/usr/lib/python2.7/dist-packages/ceres.py is in python-ceres 0.10.0~git20150525-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | # Copyright 2011 Chris Davis
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# Ceres requires Python 2.6 or newer
import os
import struct
import json
import errno
from math import isnan
from itertools import izip
from os.path import isdir, exists, join, dirname, abspath, getsize, getmtime
from glob import glob
from bisect import bisect_left
TIMESTAMP_FORMAT = "!L"
TIMESTAMP_SIZE = struct.calcsize(TIMESTAMP_FORMAT)
DATAPOINT_FORMAT = "!d"
DATAPOINT_SIZE = struct.calcsize(DATAPOINT_FORMAT)
NAN = float('nan')
PACKED_NAN = struct.pack(DATAPOINT_FORMAT, NAN)
MAX_SLICE_GAP = 80
DEFAULT_TIMESTEP = 60
DEFAULT_SLICE_CACHING_BEHAVIOR = 'none'
SLICE_PERMS = 0644
DIR_PERMS = 0755
class CeresTree(object):
"""Represents a tree of Ceres metrics contained within a single path on disk
This is the primary Ceres API.
:param root: The directory root of the Ceres tree
.. note:: Use :func:`createTree` to initialize and instantiate a new CeresTree
.. seealso:: :func:`setDefaultSliceCachingBehavior` to adjust caching behavior
"""
def __init__(self, root):
if isdir(root):
self.root = abspath(root)
else:
raise ValueError("Invalid root directory '%s'" % root)
self.nodeCache = {}
def __repr__(self):
return "<CeresTree[0x%x]: %s>" % (id(self), self.root)
__str__ = __repr__
@classmethod
def createTree(cls, root, **props):
"""Create and returns a new Ceres tree with the given properties
:param root: The root directory of the new Ceres tree
:param \*\*props: Arbitrary key-value properties to store as tree metadata
:returns: :class:`CeresTree`
"""
ceresDir = join(root, '.ceres-tree')
if not isdir(ceresDir):
os.makedirs(ceresDir, DIR_PERMS)
for prop, value in props.items():
propFile = join(ceresDir, prop)
fh = open(propFile, 'w')
fh.write(str(value))
fh.close()
return cls(root)
def walk(self, **kwargs):
"""Iterate through the nodes contained in this :class:`CeresTree`
:param \*\*kwargs: Options to pass to :func:`os.walk`
:returns: An iterator yielding :class:`CeresNode` objects
"""
for (fsPath, subdirs, filenames) in os.walk(self.root, **kwargs):
if CeresNode.isNodeDir(fsPath):
nodePath = self.getNodePath(fsPath)
yield CeresNode(self, nodePath, fsPath)
def getFilesystemPath(self, nodePath):
"""Get the on-disk path of a Ceres node given a metric name
:param nodePath: A metric name e.g. ``carbon.agents.graphite-a.cpuUsage``
:returns: The Ceres node path on disk"""
return join(self.root, nodePath.replace('.', os.sep))
def getNodePath(self, fsPath):
"""Get the metric name of a Ceres node given the on-disk path
:param fsPath: The filesystem path of a Ceres node
:returns: A metric name
:raises ValueError: When `fsPath` is not a path within the :class:`CeresTree`
"""
fsPath = abspath(fsPath)
if not fsPath.startswith(self.root):
raise ValueError("path '%s' not beneath tree root '%s'" % (fsPath, self.root))
nodePath = fsPath[len(self.root):].strip(os.sep).replace(os.sep, '.')
return nodePath
def hasNode(self, nodePath):
"""Returns whether the Ceres tree contains the given metric
:param nodePath: A metric name e.g. ``carbon.agents.graphite-a.cpuUsage``
:returns: `True` or `False`"""
return isdir(self.getFilesystemPath(nodePath))
def getNode(self, nodePath):
"""Returns a Ceres node given a metric name
:param nodePath: A metric name
:returns: :class:`CeresNode` or `None`
"""
if nodePath not in self.nodeCache:
fsPath = self.getFilesystemPath(nodePath)
if CeresNode.isNodeDir(fsPath):
self.nodeCache[nodePath] = CeresNode(self, nodePath, fsPath)
else:
return None
return self.nodeCache[nodePath]
def find(self, nodePattern, fromTime=None, untilTime=None):
"""Find nodes which match a wildcard pattern, optionally filtering on
a time range
:param nodePattern: A glob-style metric wildcard
:param fromTime: Optional interval start time in unix-epoch.
