/usr/share/doc/pythia8-doc/html/FlavourSelection.html is in pythia8-doc-html 8.1.86-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | <html>
<head>
<title>Flavour Selection</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
<h2>Flavour Selection</h2>
The <code>StringFlav</code> class handles the choice of a new flavour
in the fragmentation process, and the production of a new hadron
from a set of input flavours. It is mainly used by the string
fragmentation machinery (including ministrings), but also e.g.
in some particle decays and for some beam-remnant cases. The basic
concepts are in agreement with [<a href="Bibliography.html" target="page">And83</a>]. The baryon-sector
implementation is based on the <code>MSTJ(12)=3</code> option of
PYTHIA 6, i.e. new SU(6) weights scheme with at most one popcorn meson.
<p/>
The relative production rates of different particle species is
influenced by the parameters below. Some have only an impact on
one specific quantity, but most directly or indirectly have
consequences for many observables. Therefore the values to use have
to be viewed in the context of a complete <a href="Tunes.html" target="page">tune</a>.
<h3>New flavours</h3>
The main parameters of the selection of a new flavour are
<p/><code>parm </code><strong> StringFlav:probStoUD </strong>
(<code>default = <strong>0.19</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 1.0</code>)<br/>
the suppression of <i>s</i> quark production relative to ordinary
<i>u</i> or <i>d</i> one.
<p/><code>parm </code><strong> StringFlav:probQQtoQ </strong>
(<code>default = <strong>0.09</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 1.0</code>)<br/>
the suppression of diquark production relative to quark production,
i.e. of baryon relative to meson production.
<p/><code>parm </code><strong> StringFlav:probSQtoQQ </strong>
(<code>default = <strong>1.00</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 1.0</code>)<br/>
the suppression of strange diquark production relative to light
diquark production, over and above the one already given by
<code>probStoU</code>.
<p/><code>parm </code><strong> StringFlav:probQQ1toQQ0 </strong>
(<code>default = <strong>0.027</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 1.0</code>)<br/>
the suppression of spin 1 diquark production relative to spin 0 one,
apart from the factor of 3 enhancement of spin 1 from counting the
number of states.
<p/><code>pvec </code><strong> StringFlav:probQQ1toQQ0join </strong>
(<code>default = <strong>0.5,0.7,0.9,1.0</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 1.0</code>)<br/>
when two already produced quarks are to be combined to a diquark,
e.g. in the junction framework, these numbers give the suppression
of spin 1 diquark production relative to spin 0 one, apart from the
factor of 3 enhancement of spin 1 from counting the number of states.
The four components give the suppression when the heaviest quark is
<i>u/d</i>, <i>s</i>, <i>c</i> or <i>b</i>, respectively.
These parameters are seldom used and currently not constrained by any
data, so very much a guesswork.
<h3>Standard-meson production</h3>
The bulk of the particle production corresponds to the lowest-lying
pseudoscalar and vector multiplets. Their production rates are
determined by the parameters in this section.
<p/>
For a given set of flavours, produced according to the probabilities
outlined above, the ratio of vector-to-pseudocalar meson production
is described by the parameters below.
The maximum allowed rate for each case has been set according to
spin-counting rules, but we expect the real rates to be lower,
especially for lighter mesons, owing to the vector-pseudoscalar
mass splitting.
<p/><code>parm </code><strong> StringFlav:mesonUDvector </strong>
(<code>default = <strong>0.62</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative production ratio vector/pseudoscalar for light
(<i>u</i>, <i>d</i>) mesons.
<p/><code>parm </code><strong> StringFlav:mesonSvector </strong>
(<code>default = <strong>0.725</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative production ratio vector/pseudoscalar for strange mesons.
<p/><code>parm </code><strong> StringFlav:mesonCvector </strong>
(<code>default = <strong>1.06</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative production ratio vector/pseudoscalar for charm mesons.
<p/><code>parm </code><strong> StringFlav:mesonBvector </strong>
(<code>default = <strong>3.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative production ratio vector/pseudoscalar for bottom mesons.
<p/>
Inside each light-quark meson nonet, an octet-singlet mixing angle
describes the mixing of the two flavour-diagonal isoscalar = 0 states.
