This file is indexed.

/usr/bin/diff_tomo is in pyfai 0.11.0+dfsg-3build1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
#    Project: Azimuthal integration
#             https://github.com/kif/pyFAI
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Authors: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#             Picca Frédéric-Emmanuel <picca@synchrotron-soleil.fr>
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

"""
diff_tomo

A tool for fast processing of diffraction tomography
"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "20/03/2015"
__satus__ = "Production"

import logging
import time
import os
import posixpath
import numpy
import fabio
import sys
import glob
import collections
import pyFAI
import pyFAI.utils
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("diff_tomo")
from pyFAI import version as PyFAI_VERSION
from pyFAI import date as PyFAI_DATE
from pyFAI.io import Nexus, get_isotime
from pyFAI.units import to_unit
try:
    from argparse import ArgumentParser
except ImportError:
    from pyFAI.third_party.argparse import ArgumentParser

if sys.version_info[0] < 3:
    bytes = str
    from urlparse import urlparse
else:
    from urllib.parse import urlparse


DIGITS = [str(i) for i in range(10)]
Position = collections.namedtuple('Position', 'index, rot, trans')


def to_tuple(name):
    """
    Extract numbers as tuple:
    
    to_tuple("slice06/IRIS4_1_14749.edf")
    --> (6, 4, 1, 14749)

    @param name: input string, often a filename
    """
    res = []
    cur = ""
    for c in name:
        if c in DIGITS:
            cur = cur + c
        elif cur:
            res.append(cur)
            cur = ""
    return tuple(int(i) for i in res)


class DiffTomo(object):
    """
    Basic class for diffraction tomography using pyFAI
    """
    def __init__(self, nTrans=1, nRot=1, nDiff=1000):
        """
        Constructor of the class

        @param nTrans: number of translations
        @param nRot: number of translations
        @param nDiff: number of points in diffraction pattern
        """
        self.nTrans = nTrans
        self.nRot = nRot
        self.nDiff = nDiff
        self.offset = 0
        self.poni = None
        self.ai = None
        self.dark = None
        self.flat = None
        self.mask = None
        self.I0 = None
        self.hdf5 = None
        self.hdf5path = "diff_tomo/data/sinogram"
        self.group = None
        self.dataset = None
        self.inputfiles = []
        self.timing = []
        self.use_gpu = False
        self.unit = to_unit("2th_deg")
        self.stats = False
        self._idx = -1

    def __repr__(self):
        return "Diffraction Tomography with r=%s t: %s, d:%s" % \
            (self.nRot, self.nTrans, self.nDiff)

    def parse(self):
        """
        parse options from command line
        """
        description = """Azimuthal integration for diffraction tomography.

Diffraction tomography is an experiment where 2D diffraction patterns are recorded
while performing a 2D scan, one (the slowest) in rotation around the sample center
and the other (the fastest) along a translation through the sample.
Diff_tomo is a script (based on pyFAI and h5py) which allows the reduction of this
4D dataset into a 3D dataset containing the rotations angle (hundreds), the translation step (hundreds)
and the many diffraction angles (thousands). The resulting dataset can be opened using PyMca roitool
where the 1d dataset has to be selected as last dimension. This file is not (yet) NeXus compliant.

