This file is indexed.

/usr/share/doc/pythia8-doc/html/HiggsProcesses.html is in pythia8-doc-html 8.1.86-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
<html>
<head>
<title>Higgs Processes</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
 
<h2>Higgs Processes</h2> 
 
This page documents Higgs production within and beyond the Standard Model 
(SM and BSM for short). This includes several different processes and, 
for the BSM scenarios, a large set of parameters that would only be fixed 
within a more specific framework such as MSSM. Some choices can be made 
irrespective of the particular model: 
 
<p/><code>flag&nbsp; </code><strong> Higgs:cubicWidth &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
The partial width of a Higgs particle to a pair of gauge bosons, 
<i>W^+ W^-</i> or <i>Z^0 Z^0</i>, depends cubically on the 
Higgs mass. When selecting the Higgs according to a Breit-Wigner, 
so that the actual mass <i>mHat</i> does not agree with the 
nominal <i>m_Higgs</i> one, an ambiguity arises which of the 
two to use [<a href="Bibliography.html" target="page">Sey95</a>]. The default is to use a linear 
dependence on <i>mHat</i>, i.e. a width proportional to 
<i>m_Higgs^2 * mHat</i>, while <code>on</code> gives a 
<i>mHat^3</i> dependence. This does not affect the widths to 
fermions, which only depend linearly on <i>mHat</i>. 
This flag is used both for SM and BSM Higgs bosons. 
   
 
<p/><code>flag&nbsp; </code><strong> Higgs:runningLoopMass &nbsp;</strong> 
 (<code>default = <strong>on</strong></code>)<br/>
The partial width of a Higgs particle to a pair of gluons or photons, 
or a <i>gamma Z^0</i> pair, proceeds in part through quark loops, 
mainly <i>b</i> and <i>t</i>. There is some ambiguity what kind 
of masses to use. Default is running MSbar ones, but alternatively 
fixed pole masses are allowed (as was standard in PYTHIA 6), which 
typically gives a noticeably higher cross section for these channels. 
(For a decay to a pair of fermions, such as top, the running mass is 
used for couplings and the fixed one for phase space.) 
   
 
<p/><code>flag&nbsp; </code><strong> Higgs:clipWings &nbsp;</strong> 
 (<code>default = <strong>on</strong></code>)<br/>
The Breit-Wigner shape of a Higgs is nontrivial, owing to the rapid 
width variation with the mass of a Higgs. This implies that a Higgs 
of low nominal mass may still acquire a non-negligible high-end tail. 
The validity of the calculation may be questioned in these wings. 
With this option on, the <code>Higgs:wingsFac</code> value is used to 
cut away the wings. 
<br/><b>Warning:</b> with this option on, the allowed mass range is 
shrunk, but never widened. This can lead to inconsistencies if a run 
consists of several subruns with different Higgs masses. The 
<code>id:mMin</code> and <code>id:mMax</code> values should therefore be 
reset (e.g. to the defaults 50. and 0.) when <code>id:m0</code> is 
changed. 
   
 
<p/><code>parm&nbsp; </code><strong> Higgs:wingsFac &nbsp;</strong> 
 (<code>default = <strong>50.</strong></code>; <code>minimum = 0.</code>)<br/>
With <code>Higgs:clipWings</code> on, all Higgs masses which deviate 
from the nominal one by more than <code>Higgs:wingsFac</code> 
times the nominal width are forbidden. This is achieved by setting 
the <code>mMin</code> and <code>mMax</code> values of the Higgs states 
at initialization. These changes never  allow a wider range than already 
set by the user, alternatively by the current default values, see 
warning above. 
   
 
<p> 
One setting is specific to the Standard Model: 
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:NLOWidths &nbsp;</strong> 
 (<code>default = <strong>on</strong></code>)<br/>
The partial width of the SM Higgs particle are multiplied by the 
respective factors needed to bring the LO widths encoded in PYTHIA 
to the NLO ones recommended by the LHCXSWG. The multiplicative 
factors have been derived for a 125 GeV Higgs, but should apply for a 
reasonable mass range around that value. 
   