:param untilTime: Optional interval end time in unix-epoch.
:returns: An iterator yielding :class:`CeresNode` objects
"""
for fsPath in glob(self.getFilesystemPath(nodePattern)):
if CeresNode.isNodeDir(fsPath):
nodePath = self.getNodePath(fsPath)
node = self.getNode(nodePath)
if fromTime is None and untilTime is None:
yield node
elif node.hasDataForInterval(fromTime, untilTime):
yield node
def createNode(self, nodePath, **properties):
"""Creates a new metric given a new metric name and optional per-node metadata
:param nodePath: The new metric name.
:param \*\*properties: Arbitrary key-value properties to store as metric metadata.
:returns: :class:`CeresNode`
"""
return CeresNode.create(self, nodePath, **properties)
def store(self, nodePath, datapoints):
"""Store a list of datapoints associated with a metric
:param nodePath: The metric name to write to e.g. ``carbon.agents.graphite-a.cpuUsage``
:param datapoints: A list of datapoint tuples: ``[(timestamp, value), ...]``
"""
node = self.getNode(nodePath)
if node is None:
raise NodeNotFound("The node '%s' does not exist in this tree" % nodePath)
node.write(datapoints)
def fetch(self, nodePath, fromTime, untilTime):
"""Fetch data within a given interval from the given metric
:param nodePath: The metric name to fetch from
:param fromTime: Requested interval start time in unix-epoch.
:param untilTime: Requested interval end time in unix-epoch.
:returns: :class:`TimeSeriesData`
:raises: :class:`NodeNotFound`, :class:`InvalidRequest`
"""
node = self.getNode(nodePath)
if not node:
raise NodeNotFound("the node '%s' does not exist in this tree" % nodePath)
return node.read(fromTime, untilTime)
class CeresNode(object):
"""A :class:`CeresNode` represents a single time-series metric of a given `timeStep`
(its seconds-per-point resolution) and containing arbitrary key-value metadata.
A :class:`CeresNode` is associated with its most precise `timeStep`. This `timeStep` is the finest
resolution that can be used for writing, though a :class:`CeresNode` can contain and read data with
other, less-precise `timeStep` values in its underlying :class:`CeresSlice` data.
:param tree: The :class:`CeresTree` this node is associated with
:param nodePath: The name of the metric this node represents
:param fsPath: The filesystem path of this metric
.. note:: This class generally should be instantiated through use of :class:`CeresTree`. See
:func:`CeresTree.createNode` and :func:`CeresTree.getNode`
"""
__slots__ = ('tree', 'nodePath', 'fsPath',
'metadataFile', 'timeStep',
'sliceCache', 'sliceCachingBehavior')
def __init__(self, tree, nodePath, fsPath):
self.tree = tree
self.nodePath = nodePath
self.fsPath = fsPath
self.metadataFile = join(fsPath, '.ceres-node')
self.timeStep = None
self.sliceCache = None
self.sliceCachingBehavior = DEFAULT_SLICE_CACHING_BEHAVIOR
def __repr__(self):
return "<CeresNode[0x%x]: %s>" % (id(self), self.nodePath)
__str__ = __repr__
@classmethod
def create(cls, tree, nodePath, **properties):
"""Create a new :class:`CeresNode` on disk with the specified properties.
