/usr/share/psychtoolbox-3/PsychTests/MatlabTimingTest.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | % MatlabTimingTest
%
% Assign the main MATLAB thread "time constraint" priority status and
% run a tight loop which records with high preceision the time at every
% pass through the loop. Calculate the time intervals between succussive
% passes through the loop.
%
% Granting MATLAB "time constraint" priority prevents any other thread on the
% system from preempting the main MATLAB thread. Other threads recieve
% CPU time only at the discretion of the main MATLAB thread which executes
% your MATLAB scripts and functions. Therefore, the delay between
% the nth and the (n+1)th timing loop is not caused by other threads
% preempting MATLAB, but instead by some activity of MATLAB itself or the script which it executes.
%
% MatlabTimingTest samples the time using GetSecsMex, a custom mex file
% which calls the native OSX Core Audio function AudioGetCurrentHostTime()
% The precision depends on the CPU and clocks speed, on a 1GHZ G4 clock tick
% period is 30 nanoseconds)
%
% AUTHORS: Allen Ingling
% SEE ALSO: GetSecsMex
% HISTORY:
% 04/09/03 awi Wrote it.
% 04/14/03 awi rewrote it after changing Priority to use mach threads.
% 8/13/03 awi Changed name to "TestMATLABTimingOSX.m and re-wrote for
% timing demo package mex functions. Clean up
% documentaion and explained the script in detail for the
% benefit of Mathworks.
% 9/24/03 awi Fixed a dependencies on obsolete files,
% detected when packaging the timing tests for release.
% 11/04/03 awi Added axis labels.
% 1/29/05 dgp Cosmetic. Changed "Seconds" to "Secs".
% Setting "time constraint" priority settings and blocking duration:
%
% periodSecs= 1/1000;
% computationSecs = periodSecs/10;
% constraintSecs= computationSecs;
% preemptibleFlag=1;
% blockingIntervalSecs=periodSecs;
%
% Out of every millisecond, we guarantee the MATLAB process up to 100 microseconds
% of CPU time. That is, MATLAB will lay claim to up to 1/10 of the total CPU time.
% Gurantee that MATLAB's 100 microseconds of CPU time fall within a
% 100 microsecond window, from the start of computation to the end of
% computation. Within that window, allow MATLAB to be interrupted by other
% threads.
%
% Note that we do not know in advance of the timing loop how much CPU time we will
% actually need, that depends on how much CPU time MATLAB expends
% in processing a scripted loop pass. We can however retroactively validate our
% choice of values by examing timing results:
%
% blockingInterval + actualMATLABCPUUsage = loopPassDuration
%
% therefore:
%
% loopPassDuration - blockingInterval = actualMATLABCPUUsage
%
% we know everything on the left hand side can find actualMATLABCPUUsage. If we have chosen
% parameters correctly then:
%
% actualMATLABCPUUsage <= computationSecs
%
% and,
%
% actualMATLABCPUUsage/(actualMATLABCPUUsage + blockingInterval) < computationSecs/periodSecs)
%
% unknown quantity actualMATLABCPUUsage is found:
%
% loopPassDuration = actualMATLABCPUUsage + blockingInterval
% actualMATLABCPUUsage = loopPassDuration - blockingInterval
%
% substituting into the inequality we get:
%
% (loopPassDuration - blockingInterval)/loopPassDuration < computationSecs/periodSecs)
%
% Note that the above is sufficient when loopPassDuration < periodSecs.
% If loopPassDuration > periodSecs then we must also have
% actualMATLABCPUUsage <= computationSecs.
clear all;
% designate an index for the block of test parameters to be used.
tci = 2; %tci stands for test condition index.
fixedAxisY=0;
fixedAxisValueY=0.020;
% Test condition 1 shows delays at 30-second intervals.
%
%
% designate an index for this block of test parameters.
tcb= 1;
%set flags which specify various test conditions
tc(tcb).enableTCPriority=1;
tc(tcb).useFlip=0; %if set use Screen('flip') command instead of instead of BlockSecs command to block during timing loop.
tc(tcb).useMexOnly=1; % GetSecsMex is a bare-bones mex file. The alternative, GetSecs, compiles in an extra abstraction layer.
