This file is indexed.

/usr/share/psychtoolbox-3/Quest/QuestRecompute.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
function q=QuestRecompute(q, plotIt)
% q=QuestRecompute(q [,plotIt=0])
%
% Call this immediately after changing a parameter of the psychometric
% function. QuestRecompute uses the specified parameters in "q" to
% recompute the psychometric function. It then uses the newly computed
% psychometric function and the history in q.intensity and q.response
% to recompute the pdf. (QuestRecompute does nothing if q.updatePdf is
% false.)
%
% QuestCreate saves in struct q the parameters for a Weibull psychometric function:
% p2=delta*gamma+(1-delta)*(1-(1-gamma)*exp(-10.^(beta*(x-xThreshold))));
% where x represents log10 contrast relative to threshold. The Weibull
% function itself appears only in QuestRecompute, which uses the
% specified parameter values in q to compute a psychometric function
% and store it in q. All the other Quest functions simply use the
% psychometric function stored in "q". QuestRecompute is called solely
% by QuestCreate and QuestBetaAnalysis (and possibly by a few user
% programs). Thus, if you prefer to use a different kind of
% psychometric function, called Foo, you need only create your own
% QuestCreateFoo, QuestRecomputeFoo, and (if you need it)
% QuestBetaAnalysisFoo, based on QuestCreate, QuestRecompute, and
% QuestBetaAnalysis, and you can use them with the rest of the Quest
% package unchanged. You would only be changing a few lines of code,
% so it would quite easy to do.
% 
% "dim" is the number of distinct intensities that the internal tables in q can store,
% e.g. 500. This vector, of length "dim", with increment size "grain",
% will be centered on the initial guess tGuess, i.e.
% tGuess+[-range/2:grain:range/2]. QUEST assumes that intensities outside
% of this interval have zero prior probability, i.e. they are impossible
% values for threshold. The cost of making "dim" too big is some extra
% storage and computation, which are usually negligible. The cost of
% making "dim" too small is that you prejudicially exclude what are
% actually possible values for threshold. Getting out-of-range warnings
% from QuestUpdate is one possible indication that your stated range is
% too small.
% 
% If you set the optional parameter 'plotIt' to 1, the function will plot
% the psychometric function in use.
%
% See QuestCreate, QuestUpdate, QuestQuantile, QuestMean, QuestMode,
% QuestSd, and QuestSimulate.

% 4/29/99   dgp  Wrote it.
% 8/15/99   dgp  Explain how to use other kind of psychometric function.
% 9/11/04   dgp  Explain why supplied "dim" should err on the high side.
% 10/31/10   mk  Allocate q.intensity and q.response in chunks of 10000
%                trials to reduce memory fragmentation problems.
% 03/10/12   mk  Optionally plot psychometric function for debugging.
%                Also some Matlab M-Lint warning cleanup.

% Copyright (c) 1996-2004 Denis Pelli
if nargin < 1
	error('Usage: q=QuestRecompute(q [,plotIt=0])')
end

if length(q)>1
	for i=1:length(q(:))
		q(i).normalizePdf=0; % any norming must be done across the whole set of pdfs, because it's actually one big multi-dimensional pdf.
		q(i)=QuestRecompute(q(i));
	end
	return
end

if ~q.updatePdf
	return
end

if q.gamma>q.pThreshold
	warning(sprintf('reducing gamma from %.2f to 0.5',q.gamma)) %#ok<SPWRN>
	q.gamma=0.5;
end

% Don't visualize functions by default:
if nargin < 2 || isempty(plotIt)
    plotIt = 0;
end

% prepare all the arrays
q.i=-q.dim/2:q.dim/2;
q.x=q.i*q.grain;
q.pdf=exp(-0.5*(q.x/q.tGuessSd).^2);
q.pdf=q.pdf/sum(q.pdf);
i2=-q.dim:q.dim;
q.x2=i2*q.grain;
q.p2=q.delta*q.gamma+(1-q.delta)*(1-(1-q.gamma)*exp(-10.^(q.beta*q.x2)));

% Plot Psychometric function if requested:
if plotIt > 0
    figure;
    plot(q.x2, q.p2);
end

if q.p2(1)>=q.pThreshold || q.p2(end)<=q.pThreshold
	error(sprintf('psychometric function range [%.2f %.2f] omits %.2f threshold',q.p2(1),q.p2(end),q.pThreshold))
end
if any(~isfinite(q.p2))
	error('psychometric function p2 is not finite')
end
index=find(diff(q.p2)); 		% subset that is strictly monotonic
if length(index)<2
	error(sprintf('psychometric function has only %g strictly monotonic point(s)',length(index)))
end
q.xThreshold=interp1(q.p2(index),q.x2(index),q.pThreshold);
if ~isfinite(q.xThreshold)
	q %#ok<NOPRT>
	error(sprintf('psychometric function has no %.2f threshold',q.pThreshold))
end
q.p2=q.delta*q.gamma+(1-q.delta)*(1-(1-q.gamma)*exp(-10.^(q.beta*(q.x2+q.xThreshold))));
if any(~isfinite(q.p2))
	q %#ok<NOPRT>
	error('psychometric function p2 is not finite')
end
q.s2=fliplr([1-q.p2;q.p2]);
if ~isfield(q,'intensity') || ~isfield(q,'response')
    % Preallocate for 10000 trials, keep track of real useful content in
    % q.trialCount. We allocate such large chunks to reduce memory
    % fragmentation that would be caused by growing the arrays one element
    % per trial. Fragmentation has been shown to cause severe out-of-memory
    % problems if one runs many interleaved quests. 10000 trials require/
    % waste about 157 kB of memory, which is basically nothing for todays
    % computers and likely sufficient for even the most tortorous experiment
    % sessions.
    q.trialCount = 0;
    q.intensity=zeros(1,10000);
    q.response=zeros(1,10000);
end

if any(~isfinite(q.s2(:)))
	error('psychometric function s2 is not finite')
end

% Best quantileOrder depends only on min and max of psychometric function.
% For 2-interval forced choice, if pL=0.5 and pH=1 then best quantileOrder=0.60
% We write x*log(x+eps) in place of x*log(x) to get zero instead of NaN when x is zero.
pL=q.p2(1);
pH=q.p2(size(q.p2,2));
pE=pH*log(pH+eps)-pL*log(pL+eps)+(1-pH+eps)*log(1-pH+eps)-(1-pL+eps)*log(1-pL+eps);
pE=1/(1+exp(pE/(pL-pH)));
q.quantileOrder=(pE-pL)/(pH-pL);

if any(~isfinite(q.pdf))
	error('prior pdf is not finite')
end
% recompute the pdf from the historical record of trials
for k=1:q.trialCount
	inten=max(-1e10,min(1e10,q.intensity(k))); % make intensity finite
	ii=size(q.pdf,2)+q.i-round((inten-q.tGuess)/q.grain);
	if ii(1)<1
		ii=ii+1-ii(1);
	end
	if ii(end)>size(q.s2,2)
		ii=ii+size(q.s2,2)-ii(end);
	end
	q.pdf=q.pdf.*q.s2(q.response(k)+1,ii); % 4 ms
	if q.normalizePdf && mod(k,100)==0
		q.pdf=q.pdf/sum(q.pdf);	% avoid underflow; keep the pdf normalized	% 3 ms
	end
end
if q.normalizePdf
	q.pdf=q.pdf/sum(q.pdf);		% keep the pdf normalized	% 3 ms
end
if any(~isfinite(q.pdf))
	error('pdf is not finite')
end