/usr/bin/diff_tomo is in pyfai 0.11.0+dfsg-3build1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | #!/usr/bin/python
# -*- coding: utf-8 -*-
#
# Project: Azimuthal integration
# https://github.com/kif/pyFAI
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Authors: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
# Picca Frédéric-Emmanuel <picca@synchrotron-soleil.fr>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
diff_tomo
A tool for fast processing of diffraction tomography
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "20/03/2015"
__satus__ = "Production"
import logging
import time
import os
import posixpath
import numpy
import fabio
import sys
import glob
import collections
import pyFAI
import pyFAI.utils
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("diff_tomo")
from pyFAI import version as PyFAI_VERSION
from pyFAI import date as PyFAI_DATE
from pyFAI.io import Nexus, get_isotime
from pyFAI.units import to_unit
try:
from argparse import ArgumentParser
except ImportError:
from pyFAI.third_party.argparse import ArgumentParser
if sys.version_info[0] < 3:
bytes = str
from urlparse import urlparse
else:
from urllib.parse import urlparse
DIGITS = [str(i) for i in range(10)]
Position = collections.namedtuple('Position', 'index, rot, trans')
def to_tuple(name):
"""
Extract numbers as tuple:
to_tuple("slice06/IRIS4_1_14749.edf")
--> (6, 4, 1, 14749)
@param name: input string, often a filename
"""
res = []
cur = ""
for c in name:
if c in DIGITS:
cur = cur + c
elif cur:
res.append(cur)
cur = ""
return tuple(int(i) for i in res)
class DiffTomo(object):
"""
Basic class for diffraction tomography using pyFAI
"""
def __init__(self, nTrans=1, nRot=1, nDiff=1000):
"""
Constructor of the class
@param nTrans: number of translations
@param nRot: number of translations
@param nDiff: number of points in diffraction pattern
"""
self.nTrans = nTrans
self.nRot = nRot
self.nDiff = nDiff
self.offset = 0
self.poni = None
self.ai = None
self.dark = None
self.flat = None
self.mask = None
self.I0 = None
self.hdf5 = None
self.hdf5path = "diff_tomo/data/sinogram"
self.group = None
self.dataset = None
self.inputfiles = []
self.timing = []
self.use_gpu = False
self.unit = to_unit("2th_deg")
self.stats = False
self._idx = -1
def __repr__(self):
return "Diffraction Tomography with r=%s t: %s, d:%s" % \
(self.nRot, self.nTrans, self.nDiff)
def parse(self):
"""
parse options from command line
"""
description = """Azimuthal integration for diffraction tomography.
Diffraction tomography is an experiment where 2D diffraction patterns are recorded
while performing a 2D scan, one (the slowest) in rotation around the sample center
and the other (the fastest) along a translation through the sample.
Diff_tomo is a script (based on pyFAI and h5py) which allows the reduction of this
4D dataset into a 3D dataset containing the rotations angle (hundreds), the translation step (hundreds)
and the many diffraction angles (thousands). The resulting dataset can be opened using PyMca roitool
where the 1d dataset has to be selected as last dimension. This file is not (yet) NeXus compliant.
This tool can be used for mapping experiments if one considers the slow scan direction as the rotation.
"""
epilog = """If the number of files is too large, use double quotes "*.edf" """
usage = """diff_tomo [options] -p ponifile imagefiles*
If the number of files is too large, use double quotes like "*.edf" """
version = "diff_tomo from pyFAI version %s: %s" % (PyFAI_VERSION, PyFAI_DATE)
parser = ArgumentParser(usage=usage, description=description, epilog=epilog)
parser.add_argument("-V", "--version", action='version', version=version)
parser.add_argument("args", metavar="FILE", help="List of files to calibrate", nargs='+')
parser.add_argument("-o", "--output", dest="outfile",
help="HDF5 File where processed sinogram was saved, by default diff_tomo.h5",
metavar="FILE", default="diff_tomo.h5")
parser.add_argument("-v", "--verbose",
action="store_true", dest="verbose", default=False,
help="switch to verbose/debug mode, defaut: quiet")
parser.add_argument("-P", "--prefix", dest="prefix",
help="Prefix or common base for all files",
metavar="FILE", default="", type=str)
parser.add_argument("-e", "--extension", dest="extension",
help="Process all files with this extension",
default="")
parser.add_argument("-t", "--nTrans", dest="nTrans",
help="number of points in translation. Mandatory", default=None)
parser.add_argument("-r", "--nRot", dest="nRot",
help="number of points in rotation. Mandatory", default=None)
parser.add_argument("-c", "--nDiff", dest="nDiff",
help="number of points in diffraction powder pattern, Mandatory",
default=None)
parser.add_argument("-d", "--dark", dest="dark", metavar="FILE",
