/usr/share/doc/pythia8-doc/html/HiggsProcesses.html is in pythia8-doc-html 8.1.86-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 | <html>
<head>
<title>Higgs Processes</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
<h2>Higgs Processes</h2>
This page documents Higgs production within and beyond the Standard Model
(SM and BSM for short). This includes several different processes and,
for the BSM scenarios, a large set of parameters that would only be fixed
within a more specific framework such as MSSM. Some choices can be made
irrespective of the particular model:
<p/><code>flag </code><strong> Higgs:cubicWidth </strong>
(<code>default = <strong>off</strong></code>)<br/>
The partial width of a Higgs particle to a pair of gauge bosons,
<i>W^+ W^-</i> or <i>Z^0 Z^0</i>, depends cubically on the
Higgs mass. When selecting the Higgs according to a Breit-Wigner,
so that the actual mass <i>mHat</i> does not agree with the
nominal <i>m_Higgs</i> one, an ambiguity arises which of the
two to use [<a href="Bibliography.html" target="page">Sey95</a>]. The default is to use a linear
dependence on <i>mHat</i>, i.e. a width proportional to
<i>m_Higgs^2 * mHat</i>, while <code>on</code> gives a
<i>mHat^3</i> dependence. This does not affect the widths to
fermions, which only depend linearly on <i>mHat</i>.
This flag is used both for SM and BSM Higgs bosons.
<p/><code>flag </code><strong> Higgs:runningLoopMass </strong>
(<code>default = <strong>on</strong></code>)<br/>
The partial width of a Higgs particle to a pair of gluons or photons,
or a <i>gamma Z^0</i> pair, proceeds in part through quark loops,
mainly <i>b</i> and <i>t</i>. There is some ambiguity what kind
of masses to use. Default is running MSbar ones, but alternatively
fixed pole masses are allowed (as was standard in PYTHIA 6), which
typically gives a noticeably higher cross section for these channels.
(For a decay to a pair of fermions, such as top, the running mass is
used for couplings and the fixed one for phase space.)
<p/><code>flag </code><strong> Higgs:clipWings </strong>
(<code>default = <strong>on</strong></code>)<br/>
The Breit-Wigner shape of a Higgs is nontrivial, owing to the rapid
width variation with the mass of a Higgs. This implies that a Higgs
of low nominal mass may still acquire a non-negligible high-end tail.
The validity of the calculation may be questioned in these wings.
With this option on, the <code>Higgs:wingsFac</code> value is used to
cut away the wings.
<br/><b>Warning:</b> with this option on, the allowed mass range is
shrunk, but never widened. This can lead to inconsistencies if a run
consists of several subruns with different Higgs masses. The
<code>id:mMin</code> and <code>id:mMax</code> values should therefore be
reset (e.g. to the defaults 50. and 0.) when <code>id:m0</code> is
changed.
<p/><code>parm </code><strong> Higgs:wingsFac </strong>
(<code>default = <strong>50.</strong></code>; <code>minimum = 0.</code>)<br/>
With <code>Higgs:clipWings</code> on, all Higgs masses which deviate
from the nominal one by more than <code>Higgs:wingsFac</code>
times the nominal width are forbidden. This is achieved by setting
the <code>mMin</code> and <code>mMax</code> values of the Higgs states
at initialization. These changes never allow a wider range than already
set by the user, alternatively by the current default values, see
warning above.
<p>
One setting is specific to the Standard Model:
<p/><code>flag </code><strong> HiggsSM:NLOWidths </strong>
(<code>default = <strong>on</strong></code>)<br/>
The partial width of the SM Higgs particle are multiplied by the
respective factors needed to bring the LO widths encoded in PYTHIA
to the NLO ones recommended by the LHCXSWG. The multiplicative
factors have been derived for a 125 GeV Higgs, but should apply for a
reasonable mass range around that value.
<h3>Standard-Model Higgs, basic processes</h3>
This section provides the standard set of processes that can be
run together to provide a reasonably complete overview of possible
production channels for a single SM Higgs.
The main parameter is the choice of Higgs mass, which can be set in the
normal <code>ParticleData</code> database; thereafter the properties
within the SM are essentially fixed.
<p/><code>flag </code><strong> HiggsSM:all </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of Higgs production within the Standard Model.