<h3>Standard-Model Higgs, basic processes</h3> 
 
This section provides the standard set of processes that can be 
run together to provide a reasonably complete overview of possible 
production channels for a single SM Higgs. 
The main parameter is the choice of Higgs mass, which can be set in the 
normal <code>ParticleData</code> database; thereafter the properties 
within the SM are essentially fixed. 
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:all &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of Higgs production within the Standard Model. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:ffbar2H &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^0</i>, where <i>f</i> sums over available 
flavours except top. Related to the mass-dependent Higgs point coupling 
to fermions, so at hadron colliders the bottom contribution will 
dominate. 
Code 901. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2H &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0</i> via loop contributions primarily from 
top. 
Code 902. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:gmgm2H &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma &rarr; H^0</i> via loop contributions primarily 
from top and <i>W</i>. 
Code 903. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:ffbar2HZ &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^0 Z^0</i> via <i>s</i>-channel <i>Z^0</i> 
exchange. 
Code 904. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:ffbar2HW &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^0 W^+-</i> via <i>s</i>-channel 
<i>W^+-</i> exchange. 
Code 905. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:ff2Hff(t:ZZ) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' &rarr; H^0 f f'</i> via <i>Z^0 Z^0</i> fusion. 
Code 906. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:ff2Hff(t:WW) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 &rarr; H^0 f_3 f_4</i> via <i>W^+ W^-</i> fusion. 
Code 907. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2Httbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0 t tbar</i> via <i>t tbar</i> fusion 
(or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 908. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:qqbar2Httbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; H^0 t tbar</i> via <i>t tbar</i> fusion 
(or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 909. 
   
 
<h3>Standard-Model Higgs, further processes</h3> 
 
A number of further production processes has been implemented, that 
are specializations of some of the above ones to the high-<i>pT</i> 
region. The sets therefore could not be used simultaneously 
without unphysical double-counting, as further explained below. 
They are not switched on by the <code>HiggsSM:all</code> flag, but 
have to be switched on for each separate process after due consideration. 
 
<p/> 
The first three processes in this section are related to the Higgs 
point coupling to fermions, and so primarily are of interest for 
<i>b</i> quarks. It is here useful to begin by reminding that 
a process like <i>b bbar &rarr; H^0</i> implies that a <i>b/bbar</i> 
is taken from each incoming hadron, leaving behind its respective 
antiparticle. The initial-state showers will then add one 
<i>g &rarr; b bbar</i> branching on either side, so that effectively 
the process becomes <i>g g &rarr; H0 b bbar</i>. This would be the 
same basic process as the <i>g g &rarr; H^0 t tbar</i> one used for top. 
The difference is that (a) no PDF's are defined for top and 
(b) the shower approach would not be good enough to provide sensible 
kinematics for the <i>H^0 t tbar</i> subsystem. By contrast, owing 
to the <i>b</i> being much lighter than the Higgs, multiple 
gluon emissions must be resummed for <i>b</i>, as is done by PDF's 
and showers, in order to obtain a sensible description of the total 
production rate,  when the <i>b</i> quarks predominantly are produced 
at small <i>pT</i> values. 
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:qg2Hq &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; H^0 q</i>. This process gives first-order 
corrections to the <i>f fbar &rarr; H^0</i> one above, and should only be 
used to study  the high-<i>pT</i> tail, while <i>f fbar &rarr; H^0</i> 
should be used for inclusive production. Only the dominant <i>c</i> 
and <i>b</i> contributions are included, and generated separately 
for technical reasons. Note that another first-order process would be 
<i>q qbar &rarr; H^0 g</i>, which is not explicitly implemented here, 
but is obtained from showering off the lowest-order process. It does not 
contain any <i>b</i> at large <i>pT</i>, however, so is less 
interesting for many applications. 
Code 911. 
 
