exception):
  pass


class NodeDeleted(Exception):
  pass


class InvalidRequest(Exception):
  pass


class SliceGapTooLarge(Exception):
  "For internal use only"


class SliceDeleted(Exception):
  pass


def getTree(path):
  while path not in (os.sep, ''):
    if isdir(join(path, '.ceres-tree')):
      return CeresTree(path)

    path = dirname(path)


def setDefaultSliceCachingBehavior(behavior):
  global DEFAULT_SLICE_CACHING_BEHAVIOR

  behavior = behavior.lower()
  if behavior not in ('none', 'all', 'latest'):
    raise ValueError("invalid caching behavior '%s'" % behavior)

  DEFAULT_SLICE_CACHING_BEHAVIOR = behavior