<p/><code>flag </code><strong> HiggsSM:ffbar2H </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^0</i>, where <i>f</i> sums over available
flavours except top. Related to the mass-dependent Higgs point coupling
to fermions, so at hadron colliders the bottom contribution will
dominate.
Code 901.
<p/><code>flag </code><strong> HiggsSM:gg2H </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0</i> via loop contributions primarily from
top.
Code 902.
<p/><code>flag </code><strong> HiggsSM:gmgm2H </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma → H^0</i> via loop contributions primarily
from top and <i>W</i>.
Code 903.
<p/><code>flag </code><strong> HiggsSM:ffbar2HZ </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^0 Z^0</i> via <i>s</i>-channel <i>Z^0</i>
exchange.
Code 904.
<p/><code>flag </code><strong> HiggsSM:ffbar2HW </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^0 W^+-</i> via <i>s</i>-channel
<i>W^+-</i> exchange.
Code 905.
<p/><code>flag </code><strong> HiggsSM:ff2Hff(t:ZZ) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' → H^0 f f'</i> via <i>Z^0 Z^0</i> fusion.
Code 906.
<p/><code>flag </code><strong> HiggsSM:ff2Hff(t:WW) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 → H^0 f_3 f_4</i> via <i>W^+ W^-</i> fusion.
Code 907.
<p/><code>flag </code><strong> HiggsSM:gg2Httbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0 t tbar</i> via <i>t tbar</i> fusion
(or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 908.
<p/><code>flag </code><strong> HiggsSM:qqbar2Httbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → H^0 t tbar</i> via <i>t tbar</i> fusion
(or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 909.
<h3>Standard-Model Higgs, further processes</h3>
A number of further production processes has been implemented, that
are specializations of some of the above ones to the high-<i>pT</i>
region. The sets therefore could not be used simultaneously
without unphysical double-counting, as further explained below.
They are not switched on by the <code>HiggsSM:all</code> flag, but
have to be switched on for each separate process after due consideration.
<p/>
The first three processes in this section are related to the Higgs
point coupling to fermions, and so primarily are of interest for
<i>b</i> quarks. It is here useful to begin by reminding that
a process like <i>b bbar → H^0</i> implies that a <i>b/bbar</i>
is taken from each incoming hadron, leaving behind its respective
antiparticle. The initial-state showers will then add one
<i>g → b bbar</i> branching on either side, so that effectively
the process becomes <i>g g → H0 b bbar</i>. This would be the
same basic process as the <i>g g → H^0 t tbar</i> one used for top.
The difference is that (a) no PDF's are defined for top and
(b) the shower approach would not be good enough to provide sensible
kinematics for the <i>H^0 t tbar</i> subsystem. By contrast, owing
to the <i>b</i> being much lighter than the Higgs, multiple
gluon emissions must be resummed for <i>b</i>, as is done by PDF's
and showers, in order to obtain a sensible description of the total
production rate, when the <i>b</i> quarks predominantly are produced
at small <i>pT</i> values.
<p/><code>flag </code><strong> HiggsSM:qg2Hq </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → H^0 q</i>. This process gives first-order
corrections to the <i>f fbar → H^0</i> one above, and should only be
used to study the high-<i>pT</i> tail, while <i>f fbar → H^0</i>
should be used for inclusive production. Only the dominant <i>c</i>
and <i>b</i> contributions are included, and generated separately
for technical reasons. Note that another first-order process would be
<i>q qbar → H^0 g</i>, which is not explicitly implemented here,
but is obtained from showering off the lowest-order process. It does not
contain any <i>b</i> at large <i>pT</i>, however, so is less
interesting for many applications.
Code 911.
<p/><code>flag </code><strong> HiggsSM:gg2Hbbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0 b bbar</i>. This process is yet one order
higher of the <i>b bbar → H^0</i> and <i>b g → H^0 b</i> chain,
where now two quarks should be required above some large <i>pT</i>
threshold.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 912.
<p/><code>flag </code><strong> HiggsSM:qqbar2Hbbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → H^0 b bbar</i> via an <i>s</i>-channel
gluon, so closely related to the previous one, but typically less
important owing to the smaller rate of (anti)quarks relative to
gluons.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 913.
<p/>
The second set of processes are predominantly first-order corrections
to the <i>g g → H^0</i> process, again dominated by the top loop.
