/usr/lib/python2.7/dist-packages/brian/inspection.py is in python-brian 1.4.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
'''
Inspection of strings with python statements
and models defined by differential equations.
TODO: some of the module is obsolete
'''
__all__ = ['is_affine', 'depends_on', 'Term', 'get_global_term',
'get_var_names', 'check_equations_units', 'fill_vars', 'AffineFunction',
'get_identifiers', 'modified_variables', 'namespace', 'clean_text',
'namespace_replace_quantity_with_pure', 'list_replace_quantity_with_pure']
import numpy
from numpy import array
from units import *
import parser
import re
import inspect
from copy import copy
class PureQuantityBase(Quantity):
def __init__(self, value):
self.dim = value.dim
def __div__(self, other):
if not isinstance(other, Quantity) and not is_scalar_type(other):
return NotImplemented
try:
return Quantity.__div__(self, other)
except ZeroDivisionError:
try:
odim = other.dim
except AttributeError:
odim = Dimension()
return Quantity.with_dimensions(0, self.dim / odim)
__truediv__ = __div__
def __rdiv__(self, other):
if not isinstance(other, Quantity) and not is_scalar_type(other):
return NotImplemented
try:
return Quantity.__rdiv__(self, other)
except ZeroDivisionError:
try:
odim = other.dim
except AttributeError:
odim = Dimension()
return Quantity.with_dimensions(0, odim / self.dim)
__rtruediv__ = __rdiv__
def __mod__(self, other):
if not isinstance(other, Quantity) and not is_scalar_type(other):
return NotImplemented
try:
return Quantity.__mod__(self, other)
except ZeroDivisionError:
return Quantity.with_dimensions(0, self.dim)
def returnpure(meth):
def f(*args, **kwds):
x = meth(*args, **kwds)
if isinstance(x, Quantity):
return PureQuantity(x)
else:
return x
return f
class PureQuantity(PureQuantityBase):
'''
Use this class for unit checking.
The idea is that operations should always work if they are
dimensionally consistent regardless of the values. The key one is that
division by zero does not raise an error but returns a value with the
correct dimensions (in fact, it returns 0 with the correct dimensions).
This is important for Brian because we do unit checking by substituting
zeros into the equations, which sometimes gives a divide by zero error.
The way it works is that it derives from Quantity, but for division it
wraps a try: except ZeroDivisionError: around the operation, and returns
a zero with the correct units if it encounters it. In addition to that,
it wraps every method of Quantity so that they return PureQuantity objects
instead of Quantity objects (otherwise e.g. a*b would be a Quantity not
a PureQuantity even if a, b were PureQuantity).
Finally, the *_replace_quantity_with_pure functions are just designed to
scan through a dict or list of variables and replace Quantity objects
by PureQuantity objects. You need to do this when evaluating some code
in a user namespace, for example.
'''
for methname in dir(PureQuantityBase):
meth = getattr(PureQuantityBase, methname)
try:
meth2 = getattr(numpy.float64, methname)
except AttributeError:
meth2 = meth
if callable(meth) and meth is not meth2:
exec methname + '=returnpure(PureQuantityBase.' + methname + ')'
del meth, meth2, methname
def namespace_replace_quantity_with_pure(ns):
newns = {}
for k, v in ns.iteritems():
if isinstance(v, Quantity):
v = PureQuantity(v)
newns[k] = v
return newns
def list_replace_quantity_with_pure(L):
newL = []
for v in L:
if isinstance(v, Quantity):
v = PureQuantity(v)
newL.append(v)
return newL
def namespace(expr, level=0, return_unknowns=False):
'''
Returns a namespace with the values of identifiers in expr,
taking from:
* local namespace
* global namespace
* units
'''
# Build the namespace
frame = inspect.stack()[level + 1][0]
global_namespace, local_namespace = frame.f_globals, frame.f_locals
# Find external objects
space = {}
unknowns = []
for var in get_identifiers(expr):
if var in local_namespace: #local
space[var] = local_namespace[var]
elif var in global_namespace: #global
space[var] = global_namespace[var]
elif var in globals(): # typically units
space[var] = globals()[var]
else:
unknowns.append(var)
if return_unknowns:
return space, unknowns
else:
return space
def get_identifiers(expr):
'''
Returns the list of identifiers (variables or functions) in the
Python expression (string).