:param tree: The :class:`CeresTree` this node is associated with
:param nodePath: The name of the metric this node represents
:param \*\*properties: A set of key-value properties to be associated with this node
A :class:`CeresNode` always has the `timeStep` property which is an integer value representing
the precision of the node in seconds-per-datapoint. E.g. a value of ``60`` represents one datapoint
per minute. If no `timeStep` is specified at creation, the value of ``ceres.DEFAULT_TIMESTEP`` is
used
:returns: :class:`CeresNode`
"""
# Create the node directory
fsPath = tree.getFilesystemPath(nodePath)
os.makedirs(fsPath, DIR_PERMS)
properties['timeStep'] = properties.get('timeStep', DEFAULT_TIMESTEP)
# Create the initial metadata
node = cls(tree, nodePath, fsPath)
node.writeMetadata(properties)
# Create the initial data file
# timeStep = properties['timeStep']
# now = int( time.time() )
# baseTime = now - (now % timeStep)
# slice = CeresSlice.create(node, baseTime, timeStep)
return node
@staticmethod
def isNodeDir(path):
"""Tests whether the given path is a :class:`CeresNode`
:param path: Path to test
:returns `True` or `False`
"""
return isdir(path) and exists(join(path, '.ceres-node'))
@classmethod
def fromFilesystemPath(cls, fsPath):
"""Instantiate a :class:`CeresNode` from the on-disk path of an existing node
:params fsPath: The filesystem path of an existing node
:returns: :class:`CeresNode`
"""
dirPath = dirname(fsPath)
while True:
ceresDir = join(dirPath, '.ceres-tree')
if isdir(ceresDir):
tree = CeresTree(dirPath)
nodePath = tree.getNodePath(fsPath)
return cls(tree, nodePath, fsPath)
dirPath = dirname(dirPath)
if dirPath == '/':
raise ValueError("the path '%s' is not in a ceres tree" % fsPath)
@property
def slice_info(self):
"""A property providing a list of current information about each slice
:returns: ``[(startTime, endTime, timeStep), ...]``
"""
return [(slice.startTime, slice.endTime, slice.timeStep) for slice in self.slices]
def readMetadata(self):
"""Update node metadata from disk
:raises: :class:`CorruptNode`
"""
try:
metadata = json.load(open(self.metadataFile, 'r'))
self.timeStep = int(metadata['timeStep'])
return metadata
except (KeyError, IOError, ValueError), e:
raise CorruptNode(self, "Unable to parse node metadata: %s" % e.message)
def writeMetadata(self, metadata):
"""Writes new metadata to disk
:param metadata: a JSON-serializable dict of node metadata
"""
self.timeStep = int(metadata['timeStep'])
f = open(self.metadataFile, 'w')
json.dump(metadata, f)
f.close()
@property
def slices(self):
"""A property providing access to information about this node's underlying slices. Because this
information is accessed in every read and write, a caching mechanism is provided. Cache behavior is
set using :func:`setSliceCachingBehavior` and defaults to the value set in
``DEFAULT_SLICE_CACHING_BEHAVIOR``
The following behaviors are available:
* `none` (default) - Slice information is read from the filesystem at every access
* `latest` - The latest slice is served from cache, all others from disk. Reads and writes of recent
data are most likely to be in the latest slice
* `all` - All slices are cached. The cache is only refreshed on new slice creation or deletion
:returns: ``[(startTime, timeStep), ...]``
"""
if self.sliceCache:
if self.sliceCachingBehavior == 'all':
for slice in self.sliceCache:
yield slice
elif self.sliceCachingBehavior == 'latest':
yield self.sliceCache
infos = self.readSlices()
for info in infos[1:]:
yield CeresSlice(self, *info)
else:
if self.sliceCachingBehavior == 'all':
self.sliceCache = [CeresSlice(self, *info) for info in self.readSlices()]
for slice in self.sliceCache:
yield slice
elif self.sliceCachingBehavior == 'latest':
infos = self.readSlices()
if infos:
self.sliceCache = CeresSlice(self, *infos[0])
yield self.sliceCache
for info in infos[1:]:
yield CeresSlice(self, *info)
elif self.sliceCachingBehavior == 'none':
for info in self.readSlices():
yield CeresSlice(self, *info)
else:
raise ValueError("invalid caching behavior configured '%s'" % self.sliceCachingBehavior)
def readSlices(self):
"""Read slice information from disk
:returns: ``[(startTime, timeStep), ...]``
"""
if not exists(self.fsPath):
raise NodeDeleted()
slice_info = []
for filename in os.listdir(self.fsPath):
if filename.endswith('.slice'):
startTime, timeStep = filename[:-6].split('@')
slice_info.append((int(startTime), int(timeStep)))
slice_info.sort(reverse=True)
return slice_info
def setSliceCachingBehavior(self, behavior):
"""Set slice caching behavior.