We here only provide the kinematical expressions obtained in the
limit that the top quark goes to infinity, but scaled to the
finite-top-mass coupling in <i>g g → H^0</i>. (Complete loop
expressions are available e.g. in PYTHIA 6.4 but are very lengthy.)
This provides a reasonably accurate description for "intermediate"
<i>pT</i> values, but fails when the <i>pT</i> scale approaches
the top mass.
<p/><code>flag </code><strong> HiggsSM:gg2Hg(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0 g</i> via loop contributions primarily
from top.
Code 914.
<p/><code>flag </code><strong> HiggsSM:qg2Hq(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → H^0 q</i> via loop contributions primarily
from top. Not to be confused with the <code>HiggsSM:qg2Hq</code>
process above, with its direct fermion-to-Higgs coupling.
Code 915.
<p/><code>flag </code><strong> HiggsSM:qqbar2Hg(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → H^0 g</i> via an <i>s</i>-channel gluon
and loop contributions primarily from top. Is strictly speaking a
"new" process, not directly derived from <i>g g → H^0</i>, and
could therefore be included in the standard mix without double-counting,
but is numerically negligible.
Code 916.
<h3>Beyond-the-Standard-Model Higgs, introduction</h3>
Further Higgs multiplets arise in a number of scenarios. We here
concentrate on the MSSM scenario with two Higgs doublets, but with
flexibility enough that also other two-Higgs-doublet scenarios could
be represented by a suitable choice of parameters. Conventionally the
Higgs states are labeled <i>h^0, H^0, A^0</i> and <i>H^+-</i>.
If the scalar and pseudocalar states mix the resulting states are
labeled <i>H_1^0, H_2^0, H_3^0</i>. In process names and parameter
explanations both notations will be used, but for settings labels
we have adapted the shorthand hybrid notation <code>H1</code> for
<i>h^0(H_1^0)</i>, <code>H2</code> for <i>H^0(H_2^0)</i> and
<code>A3</code> for <i>A^0(H_3^0)</i>. (Recall that the
<code>Settings</code> database does not distinguish upper- and lowercase
characters, so that the user has one thing less to worry about, but here
it causes problems with <i>h^0</i> vs. <i>H^0</i>.) We leave the issue
of mass ordering between <i>H^0</i> and <i>A^0</i> open, and thereby
also that of <i>H_2^0</i> and <i>H_3^0</i>.
<p/><code>flag </code><strong> Higgs:useBSM </strong>
(<code>default = <strong>off</strong></code>)<br/>
Master switch to initialize and use the two-Higgs-doublet states.
If off, only the above SM Higgs processes can be used, with couplings
as predicted in the SM. If on, only the below BSM Higgs processes can
be used, with couplings that can be set freely, also found further down
on this page.
<h3>Beyond-the-Standard-Model Higgs, basic processes</h3>
This section provides the standard set of processes that can be
run together to provide a reasonably complete overview of possible
production channels for a single neutral Higgs state in a two-doublet
scenarios such as MSSM. The list of processes for neutral states closely
mimics the one found for the SM Higgs. Some of the processes
vanish for a pure pseudoscalar <i>A^0</i>, but are kept for flexibility
in cases of mixing with the scalar <i>h^0</i> and <i>H^0</i> states,
or for use in the context of non-MSSM models. This should work well to
represent e.g. that a small admixture of the "wrong" parity would allow
a process such as <i>q qbar → A^0 Z^0</i>, which otherwise is
forbidden. However, note that the loop integrals e.g. for
<i>g g → h^0/H^0/A^0</i> are hardcoded to be for scalars for the
former two particles and for a pseudoscalar for the latter one,
so absolute rates would not be correctly represented in the case of
large scalar/pseudoscalar mixing.
<p/><code>flag </code><strong> HiggsBSM:all </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of Higgs production beyond the Standard Model,
as listed below.
<h4>1) <i>h^0(H_1^0)</i> processes</h4>
<p/><code>flag </code><strong> HiggsBSM:allH1 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>h^0(H_1^0)</i> production processes.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H1 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → h^0(H_1^0)</i>, where <i>f</i> sums over
available flavours except top.
Code 1001.
<p/><code>flag </code><strong> HiggsBSM:gg2H1 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → h^0(H_1^0)</i> via loop contributions primarily
from top.
Code 1002.
<p/><code>flag </code><strong> HiggsBSM:gmgm2H1 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma → h^0(H_1^0)</i> via loop contributions
primarily from top and <i>W</i>.