   
<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2Hbbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0 b bbar</i>. This process is yet one order 
higher of the <i>b bbar &rarr; H^0</i> and <i>b g &rarr; H^0 b</i> chain, 
where now two quarks should be required above some large <i>pT</i> 
threshold. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 912. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsSM:qqbar2Hbbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; H^0 b bbar</i> via an <i>s</i>-channel 
gluon, so closely related to the previous one, but typically less 
important owing to the smaller rate of (anti)quarks relative to 
gluons. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 913. 
   
 
<p/> 
The second set of processes are predominantly first-order corrections 
to the <i>g g &rarr; H^0</i> process, again dominated by the top loop. 
We here only provide the kinematical expressions obtained in the 
limit that the top quark goes to infinity, but scaled to the 
finite-top-mass coupling in <i>g g &rarr; H^0</i>. (Complete loop 
expressions are available e.g. in PYTHIA 6.4 but are very lengthy.) 
This provides a reasonably accurate description for "intermediate" 
<i>pT</i> values, but fails when the <i>pT</i> scale approaches 
the top mass. 
  
<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2Hg(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0 g</i> via loop contributions primarily 
from top. 
Code 914. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsSM:qg2Hq(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; H^0 q</i> via loop contributions primarily 
from top. Not to be confused with the <code>HiggsSM:qg2Hq</code> 
process above, with its direct fermion-to-Higgs coupling. 
Code 915. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsSM:qqbar2Hg(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; H^0 g</i> via an <i>s</i>-channel gluon 
and loop contributions primarily from top. Is strictly speaking a 
"new" process, not directly derived from <i>g g &rarr; H^0</i>, and 
could therefore be included in the standard mix without double-counting, 
but is numerically negligible. 
Code 916. 
   
 
<h3>Beyond-the-Standard-Model Higgs, introduction</h3> 
 
Further Higgs multiplets arise in a number of scenarios. We here 
concentrate on the MSSM scenario with two Higgs doublets, but with 
flexibility enough that also other two-Higgs-doublet scenarios could 
be represented by a suitable choice of parameters. Conventionally the 
Higgs states are labeled <i>h^0, H^0, A^0</i> and <i>H^+-</i>. 
If the scalar and pseudocalar states mix the resulting states are 
labeled <i>H_1^0, H_2^0, H_3^0</i>. In process names and parameter 
explanations both notations will be used, but for settings labels 
we have adapted the shorthand hybrid notation <code>H1</code> for 
<i>h^0(H_1^0)</i>, <code>H2</code> for <i>H^0(H_2^0)</i> and 
<code>A3</code> for <i>A^0(H_3^0)</i>. (Recall that the 
<code>Settings</code> database does not distinguish upper- and lowercase 
characters, so that the user has one thing less to worry about, but here 
it causes problems with <i>h^0</i> vs. <i>H^0</i>.) We leave the issue 
of mass ordering between <i>H^0</i> and <i>A^0</i> open, and thereby 
also that of <i>H_2^0</i> and <i>H_3^0</i>. 
 
<p/><code>flag&nbsp; </code><strong> Higgs:useBSM &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Master switch to initialize and use the two-Higgs-doublet states. 
If off, only the above SM Higgs processes can be used, with couplings 
as predicted in the SM. If on, only the below BSM Higgs processes can 
be used, with couplings that can be set freely, also found further down 
on this page. 
   
 
<h3>Beyond-the-Standard-Model Higgs, basic processes</h3> 
 
This section provides the standard set of processes that can be 
run together to provide a reasonably complete overview of possible 
production channels for a single neutral Higgs state in a two-doublet 
scenarios such as MSSM. The list of processes for neutral states closely 
mimics the one found for the SM Higgs. Some of the processes 
vanish for a pure pseudoscalar <i>A^0</i>, but are kept for flexibility 
in cases of mixing with the scalar <i>h^0</i> and <i>H^0</i> states, 
or for use in the context of non-MSSM models. This should work well to 
represent e.g. that a small admixture of the "wrong" parity would allow 
a process such as <i>q qbar &rarr; A^0 Z^0</i>, which otherwise is 
forbidden. However, note that the loop integrals e.g. for 
<i>g g &rarr; h^0/H^0/A^0</i> are hardcoded to be for scalars for the 
former two particles and for a pseudoscalar for the latter one, 
so absolute rates would not be correctly represented in the case of 
large scalar/pseudoscalar mixing. 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:all &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of Higgs production beyond the Standard Model, 
as listed below. 
   
