This file is indexed.

/usr/share/doc/pythia8-doc/html/OniaProcesses.html is in pythia8-doc-html 8.1.86-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
<html>
<head>
<title>Onia Processes</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
 
<h2>Onia Processes</h2> 
 
Production of any <i>3S1</i>, <i>3PJ</i>, and <i>3DJ</i> charmonium
and bottomonium states via the colour-singlet and colour-octet
mechanisms. This includes by default, but is not limited to, production of
the <i>3S1</i> <i>J/psi</i> and <i>Upsilon</i> and their
radially excited states, as well as the <i>3PJ</i> <i>chi</i>
states and the <i>3D1</i> <i>psi(3770)</i>. In each process the
heavy quark content, either <i>ccbar</i> or <i>bbbar</i>, is
followed by a round-bracketed expression which specifies the physical
state in spectroscopic notation, <i>(2S+1) L J</i>. Proceding this
is a square-bracketed expression, also in spectroscopic notation,
which specifies the Fock state through which the process occurs,
where <i>(1)</i> indicates a colour-singlet state and <i>(8)</i> a
colour-octet state.

<p> The unphysical colour-octet states follow the <code>id</code>
scheme of <i>99 n_q n_s n_r n_L n_J</i> where <i>n_q</i> is the
quark flavour of the state and <i>n_s</i> is the colour-octet state
type. Here <i>0</i> is <i>3S1</i>, <i>1</i> is <i>1S0</i>,
and <i>2</i> is <i>3PJ</i>. All remaining numbers follow the
standard PDG numbering scheme. If a physical state is requested
without a corresponding colour-octet state, a colour-octet state is
automatically added to the <code>ParticleData</code>
when a colour-octet process is selected. The colour-octet state is
created with a mass given by the mass of the physical state plus the
singlet-octet mass splitting parameter <code>Onia:massSplit</code>,
which is by default set at 200 MeV, and decays exclusively
to a gluon and the physical state. If the user wishes to manually
set the mass splitting for each colour-octet state individually
then <code>Onia:forceMassSplit</code> can be set to <i>off</i>.
By default the widths of the octet states are set to vanish. 
This is not realistic, given their presumably rather rapid decay,
but a nonvanishing width is not likely to have any measurable 
consequences that go beyond what comes from viewing the singlet-octet
mass splitting as an effective parameter.

<p/> 
The original Fortran code for these processes has been contributed 
by Stefan Wolf [unpublished]. For the C++ version only the unpolarized 
expressions are retained, since the theoretical predictions of the 
colour-octet model anyway do not agree with the experimental 
observations. Furthermore, the polarization effects are modest, 
so isotropic decay is not a bad starting point. Such an event sample 
can afterwards be reweighted at will by the user, to test various 
assumptions. The expressions for the colour-singlet production of
the <i>3S1</i> and <i>3PJ</i> states can be found
in [<a href="Bibliography.html" target="page">Bai83</a>] and [<a href="Bibliography.html" target="page">Gas87</a>]. Colour-octet expressions can
be found in [<a href="Bibliography.html" target="page">Cho96</a>] for the <i>1S0</i>, <i>3S1</i>,
and <i>3PJ</i> states, and the matrix elements for the <i>3DJ</i>
states are taken from [<a href="Bibliography.html" target="page">Yua98</a>]. 
 
<p/>
The implementation of charmonium and bottomonium production, including
the colour-octet production mechanism, requires information on
long-distance NRQCD matrix elements for the various wavefunctions
involved. Default values for these are encoded in the <i>O</i>
parameters and are taken from [<a href="Bibliography.html" target="page">Nas00</a>]; see
also [<a href="Bibliography.html" target="page">Bar07</a>]. The <i>3DJ</i> long-distance matrix elements
are extracted from [<a href="Bibliography.html" target="page">Yua98</a>].

<p/>
Note that states that differ only by the radial excitation number 
<i>n_r</i> share the same short-dinstence matrix elements. The
program has therefore been written such that further radial excitations
can be easily added by editing this file, without requiring a recompilation 
of the code. All related arrays must be expanded in exactly the same way,
however, i.e. the code of the colour singlet state, the long-distance
matrix elements and the individual process on/off switches. 