(For terminology and details see [<a href="Bibliography.html" target="page">Yao06</a>], chapter 14 on the
quark model.)
This angle is needed to specify the probability for such a <i>q qbar</i>
state to project onto a specific meson. More transparent formulae are
obtained by introducing the angle <i>alpha = theta + 54.7</i> degrees:
<br/><i>
f = (uubar + ddbar)/sqrt(2) * sin(alpha) + ssbar * cos(alpha)<br/>
f' = (uubar + ddbar)/sqrt(2) * cos(alpha) - ssbar * sin(alpha)
</i><br/>
<p/><code>parm </code><strong> StringFlav:thetaPS </strong>
(<code>default = <strong>-15.</strong></code>; <code>minimum = -90.</code>; <code>maximum = 90.</code>)<br/>
gives the mixing angle <i>theta_PS</i> in the pseudoscalar meson sector
(which is rather poorly determined), expressed in degrees.
Here <i>f</i> is associated with <i>eta'</i> and <i>f'</i> with
<i>eta</i>. (This standard but counterintuitive choice is fixed up
in the code by replacing <i>alpha → 90^0 - alpha</i> so that
<i>eta ↔ eta'</i>; relative signs do not matter since we are
interested in probabilities only.)
<p/><code>parm </code><strong> StringFlav:thetaV </strong>
(<code>default = <strong>36.</strong></code>; <code>minimum = -90.</code>; <code>maximum = 90.</code>)<br/>
gives the mixing angle <i>theta_V</i> in the vector meson sector
(which is somewhat better determined), expressed in degrees.
Here <i>f</i> is associated with <i>omega</i> and <i>f'</i>
with <i>phi</i>.
<p/>
Further, the simple model overestimates the production of <i>eta</i>
and, in particular, <i>eta'</i> mesons, which can be rectified by
<p/><code>parm </code><strong> StringFlav:etaSup </strong>
(<code>default = <strong>0.63</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
the additional suppression of <i>eta</i> production, multiplying the
normal production probability. Thus 0 means no <i>eta</i> at all
are produced, while 1 means full rate.
<p/><code>parm </code><strong> StringFlav:etaPrimeSup </strong>
(<code>default = <strong>0.12</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
the additional suppression of <i>eta'</i> production, multiplying the
normal production probability. Thus 0 means no <i>eta'</i> at all
are produced, while 1 means full rate.
<h3>Excited-meson production</h3>
Several excited mesons, ie. with radial or orbital excitations, have been
observed at non-negligible production rates. Extrapolated to all states
a fair fraction of all particle production might proceed through such
states. There are big uncertainties, however, since these excited
mesons in many cases are extremely poorly known. This also means that
the modeling of their production and decay is very primitive, and
even that the inclusion of the production of such states may lead to a
degraded agreement with data. Currently the default is that all such
production is switched off.
<p/>
Parameters are provided to switch them on. By demand, this machinery
has been made more flexible than in the past. Therefore one parameter is
provided for each combination of heaviest flavour
(<i>u/d</i>, <i>s</i>, <i>c</i> or <i>b</i>) and
multiplet produced. In each case the production rate is normalized to
that of the lowest-lying pseudoscalar of the same flavour content, as for
the vector-meson rates introduced above. The multiplets available are the
four obtained for one unit of orbital angular momentum, in the
nonrelativistic classification. Using <i>J</i> to denote the sum of
quark spin <i>S</i> and orbital angular momentum <i>L</i>, i.e. what
would normally be called the spin of the meson, one has:
<ul>
<li>a pseudovector multiplet with <i>L=1, S=0, J=1</i>;</li>
<li>a scalar multiplet with <i>L=1, S=1, J=0</i>;</li>
<li>a pseudovector multiplet with <i>L=1, S=1, J=1</i>;</li>
<li>a tensor multiplet with <i>L=1, S=1, J=2</i>.</li>
</ul>
The maximum allowed rate for each case has been set according to
spin-counting rules, but we expect the real rates to be significantly
lower, owing to mass suppression.
<p/><code>parm </code><strong> StringFlav:mesonUDL1S0J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=0,J=1)</i>/pseudoscalar
for light (<i>u</i>, <i>d</i>) mesons.