%specify the 'time constraint' parameters
tc(tcb).periodSecs= 1/1000;
tc(tcb).computationSecs = tc(tcb).periodSecs/10 * 5 ;
tc(tcb).constraintSecs= tc(tcb).computationSecs;
tc(tcb).preemptibleFlag=0;
tc(tcb).blockingIntervalSecs=tc(tcb).periodSecs - tc(tcb).computationSecs;
% specify for how many seconds we want to run out timing loop
tc(tcb).testDurationSecs = 2*60+1;
%specify a factor by which to mulitply the memory allocation estimate, for
%saftey margin.
tc(tcb).allocationMarginFactor=2.0;
tc(tcb).maxDisplayExcessComputationDurations=100;
% specify values describing period glithes. As part of the analysis after
% the timing test we search for regular glitches described by these
% paramters.
tc(tcb).interGlitchIntevalSecs = 30;
tc(tcb).interGlitchIntervalJitter = 0.1; % tolerance of interGlitchIntevalSecs value.
% Test condition 2 shows glitches at 60 second intervals which increase in
% magnitude over the duration of the test period.
%
% designate an index for this block of test parameters.
tcb= 2;
%set flags which specify various test conditions
tc(tcb).enableTCPriority=1;
tc(tcb).useFlip=1; %if set use Screen('flip') command instead of instead of BlockSecs command to block during timing loop.
tc(tcb).useMexOnly=1; % GetSecsMex is a bare-bones mex file. The alternative, GetSecs, compiles in an extra abstraction layer.
%specify the 'time constraint' parameters
tc(tcb).periodSecs= 1/60;
tc(tcb).computationSecs = tc(tcb).periodSecs/10 * 4;
tc(tcb).constraintSecs= tc(tcb).computationSecs;
tc(tcb).preemptibleFlag=0;
tc(tcb).blockingIntervalSecs=tc(tcb).periodSecs - tc(tcb).computationSecs;
% specify for how many seconds we want to run out timing loop
tc(tcb).testDurationSecs = 4*60+1;
%specify a factor by which to mulitply the memory allocation estimate, for
%saftey margin.
tc(tcb).allocationMarginFactor=1.25;
tc(tcb).maxDisplayExcessComputationDurations=100;
% specify values describing period glithes. As part of the analysis after
% the timing test we search for regular glitches described by these
% paramters.
tc(tcb).interGlitchIntevalSecs = 30;
tc(tcb).interGlitchIntervalJitter = 0.1; % tolerance of interGlitchIntevalSecs value.
% Test condition 3 shows ?
%
% designate an index for this block of test parameters.
tcb= 3;
%set flags which specify various test conditions
tc(tcb).enableTCPriority=1;
tc(tcb).useFlip=0; %if set use Screen('flip') command instead of instead of BlockSecs command to block during timing loop.
tc(tcb).useMexOnly=1; % GetSecsMex is a bare-bones mex file. The alternative, GetSecs, compiles in an extra abstraction layer.
%specify the 'time constraint' parameters
tc(tcb).periodSecs= 1/100;
tc(tcb).computationSecs = tc(tcb).periodSecs/10 * 1 ;
tc(tcb).constraintSecs= tc(tcb).computationSecs;
tc(tcb).preemptibleFlag=0;
tc(tcb).blockingIntervalSecs=tc(tcb).periodSecs - tc(tcb).computationSecs;
% specify for how many seconds we want to run out timing loop
tc(tcb).testDurationSecs = 2*60+1;
%specify a factor by which to mulitply the memory allocation estimate, for
%saftey margin.
tc(tcb).allocationMarginFactor=1.25;
tc(tcb).maxDisplayExcessComputationDurations=100;
% specify values describing period glithes. As part of the analysis after
% the timing test we search for regular glitches described by these
% parameters.
tc(tcb).interGlitchIntevalSecs = 30;
tc(tcb).interGlitchIntervalJitter = 0.1; % tolerance of interGlitchIntevalSecs value.
% Test condition 4 shows ?
%
% designate an index for this block of test parameters.
tcb= 4;
%set flags which specify various test conditions
tc(tcb).enableTCPriority=1;
tc(tcb).useFlip=0; %if set use Screen('flip') command instead of instead of BlockSecs command to block during timing loop.
tc(tcb).useMexOnly=1; % GetSecsMex is a bare-bones mex file. The alternative, GetSecs, compiles in an extra abstraction layer.