<p/> 
The description of 
<a href="TimelikeShowers.html" target="page">final-state radiation</a> 
is in this case based on some further model assumptions. 
 
<p/> 
Most of the processes below are divergent in the limit <i>pT &rarr; 0</i>, 
and therefore a <i>pTmin</i> scale should be set. Comparisons with 
data indicate that this divergence can be tamed the same way as for 
the normal QCD <i>2 &rarr; 2</i> cross sections [<a href="Bibliography.html" target="page">Bar07,Kra08</a>], 
which makes sense, since they are all dominated by the same kind of 
<i>t</i>-channel gluon exchange. It is therefore possible to use the 
<a href="UserHooks.html" target="page">SuppressSmallPT</a> user hook to impose a 
reweighting that cancels the low-<i>pT</i> divergence. 
 
<p/> 
An eikonalized description of these processes is included in the 
multiparton-interactions framework. Here the low-<i>pT</i> dampening 
is automatic, and additionally the framework is more consistent 
(e.g. with respect to energy-momentum constraints and the 
impact-parameter description) for events where the onium production 
is not the hardest subprocess, as would often be the case in the 
low-<i>pT</i> limit. 

<p/><code>flag&nbsp; </code><strong> Onia:forceMassSplit &nbsp;</strong> 
 (<code>default = <strong>on</strong></code>)<br/>
Force the mass splitting between the colour-singlet states and their
corresponding colour-octet state to be <code>Onia:massSplit</code>.
   

<p/><code>parm&nbsp; </code><strong> Onia:massSplit &nbsp;</strong> 
 (<code>default = <strong>0.2</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 1.0</code>)<br/>
Mass splitting in GeV between the physical colour-singlet
states and their corresponding colour-octet state.
   

<p/><code>flag&nbsp; </code><strong> Onia:all &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of onia production. 
   
<p/><code>flag&nbsp; </code><strong> Onia:all(3S1) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>3S1</i> onia production,
e.g. <i>J/psi</i> and <i>Upsilon</i>.
   
<p/><code>flag&nbsp; </code><strong> Onia:all(3PJ) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>3PJ</i> onia production,
e.g. <i>chi_c</i> and <i>chi_b</i>.
   
<p/><code>flag&nbsp; </code><strong> Onia:all(3DJ) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>3DJ</i> onia production,
e.g. <i>psi(3770)</i>.
   
<p/><code>flag&nbsp; </code><strong> Charmonium:all &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of charmonium production,
e.g. <i>J/psi</i> and <i>chi_c</i>.
   
<p/><code>flag&nbsp; </code><strong> Bottomonium:all &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of bottomonium production,
e.g. <i>Upsilon</i> and <i>chi_b</i>.
   

<h3>Charmonium 3S1 States</h3> 

<p/><code>mvec&nbsp; </code><strong> Charmonium:states(3S1) &nbsp;</strong> 
 (<code>default = <strong>443,100443</strong></code>; <code>minimum = 0</code>)<br/>
The <i>3S1</i> charmonium states that can be produced from the following
processes. Note that all vectors within this section,
either of flags or parameters, must be the same length as this
vector.
  

<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3S1)[3S1(1)] &nbsp;</strong> 
 (<code>default = <strong>1.16,0.76</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-singlet long-distance matrix
elements <i>&lt;O[3S1(1)]&gt;</i> for the <i>3S1</i> charmonium states.
  

<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3S1)[3S1(8)] &nbsp;</strong> 
 (<code>default = <strong>0.0119,0.0050</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[3S1(8)]&gt;</i> for the <i>3S1</i> charmonium states.
   
 
<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3S1)[1S0(8)] &nbsp;</strong> 
 (<code>default = <strong>0.01,0.004</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[1S0(8)]&gt;</i> for the <i>3S1</i>
charmonium states.
  