Code 1003.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H1Z </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → h^0(H_1^0) Z^0</i> via <i>s</i>-channel
<i>Z^0</i> exchange.
Code 1004.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H1W </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → h^0(H_1^0) W^+-</i> via <i>s</i>-channel
<i>W^+-</i> exchange.
Code 1005.
<p/><code>flag </code><strong> HiggsBSM:ff2H1ff(t:ZZ) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' → h^0(H_1^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
Code 1006.
<p/><code>flag </code><strong> HiggsBSM:ff2H1ff(t:WW) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 → h^0(H_1^0) f_3 f_4</i> via <i>W^+ W^-</i>
fusion.
Code 1007.
<p/><code>flag </code><strong> HiggsBSM:gg2H1ttbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → h^0(H_1^0) t tbar</i> via <i>t tbar</i> fusion
(or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1008.
<p/><code>flag </code><strong> HiggsBSM:qqbar2H1ttbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → h^0(H_1^0) t tbar</i> via <i>t tbar</i>
fusion (or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1009.
<h4>2) <i>H^0(H_2^0)</i> processes</h4>
<p/><code>flag </code><strong> HiggsBSM:allH2 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>H^0(H_2^0)</i> production processes.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H2 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^0(H_2^0)</i>, where <i>f</i> sums over
available flavours except top.
Code 1021.
<p/><code>flag </code><strong> HiggsBSM:gg2H2 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0(H_2^0)</i> via loop contributions primarily
from top.
Code 1022.
<p/><code>flag </code><strong> HiggsBSM:gmgm2H2 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma → H^0(H_2^0)</i> via loop contributions
primarily from top and <i>W</i>.
Code 1023.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H2Z </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^0(H_2^0) Z^0</i> via <i>s</i>-channel
<i>Z^0</i> exchange.
Code 1024.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H2W </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^0(H_2^0) W^+-</i> via <i>s</i>-channel
<i>W^+-</i> exchange.
Code 1025.
<p/><code>flag </code><strong> HiggsBSM:ff2H2ff(t:ZZ) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' → H^0(H_2^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
Code 1026.
<p/><code>flag </code><strong> HiggsBSM:ff2H2ff(t:WW) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 → H^0(H_2^0) f_3 f_4</i> via <i>W^+ W^-</i>
fusion.
Code 1027.
<p/><code>flag </code><strong> HiggsBSM:gg2H2ttbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0(H_2^0) t tbar</i> via <i>t tbar</i> fusion
(or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1028.
<p/><code>flag </code><strong> HiggsBSM:qqbar2H2ttbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → H^0(H_2^0) t tbar</i> via <i>t tbar</i>
fusion (or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1029.
<h4>3) <i>A^0(H_3^0)</i> processes</h4>
<p/><code>flag </code><strong> HiggsBSM:allA3 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>A^0(H_3^0)</i> production processes.
<p/><code>flag </code><strong> HiggsBSM:ffbar2A3 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → A^0(H_3^0)</i>, where <i>f</i> sums over
available flavours except top.
Code 1041.
<p/><code>flag </code><strong> HiggsBSM:gg2A3 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → A^0(A_3^0)</i> via loop contributions primarily
from top.
Code 1042.
<p/><code>flag </code><strong> HiggsBSM:gmgm2A3 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma → A^0(A_3^0)</i> via loop contributions
primarily from top and <i>W</i>.
Code 1043.
<p/><code>flag </code><strong> HiggsBSM:ffbar2A3Z </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → A^0(A_3^0) Z^0</i> via <i>s</i>-channel
<i>Z^0</i> exchange.
Code 1044.
<p/><code>flag </code><strong> HiggsBSM:ffbar2A3W </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → A^0(A_3^0) W^+-</i> via <i>s</i>-channel
<i>W^+-</i> exchange.
Code 1045.
<p/><code>flag </code><strong> HiggsBSM:ff2A3ff(t:ZZ) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' → A^0(A_3^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
Code 1046.
<p/><code>flag </code><strong> HiggsBSM:ff2A3ff(t:WW) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 → A^0(A_3^0) f_3 f_4</i> via <i>W^+ W^-</i>
fusion. Code 1047.
<p/><code>flag </code><strong> HiggsBSM:gg2A3ttbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → A^0(A_3^0) t tbar</i> via <i>t tbar</i> fusion
(or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1048.