 
<h4>1) <i>h^0(H_1^0)</i> processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:allH1 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>h^0(H_1^0)</i> production processes. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H1 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; h^0(H_1^0)</i>, where <i>f</i> sums over 
available flavours except top. 
Code 1001. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; h^0(H_1^0)</i> via loop contributions primarily 
from top. 
Code 1002. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gmgm2H1 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma &rarr; h^0(H_1^0)</i> via loop contributions 
primarily from top and <i>W</i>. 
Code 1003. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H1Z &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; h^0(H_1^0) Z^0</i> via <i>s</i>-channel 
<i>Z^0</i> exchange. 
Code 1004. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H1W &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; h^0(H_1^0) W^+-</i> via <i>s</i>-channel 
<i>W^+-</i> exchange. 
Code 1005. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H1ff(t:ZZ) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' &rarr; h^0(H_1^0) f f'</i> via <i>Z^0 Z^0</i> fusion. 
Code 1006. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H1ff(t:WW) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 &rarr; h^0(H_1^0) f_3 f_4</i> via <i>W^+ W^-</i> 
fusion. 
Code 1007. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1ttbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; h^0(H_1^0) t tbar</i> via <i>t tbar</i> fusion 
(or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1008. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H1ttbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; h^0(H_1^0) t tbar</i> via <i>t tbar</i> 
fusion (or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1009. 
 
 
<h4>2) <i>H^0(H_2^0)</i> processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:allH2 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>H^0(H_2^0)</i> production processes. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H2 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^0(H_2^0)</i>, where <i>f</i> sums over 
available flavours except top. 
Code 1021. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0(H_2^0)</i> via loop contributions primarily 
from top. 
Code 1022. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gmgm2H2 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma &rarr; H^0(H_2^0)</i> via loop contributions 
primarily from top and <i>W</i>. 
Code 1023. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H2Z &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^0(H_2^0) Z^0</i> via <i>s</i>-channel 
<i>Z^0</i> exchange. 
Code 1024. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H2W &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^0(H_2^0) W^+-</i> via <i>s</i>-channel 
<i>W^+-</i> exchange. 
Code 1025. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H2ff(t:ZZ) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' &rarr; H^0(H_2^0) f f'</i> via <i>Z^0 Z^0</i> fusion. 
Code 1026. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H2ff(t:WW) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 &rarr; H^0(H_2^0) f_3 f_4</i> via <i>W^+ W^-</i> 
fusion. 
Code 1027. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2ttbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0(H_2^0) t tbar</i> via <i>t tbar</i> fusion 
(or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1028. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H2ttbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; H^0(H_2^0) t tbar</i> via <i>t tbar</i> 
fusion (or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1029. 
 
<h4>3) <i>A^0(H_3^0)</i> processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:allA3 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>A^0(H_3^0)</i> production processes. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; A^0(H_3^0)</i>, where <i>f</i> sums over 
available flavours except top. 
Code 1041. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; A^0(A_3^0)</i> via loop contributions primarily 
from top. 
Code 1042. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gmgm2A3 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>gamma gamma &rarr; A^0(A_3^0)</i> via loop contributions 
primarily from top and <i>W</i>. 
Code 1043. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3Z &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; A^0(A_3^0) Z^0</i> via <i>s</i>-channel 
<i>Z^0</i> exchange. 
Code 1044. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3W &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; A^0(A_3^0) W^+-</i> via <i>s</i>-channel 
<i>W^+-</i> exchange. 
Code 1045. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2A3ff(t:ZZ) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f f' &rarr; A^0(A_3^0) f f'</i> via <i>Z^0 Z^0</i> fusion. 
Code 1046. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2A3ff(t:WW) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 f_2 &rarr; A^0(A_3^0) f_3 f_4</i> via <i>W^+ W^-</i> 
fusion. Code 1047. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3ttbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; A^0(A_3^0) t tbar</i> via <i>t tbar</i> fusion 
(or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1048. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2A3ttbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; A^0(A_3^0) t tbar</i> via <i>t tbar</i> 
fusion (or, alternatively put, Higgs radiation off a top line). 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1049. 
 