'''
# cleaner: parser.expr(expr).tolist() then find leaves of the form [1,name]
return parser.suite(expr).compile().co_names
def clean_text(expr):
'''
Cleans a Python expression or statement:
* Remove comments (# comment)
* Merge multi-line statements (\)
* Split at semi-columns (careful: indentation is ignored)
'''
# Merge multi-line statements
expr = re.sub('\\\s*?\n', ' ', expr)
# Remove comments
expr = re.sub('#.*', '', expr)
# Split at semi-columns
expr = re.sub(';', '\n', expr)
return expr
def modified_variables(expr):
'''
Returns the list of variables or functions in expr that are in left-hand sides, e.g.:
x+=5
expr can be a multiline statement.
Multiline comments are not allowed but multiline statements are.
Functions may also be returned as in:
do(something) # here do is returned, not something
TODO: maybe functions should be removed?
TODO: better handling of semi-columns (;)
'''
vars = get_identifiers(expr)
expr = clean_text(expr)
# Find lines that start by an identifier
mod_vars = []
for line in expr.splitlines():
s = re.search(r'^\s*(\w+)\b', line)
if s and (s.group(1) in vars):
mod_vars.append(s.group(1))
return mod_vars
def fill_vars(f, keepnamespace=False, *varnames):
'''
Returns a function with arguments given by varnames (list or tuple),
given that the arguments of f are in varnames.
If keepnamespace is True, then the original func_globals dictionary of
the function is kept.
Purpose: changing the syntax for function calls.
Example:
f=lambda x:2*x
g=fill_vars(f,'y','x')
Then g(1,2) returns f(2).
This is somehow the inverse of partial (in module functools).
N.B.: the order of variables matters.
'''
if list(f.func_code.co_varnames) == varnames:
return f
varstring = varnames[0]
for name in varnames[1:]:
varstring += ',' + name
shortvarstring = f.func_code.co_varnames[0]
for name in f.func_code.co_varnames[1:]:
shortvarstring += ',' + name
if keepnamespace:
# Create a unique name
fname = 'fill_vars_function' + id(f)
f.func_globals[fname] = f
return eval('lambda ' + varstring + ': ' + fname + '(' + shortvarstring + ')', f.func_globals)
else:
return eval('lambda ' + varstring + ': f(' + shortvarstring + ')', {'f':f})
def check_equations_units(eqs, x):
'''
Check the units of the differential equations, using
the units of x.
df_i/dt must have units of x_i / time.
'''
try:
for f, x_i in zip(eqs, x):
f.func_globals['xi'] = 0 * second ** -.5 # Noise
f(*x) + (x_i / second) # Check that the two terms have the same dimension
except DimensionMismatchError, inst:
raise DimensionMismatchError("The differential equations are not homogeneous!", *inst._dims)
def get_var_names(eqs):
'''
Get the variable names from the set of equations.
Returns a list.
N.B.: the order is preserved.
'''
names = list(eqs[0].func_code.co_varnames)
for eq in eqs:
for name in eq.func_code.co_varnames:
if not(name in names):
names.append(name)
return names
class AffineFunction(object):
'''
An object that can be added and multiplied by a float (or array or int).
'''
def __init__(self, a=1., b=0.):
'''
Defines an affine function as a*x+b.