This tool can be used for mapping experiments if one considers the slow scan direction as the rotation.
        """
        epilog = """If the number of files is too large, use double quotes "*.edf" """
        usage = """diff_tomo [options] -p ponifile imagefiles*
If the number of files is too large, use double quotes like "*.edf" """
        version = "diff_tomo from pyFAI  version %s: %s" % (PyFAI_VERSION, PyFAI_DATE)
        parser = ArgumentParser(usage=usage, description=description, epilog=epilog)
        parser.add_argument("-V", "--version", action='version', version=version)
        parser.add_argument("args", metavar="FILE", help="List of files to calibrate", nargs='+')
        parser.add_argument("-o", "--output", dest="outfile",
                            help="HDF5 File where processed sinogram was saved, by default diff_tomo.h5",
                            metavar="FILE", default="diff_tomo.h5")
        parser.add_argument("-v", "--verbose",
                            action="store_true", dest="verbose", default=False,
                            help="switch to verbose/debug mode, defaut: quiet")
        parser.add_argument("-P", "--prefix", dest="prefix",
                            help="Prefix or common base for all files",
                            metavar="FILE", default="", type=str)
        parser.add_argument("-e", "--extension", dest="extension",
                            help="Process all files with this extension",
                            default="")
        parser.add_argument("-t", "--nTrans", dest="nTrans",
                            help="number of points in translation. Mandatory", default=None)
        parser.add_argument("-r", "--nRot", dest="nRot",
                            help="number of points in rotation. Mandatory", default=None)
        parser.add_argument("-c", "--nDiff", dest="nDiff",
                            help="number of points in diffraction powder pattern, Mandatory",
                            default=None)
        parser.add_argument("-d", "--dark", dest="dark", metavar="FILE",
                            help="list of dark images to average and subtract",
                            default=None)
        parser.add_argument("-f", "--flat", dest="flat", metavar="FILE",
                            help="list of flat images to average and divide",
                            default=None)
        parser.add_argument("-m", "--mask", dest="mask", metavar="FILE",
                            help="file containing the mask, no mask by default", default=None)
        parser.add_argument("-p", "--poni", dest="poni", metavar="FILE",
                            help="file containing the diffraction parameter (poni-file), Mandatory",
                            default=None)
        parser.add_argument("-O", "--offset", dest="offset",
                            help="do not process the first files", default=None)
        parser.add_argument("-g", "--gpu", dest="gpu", action="store_true",
                            help="process using OpenCL on GPU ", default=False)
        parser.add_argument("-S", "--stats", dest="stats", action="store_true",
                            help="show statistics at the end", default=False)

        options = parser.parse_args()
        args = options.args

        if options.verbose:
            logger.setLevel(logging.DEBUG)
        self.hdf5 = options.outfile
        if options.dark:
            dark_files = [os.path.abspath(urlparse(f).path)
                          for f in options.dark.split(",")
                          if os.path.isfile(urlparse(f).path)]
            if dark_files:
                self.dark = dark_files
            else:
                raise RuntimeError("No such dark files")

        if options.flat:
            flat_files = [os.path.abspath(urlparse(f).path)
                          for f in options.flat.split(",")
                          if os.path.isfile(urlparse(f).path)]
            if flat_files:
                self.flat = flat_files
            else:
                raise RuntimeError("No such flat files")

        self.use_gpu = options.gpu
        self.inputfiles = []
        for fn in args:
            f = urlparse(fn).path
            if os.path.isfile(f) and f.endswith(options.extension):
                self.inputfiles.append(os.path.abspath(f))
            elif os.path.isdir(f):
                self.inputfiles += [os.path.abspath(os.path.join(f, g)) for g in os.listdir(f) if g.endswith(options.extension) and g.startswith(options.prefix)]
            else:
                self.inputfiles += [os.path.abspath(f) for f in glob.glob(f)]
        self.inputfiles.sort(key=to_tuple)
        if not self.inputfiles:
            raise RuntimeError("No input files to process, try --help")
        if options.mask:
            mask = urlparse(options.mask).path
            if os.path.isfile(mask):
                logger.info("Reading Mask file from: %s" % mask)
                self.mask = os.path.abspath(mask)
            else:
                logger.warning("No such mask file %s" % mask)
        if options.poni:
            if os.path.isfile(options.poni):
                logger.info("Reading PONI file from: %s" % options.poni)
                self.poni = options.poni
            else:
                logger.warning("No such poni file %s" % options.poni)
        if options.nTrans is not None:
            self.nTrans = int(options.nTrans)
        if options.nRot is not None:
            self.nRot = int(options.nRot)
        if options.nDiff is not None:
            self.nDiff = int(options.nDiff)
        if options.offset is not None:
            self.offset = int(options.offset)
        else:
            self.offset = 0
        self.stats = options.stats