<h4>4) <i>H+-</i> processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:allH+- &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of <i>H^+-</i> production processes. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+- &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar' &rarr; H^+-</i>, where <i>f, fbar'</i> sums over 
available incoming flavours. Since couplings are assumed 
generation-diagonal, in practice this means <i>c sbar &rarr; H^+</i> 
and <i>s cbar &rarr; H^-</i>. 
Code 1061. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:bg2H+-t &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>b g &rarr; H^+ tbar</i>. At hadron colliders this is the 
dominant process for single-charged-Higgs production. 
Code 1062. 
   
 
<h4>5) Higgs-pair processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:allHpair &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of Higgs pair-production processes. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3H1 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; A^0(H_3) h^0(H_1)</i>. 
Code 1081. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3H2 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; A^0(H_3) H^0(H_2)</i>. 
Code 1082. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+-H1 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^+- h^0(H_1)</i>. 
Code 1083. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+-H2 &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H^+- H^0(H_2)</i>. 
Code 1084. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+H- &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar &rarr; H+ H-</i>. 
Code 1085. 
   
 
<h3>Beyond-the-Standard-Model Higgs, further processes</h3> 
 
This section mimics the above section on "Standard-Model Higgs, 
further processes", i.e. it contains higher-order corrections 
to the processes already listed. The two sets therefore could not 
be used simultaneously without unphysical double-counting. 
They are not controlled by any group flag, but have to be switched 
on for each separate process after due consideration. We refer to 
the standard-model description for a set of further comments on 
the processes. 
 
<h4>1) <i>h^0(H_1^0)</i> processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H1q &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; h^0 q</i>. This process gives first-order 
corrections to the <i>f fbar &rarr; h^0</i> one above, and should only be 
used to study  the high-<i>pT</i> tail, while <i>f fbar &rarr; h^0</i> 
should be used for inclusive production. Only the dominant <i>c</i> 
and <i>b</i> contributions are included, and generated separately 
for technical reasons. Note that another first-order process would be 
<i>q qbar &rarr; h^0 g</i>, which is not explicitly implemented here, 
but is obtained from showering off the lowest-order process. It does not 
contain any <i>b</i> at large <i>pT</i>, however, so is less 
interesting for many applications. 
Code 1011. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1bbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; h^0 b bbar</i>. This process is yet one order 
higher of the <i>b bbar &rarr; h^0</i> and <i>b g &rarr; h^0 b</i> chain, 
where now two quarks should be required above some large <i>pT</i> 
threshold. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1012. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H1bbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; h^0 b bbar</i> via an <i>s</i>-channel 
gluon, so closely related to the previous one, but typically less 
important owing to the smaller rate of (anti)quarks relative to 
gluons. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1013. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1g(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; h^0 g</i> via loop contributions primarily 
from top. 
Code 1014. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H1q(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; h^0 q</i> via loop contributions primarily 
from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code> 
process above, with its direct fermion-to-Higgs coupling. 
Code 1015. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H1g(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; h^0 g</i> via an <i>s</i>-channel gluon 
and loop contributions primarily from top. Is strictly speaking a 
"new" process, not directly derived from <i>g g &rarr; h^0</i>, and 
could therefore be included in the standard mix without double-counting, 
but is numerically negligible. 
Code 1016. 
   