<p/><code>flag </code><strong> HiggsBSM:qqbar2A3ttbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → A^0(A_3^0) t tbar</i> via <i>t tbar</i>
fusion (or, alternatively put, Higgs radiation off a top line).
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1049.
<h4>4) <i>H+-</i> processes</h4>
<p/><code>flag </code><strong> HiggsBSM:allH+- </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>H^+-</i> production processes.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H+- </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar' → H^+-</i>, where <i>f, fbar'</i> sums over
available incoming flavours. Since couplings are assumed
generation-diagonal, in practice this means <i>c sbar → H^+</i>
and <i>s cbar → H^-</i>.
Code 1061.
<p/><code>flag </code><strong> HiggsBSM:bg2H+-t </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>b g → H^+ tbar</i>. At hadron colliders this is the
dominant process for single-charged-Higgs production.
Code 1062.
<h4>5) Higgs-pair processes</h4>
<p/><code>flag </code><strong> HiggsBSM:allHpair </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of Higgs pair-production processes.
<p/><code>flag </code><strong> HiggsBSM:ffbar2A3H1 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → A^0(H_3) h^0(H_1)</i>.
Code 1081.
<p/><code>flag </code><strong> HiggsBSM:ffbar2A3H2 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → A^0(H_3) H^0(H_2)</i>.
Code 1082.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H+-H1 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^+- h^0(H_1)</i>.
Code 1083.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H+-H2 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H^+- H^0(H_2)</i>.
Code 1084.
<p/><code>flag </code><strong> HiggsBSM:ffbar2H+H- </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar → H+ H-</i>.
Code 1085.
<h3>Beyond-the-Standard-Model Higgs, further processes</h3>
This section mimics the above section on "Standard-Model Higgs,
further processes", i.e. it contains higher-order corrections
to the processes already listed. The two sets therefore could not
be used simultaneously without unphysical double-counting.
They are not controlled by any group flag, but have to be switched
on for each separate process after due consideration. We refer to
the standard-model description for a set of further comments on
the processes.
<h4>1) <i>h^0(H_1^0)</i> processes</h4>
<p/><code>flag </code><strong> HiggsBSM:qg2H1q </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → h^0 q</i>. This process gives first-order
corrections to the <i>f fbar → h^0</i> one above, and should only be
used to study the high-<i>pT</i> tail, while <i>f fbar → h^0</i>
should be used for inclusive production. Only the dominant <i>c</i>
and <i>b</i> contributions are included, and generated separately
for technical reasons. Note that another first-order process would be
<i>q qbar → h^0 g</i>, which is not explicitly implemented here,
but is obtained from showering off the lowest-order process. It does not
contain any <i>b</i> at large <i>pT</i>, however, so is less
interesting for many applications.
Code 1011.
<p/><code>flag </code><strong> HiggsBSM:gg2H1bbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → h^0 b bbar</i>. This process is yet one order
higher of the <i>b bbar → h^0</i> and <i>b g → h^0 b</i> chain,
where now two quarks should be required above some large <i>pT</i>
threshold.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1012.
<p/><code>flag </code><strong> HiggsBSM:qqbar2H1bbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → h^0 b bbar</i> via an <i>s</i>-channel
gluon, so closely related to the previous one, but typically less
important owing to the smaller rate of (anti)quarks relative to
gluons.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1013.
<p/><code>flag </code><strong> HiggsBSM:gg2H1g(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → h^0 g</i> via loop contributions primarily
from top.
Code 1014.
<p/><code>flag </code><strong> HiggsBSM:qg2H1q(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → h^0 q</i> via loop contributions primarily
from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
process above, with its direct fermion-to-Higgs coupling.
Code 1015.
<p/><code>flag </code><strong> HiggsBSM:qqbar2H1g(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → h^0 g</i> via an <i>s</i>-channel gluon
and loop contributions primarily from top. Is strictly speaking a
"new" process, not directly derived from <i>g g → h^0</i>, and
could therefore be included in the standard mix without double-counting,
but is numerically negligible.
Code 1016.