    def makeHDF5(self, rewrite=False):
        """
        Create the HDF5 structure if needed ...
        """
        print("Initialization of HDF5 file")
        if os.path.exists(self.hdf5) and rewrite:
            os.unlink(self.hdf5)

        spath = self.hdf5path.split("/")
        assert len(spath) > 2
        nxs = Nexus(self.hdf5, mode="w")
        entry = nxs.new_entry(entry=spath[0], program_name="pyFAI", title="diff_tomo")
        grp = entry
        for subgrp in spath[1:-2]:
            grp = nxs.new_class(grp, name=subgrp, class_type="NXcollection")

        processgrp = nxs.new_class(grp, "pyFAI", class_type="NXprocess")
        processgrp["program"] = numpy.array([numpy.str_(i) for i in sys.argv])
        processgrp["version"] = numpy.str_(PyFAI_VERSION)
        processgrp["date"] = numpy.str_(get_isotime())
        if self.mask:
            processgrp["maskfile"] = numpy.str_(self.mask)
        if self.flat:
            processgrp["flatfiles"] = numpy.array([numpy.str_(i) for i in self.flat])
        if self.dark:
            processgrp["darkfiles"] = numpy.array([numpy.str_(i) for i in self.dark])
        processgrp["inputfiles"] = numpy.array([numpy.str_(i) for i in self.inputfiles])
        processgrp["PONIfile"] = numpy.str_(self.poni)

        processgrp["dim0"] = self.nRot
        processgrp["dim0"].attrs["axis"] = "Rotation"
        processgrp["dim1"] = self.nTrans
        processgrp["dim1"].attrs["axis"] = "Translation"
        processgrp["dim2"] = self.nDiff
        processgrp["dim2"].attrs["axis"] = "Diffraction"
        for k, v in self.ai.getPyFAI().items():
            if "__len__" in dir(v):
                processgrp[k] = numpy.str_(v)
            elif v:
                processgrp[k] = v

        self.group = nxs.new_class(grp, name=spath[-2], class_type="NXdata")

        if posixpath.basename(self.hdf5path) in self.group:
            self.dataset = self.group[posixpath.basename(self.hdf5path)]
        else:
            self.dataset = self.group.create_dataset(
                name=posixpath.basename(self.hdf5path),
                shape=(self.nRot, self.nTrans, self.nDiff),
                dtype="float32",
                chunks=(1, self.nTrans, self.nDiff),
                maxshape=(None, None, self.nDiff))
            self.dataset.attrs["signal"] = "1"
            self.dataset.attrs["interpretation"] = "spectrum"
            self.dataset.attrs["axes"] = str(self.unit).split("_")[0]
            self.dataset.attrs["creator"] = "pyFAI"
            self.dataset.attrs["long_name"] = "Diffraction imaging experiment"
        self.nxs = nxs

    def setup_ai(self):
        print("Setup of Azimuthal integrator ...")
        if self.poni:
            self.ai = pyFAI.load(self.poni)
        else:
            logger.error(("Unable to setup Azimuthal integrator:"
                          " no poni file provided"))
            raise RuntimeError("You must provide poni a file")
        if self.dark:
            self.ai.set_darkfiles(self.dark)
        if self.flat:
            self.ai.set_flatfiles(self.flat)
        if self.mask is not None:
            self.ai.detector.set_maskfile(self.mask)