%specify the 'time constraint' parameters
tc(tcb).periodSecs= 1/100;
tc(tcb).computationSecs = tc(tcb).periodSecs/10 * 3 ;
tc(tcb).constraintSecs= tc(tcb).computationSecs;
tc(tcb).preemptibleFlag=0;
tc(tcb).blockingIntervalSecs=tc(tcb).periodSecs - tc(tcb).computationSecs;
% specify for how many seconds we want to run out timing loop
tc(tcb).testDurationSecs = 2*60+1;
%specify a factor by which to mulitply the memory allocation estimate, for
%saftey margin.
tc(tcb).allocationMarginFactor=1.25;
tc(tcb).maxDisplayExcessComputationDurations=100;
% specify values describing period glithes. As part of the analysis after
% the timing test we search for regular glitches described by these
% parameters.
tc(tcb).interGlitchIntevalSecs = 30;
tc(tcb).interGlitchIntervalJitter = 0.1; % tolerance of interGlitchIntevalSecs value.
% Test condition 5 is like 1 except for without TC priority.
%
%
% designate an index for this block of test parameters.
tcb= 5;
%set flags which specify various test conditions
tc(tcb).enableTCPriority=0;
tc(tcb).useFlip=0; %if set use Screen('flip') command instead of instead of BlockSecs command to block during timing loop.
tc(tcb).useMexOnly=1; % GetSecsMex is a bare-bones mex file. The alternative, GetSecs, compiles in an extra abstraction layer.
%specify the 'time constraint' parameters
tc(tcb).periodSecs= 1/1000;
tc(tcb).computationSecs = tc(tcb).periodSecs/10 * 5 ;
tc(tcb).constraintSecs= tc(tcb).computationSecs;
tc(tcb).preemptibleFlag=0;
tc(tcb).blockingIntervalSecs=tc(tcb).periodSecs - tc(tcb).computationSecs;
% specify for how many seconds we want to run out timing loop
tc(tcb).testDurationSecs = 2*60+1;
%specify a factor by which to mulitply the memory allocation estimate, for
%saftey margin.
tc(tcb).allocationMarginFactor=1.25;
tc(tcb).maxDisplayExcessComputationDurations=100;
% specify values describing period glithes. As part of the analysis after
% the timing test we search for regular glitches described by these
% paramters.
tc(tcb).interGlitchIntevalSecs = 30;
tc(tcb).interGlitchIntervalJitter = 0.1; % tolerance of interGlitchIntevalSecs value.
% Test condition 6 was written for use with Thread Viewer.
% We slow down the sample rate
%
%
% designate an index for this block of test parameters.
tcb= 6;
%set flags which specify various test conditions
tc(tcb).enableTCPriority=1;
tc(tcb).useFlip=0; %if set use Screen('flip') command instead of instead of BlockSecs command to block during timing loop.
tc(tcb).useMexOnly=1; % GetSecsMex is a bare-bones mex file. The alternative, GetSecs, compiles in an extra abstraction layer.
%specify the 'time constraint' parameters
tc(tcb).periodSecs= 0.010;
tc(tcb).computationSecs = 0.001;
tc(tcb).constraintSecs= 0.001;
tc(tcb).preemptibleFlag=0;
tc(tcb).blockingIntervalSecs= 0.009;
% specify for how many seconds we want to run out timing loop
tc(tcb).testDurationSecs = 60;
%specify a factor by which to mulitply the memory allocation estimate, for
%saftey margin.
tc(tcb).allocationMarginFactor=2.0;
tc(tcb).maxDisplayExcessComputationDurations=100;
% specify values describing period glithes. As part of the analysis after
% the timing test we search for regular glitches described by these
% paramters.
tc(tcb).interGlitchIntevalSecs = 30;
tc(tcb).interGlitchIntervalJitter = 0.1; % tolerance of interGlitchIntevalSecs value.
clear tcb; %prevent this guy from sneeking into the scriptage below.