 
<h4>2) <i>H^0(H_2^0)</i> processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H2q &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; H^0 q</i>. This process gives first-order 
corrections to the <i>f fbar &rarr; H^0</i> one above, and should only be 
used to study  the high-<i>pT</i> tail, while <i>f fbar &rarr; H^0</i> 
should be used for inclusive production. Only the dominant <i>c</i> 
and <i>b</i> contributions are included, and generated separately 
for technical reasons. Note that another first-order process would be 
<i>q qbar &rarr; H^0 g</i>, which is not explicitly implemented here, 
but is obtained from showering off the lowest-order process. It does not 
contain any <i>b</i> at large <i>pT</i>, however, so is less 
interesting for many applications. 
Code 1031. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2bbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0 b bbar</i>. This process is yet one order 
higher of the <i>b bbar &rarr; H^0</i> and <i>b g &rarr; H^0 b</i> chain, 
where now two quarks should be required above some large <i>pT</i> 
threshold. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1032. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H2bbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; H^0 b bbar</i> via an <i>s</i>-channel 
gluon, so closely related to the previous one, but typically less 
important owing to the smaller rate of (anti)quarks relative to 
gluons. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1033. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2g(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; H^0 g</i> via loop contributions primarily 
from top. 
Code 1034. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H2q(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; H^0 q</i> via loop contributions primarily 
from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code> 
process above, with its direct fermion-to-Higgs coupling. 
Code 1035. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H2g(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; H^0 g</i> via an <i>s</i>-channel gluon 
and loop contributions primarily from top. Is strictly speaking a 
"new" process, not directly derived from <i>g g &rarr; H^0</i>, and 
could therefore be included in the standard mix without double-counting, 
but is numerically negligible. 
Code 1036. 
   
 
<h4>3) <i>A^0(H_3^0)</i> processes</h4> 
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2A3q &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; A^0 q</i>. This process gives first-order 
corrections to the <i>f fbar &rarr; A^0</i> one above, and should only be 
used to study  the high-<i>pT</i> tail, while <i>f fbar &rarr; A^0</i> 
should be used for inclusive production. Only the dominant <i>c</i> 
and <i>b</i> contributions are included, and generated separately 
for technical reasons. Note that another first-order process would be 
<i>q qbar &rarr; A^0 g</i>, which is not explicitly implemented here, 
but is obtained from showering off the lowest-order process. It does not 
contain any <i>b</i> at large <i>pT</i>, however, so is less 
interesting for many applications. 
Code 1051. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3bbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; A^0 b bbar</i>. This process is yet one order 
higher of the <i>b bbar &rarr; A^0</i> and <i>b g &rarr; A^0 b</i> chain, 
where now two quarks should be required above some large <i>pT</i> 
threshold. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1052. 
   
 
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2A3bbbar &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; A^0 b bbar</i> via an <i>s</i>-channel 
gluon, so closely related to the previous one, but typically less 
important owing to the smaller rate of (anti)quarks relative to 
gluons. 
Warning: unfortunately this process is rather slow, owing to a 
lengthy cross-section expression and inefficient phase-space selection. 
Code 1053. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3g(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>g g &rarr; A^0 g</i> via loop contributions primarily 
from top. 
Code 1054. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2A3q(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q g &rarr; A^0 q</i> via loop contributions primarily 
from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code> 
process above, with its direct fermion-to-Higgs coupling. 
Code 1055. 
   
  
<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2A3g(l:t) &nbsp;</strong> 
 (<code>default = <strong>off</strong></code>)<br/>
Scattering <i>q qbar &rarr; A^0 g</i> via an <i>s</i>-channel gluon 
and loop contributions primarily from top. Is strictly speaking a 
"new" process, not directly derived from <i>g g &rarr; A^0</i>, and 
could therefore be included in the standard mix without double-counting, 
but is numerically negligible. 
Code 1056. 
   