 
<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3S1)[3P0(8)] &nbsp;</strong> 
 (<code>default = <strong>0.01,0.004</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[3P0(8)]&gt;/m_Q^2</i> for the <i>3S1</i> charmonium
states. The remaining <i>&lt;O[3PJ(8)]&gt;/m_Q^2</i>
are calculated from these long-distance matrix elements.
  
 
<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3S1)[3S1(1)]g &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-singlet production of <i>3S1</i> charmonium states via 
<i>g g &rarr; ccbar[3S1(1)] g</i>.
Code 401. 
  

<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3S1)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>g g &rarr; ccbar[3S1(8)] g</i>.
Code 402.
   

<p/><code>fvec&nbsp; </code><strong> Charmonium:qg2ccbar(3S1)[3S1(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>q g &rarr; ccbar[3S1(8)] q</i>. 
Code 403.
   
 
<p/><code>fvec&nbsp; </code><strong> Charmonium:qqbar2ccbar(3S1)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>q qbar &rarr; ccbar[3S1(8)] g</i>. 
Code 404.
   

<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3S1)[1S0(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>g g &rarr; ccbar[1S0(8)] g</i>. 
Code 405.
   
 
<p/><code>fvec&nbsp; </code><strong> Charmonium:qg2ccbar(3S1)[1S0(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>q g &rarr; ccbar[1S0(8)] q</i>.
Code 406.
   
 
<p/><code>fvec&nbsp; </code><strong> Charmonium:qqbar2ccbar(3S1)[1S0(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>q qbar &rarr; ccbar[1S0(8)] g</i>. 
Code 407.
   
 
<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3S1)[3PJ(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>g g &rarr; ccbar[3PJ(8)] g</i>. 
Code 408.
   
 
<p/><code>fvec&nbsp; </code><strong> Charmonium:qg2ccbar(3S1)[3PJ(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>q g &rarr; ccbar[3PJ(8)] q</i>. 
Code 409.
   
  
<p/><code>fvec&nbsp; </code><strong> Charmonium:qqbar2ccbar(3S1)[3PJ(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> charmonium states via
<i>q qbar &rarr; ccbar[3SJ(8)] g</i>. 
Code 410.
   

<h3>Charmonium 3PJ States</h3> 

<p/><code>mvec&nbsp; </code><strong> Charmonium:states(3PJ) &nbsp;</strong> 
 (<code>default = <strong>10441,20443,445</strong></code>)<br/>
The <i>3PJ</i> charmonium states that can be produced from the following
processes. Note that all vectors within this section,
either of flags or parameters, must be the same length as this
vector.
  

<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3PJ)[3P0(1)] &nbsp;</strong> 
 (<code>default = <strong>0.05,0.05,0.05</strong></code>; <code>minimum = 0.0</code>)<br/>
The color-singlet long-distance matrix elements 
<i>&lt;O[3P0(1)]&gt;/m_Q^2</i> for the <i>3PJ</i> charmonium
states. The remaining <i>&lt;O[3PJ(1)]&gt;/m_Q^2</i>
are calculated from these long-distance matrix elements.
  

<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3PJ)[3S1(8)] &nbsp;</strong> 
 (<code>default = <strong>0.0031,0.0031,0.0031</strong></code>; <code>minimum = 0.0</code>)<br/>
The color-singlet long-distance matrix elements 
<i>&lt;O[3S1(8)]&gt;</i> for the <i>3PJ</i> charmonium states.
  

<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3PJ)[3PJ(1)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-singlet production of <i>3PJ</i> charmonium states via
<i>g g &rarr; ccbar[3PJ(1)] g</i>. 
Code 411.
   

<p/><code>fvec&nbsp; </code><strong> Charmonium:qg2ccbar(3PJ)[3PJ(1)]q &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-singlet production of <i>3PJ</i> charmonium states via
<i>q g &rarr; ccbar[3PJ(1)] q</i>. 
Code 412.
   

<p/><code>fvec&nbsp; </code><strong> Charmonium:qqbar2ccbar(3PJ)[3PJ(1)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-singlet production of <i>3PJ</i> charmonium states via
<i>q qbar &rarr; ccbar[3PJ(1)] g</i>. 
Code 413.
  