help="list of dark images to average and subtract",
default=None)
parser.add_argument("-f", "--flat", dest="flat", metavar="FILE",
help="list of flat images to average and divide",
default=None)
parser.add_argument("-m", "--mask", dest="mask", metavar="FILE",
help="file containing the mask, no mask by default", default=None)
parser.add_argument("-p", "--poni", dest="poni", metavar="FILE",
help="file containing the diffraction parameter (poni-file), Mandatory",
default=None)
parser.add_argument("-O", "--offset", dest="offset",
help="do not process the first files", default=None)
parser.add_argument("-g", "--gpu", dest="gpu", action="store_true",
help="process using OpenCL on GPU ", default=False)
parser.add_argument("-S", "--stats", dest="stats", action="store_true",
help="show statistics at the end", default=False)
options = parser.parse_args()
args = options.args
if options.verbose:
logger.setLevel(logging.DEBUG)
self.hdf5 = options.outfile
if options.dark:
dark_files = [os.path.abspath(urlparse(f).path)
for f in options.dark.split(",")
if os.path.isfile(urlparse(f).path)]
if dark_files:
self.dark = dark_files
else:
raise RuntimeError("No such dark files")
if options.flat:
flat_files = [os.path.abspath(urlparse(f).path)
for f in options.flat.split(",")
if os.path.isfile(urlparse(f).path)]
if flat_files:
self.flat = flat_files
else:
raise RuntimeError("No such flat files")
self.use_gpu = options.gpu
self.inputfiles = []
for fn in args:
f = urlparse(fn).path
if os.path.isfile(f) and f.endswith(options.extension):
self.inputfiles.append(os.path.abspath(f))
elif os.path.isdir(f):
self.inputfiles += [os.path.abspath(os.path.join(f, g)) for g in os.listdir(f) if g.endswith(options.extension) and g.startswith(options.prefix)]
else:
self.inputfiles += [os.path.abspath(f) for f in glob.glob(f)]
self.inputfiles.sort(key=to_tuple)
if not self.inputfiles:
raise RuntimeError("No input files to process, try --help")
if options.mask:
mask = urlparse(options.mask).path
if os.path.isfile(mask):
logger.info("Reading Mask file from: %s" % mask)
self.mask = os.path.abspath(mask)
else:
logger.warning("No such mask file %s" % mask)
if options.poni:
if os.path.isfile(options.poni):
logger.info("Reading PONI file from: %s" % options.poni)
self.poni = options.poni
else:
logger.warning("No such poni file %s" % options.poni)
if options.nTrans is not None:
self.nTrans = int(options.nTrans)
if options.nRot is not None:
self.nRot = int(options.nRot)
if options.nDiff is not None:
self.nDiff = int(options.nDiff)
if options.offset is not None:
self.offset = int(options.offset)
else:
self.offset = 0
self.stats = options.stats
def makeHDF5(self, rewrite=False):
"""
Create the HDF5 structure if needed ...
"""
print("Initialization of HDF5 file")
if os.path.exists(self.hdf5) and rewrite:
os.unlink(self.hdf5)
spath = self.hdf5path.split("/")
assert len(spath) > 2
nxs = Nexus(self.hdf5, mode="w")
entry = nxs.new_entry(entry=spath[0], program_name="pyFAI", title="diff_tomo")
grp = entry
for subgrp in spath[1:-2]:
grp = nxs.new_class(grp, name=subgrp, class_type="NXcollection")
processgrp = nxs.new_class(grp, "pyFAI", class_type="NXprocess")
processgrp["program"] = numpy.array([numpy.str_(i) for i in sys.argv])
processgrp["version"] = numpy.str_(PyFAI_VERSION)
processgrp["date"] = numpy.str_(get_isotime())
if self.mask:
processgrp["maskfile"] = numpy.str_(self.mask)
if self.flat:
processgrp["flatfiles"] = numpy.array([numpy.str_(i) for i in self.flat])
if self.dark:
processgrp["darkfiles"] = numpy.array([numpy.str_(i) for i in self.dark])
processgrp["inputfiles"] = numpy.array([numpy.str_(i) for i in self.inputfiles])
processgrp["PONIfile"] = numpy.str_(self.poni)
processgrp["dim0"] = self.nRot
processgrp["dim0"].attrs["axis"] = "Rotation"
processgrp["dim1"] = self.nTrans
processgrp["dim1"].attrs["axis"] = "Translation"
processgrp["dim2"] = self.nDiff
processgrp["dim2"].attrs["axis"] = "Diffraction"
for k, v in self.ai.getPyFAI().items():
if "__len__" in dir(v):
processgrp[k] = numpy.str_(v)
elif v:
processgrp[k] = v
self.group = nxs.new_class(grp, name=spath[-2], class_type="NXdata")
if posixpath.basename(self.hdf5path) in self.group:
self.dataset = self.group[posixpath.basename(self.hdf5path)]
else:
self.dataset = self.group.create_dataset(
name=posixpath.basename(self.hdf5path),
shape=(self.nRot, self.nTrans, self.nDiff),
dtype="float32",
chunks=(1, self.nTrans, self.nDiff),
maxshape=(None, None, self.nDiff))
self.dataset.attrs["signal"] = "1"
self.dataset.attrs["interpretation"] = "spectrum"
self.dataset.attrs["axes"] = str(self.unit).split("_")[0]
self.dataset.attrs["creator"] = "pyFAI"
self.dataset.attrs["long_name"] = "Diffraction imaging experiment"
self.nxs = nxs
def setup_ai(self):
print("Setup of Azimuthal integrator ...")