    def init_ai(self):
        if not self.ai:
            self.setup_ai()
        if not self.group:
            self.makeHDF5(rewrite=False)
        if self.ai.detector.shape:
            data = numpy.empty(self.ai.detector.shape, dtype=numpy.float32)
            meth = "csr_ocl_gpu" if self.use_gpu else "csr"
            print("Initialization of the Azimuthal Integrator using method %s" % meth)
            # enforce initialization of azimuthal integrator
            tth, I = self.ai.integrate1d(data, self.nDiff,
                                         method=meth, unit=self.unit)
            if self.dataset is None:
                self.makeHDF5()
            space, unit = str(self.unit).split("_")
            if space not in self.group:
                self.group[space] = tth
                self.group[space].attrs["axes"] = 3
                self.group[space].attrs["unit"] = unit
                self.group[space].attrs["long_name"] = self.unit.label
                self.group[space].attrs["interpretation"] = "scalar"
            if self.use_gpu:
                self.ai._ocl_csr_integr.output_dummy = 0.0
            else:
                self.ai._csr_integrator.output_dummy = 0.0

    def show_stats(self):
        if not self.stats:
            return
        try:
            import matplotlib.pyplot as plt
        except ImportError:
            logger.error("Unable to start matplotlib for display")
            return

        plt.hist(self.timing, 500, facecolor='green', alpha=0.75)
        plt.xlabel('Execution time in sec')
        plt.title("Execution time")
        plt.grid(True)
        plt.show()

    def get_pos(self, filename, idx=None):
        """
        Calculate the position in the sinogram of the file according
        to it's number
        
        @param filename: name of current frame
        @param idx: index of current frame
        @return: namedtuple: index, rot, trans
        """
        #         n = int(filename.split(".")[0].split("_")[-1]) - (self.offset or 0)
        if idx is None:
            n = self.inputfiles.index(filename) - self.offset
        else:
            n = idx - self.offset
        return Position(n, n // self.nTrans, n % self.nTrans)

    def process_one_file(self, filename):
        """
        @param filename: name of the input filename
        @param idx: index of file
        """
        if self.ai is None:
            self.setup_ai()
        if self.dataset is None:
            self.makeHDF5()

        t = time.time()
        self._idx += 1
        pos = self.get_pos(filename, self._idx)
        shape = self.dataset.shape
        if pos.rot + 1 > shape[0]:
            self.dataset.resize((pos.rot + 1, shape[1], shape[2]))
        elif pos.index < 0 or pos.rot < 0 or pos.trans < 0:
            return
        fimg = fabio.open(filename)

        meth = "csr_ocl_gpu" if self.use_gpu else "csr"
        tth, I = self.ai.integrate1d(fimg.data, self.nDiff, safe=False,
                                     method=meth, unit=self.unit)
        self.dataset[pos.rot, pos.trans, :] = I

        if fimg.nframes > 1:
            print("Case of multiframe images")
            for i in range(fimg.nframes - 1):
                fimg = fimg.next()
                data = fimg.data
                self._idx += 1
                pos = self.get_pos(filename, self._idx)
                if pos.rot + 1 > shape[0]:
                    self.dataset.resize((pos.rot + 1, shape[1], shape[2]))
                tth, I = self.ai.integrate1d(data, self.nDiff, safe=False,
                                             method=meth, unit=self.unit)
                self.dataset[pos.rot, pos.trans, :] = I

        t -= time.time()
        print("Processing %30s took %6.1fms" %
              (os.path.basename(filename), -1000 * t))
        self.timing.append(-t)

    def process(self):
        if self.dataset is None:
            self.makeHDF5()
        self.init_ai()
        t0 = time.time()
        self._idx = -1
        for f in self.inputfiles:
            self.process_one_file(f)
        self.nxs.close
        tot = time.time() - t0
        cnt = self._idx + 1
        print(("Execution time for %i frames: %.3fs;"
               " Average execution time: %.1fms") %
              (cnt, tot, 1000. * tot / cnt))
        self.nxs.close()

if __name__ == "__main__":
    dt = DiffTomo()
    dt.parse()
    dt.setup_ai()
    dt.makeHDF5()
    dt.process()
    dt.show_stats()