'''
self.a = a
self.b = b
def __add__(self, y):
if isinstance(y, AffineFunction):
return AffineFunction(self.a + y.a, self.b + y.b)
else:
return AffineFunction(self.a, self.b + array(y))
def __radd__(self, x):
if isinstance(x, AffineFunction):
return AffineFunction(self.a + x.a, self.b + x.b)
else:
return AffineFunction(self.a, self.b + array(x))
def __neg__(self):
return AffineFunction(-self.a, -self.b)
def __sub__(self, y):
if isinstance(y, AffineFunction):
return AffineFunction(self.a - y.a, self.b - y.b)
else:
return AffineFunction(self.a, self.b - array(y))
def __rsub__(self, x):
if isinstance(x, AffineFunction):
return AffineFunction(x.a - self.a, x.b - self.b)
else:
return AffineFunction(-self.a, array(x) - self.b)
def __mul__(self, y):
if isinstance(y, float) or isinstance(y, int) or isinstance(y, array):
return AffineFunction(self.a * array(y), self.b * array(y))
else:
return y.__rmul__(self)
def __rmul__(self, x):
if isinstance(x, float) or isinstance(x, int) or isinstance(x, array):
return AffineFunction(array(x) * self.a, array(x) * self.b)
else:
return x.__mul__(self)
def __div__(self, y):
if isinstance(y, float) or isinstance(y, int) or isinstance(y, array):
return AffineFunction(self.a / array(y), self.b / array(y))
else:
return y.__rdiv__(self)
def __repr__(self):
return str(self.a) + '*x+' + str(self.b)
class Term(object):
'''
A variable that can be used to isolate terms in
a function, e.g.:
f=lambda x:a+3*x
f(Term()) --> 3*Term()
Idea:
a+x(z) = x(z) + a = x(z)
a*x(z) = x(z)*a = x(a*z)
'''
def __init__(self, x=1.):
self.x = x
def __add__(self, y):
return self
def __radd__(self, y):
return self
def __mul__(self, y):
return Term(self.x * y)
def __rmul__(self, y):
return Term(self.x * y)
def __div__(self, y):
return Term(self.x / y)
def __neg__(self):
return Term(-self.x)
def __repr__(self):
return str(self.x) + '*Term()'
def __print__(self):
return str(self.x) + '*Term()'
def is_affine(f):
'''
Tests whether f is an affine function.
'''
nargs = f.func_code.co_argcount
try:
f(*([AffineFunction()]*nargs))
except:
return False
return True
#def is_affine1st(f,x0):
# '''
# Tests whether f is affine in its 1st variable.
# '''
# nargs=f.func_code.co_argcount
# return is_affine(lambda x:f(x,*x0))
def depends_on(f, x, x0):
'''
Tests whether f depends on global variable x.
N.B.: returns True also if f generates an error
(e.g. with undefined variables).
x0 is the test value for the variables (tuple).
Other idea: use 'xi' in f.func_code.co_names (but not working for nested functions)
'''
#return x in f.func_code.co_names
# if x in f.func_globals:
# oldx=f.func_globals[x]
# else:
# oldx=None
old_func_globals = copy(f.func_globals)
x0 = list_replace_quantity_with_pure(x0)
f.func_globals.update(namespace_replace_quantity_with_pure(f.func_globals))
result = False
f.func_globals[x] = None
nargs = f.func_code.co_argcount
try:
f(*x0)
except:
result = True
# if oldx==None:
# del f.func_globals[x] # x was not defined
# else:
# f.func_globals[x]=oldx # previous value
f.func_globals.update(old_func_globals)
return result
def get_global_term(f, x, x0):
'''
Extract the term in global variable x from function x,
returns a float.
x0 is the test value for the variables (tuple).
Example:
getterm(lambda x:2*x+5*y,'y',(0,0))) --> 5
'''
old_func_globals = copy(f.func_globals)
x0 = list_replace_quantity_with_pure(x0)
f.func_globals.update(namespace_replace_quantity_with_pure(f.func_globals))
f.func_globals[x] = Term()
result = f(*x0).x
f.func_globals.update(old_func_globals)
return result
|