<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3PJ)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3PJ</i> charmonium states via
<i>g g &rarr; ccbar[3S1(8)] g</i>. 
Code 414.
   

<p/><code>fvec&nbsp; </code><strong> Charmonium:qg2ccbar(3PJ)[3S1(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3PJ</i> charmonium states via
<i>q g &rarr; ccbar[3S1(8)] q</i>. 
Code 415.
   

<p/><code>fvec&nbsp; </code><strong> Charmonium:qqbar2ccbar(3PJ)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3PJ</i> charmonium states via
<i>q qbar &rarr; ccbar[3S1(8)] g</i>. 
Code 416.
  

<h3>Charmonium 3DJ States</h3> 

<p/><code>mvec&nbsp; </code><strong> Charmonium:states(3DJ) &nbsp;</strong> 
 (<code>default = <strong>30443</strong></code>)<br/>
The <i>3DJ</i> charmonium states that can be produced from the following
processes. Note that all vectors within this section,
either of flags or parameters, must be the same length as this
vector.
  

<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3DJ)[3D1(1)] &nbsp;</strong> 
 (<code>default = <strong>0.161</strong></code>; <code>minimum = 0.0</code>)<br/>
The color-singlet long-distance matrix elements 
<i>&lt;O[3D1(1)]&gt;</i> for the <i>3PJ</i> charmonium
states. For a <i>3DJ</i> charmonium state where <i>J</i> is
not <i>1</i> the long distance matrix
element <i>&lt;O[3DJ(1)]&gt;</i> is calculated
by <i>(2J+1)&lt;O[3D1(1)]/3&gt;</i> using leading order spin symmetry
relations.
  

<p/><code>pvec&nbsp; </code><strong> Charmonium:O(3DJ)[3P0(8)] &nbsp;</strong> 
 (<code>default = <strong>0.01</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[3P0(8)]&gt;/m_Q^2</i> for the 3DJ charmonium
states. The remaining <i>&lt;O[3PJ(8)]&gt;/m_Q^2</i>
are calculated from these long-distance matrix elements.
  

<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3DJ)[3DJ(1)]g &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Colour-singlet production of <i>3PJ</i> charmonium states via
<i>g g &rarr; ccbar[3DJ(1)] g</i>. 
Code 417.
   

<p/><code>fvec&nbsp; </code><strong> Charmonium:gg2ccbar(3DJ)[3PJ(8)]g &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Colour-octet production of <i>3DJ</i> charmonium states via
<i>g g &rarr; ccbar[3PJ(8)] g</i>. 
Code 418.
   
 
<p/><code>fvec&nbsp; </code><strong> Charmonium:qg2ccbar(3DJ)[3PJ(8)]q &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Colour-octet production of <i>3DJ</i> charmonium states via
<i>q g &rarr; ccbar[3PJ(8)] q</i>. 
Code 419.
   
  
<p/><code>fvec&nbsp; </code><strong> Charmonium:qqbar2ccbar(3DJ)[3PJ(8)]g &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Colour-octet production of <i>3DJ</i> charmonium states via
<i>q qbar &rarr; ccbar[3PJ(8)] g</i>. 
Code 420.
  

<h3>Bottomonium 3S1 States</h3> 

<p/><code>mvec&nbsp; </code><strong> Bottomonium:states(3S1) &nbsp;</strong> 
 (<code>default = <strong>553,100553,200553</strong></code>; <code>minimum = 0</code>)<br/>
The <i>3S1</i> bottomonium states that can be produced from the following
processes. Note that all vectors within this section,
either of flags or parameters, must be the same length as this
vector.
  

<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3S1)[3S1(1)] &nbsp;</strong> 
 (<code>default = <strong>9.28,4.63,3.54</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-singlet long-distance matrix
elements <i>&lt;O[3S1(1)]&gt;</i> for the <i>3S1</i> bottomonium states.
  

<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3S1)[3S1(8)] &nbsp;</strong> 
 (<code>default = <strong>0.15,0.045,0.075</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[3S1(8)]&gt;</i> for the <i>3S1</i> bottomonium states.
   