 
<h3>Parameters for Beyond-the-Standard-Model Higgs production and decay</h3> 
 
This section offers a big flexibility to set couplings of the various 
Higgs states to fermions and gauge bosons, and also to each other. 
The intention is that, for scenarios like MSSM, you should use standard 
input from the <a href="SUSYLesHouchesAccord.html" target="page">SUSY Les Houches 
Accord</a>, rather than having to set it all yourself. In other cases, 
however, the freedom is there for you to use. Kindly note that some 
of the internal calculations of partial widths from the parameters provided 
do not include mixing between the scalar and pseudoscalar states. 
 
<p/> 
Masses would be set in the <code>ParticleData</code> database, 
while couplings are set below. When possible, the couplings of the Higgs 
states are normalized to the corresponding coupling within the SM. 
When not, their values within the MSSM are indicated, from which 
it should be straightforward to understand what to use instead. 
The exception is some couplings that vanish also in the MSSM, where the 
normalization has been defined in close analogy with nonvanishing ones. 
Some parameter names are asymmetric but crossing can always be used, 
i.e. the coupling for <i>A^0 &rarr; H^0 Z^0</i> obviously is also valid 
for <i>H^0 &rarr; A^0 Z^0</i> and <i>Z^0 &rarr; H^0 A^0</i>. 
Note that couplings usually appear quadratically in matrix elements. 
 
<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2d &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to down-type quarks. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2u &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to up-type quarks. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2l &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to (charged) leptons. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2Z &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to <i>Z^0</i>. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2W &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to <i>W^+-</i>. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2Hchg &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>h^0(H_1^0)</i> coupling to <i>H^+-</i> (in loops). 
Is <i>sin(beta - alpha) + cos(2 beta) sin(beta + alpha) / 
(2 cos^2theta_W)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2d &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to down-type quarks. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2u &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to up-type quarks. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2l &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to (charged) leptons. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2Z &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to <i>Z^0</i>. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2W &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to <i>W^+-</i>. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2Hchg &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to <i>H^+-</i> (in loops). 
Is <i>cos(beta - alpha) + cos(2 beta) cos(beta + alpha) / 
(2 cos^2theta_W)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2H1H1 &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0)</i> pair. 
Is <i>cos(2 alpha) cos(beta + alpha) - 2 sin(2 alpha) 
sin(beta + alpha)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2A3A3 &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0)</i> pair. 
Is <i>cos(2 beta) cos(beta + alpha)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2H1Z &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair. 
Vanishes in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2A3H1 &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0) h^0(H_1^0)</i> pair. 
Vanishes in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2HchgW &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>H^0(H_2^0)</i> coupling to a <i>H^+- W-+</i> pair. 
Is <i>sin(beta - alpha)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2d &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to down-type quarks. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2u &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to up-type quarks. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2l &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to (charged) leptons. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2H1Z &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair. 
Is <i>cos(beta - alpha)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2H2Z &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>H^0(H_2^0) Z^0</i> pair. 
Is <i>sin(beta - alpha)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2Z &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to <i>Z^0</i>. 
Vanishes in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2W &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to <i>W^+-</i>. 
Vanishes in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2H1H1 &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0)</i> pair. 
Vanishes in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2Hchg &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to <i>H^+-</i>. 
Vanishes in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2HchgW &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>A^0(H_3^0)</i> coupling to a <i>H^+- W-+</i> pair. 
Is 1 in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsHchg:tanBeta &nbsp;</strong> 
 (<code>default = <strong>5.</strong></code>)<br/>
The <i>tan(beta)</i> value, which leads to an enhancement of the 
<i>H^+-</i> coupling to down-type fermions and suppression to 
up-type ones. The same angle also appears in many other places, 
but this particular parameter is only used for the charged-Higgs case. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsHchg:coup2H1W &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>)<br/>
The <i>H^+-</i> coupling to a <i>h^0(H_1^0) W^+-</i> pair. 
Is <i>cos(beta - alpha)</i> in the MSSM. 
   
 
<p/><code>parm&nbsp; </code><strong> HiggsHchg:coup2H2W &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>H^+-</i> coupling to a <i>H^0(H_2^0) W^+-</i> pair. 
Is <i>sin(beta - alpha)</i> in the MSSM. 
   