<p/><code>parm </code><strong> StringFlav:mesonUDL1S1J0 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
the relative scalar production ratio
<i>(L=1,S=1,J=0)</i>/pseudoscalar
for light (<i>u</i>, <i>d</i>) mesons.
<p/><code>parm </code><strong> StringFlav:mesonUDL1S1J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=1,J=1)</i>/pseudoscalar
for light (<i>u</i>, <i>d</i>) mesons.
<p/><code>parm </code><strong> StringFlav:mesonUDL1S1J2 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 5.</code>)<br/>
the relative tensor production ratio
<i>(L=1,S=1,J=2)</i>/pseudoscalar
for light (<i>u</i>, <i>d</i>) mesons.
<p/><code>parm </code><strong> StringFlav:mesonSL1S0J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=0,J=1)</i>/pseudoscalar
for strange mesons.
<p/><code>parm </code><strong> StringFlav:mesonSL1S1J0 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
the relative scalar production ratio
<i>(L=1,S=1,J=0)</i>/pseudoscalar
for strange mesons.
<p/><code>parm </code><strong> StringFlav:mesonSL1S1J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=1,J=1)</i>/pseudoscalar
for strange mesons.
<p/><code>parm </code><strong> StringFlav:mesonSL1S1J2 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 5.</code>)<br/>
the relative tensor production ratio
<i>(L=1,S=1,J=2)</i>/pseudoscalar
for strange mesons.
<p/><code>parm </code><strong> StringFlav:mesonCL1S0J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=0,J=1)</i>/pseudoscalar
for charm mesons.
<p/><code>parm </code><strong> StringFlav:mesonCL1S1J0 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
the relative scalar production ratio
<i>(L=1,S=1,J=0)</i>/pseudoscalar
for charm mesons.
<p/><code>parm </code><strong> StringFlav:mesonCL1S1J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=1,J=1)</i>/pseudoscalar
for charm mesons.
<p/><code>parm </code><strong> StringFlav:mesonCL1S1J2 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 5.</code>)<br/>
the relative tensor production ratio
<i>(L=1,S=1,J=2)</i>/pseudoscalar
for charm mesons.
<p/><code>parm </code><strong> StringFlav:mesonBL1S0J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=0,J=1)</i>/pseudoscalar
for bottom mesons.
<p/><code>parm </code><strong> StringFlav:mesonBL1S1J0 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
the relative scalar production ratio
<i>(L=1,S=1,J=0)</i>/pseudoscalar
for bottom mesons.
<p/><code>parm </code><strong> StringFlav:mesonBL1S1J1 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 3.</code>)<br/>
the relative pseudovector production ratio
<i>(L=1,S=1,J=1)</i>/pseudoscalar
for bottom mesons.
<p/><code>parm </code><strong> StringFlav:mesonBL1S1J2 </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 5.</code>)<br/>
the relative tensor production ratio
<i>(L=1,S=1,J=2)</i>/pseudoscalar
for bottom mesons.
<p/>
In addition, an octet-singlet mixing angle is needed for each multiplet,
as for the pseudoscalar and vector multiplets above. Only for the
tensor multiplet does any determination exist; for the other multiplets
default has been chose so that <i>ssbar</i> does not mix with the light
quarks, and so that the <i>ssbar</i> state is the heavier of the two.
<p/><code>parm </code><strong> StringFlav:thetaL1S0J1 </strong>
(<code>default = <strong>35.3</strong></code>; <code>minimum = -90.</code>; <code>maximum = 90.</code>)<br/>
gives the mixing angle <i>theta</i> in the <i>(L=1,S=0,J=1)</i>
pseudovector meson sector, expressed in degrees.
<p/><code>parm </code><strong> StringFlav:thetaL1S1J0 </strong>
(<code>default = <strong>35.3</strong></code>; <code>minimum = -90.</code>; <code>maximum = 90.</code>)<br/>
gives the mixing angle <i>theta</i> in the <i>(L=1,S=1,J=0)</i>
scalar meson sector, expressed in degrees.
<p/><code>parm </code><strong> StringFlav:thetaL1S1J1 </strong>
(<code>default = <strong>35.3</strong></code>; <code>minimum = -90.</code>; <code>maximum = 90.</code>)<br/>
gives the mixing angle <i>theta</i> in the <i>(L=1,S=1,J=1)</i>
pseudovector meson sector, expressed in degrees.