 
<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3S1)[1S0(8)] &nbsp;</strong> 
 (<code>default = <strong>0.02,0.06,0.1</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[1S0(8)]&gt;</i> for the <i>3S1</i>
bottomonium states.
  
 
<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3S1)[3P0(8)] &nbsp;</strong> 
 (<code>default = <strong>0.02,0.06,0.1</strong></code>; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[3P0(8)]&gt;/m_Q^2</i> for the <i>3S1</i> bottomonium
states. The remaining <i>&lt;O[3PJ(8)]&gt;/m_Q^2</i>
are calculated from these long-distance matrix elements.
  
 
<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3S1)[3S1(1)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-singlet production of <i>3S1</i> bottomonium states via 
<i>g g &rarr; bbbar[3S1(1)] g</i>.
Code 501. 
  

<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3S1)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>g g &rarr; bbbar[3S1(8)] g</i>.
Code 502.
   

<p/><code>fvec&nbsp; </code><strong> Bottomonium:qg2bbbar(3S1)[3S1(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>q g &rarr; bbbar[3S1(8)] q</i>. 
Code 503.
   
 
<p/><code>fvec&nbsp; </code><strong> Bottomonium:qqbar2bbbar(3S1)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>q qbar &rarr; bbbar[3S1(8)] g</i>. 
Code 504.
   

<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3S1)[1S0(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>g g &rarr; bbbar[1S0(8)] g</i>. 
Code 505.
   
 
<p/><code>fvec&nbsp; </code><strong> Bottomonium:qg2bbbar(3S1)[1S0(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>q g &rarr; bbbar[1S0(8)] q</i>.
Code 506.
   
 
<p/><code>fvec&nbsp; </code><strong> Bottomonium:qqbar2bbbar(3S1)[1S0(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>q qbar &rarr; bbbar[1S0(8)] g</i>. 
Code 507.
   
 
<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3S1)[3PJ(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>g g &rarr; bbbar[3PJ(8)] g</i>. 
Code 508.
   
 
<p/><code>fvec&nbsp; </code><strong> Bottomonium:qg2bbbar(3S1)[3PJ(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>q g &rarr; bbbar[3PJ(8)] q</i>. 
Code 509.
   
  
<p/><code>fvec&nbsp; </code><strong> Bottomonium:qqbar2bbbar(3S1)[3PJ(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3S1</i> bottomonium states via
<i>q qbar &rarr; bbbar[3SJ(8)] g</i>. 
Code 510.
   

<h3>Bottomonium 3PJ States</h3> 

<p/><code>mvec&nbsp; </code><strong> Bottomonium:states(3PJ) &nbsp;</strong> 
 (<code>default = <strong>10551,20553,555</strong></code>)<br/>
The <i>3PJ</i> bottomonium states that can be produced from the following
processes. Note that all vectors within this section,
either of flags or parameters, must be the same length as this
vector.
  

<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3PJ)[3P0(1)] &nbsp;</strong> 
 (<code>default = <strong>0.085,0.085,0.085</strong></code>; <code>minimum = 0.0</code>)<br/>
The color-singlet long-distance matrix elements 
<i>&lt;O[3P0(1)]&gt;/m_Q^2</i> for the <i>3PJ</i> bottomonium
states. The remaining <i>&lt;O[3PJ(1)]&gt;/m_Q^2</i>
are calculated from these long-distance matrix elements.
  

<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3PJ)[3S1(8)] &nbsp;</strong> 
 (<code>default = <strong>0.04,0.04,0.04</strong></code>; <code>minimum = 0.0</code>)<br/>
The color-singlet long-distance matrix elements 
<i>&lt;O[3S1(8)]&gt;</i> for the <i>3PJ</i> bottomonium states.
  

<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3PJ)[3PJ(1)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-singlet production of <i>3PJ</i> bottomonium states via
<i>g g &rarr; bbbar[3PJ(1)] g</i>. 
Code 511.
   

<p/><code>fvec&nbsp; </code><strong> Bottomonium:qg2bbbar(3PJ)[3PJ(1)]q &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-singlet production of <i>3PJ</i> bottomonium states via
<i>q g &rarr; bbbar[3PJ(1)] q</i>. 
Code 512.
   