 
<p/> 
Another set of parameters are not used in the production stage but 
exclusively for the description of angular distributions in decays. 
 
<p/><code>mode&nbsp; </code><strong> HiggsH1:parity &nbsp;</strong> 
 (<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
possibility to modify angular decay correlations in the decay of a 
<i>h^0(H_1)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four 
fermions. Currently it does not affect the partial width of the 
channels, which is only based on the above parameters. 
<br/><code>option </code><strong> 0</strong> : isotropic decays.   
<br/><code>option </code><strong> 1</strong> : assuming the <i>h^0(H_1)</i> is a pure scalar 
(CP-even), as in the MSSM.   
<br/><code>option </code><strong> 2</strong> : assuming the <i>h^0(H_1)</i> is a pure pseudoscalar 
(CP-odd).   
<br/><code>option </code><strong> 3</strong> : assuming the <i>h^0(H_1)</i> is a mixture of the two, 
including the CP-violating interference term. The parameter 
<i>eta</i>, see below, sets the strength of the CP-odd admixture, 
with the interference term being proportional to <i>eta</i> 
and the CP-odd one to <i>eta^2</i>.   
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH1:etaParity &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>eta</i> value of CP-violation in the 
<code>HiggsSM:parity = 3</code> option. 
   
 
<p/><code>mode&nbsp; </code><strong> HiggsH2:parity &nbsp;</strong> 
 (<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
possibility to modify angular decay correlations in the decay of a 
<i>H^0(H_2)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four 
fermions. Currently it does not affect the partial width of the 
channels, which is only based on the above parameters. 
<br/><code>option </code><strong> 0</strong> : isotropic decays.   
<br/><code>option </code><strong> 1</strong> : assuming the <i>H^0(H_2)</i> is a pure scalar 
(CP-even), as in the MSSM.   
<br/><code>option </code><strong> 2</strong> : assuming the <i>H^0(H_2)</i> is a pure pseudoscalar 
(CP-odd).   
<br/><code>option </code><strong> 3</strong> : assuming the <i>H^0(H_2)</i> is a mixture of the two, 
including the CP-violating interference term. The parameter 
<i>eta</i>, see below, sets the strength of the CP-odd admixture, 
with the interference term being proportional to <i>eta</i> 
and the CP-odd one to <i>eta^2</i>.   
   
 
<p/><code>parm&nbsp; </code><strong> HiggsH2:etaParity &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>eta</i> value of CP-violation in the 
<code>HiggsSM:parity = 3</code> option. 
   
 
<p/><code>mode&nbsp; </code><strong> HiggsA3:parity &nbsp;</strong> 
 (<code>default = <strong>2</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
possibility to modify angular decay correlations in the decay of a 
<i>A^0(H_3)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four 
fermions. Currently it does not affect the partial width of the 
channels, which is only based on the above parameters. 
<br/><code>option </code><strong> 0</strong> : isotropic decays.   
<br/><code>option </code><strong> 1</strong> : assuming the <i>A^0(H_3)</i> is a pure scalar 
(CP-even).   
<br/><code>option </code><strong> 2</strong> : assuming the <i>A^0(H_3)</i> is a pure pseudoscalar 
(CP-odd), as in the MSSM.   
<br/><code>option </code><strong> 3</strong> : assuming the <i>A^0(H_3)</i> is a mixture of the two, 
including the CP-violating interference term. The parameter 
<i>eta</i>, see below, sets the strength of the CP-odd admixture, 
with the interference term being proportional to <i>eta</i> 
and the CP-odd one to <i>eta^2</i>.   
   
 
<p/><code>parm&nbsp; </code><strong> HiggsA3:etaParity &nbsp;</strong> 
 (<code>default = <strong>0.</strong></code>)<br/>
The <i>eta</i> value of CP-violation in the 
<code>HiggsSM:parity = 3</code> option. 
   
 
</body>
</html>
 
<!-- Copyright (C) 2014 Torbjorn Sjostrand -->