% _________________________________________________________________________
%if we are using screen buffer flips to block during the timing loop
%instead of BlockSecs then open a window
if tc(tci).useFlip
sNumber=max(Screen('Screens'));
w=Screen('OpenWindow', sNumber, [],[],[], 2);
end
%we should pre-allocate the vector used to store time samples so to
% avoid delays during the loop caused by memory allocation and garbage
% collection. Estimate how many elements we need to allocate based on
% a short trial loop
preTrialLoopDurationSecs=5;
safteyFactor=1.5;
fprintf('Running %d second pre-trial loop...\n', preTrialLoopDurationSecs);
preTrialNumLoops=0;
if tc(tci).enableTCPriority
MachSetTimeConstraintPriority(tc(tci).periodSecs, tc(tci).computationSecs, tc(tci).constraintSecs, tc(tci).preemptibleFlag);
end
fprintf(['Priority flavor set to ' MachGetPriorityFlavor '\n']);
t=GetSecsMex;
tStart=GetSecsMex;
endTime=tStart+preTrialLoopDurationSecs;
t=tStart;
if ~ tc(tci).useFlip
if tc(tci).useMexOnly;
while t<endTime
t=GetSecsMex;
preTrialNumLoops= preTrialNumLoops+1;
SleepSecsMex(tc(tci).blockingIntervalSecs);
end
else
while t<endTime
t=GetSecs;
preTrialNumLoops= preTrialNumLoops+1;
SleepSecsMex(tc(tci).blockingIntervalSecs);
end
end
else
if tc(tci).useMexOnly;
while t<endTime
t=GetSecsMex;
preTrialNumLoops= preTrialNumLoops+1;
Screen('Flip',w);
end
else
while t<endTime
t=GetSecs;
preTrialNumLoops= preTrialNumLoops+1;
Screen('Flip',w);
end
end
end
preTrialMeasuredDurationSecs=GetSecsMex-tStart;
if tc(tci).enableTCPriority
MachSetStandardPriority;
end
fprintf(['Priority flavor set to ' MachGetPriorityFlavor '\n']);
fprintf('pre-trial loop complete\n\n');
numEstimatedTimingLoops=round((tc(tci).testDurationSecs/preTrialMeasuredDurationSecs) * preTrialNumLoops * tc(tci).allocationMarginFactor);
tVec=1:numEstimatedTimingLoops;
%run the timing loop
fprintf('Running %d second timing loop\n', tc(tci).testDurationSecs);
if tc(tci).enableTCPriority
MachSetTimeConstraintPriority(tc(tci).periodSecs, tc(tci).computationSecs, tc(tci).constraintSecs, tc(tci).preemptibleFlag);
end
fprintf(['Priority flavor set to ' MachGetPriorityFlavor '\n']);
i=1;
tVec(1)=GetSecsMex;
endTime=tVec(1)+tc(tci).testDurationSecs;
if ~ tc(tci).useFlip
if tc(tci).useMexOnly;
while tVec(i)<endTime
i=i+1;
tVec(i)=GetSecsMex;
SleepSecsMex(tc(tci).blockingIntervalSecs);
end
else
while tVec(i)<endTime
i=i+1;
tVec(i)=GetSecs;
SleepSecsMex(tc(tci).blockingIntervalSecs);
end
end
else
if tc(tci).useMexOnly;
while tVec(i)<endTime
i=i+1;
tVec(i)=GetSecsMex;
Screen('Flip',w);
end
else
while tVec(i)<endTime
i=i+1;
tVec(i)=GetSecs
Screen('Flip',w);
end
end
end
if tc(tci).enableTCPriority
MachSetStandardPriority;
end
fprintf(['Priority flavor set to ' MachGetPriorityFlavor '\n']);
numTrialLoops=i;
trialMeasuredDuration=tVec(i)-tVec(2);
fprintf('Timing loop complete\n\n');
if numEstimatedTimingLoops>=numTrialLoops
fprintf('The actual number of timing loops was %d loops in %d seconds.\n', numTrialLoops, trialMeasuredDuration);
fprintf('We preallocated enough memory for %d timing loops, a saftey factor of %f.\n', numEstimatedTimingLoops, numEstimatedTimingLoops/numTrialLoops);
else
fprintf('WARNING:\n');
fprintf('\tfailed to preallocate sufficient memory for timing results. Try increasing the variable "marginFactor" and try again\n');
fprintf('The actual number of timing loops was %d loops in %d seconds.\n', numTrialLoops, trialMeasuredDuration);
fprintf('We preallocated enough memory for %d timing loops, a saftey factor of %f\n.', numEstimatedTimingLoops, numEstimatedTimingLoops/numTrialLoops);
end
tVec=tVec(2:i);
tDiffVec=diff(tVec);
tDiffVecSampleTimes=tVec(1:end-1)-tVec(1);
plot(tDiffVecSampleTimes, tDiffVec, 'b');
xlabel('loop start time (seconds)');
ylabel('loop pass time (seconds)');
if fixedAxisY
axis([-5, max(tDiffVecSampleTimes)+5, 0, fixedAxisValueY]);
else
axis([-5, max(tDiffVecSampleTimes)+5, 0, 1.25 * max(tDiffVec)]);
end
minLoopDuration=min(tDiffVec);
maxLoopDuration=max(tDiffVec);
medianLoopDuration=median(tDiffVec);
fprintf('The shortest loop was: %f seconds\n', minLoopDuration);
fprintf('The longest loop was: %f seconds\n', maxLoopDuration);
fprintf('The median loop was: %f seconds\n', medianLoopDuration);
%plot horizontal lines across the graph marking "time constraint"
%parameters "period" and the blocking interval.