:param behavior: See :func:`slices` for valid behavior values
"""
behavior = behavior.lower()
if behavior not in ('none', 'all', 'latest'):
raise ValueError("invalid caching behavior '%s'" % behavior)
self.sliceCachingBehavior = behavior
self.sliceCache = None
def clearSliceCache(self):
"""Clear slice cache, forcing a refresh from disk at the next access"""
self.sliceCache = None
def hasDataForInterval(self, fromTime, untilTime):
"""Test whether this node has any data in the given time interval. All slices are inspected
which will trigger a read of slice information from disk if slice cache behavior is set to `latest`
or `none` (See :func:`slices`)
:param fromTime: Beginning of interval in unix epoch seconds
:param untilTime: End of interval in unix epoch seconds
:returns `True` or `False`
"""
slices = list(self.slices)
if not slices:
return False
earliestData = slices[-1].startTime
latestData = slices[0].endTime
return ((fromTime is None) or (fromTime < latestData)) and \
((untilTime is None) or (untilTime > earliestData))
def read(self, fromTime, untilTime):
"""Read data from underlying slices and return as a single time-series
:param fromTime: Beginning of interval in unix epoch seconds
:param untilTime: End of interval in unix epoch seconds
:returns: :class:`TimeSeriesData`
"""
if self.timeStep is None:
self.readMetadata()
# Normalize the timestamps to fit proper intervals
fromTime = int(fromTime - (fromTime % self.timeStep) + self.timeStep)
untilTime = int(untilTime - (untilTime % self.timeStep) + self.timeStep)
sliceBoundary = None # to know when to split up queries across slices
resultValues = []
earliestData = None
for slice in self.slices:
# if the requested interval starts after the start of this slice
if fromTime >= slice.startTime:
try:
series = slice.read(fromTime, untilTime)
except NoData:
break
earliestData = series.startTime
rightMissing = (untilTime - series.endTime) / self.timeStep
rightNulls = [None for i in range(rightMissing - len(resultValues))]
resultValues = series.values + rightNulls + resultValues
break
# or if slice contains data for part of the requested interval
elif untilTime >= slice.startTime:
# Split the request up if it straddles a slice boundary
if (sliceBoundary is not None) and untilTime > sliceBoundary:
requestUntilTime = sliceBoundary
else:
requestUntilTime = untilTime
try:
series = slice.read(slice.startTime, requestUntilTime)
except NoData:
continue
earliestData = series.startTime
rightMissing = (requestUntilTime - series.endTime) / self.timeStep
rightNulls = [None for i in range(rightMissing)]
resultValues = series.values + rightNulls + resultValues
# this is the right-side boundary on the next iteration
sliceBoundary = slice.startTime
# The end of the requested interval predates all slices
if earliestData is None:
missing = int(untilTime - fromTime) / self.timeStep
resultValues = [None for i in range(missing)]
# Left pad nulls if the start of the requested interval predates all slices
else:
leftMissing = (earliestData - fromTime) / self.timeStep
leftNulls = [None for i in range(leftMissing)]
resultValues = leftNulls + resultValues
return TimeSeriesData(fromTime, untilTime, self.timeStep, resultValues)
def write(self, datapoints):
"""Writes datapoints to underlying slices. Datapoints that round to the same timestamp for the
node's `timeStep` will be treated as duplicates and dropped.