if self.poni:
self.ai = pyFAI.load(self.poni)
else:
logger.error(("Unable to setup Azimuthal integrator:"
" no poni file provided"))
raise RuntimeError("You must provide poni a file")
if self.dark:
self.ai.set_darkfiles(self.dark)
if self.flat:
self.ai.set_flatfiles(self.flat)
if self.mask is not None:
self.ai.detector.set_maskfile(self.mask)
def init_ai(self):
if not self.ai:
self.setup_ai()
if not self.group:
self.makeHDF5(rewrite=False)
if self.ai.detector.shape:
data = numpy.empty(self.ai.detector.shape, dtype=numpy.float32)
meth = "csr_ocl_gpu" if self.use_gpu else "csr"
print("Initialization of the Azimuthal Integrator using method %s" % meth)
# enforce initialization of azimuthal integrator
tth, I = self.ai.integrate1d(data, self.nDiff,
method=meth, unit=self.unit)
if self.dataset is None:
self.makeHDF5()
space, unit = str(self.unit).split("_")
if space not in self.group:
self.group[space] = tth
self.group[space].attrs["axes"] = 3
self.group[space].attrs["unit"] = unit
self.group[space].attrs["long_name"] = self.unit.label
self.group[space].attrs["interpretation"] = "scalar"
if self.use_gpu:
self.ai._ocl_csr_integr.output_dummy = 0.0
else:
self.ai._csr_integrator.output_dummy = 0.0
def show_stats(self):
if not self.stats:
return
try:
import matplotlib.pyplot as plt
except ImportError:
logger.error("Unable to start matplotlib for display")
return
plt.hist(self.timing, 500, facecolor='green', alpha=0.75)
plt.xlabel('Execution time in sec')
plt.title("Execution time")
plt.grid(True)
plt.show()
def get_pos(self, filename, idx=None):
"""
Calculate the position in the sinogram of the file according
to it's number
@param filename: name of current frame
@param idx: index of current frame
@return: namedtuple: index, rot, trans
"""
# n = int(filename.split(".")[0].split("_")[-1]) - (self.offset or 0)
if idx is None:
n = self.inputfiles.index(filename) - self.offset
else:
n = idx - self.offset
return Position(n, n // self.nTrans, n % self.nTrans)
def process_one_file(self, filename):
"""
@param filename: name of the input filename
@param idx: index of file
"""
if self.ai is None:
self.setup_ai()
if self.dataset is None:
self.makeHDF5()
t = time.time()
self._idx += 1
pos = self.get_pos(filename, self._idx)
shape = self.dataset.shape
if pos.rot + 1 > shape[0]:
self.dataset.resize((pos.rot + 1, shape[1], shape[2]))
elif pos.index < 0 or pos.rot < 0 or pos.trans < 0:
return
fimg = fabio.open(filename)
meth = "csr_ocl_gpu" if self.use_gpu else "csr"
tth, I = self.ai.integrate1d(fimg.data, self.nDiff, safe=False,
method=meth, unit=self.unit)
self.dataset[pos.rot, pos.trans, :] = I
if fimg.nframes > 1:
print("Case of multiframe images")
for i in range(fimg.nframes - 1):
fimg = fimg.next()
data = fimg.data
self._idx += 1
pos = self.get_pos(filename, self._idx)
if pos.rot + 1 > shape[0]:
self.dataset.resize((pos.rot + 1, shape[1], shape[2]))
tth, I = self.ai.integrate1d(data, self.nDiff, safe=False,
method=meth, unit=self.unit)
self.dataset[pos.rot, pos.trans, :] = I
t -= time.time()
print("Processing %30s took %6.1fms" %
(os.path.basename(filename), -1000 * t))
self.timing.append(-t)
def process(self):
if self.dataset is None:
self.makeHDF5()
self.init_ai()
t0 = time.time()
self._idx = -1
for f in self.inputfiles:
self.process_one_file(f)
self.nxs.close
tot = time.time() - t0
cnt = self._idx + 1
print(("Execution time for %i frames: %.3fs;"
" Average execution time: %.1fms") %
(cnt, tot, 1000. * tot / cnt))
self.nxs.close()
if __name__ == "__main__":
dt = DiffTomo()
dt.parse()
dt.setup_ai()
dt.makeHDF5()
dt.process()
dt.show_stats()
|