<h4>2) <i>H^0(H_2^0)</i> processes</h4>
<p/><code>flag </code><strong> HiggsBSM:qg2H2q </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → H^0 q</i>. This process gives first-order
corrections to the <i>f fbar → H^0</i> one above, and should only be
used to study the high-<i>pT</i> tail, while <i>f fbar → H^0</i>
should be used for inclusive production. Only the dominant <i>c</i>
and <i>b</i> contributions are included, and generated separately
for technical reasons. Note that another first-order process would be
<i>q qbar → H^0 g</i>, which is not explicitly implemented here,
but is obtained from showering off the lowest-order process. It does not
contain any <i>b</i> at large <i>pT</i>, however, so is less
interesting for many applications.
Code 1031.
<p/><code>flag </code><strong> HiggsBSM:gg2H2bbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0 b bbar</i>. This process is yet one order
higher of the <i>b bbar → H^0</i> and <i>b g → H^0 b</i> chain,
where now two quarks should be required above some large <i>pT</i>
threshold.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1032.
<p/><code>flag </code><strong> HiggsBSM:qqbar2H2bbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → H^0 b bbar</i> via an <i>s</i>-channel
gluon, so closely related to the previous one, but typically less
important owing to the smaller rate of (anti)quarks relative to
gluons.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1033.
<p/><code>flag </code><strong> HiggsBSM:gg2H2g(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → H^0 g</i> via loop contributions primarily
from top.
Code 1034.
<p/><code>flag </code><strong> HiggsBSM:qg2H2q(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → H^0 q</i> via loop contributions primarily
from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
process above, with its direct fermion-to-Higgs coupling.
Code 1035.
<p/><code>flag </code><strong> HiggsBSM:qqbar2H2g(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → H^0 g</i> via an <i>s</i>-channel gluon
and loop contributions primarily from top. Is strictly speaking a
"new" process, not directly derived from <i>g g → H^0</i>, and
could therefore be included in the standard mix without double-counting,
but is numerically negligible.
Code 1036.
<h4>3) <i>A^0(H_3^0)</i> processes</h4>
<p/><code>flag </code><strong> HiggsBSM:qg2A3q </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → A^0 q</i>. This process gives first-order
corrections to the <i>f fbar → A^0</i> one above, and should only be
used to study the high-<i>pT</i> tail, while <i>f fbar → A^0</i>
should be used for inclusive production. Only the dominant <i>c</i>
and <i>b</i> contributions are included, and generated separately
for technical reasons. Note that another first-order process would be
<i>q qbar → A^0 g</i>, which is not explicitly implemented here,
but is obtained from showering off the lowest-order process. It does not
contain any <i>b</i> at large <i>pT</i>, however, so is less
interesting for many applications.
Code 1051.
<p/><code>flag </code><strong> HiggsBSM:gg2A3bbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → A^0 b bbar</i>. This process is yet one order
higher of the <i>b bbar → A^0</i> and <i>b g → A^0 b</i> chain,
where now two quarks should be required above some large <i>pT</i>
threshold.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1052.
<p/><code>flag </code><strong> HiggsBSM:qqbar2A3bbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → A^0 b bbar</i> via an <i>s</i>-channel
gluon, so closely related to the previous one, but typically less
important owing to the smaller rate of (anti)quarks relative to
gluons.
Warning: unfortunately this process is rather slow, owing to a
lengthy cross-section expression and inefficient phase-space selection.
Code 1053.
<p/><code>flag </code><strong> HiggsBSM:gg2A3g(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g → A^0 g</i> via loop contributions primarily
from top.
Code 1054.
<p/><code>flag </code><strong> HiggsBSM:qg2A3q(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g → A^0 q</i> via loop contributions primarily
from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
process above, with its direct fermion-to-Higgs coupling.
Code 1055.
<p/><code>flag </code><strong> HiggsBSM:qqbar2A3g(l:t) </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar → A^0 g</i> via an <i>s</i>-channel gluon
and loop contributions primarily from top. Is strictly speaking a
"new" process, not directly derived from <i>g g → A^0</i>, and
could therefore be included in the standard mix without double-counting,
but is numerically negligible.
Code 1056.
<h3>Parameters for Beyond-the-Standard-Model Higgs production and decay</h3>
This section offers a big flexibility to set couplings of the various
Higgs states to fermions and gauge bosons, and also to each other.