:param datapoints: List of datapoint tuples ``[(timestamp, value), ...]``
"""
if self.timeStep is None:
self.readMetadata()
if not datapoints:
return
sequences = self.compact(datapoints)
needsEarlierSlice = [] # keep track of sequences that precede all existing slices
while sequences:
sequence = sequences.pop()
timestamps = [t for t, v in sequence]
beginningTime = timestamps[0]
endingTime = timestamps[-1]
sliceBoundary = None # used to prevent writing sequences across slice boundaries
slicesExist = False
for slice in self.slices:
if slice.timeStep != self.timeStep:
continue
slicesExist = True
# truncate sequence so it doesn't cross the slice boundaries
if beginningTime >= slice.startTime:
if sliceBoundary is None:
sequenceWithinSlice = sequence
else:
# index of highest timestamp that doesn't exceed sliceBoundary
boundaryIndex = bisect_left(timestamps, sliceBoundary)
sequenceWithinSlice = sequence[:boundaryIndex]
try:
slice.write(sequenceWithinSlice)
except SliceGapTooLarge:
newSlice = CeresSlice.create(self, beginningTime, slice.timeStep)
newSlice.write(sequenceWithinSlice)
self.sliceCache = None
except SliceDeleted:
self.sliceCache = None
self.write(datapoints) # recurse to retry
return
sequence = []
break
# sequence straddles the current slice, write the right side
# left side will be taken up in the next slice down
elif endingTime >= slice.startTime:
# index of lowest timestamp that doesn't precede slice.startTime
boundaryIndex = bisect_left(timestamps, slice.startTime)
sequenceWithinSlice = sequence[boundaryIndex:]
# write the leftovers on the next earlier slice
sequence = sequence[:boundaryIndex]
slice.write(sequenceWithinSlice)
if not sequence:
break
sliceBoundary = slice.startTime
else: # slice list exhausted with stuff still to write
needsEarlierSlice.append(sequence)
if not slicesExist:
sequences.append(sequence)
needsEarlierSlice = sequences
break
for sequence in needsEarlierSlice:
slice = CeresSlice.create(self, int(sequence[0][0]), self.timeStep)
slice.write(sequence)
self.clearSliceCache()
def compact(self, datapoints):
"""Compacts datapoints into a list of contiguous, sorted lists of points with duplicate
timestamps and null values removed
:param datapoints: List of datapoint tuples ``[(timestamp, value), ...]``
:returns: A list of lists of contiguous sorted datapoint tuples
``[[(timestamp, value), ...], ...]``
"""
datapoints = sorted((int(timestamp), float(value))
for timestamp, value in datapoints if value is not None)
sequences = []
sequence = []
minimumTimestamp = 0 # used to avoid duplicate intervals
for timestamp, value in datapoints:
timestamp -= timestamp % self.timeStep # round it down to a proper interval
if not sequence:
sequence.append((timestamp, value))
else:
if not timestamp > minimumTimestamp: # drop duplicate intervals
continue
if timestamp == sequence[-1][0] + self.timeStep: # append contiguous datapoints
sequence.append((timestamp, value))
else: # start a new sequence if not contiguous
sequences.append(sequence)
sequence = [(timestamp, value)]
minimumTimestamp = timestamp
if sequence:
sequences.append(sequence)
return sequences
class CeresSlice(object):
__slots__ = ('node', 'startTime', 'timeStep', 'fsPath')
def __init__(self, node, startTime, timeStep):
self.node = node
self.startTime = startTime
self.timeStep = timeStep
self.fsPath = join(node.fsPath, '%d@%d.slice' % (startTime, timeStep))
def __repr__(self):
return "<CeresSlice[0x%x]: %s>" % (id(self), self.fsPath)
__str__ = __repr__
@property
def isEmpty(self):
return getsize(self.fsPath) == 0
@property
def endTime(self):
return self.startTime + ((getsize(self.fsPath) / DATAPOINT_SIZE) * self.timeStep)
@property
def mtime(self):
return getmtime(self.fsPath)
@classmethod
def create(cls, node, startTime, timeStep):
slice = cls(node, startTime, timeStep)
fileHandle = open(slice.fsPath, 'wb')
fileHandle.close()
os.chmod(slice.fsPath, SLICE_PERMS)
return slice
def read(self, fromTime, untilTime):
timeOffset = int(fromTime) - self.startTime
if timeOffset < 0:
raise InvalidRequest("requested time range (%d, %d) precedes this slice: %d" % (
fromTime, untilTime, self.startTime))