<p/><code>parm </code><strong> StringFlav:thetaL1S1J2 </strong>
(<code>default = <strong>28.0</strong></code>; <code>minimum = -90.</code>; <code>maximum = 90.</code>)<br/>
gives the mixing angle <i>theta</i> in the <i>(L=1,S=1,J=2)</i>
tensor meson sector, expressed in degrees.
<h3>Baryon production</h3>
The relative rate of baryon production is mainly given by the quark
and diquark production parameters above, plus SU(6) Clebsch-Gordans.
The one modifiable parameter related to these coefficients is
<p/><code>parm </code><strong> StringFlav:decupletSup </strong>
(<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 1.0</code>)<br/>
the suppression, relative to default SU(6) factors, of decuplet
baryon production. Default corresponds to no suppression, while 0
corresponds to no decuplet production at all.
<p/>
In addition, if popcorn production is allowed, wherein a set of mesons
(<i>M</i>) may be produced in between the baryon (<i>B</i>) and
the antibaryon (<i>Bbar</i>), a set of further parameters is introduced.
Currently only the simplest scenario is implemented, wherein at most
one intermediate meson may be produced.
<p/><code>parm </code><strong> StringFlav:popcornRate </strong>
(<code>default = <strong>0.5</strong></code>; <code>minimum = 0.</code>; <code>maximum = 2.0</code>)<br/>
gives the relative rates of <i>B Bbar</i> and <i>B M Bbar</i>
production, roughly as
<br/><i>
Prob(B M Bbar) / (Prob(B Bbar) + Prob(B M Bbar)) =
popcornRate / (0.5 + popcornRate)
</i><br/>
(the complete expression depends on all the quark and diquark production
parameters and is therefore not so useful).
<p/><code>parm </code><strong> StringFlav:popcornSpair </strong>
(<code>default = <strong>0.5</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.0</code>)<br/>
extra suppression for having an <i>s sbar</i> pair shared between
the <i>B</i> and <i>Bbar</i> in a <i>B M Bbar</i> configuration.
<p/><code>parm </code><strong> StringFlav:popcornSmeson </strong>
(<code>default = <strong>0.5</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.0</code>)<br/>
extra suppression for having a strange meson <i>M</i> in a
<i>B M Bbar</i> configuration.
<p/>
Finally, there are some indications that leading-baryon production
may be further suppressed. A proper description should probably be
based on a suppression of early production times [<a href="Bibliography.html" target="page">Ede97</a>],
but we here only implement a simpler version where production near
the end of a string, as defined by rank, is suppressed. The more
detailed studies suggest that leading <i>c</i> and <i>b</i> baryon
production will be less suppressed, so we leave it open to set
light- and heavy-baryon suppression separately.
<p/><code>flag </code><strong> StringFlav:suppressLeadingB </strong>
(<code>default = <strong>off</strong></code>)<br/>
Suppress leading-baryon production.
<br/><code>option </code><strong> off</strong> : No suppression.
<br/><code>option </code><strong> on</strong> : Suppress the production of a diquark in the string
breaking closest to a quark end of a string, by either of the factors
below. This suppresses the production of first-rank baryons by the same
amount. Indirectly also the second-rank and, if popcorn production is
switched on, third-rank (anti)baryon production is affected.
<p/><code>parm </code><strong> StringFlav:lightLeadingBSup </strong>
(<code>default = <strong>0.5</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.0</code>)<br/>
extra suppression of leading-baryon production for a light-quark
jet, i.e. <i>d</i>, <i>u</i> or <i>s</i>, when
<code>suppressLeadingB = on</code>. Thus 0 means no leading-baryon
production at all, while 1 means full rate.
<p/><code>parm </code><strong> StringFlav:heavyLeadingBSup </strong>
(<code>default = <strong>0.9</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.0</code>)<br/>
extra suppression of leading-baryon production for a heavy-quark
jet, i.e. <i>c</i> or <i>b</i>, when
<code>suppressLeadingB = on</code>. Thus 0 means no leading-baryon
production at all, while 1 means full rate.
</body>
</html>
<!-- Copyright (C) 2014 Torbjorn Sjostrand -->
|