The intention is that, for scenarios like MSSM, you should use standard
input from the <a href="SUSYLesHouchesAccord.html" target="page">SUSY Les Houches
Accord</a>, rather than having to set it all yourself. In other cases,
however, the freedom is there for you to use. Kindly note that some
of the internal calculations of partial widths from the parameters provided
do not include mixing between the scalar and pseudoscalar states.
<p/>
Masses would be set in the <code>ParticleData</code> database,
while couplings are set below. When possible, the couplings of the Higgs
states are normalized to the corresponding coupling within the SM.
When not, their values within the MSSM are indicated, from which
it should be straightforward to understand what to use instead.
The exception is some couplings that vanish also in the MSSM, where the
normalization has been defined in close analogy with nonvanishing ones.
Some parameter names are asymmetric but crossing can always be used,
i.e. the coupling for <i>A^0 → H^0 Z^0</i> obviously is also valid
for <i>H^0 → A^0 Z^0</i> and <i>Z^0 → H^0 A^0</i>.
Note that couplings usually appear quadratically in matrix elements.
<p/><code>parm </code><strong> HiggsH1:coup2d </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to down-type quarks.
<p/><code>parm </code><strong> HiggsH1:coup2u </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to up-type quarks.
<p/><code>parm </code><strong> HiggsH1:coup2l </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to (charged) leptons.
<p/><code>parm </code><strong> HiggsH1:coup2Z </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to <i>Z^0</i>.
<p/><code>parm </code><strong> HiggsH1:coup2W </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to <i>W^+-</i>.
<p/><code>parm </code><strong> HiggsH1:coup2Hchg </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to <i>H^+-</i> (in loops).
Is <i>sin(beta - alpha) + cos(2 beta) sin(beta + alpha) /
(2 cos^2theta_W)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsH2:coup2d </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to down-type quarks.
<p/><code>parm </code><strong> HiggsH2:coup2u </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to up-type quarks.
<p/><code>parm </code><strong> HiggsH2:coup2l </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to (charged) leptons.
<p/><code>parm </code><strong> HiggsH2:coup2Z </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to <i>Z^0</i>.
<p/><code>parm </code><strong> HiggsH2:coup2W </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to <i>W^+-</i>.
<p/><code>parm </code><strong> HiggsH2:coup2Hchg </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to <i>H^+-</i> (in loops).
Is <i>cos(beta - alpha) + cos(2 beta) cos(beta + alpha) /
(2 cos^2theta_W)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsH2:coup2H1H1 </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0)</i> pair.
Is <i>cos(2 alpha) cos(beta + alpha) - 2 sin(2 alpha)
sin(beta + alpha)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsH2:coup2A3A3 </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0)</i> pair.
Is <i>cos(2 beta) cos(beta + alpha)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsH2:coup2H1Z </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair.
Vanishes in the MSSM.
<p/><code>parm </code><strong> HiggsH2:coup2A3H1 </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0) h^0(H_1^0)</i> pair.
Vanishes in the MSSM.
<p/><code>parm </code><strong> HiggsH2:coup2HchgW </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to a <i>H^+- W-+</i> pair.
Is <i>sin(beta - alpha)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsA3:coup2d </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to down-type quarks.
<p/><code>parm </code><strong> HiggsA3:coup2u </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to up-type quarks.
<p/><code>parm </code><strong> HiggsA3:coup2l </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to (charged) leptons.
<p/><code>parm </code><strong> HiggsA3:coup2H1Z </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair.
Is <i>cos(beta - alpha)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsA3:coup2H2Z </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>H^0(H_2^0) Z^0</i> pair.
Is <i>sin(beta - alpha)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsA3:coup2Z </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to <i>Z^0</i>.
Vanishes in the MSSM.
<p/><code>parm </code><strong> HiggsA3:coup2W </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to <i>W^+-</i>.
Vanishes in the MSSM.
<p/><code>parm </code><strong> HiggsA3:coup2H1H1 </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0)</i> pair.
Vanishes in the MSSM.
<p/><code>parm </code><strong> HiggsA3:coup2Hchg </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to <i>H^+-</i>.
Vanishes in the MSSM.
<p/><code>parm </code><strong> HiggsA3:coup2HchgW </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>H^+- W-+</i> pair.
Is 1 in the MSSM.
<p/><code>parm </code><strong> HiggsHchg:tanBeta </strong>
(<code>default = <strong>5.</strong></code>)<br/>
The <i>tan(beta)</i> value, which leads to an enhancement of the
<i>H^+-</i> coupling to down-type fermions and suppression to
up-type ones. The same angle also appears in many other places,
but this particular parameter is only used for the charged-Higgs case.