pointOffset = timeOffset / self.timeStep
byteOffset = pointOffset * DATAPOINT_SIZE
if byteOffset >= getsize(self.fsPath):
raise NoData()
fileHandle = open(self.fsPath, 'rb')
fileHandle.seek(byteOffset)
timeRange = int(untilTime - fromTime)
pointRange = timeRange / self.timeStep
byteRange = pointRange * DATAPOINT_SIZE
packedValues = fileHandle.read(byteRange)
pointsReturned = len(packedValues) / DATAPOINT_SIZE
format = '!' + ('d' * pointsReturned)
values = struct.unpack(format, packedValues)
values = [v if not isnan(v) else None for v in values]
endTime = fromTime + (len(values) * self.timeStep)
# print '[DEBUG slice.read] startTime=%s fromTime=%s untilTime=%s' % (
# self.startTime, fromTime, untilTime)
# print '[DEBUG slice.read] timeInfo = (%s, %s, %s)' % (fromTime, endTime, self.timeStep)
# print '[DEBUG slice.read] values = %s' % str(values)
return TimeSeriesData(fromTime, endTime, self.timeStep, values)
def write(self, sequence):
beginningTime = sequence[0][0]
timeOffset = beginningTime - self.startTime
pointOffset = timeOffset / self.timeStep
byteOffset = pointOffset * DATAPOINT_SIZE
values = [v for t, v in sequence]
format = '!' + ('d' * len(values))
packedValues = struct.pack(format, *values)
try:
filesize = getsize(self.fsPath)
except OSError, e:
if e.errno == errno.ENOENT:
raise SliceDeleted()
else:
raise
byteGap = byteOffset - filesize
if byteGap > 0: # pad the allowable gap with nan's
pointGap = byteGap / DATAPOINT_SIZE
if pointGap > MAX_SLICE_GAP:
raise SliceGapTooLarge()
else:
packedGap = PACKED_NAN * pointGap
packedValues = packedGap + packedValues
byteOffset -= byteGap
with open(self.fsPath, 'r+b') as fileHandle:
try:
fileHandle.seek(byteOffset)
except IOError:
print " IOError: fsPath=%s byteOffset=%d size=%d sequence=%s" % (
self.fsPath, byteOffset, filesize, sequence)
raise
fileHandle.write(packedValues)
def deleteBefore(self, t):
if not exists(self.fsPath):
raise SliceDeleted()
t = t - (t % self.timeStep)
timeOffset = t - self.startTime
if timeOffset < 0:
return
pointOffset = timeOffset / self.timeStep
byteOffset = pointOffset * DATAPOINT_SIZE
if not byteOffset:
return
self.node.clearSliceCache()
with open(self.fsPath, 'r+b') as fileHandle:
fileHandle.seek(byteOffset)
fileData = fileHandle.read()
if fileData:
fileHandle.seek(0)
fileHandle.write(fileData)
fileHandle.truncate()
fileHandle.close()
newFsPath = join(dirname(self.fsPath), "%d@%d.slice" % (t, self.timeStep))
os.rename(self.fsPath, newFsPath)
else:
os.unlink(self.fsPath)
raise SliceDeleted()
def __cmp__(self, other):
return cmp(self.startTime, other.startTime)
class TimeSeriesData(object):
__slots__ = ('startTime', 'endTime', 'timeStep', 'values')
def __init__(self, startTime, endTime, timeStep, values):
self.startTime = startTime
self.endTime = endTime
self.timeStep = timeStep
self.values = values
@property
def timestamps(self):
return xrange(self.startTime, self.endTime, self.timeStep)
def __iter__(self):
return izip(self.timestamps, self.values)
def __len__(self):
return len(self.values)
def merge(self, other):
for timestamp, value in other:
if value is None:
continue
timestamp -= timestamp % self.timeStep
if timestamp < self.startTime:
continue
index = int((timestamp - self.startTime) / self.timeStep)
try:
if self.values[index] is None:
self.values[index] = value
except IndexError:
continue
class CorruptNode(Exception):
def __init__(self, node, problem):
Exception.__init__(self, problem)
self.node = node
self.problem = problem
class NoData(Exception):
pass
class NodeNotFound(Exception):
pass
class NodeDeleted(Exception):
pass
class InvalidRequest(Exception):
pass
class SliceGapTooLarge(Exception):
"For internal use only"
class SliceDeleted(Exception):
pass
def getTree(path):
while path not in (os.sep, ''):
if isdir(join(path, '.ceres-tree')):
return CeresTree(path)
path = dirname(path)
def setDefaultSliceCachingBehavior(behavior):
global DEFAULT_SLICE_CACHING_BEHAVIOR
behavior = behavior.lower()
if behavior not in ('none', 'all', 'latest'):
raise ValueError("invalid caching behavior '%s'" % behavior)
DEFAULT_SLICE_CACHING_BEHAVIOR = behavior
|