hold on;
periodSecsLineX=[0 tc(tci).testDurationSecs];
periodSecsLineY=[tc(tci).periodSecs tc(tci).periodSecs ];
plot(periodSecsLineX, periodSecsLineY, 'g');
blockingSecsLineX=periodSecsLineX;
blockingSecsLineY=[tc(tci).blockingIntervalSecs tc(tci).blockingIntervalSecs ];
plot(blockingSecsLineX, blockingSecsLineY, 'r');
% Find the n longest glitches. n is set with the assumption that
% the total number of glitches is predicted by their falling
% at 30-second intervals. If that assumption is wrong then
% we will not find all of the long glitches
numExpectedGlitches=floor(tc(tci).testDurationSecs/tc(tci).interGlitchIntevalSecs);
[sortedtDiffVec, sortedtDiffVecIndices]=sort(tDiffVec);
sortedtDiffVecRev=fliplr(sortedtDiffVec);
sortedtDiffVecIndicesRev=fliplr(sortedtDiffVecIndices);
nLongestGlitches= sortedtDiffVecRev(1:numExpectedGlitches);
nLongestGlitchesIndices=sortedtDiffVecIndicesRev(1:numExpectedGlitches);
nLongestGlitchesTimestamps=tDiffVecSampleTimes(nLongestGlitchesIndices);
[nLongestGlitchesTimestampsSequenced, nLongestGlitchesTimestampsSequencedIndices]=sort(nLongestGlitchesTimestamps);
interGlitchIntervals=diff(nLongestGlitchesTimestampsSequenced);
for i=1:numExpectedGlitches
plot(nLongestGlitchesTimestamps(i), nLongestGlitches(i), 'rx');
end
hold off;
fprintf([int2str(numExpectedGlitches) ' glitches predicted in ' num2str(tc(tci).testDurationSecs) ' second test interval, assuming 30-second interval between glitches\n']);
fprintf(['The ' int2str(numExpectedGlitches) ' longest loop delays occured at times and intervals:\n']);
for i=1:numExpectedGlitches
fprintf([ '\t' num2str(nLongestGlitchesTimestampsSequenced(i)) ' s\n']);
if i<numExpectedGlitches
fprintf([ '\t\tdelta=' num2str(interGlitchIntervals(i)) ' s\n']);
end
end
%identify those glitches among the longest 4 which fall at 30-second
%intervals. First find the intervals of 30-second duration, then find
%the samples which mark the end points of those intervals.
synchedIntervalDoubleIndices=find( (interGlitchIntervals < (tc(tci).interGlitchIntevalSecs + tc(tci).interGlitchIntervalJitter)) & (interGlitchIntervals > (tc(tci).interGlitchIntevalSecs - tc(tci).interGlitchIntervalJitter)));
if ~isempty(synchedIntervalDoubleIndices)
synchedIntervals=interGlitchIntervals(synchedIntervalDoubleIndices);
intervalsStartGlitchesTimestamps=nLongestGlitchesTimestampsSequenced(1:end-1);
intervalsEndGlitchesTimestamps=nLongestGlitchesTimestampsSequenced(2:end);
synchedGlitchesTimestamps=unique([intervalsStartGlitchesTimestamps(synchedIntervalDoubleIndices) intervalsEndGlitchesTimestamps(synchedIntervalDoubleIndices)]);
else
synchedGlitchesTimestamps=[];
end
% find the next longest glitch.
nextLongestDelay=sortedtDiffVecRev(numExpectedGlitches+1);
nextLongestDelayIndex=sortedtDiffVecIndicesRev(numExpectedGlitches+1);
nextLongestDelayTimestamp=tDiffVecSampleTimes(nextLongestDelayIndex);
fprintf(['The ' int2str(numExpectedGlitches+1) 'th longest loop delay, ']);
fprintf(['at time ' num2str(nextLongestDelayTimestamp) ' seconds, was ' num2str(nextLongestDelay) ' seconds, ']);
fprintf([num2str(nLongestGlitches(numExpectedGlitches)/nextLongestDelay) ' times smaller than the ' int2str(numExpectedGlitches) 'th longest delay\n']);
% Check to see that we always blocked for the specified period.