<p/><code>fvec&nbsp; </code><strong> Bottomonium:qqbar2bbbar(3PJ)[3PJ(1)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-singlet production of <i>3PJ</i> bottomonium states via
<i>q qbar &rarr; bbbar[3PJ(1)] g</i>. 
Code 513.
  

<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3PJ)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3PJ</i> bottomonium states via
<i>g g &rarr; bbbar[3S1(8)] g</i>. 
Code 514.
   

<p/><code>fvec&nbsp; </code><strong> Bottomonium:qg2bbbar(3PJ)[3S1(8)]q &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3PJ</i> bottomonium states via
<i>q g &rarr; bbbar[3S1(8)] q</i>. 
Code 515.
   

<p/><code>fvec&nbsp; </code><strong> Bottomonium:qqbar2bbbar(3PJ)[3S1(8)]g &nbsp;</strong> 
 (<code>default = <strong>off,off,off</strong></code>)<br/>
Colour-octet production of <i>3PJ</i> bottomonium states via
<i>q qbar &rarr; bbbar[3S1(8)] g</i>. 
Code 516.
  

<h3>Bottomonium 3DJ States</h3> 

<p/><code>mvec&nbsp; </code><strong> Bottomonium:states(3DJ) &nbsp;</strong> <br/>
The <i>3DJ</i> bottomonium states that can be produced from the following
processes. Currently, no <i>3DJ</i> states are included in the
default <code>ParticleData</code> and so none are included here. Note
that all vectors within this section, either of flags or parameters,
must be the same length as this vector.
  

<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3DJ)[3D1(1)] &nbsp;</strong> 
 (; <code>minimum = 0.0</code>)<br/>
The color-singlet long-distance matrix elements 
<i>&lt;O[3D1(1)]&gt;</i> for the <i>3PJ</i> bottomonium
states. For a <i>3DJ</i> bottomonium state where <i>J</i> is
not <i>1</i> the long distance matrix
element <i>&lt;O[3DJ(1)]&gt;</i> is calculated
by <i>(2J+1)&lt;O[3D1(1)]/3&gt;</i> using leading order spin symmetry
relations.
  

<p/><code>pvec&nbsp; </code><strong> Bottomonium:O(3DJ)[3P0(8)] &nbsp;</strong> 
 (; <code>minimum = 0.0</code>)<br/>
The colour-octet long-distance matrix
elements <i>&lt;O[3P0(8)]&gt;/m_Q^2</i> for the 3DJ bottomonium
states. The remaining <i>&lt;O[3PJ(8)]&gt;/m_Q^2</i>
are calculated from these long-distance matrix elements.
  

<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3DJ)[3DJ(1)]g &nbsp;</strong> <br/>
Colour-singlet production of <i>3PJ</i> bottomonium states via
<i>g g &rarr; bbbar[3DJ(1)] g</i>. 
Code 517.
   

<p/><code>fvec&nbsp; </code><strong> Bottomonium:gg2bbbar(3DJ)[3PJ(8)]g &nbsp;</strong> <br/>
Colour-octet production of <i>3DJ</i> bottomonium states via
<i>g g &rarr; bbbar[3PJ(8)] g</i>. 
Code 518.
   
 
<p/><code>fvec&nbsp; </code><strong> Bottomonium:qg2bbbar(3DJ)[3PJ(8)]q &nbsp;</strong> <br/>
Colour-octet production of <i>3DJ</i> bottomonium states via
<i>q g &rarr; bbbar[3PJ(8)] q</i>. 
Code 519.
   
  
<p/><code>fvec&nbsp; </code><strong> Bottomonium:qqbar2bbbar(3DJ)[3PJ(8)]g &nbsp;</strong> <br/>
Colour-octet production of <i>3DJ</i> bottomonium states via
<i>q qbar &rarr; bbbar[3PJ(8)] g</i>. 
Code 520.
  

</body>
</html>
 
<!-- Copyright (C) 2014 Torbjorn Sjostrand -->