<p/><code>parm </code><strong> HiggsHchg:coup2H1W </strong>
(<code>default = <strong>1.</strong></code>)<br/>
The <i>H^+-</i> coupling to a <i>h^0(H_1^0) W^+-</i> pair.
Is <i>cos(beta - alpha)</i> in the MSSM.
<p/><code>parm </code><strong> HiggsHchg:coup2H2W </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>H^+-</i> coupling to a <i>H^0(H_2^0) W^+-</i> pair.
Is <i>sin(beta - alpha)</i> in the MSSM.
<p/>
Another set of parameters are not used in the production stage but
exclusively for the description of angular distributions in decays.
<p/><code>mode </code><strong> HiggsH1:parity </strong>
(<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
possibility to modify angular decay correlations in the decay of a
<i>h^0(H_1)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four
fermions. Currently it does not affect the partial width of the
channels, which is only based on the above parameters.
<br/><code>option </code><strong> 0</strong> : isotropic decays.
<br/><code>option </code><strong> 1</strong> : assuming the <i>h^0(H_1)</i> is a pure scalar
(CP-even), as in the MSSM.
<br/><code>option </code><strong> 2</strong> : assuming the <i>h^0(H_1)</i> is a pure pseudoscalar
(CP-odd).
<br/><code>option </code><strong> 3</strong> : assuming the <i>h^0(H_1)</i> is a mixture of the two,
including the CP-violating interference term. The parameter
<i>eta</i>, see below, sets the strength of the CP-odd admixture,
with the interference term being proportional to <i>eta</i>
and the CP-odd one to <i>eta^2</i>.
<p/><code>parm </code><strong> HiggsH1:etaParity </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>eta</i> value of CP-violation in the
<code>HiggsSM:parity = 3</code> option.
<p/><code>mode </code><strong> HiggsH2:parity </strong>
(<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
possibility to modify angular decay correlations in the decay of a
<i>H^0(H_2)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four
fermions. Currently it does not affect the partial width of the
channels, which is only based on the above parameters.
<br/><code>option </code><strong> 0</strong> : isotropic decays.
<br/><code>option </code><strong> 1</strong> : assuming the <i>H^0(H_2)</i> is a pure scalar
(CP-even), as in the MSSM.
<br/><code>option </code><strong> 2</strong> : assuming the <i>H^0(H_2)</i> is a pure pseudoscalar
(CP-odd).
<br/><code>option </code><strong> 3</strong> : assuming the <i>H^0(H_2)</i> is a mixture of the two,
including the CP-violating interference term. The parameter
<i>eta</i>, see below, sets the strength of the CP-odd admixture,
with the interference term being proportional to <i>eta</i>
and the CP-odd one to <i>eta^2</i>.
<p/><code>parm </code><strong> HiggsH2:etaParity </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>eta</i> value of CP-violation in the
<code>HiggsSM:parity = 3</code> option.
<p/><code>mode </code><strong> HiggsA3:parity </strong>
(<code>default = <strong>2</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
possibility to modify angular decay correlations in the decay of a
<i>A^0(H_3)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four
fermions. Currently it does not affect the partial width of the
channels, which is only based on the above parameters.
<br/><code>option </code><strong> 0</strong> : isotropic decays.
<br/><code>option </code><strong> 1</strong> : assuming the <i>A^0(H_3)</i> is a pure scalar
(CP-even).
<br/><code>option </code><strong> 2</strong> : assuming the <i>A^0(H_3)</i> is a pure pseudoscalar
(CP-odd), as in the MSSM.
<br/><code>option </code><strong> 3</strong> : assuming the <i>A^0(H_3)</i> is a mixture of the two,
including the CP-violating interference term. The parameter
<i>eta</i>, see below, sets the strength of the CP-odd admixture,
with the interference term being proportional to <i>eta</i>
and the CP-odd one to <i>eta^2</i>.
<p/><code>parm </code><strong> HiggsA3:etaParity </strong>
(<code>default = <strong>0.</strong></code>)<br/>
The <i>eta</i> value of CP-violation in the
<code>HiggsSM:parity = 3</code> option.
</body>
</html>
<!-- Copyright (C) 2014 Torbjorn Sjostrand -->
|