underBlockIndices=find(tDiffVec < tc(tci).blockingIntervalSecs);
underBlocks=tDiffVec(underBlockIndices);
if ~isempty(underBlocks)
fprintf('Detected loop durations shorter than blocking period. The durations and times are:\n');
for i=1:length(underBlocks);
fprintf(['\t' num2str(underBlocks(i)) '\t' num2str(tDiffVecSampleTimes(underBlockIndices(i))) '\n']);
end
end
% Check to see when we exceeded the specified "computation" CPU time
% allowance specified when assigning 'time constraint' priority. In the
% case that we use Screen('Flip') to block then the blocking interval is
% the video frame period which we do not know. So when using flip we
% assume the blocking interval to be the median of the timing loop
% durations, which is actually an overestimate. However, the error should
% be small in comparison to the blocking interval itself because flip is
% fast.
if tc(tci).useFlip
measuredComputationSecs=tDiffVec-medianLoopDuration;
else
measuredComputationSecs=tDiffVec-tc(tci).blockingIntervalSecs;
end
excessComputationSecsIndices=find(measuredComputationSecs > tc(tci).computationSecs);
excessComputationSecs=measuredComputationSecs(excessComputationSecsIndices);
excessComputationTotalSecs=tDiffVec(excessComputationSecsIndices);
exessComputationSecsTimes=tDiffVecSampleTimes(excessComputationSecsIndices);
numExcessComputationLoops=length(excessComputationSecs);
fprintf(['The timing loop computation time exceeded the allocated computation time on ' int2str(numExcessComputationLoops) ' loops.\n']);
if numExcessComputationLoops > 0
fprintf('The loop durations, computation times, and timestamps are listed below.\n');
if numExcessComputationLoops > tc(tci).maxDisplayExcessComputationDurations
fprintf(['(only the first ' int2str(tc(tci).maxDisplayExcessComputationDurations) ' are dislayed)\n']);
end
for i = 1:min([numExcessComputationLoops, tc(tci).maxDisplayExcessComputationDurations])
fprintf('\t%1.5f\t%1.5f\t%2.5f\n', excessComputationTotalSecs(i), excessComputationSecs(i), exessComputationSecsTimes(i) );
end
end
% Check for compliance with:
% (loopPassDuration - blockingInterval)/loopPassDuration < computationSecs/periodSecs)
% For more info see notes at top of the file about this.
% For the tests which use flip instead of BlockSecs we do not actually
% know the blocking interval. This section should be modified accordingly.
computationRatioLimit = tc(tci).computationSecs / tc(tci).periodSecs;
computationRatios = (tDiffVec - tc(tci).blockingIntervalSecs) / medianLoopDuration;
computationRatioViolationIndices=find(computationRatios > computationRatioLimit);
computationRatioViolationDurations=tDiffVec(computationRatioViolationIndices);
computationRatioViolationTimestamps=tDiffVecSampleTimes(computationRatioViolationIndices);
numComputationRatioViolations=length(computationRatioViolationIndices);
% Check to see if we exceed the "computation" CPU time allowance before the
% first glitch. One possible explanation for the glitches is that the
% Mach Kernel revokes realtime status at 30-second intervals as penalty
% for the main MATLAB thread exceeding "computation" allowance. However,
% if the thread has not exceeded that allowance before the first
% synchronized glitch, this strongly suggests that in fact the source
% of the glitch is MATLAB.
if ~isempty(synchedGlitchesTimestamps)
earlyComputationViolations=exessComputationSecsTimes(exessComputationSecsTimes < min(synchedGlitchesTimestamps));
if isempty(earlyComputationViolations)
fprintf('The MATLAB thread did not exceed the CPU computation allowance before the first synchronized glitch.\n');
else
fprintf('The MATLAB thread exceeded the CPU computation allowance before the first synchronized glitch.\n');
fprintf(['The violations occured at times: ' num2str(earlyComputationViolations) '\n']);
end
end
if tc(tci).useFlip
Screen('CloseAll');
end
% save results to files, including the plot. We append to the existing
% file of the same name to avoid overwriting previous test results.
% identify which of the delays are those which fall at 30-second intervals,
% count them to see if we have fallen short.
% Check wich of those corrspond to excess computations, list those which do
% and those which do not, and state whether we violated excess computation
% before the delays
% Check the theory that we only get under times for blocking if we allow
% preemption
|