/usr/share/psychtoolbox-3/PsychTests/ConvolutionKernelTest.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | function [passed difference speedup] = ConvolutionKernelTest(win, nrinchannels, nroutchannels, kernel1, kernel2, imgsize, shadertype, debug)
% [passed difference speedup] = ConvolutionKernelTest(win, nrinchannels, nroutchannels, kernel1, kernel2, imgsize, shadertype, debug)
%
% Test Psychtoolbox imaging pipeline's 2D convolution shaders for
% correctness and accuracy, perform speed benchmark, return fastest setup,
% when using a specific (pair) of kernel(s) and parameters.
%
% This routine builds and tests a set of convolution shaders from the given
% convolution kernel (or pair of kernels for separable dual-pass
% convolution). Each shader is compared against the results of
% Matlabs/Octaves conv2 function, applied to a random noise luminance image
% matrix. The shader is tagged as working correctly if the conv2 result and
% PTB's result do not disagree by more than 1 unit at any location in the
% convolved output images. Accuracy (maximum difference) is reported. All
% correctly working shaders are then benchmarked for speed during a test
% period of 10 seconds and the speedup of the GPU vs. Matlab (CPU) is
% determined and reported. At the end, the best configuration (wrt.
% correctness, accuracy and speed) is reported/recommended for use with the
% given kernel.
%
% The routine takes at least 10 seconds per tested shader, so a full test
% run will take at least 4*10 = 40 seconds, probably a bit more for setup
% and shutdown. Status messages will tell you about progress of the
% operation. You shouldn't use your machine and don't run any other
% applications during benchmarking, otherwise the measured speedup numbers
% may be wrong due to GPU or CPU overload.
%
% Optional parameters and their defaults:
%
% 'win' Window handle of the onscreen window to test on. If none provided,
% will open a suitable one by itself on screen 0.
%
% 'nrinchannels' number of image color channels in test image: Default is 1
% for pure luminance convolution. This script always only tests the first
% channel (red/luminance) for correctness/accuracy, even on multi-channel
% images, but choice of channels will affect overall correctness and speed.
%
% 'nroutchannels' number of image output channels from convolution: By
% default 1 == convolve, replicate result to RGB channels, pass alpha
% through. 3 == Convolve RGB separately, pass through alpha. 4 == Convolve
% RGBA separately.
%
% 'kernel1' == 2D kernel or first 1D kernel in separable mode.
% 'kernel2' == 1D kernel for 2nd pass in separable convolution test.
%
% 'imgsize' == Either size of the random noise test image (default =
% 512x512), or a Matlab image matrix to test on.
%
% 'shadertype' == Vector of mode ids: Tests all modes in the vector. By
% default all shadertypes are tested ie shadertype = [0 1 2 3]. PTB
% provides different implementations of convolution (0,1,2,3) which may
% have different accuracy and performance for a given hardware and kernel.
% The shaders provided in this vector will be tested against each other.
%
% 'debug'Defaults to zero (no output): Amount of debug output to write to
% Matlab window.
%
% THIS SCRIPT IS NOT COMPLETELY FINISHED YET.
% Some Benchmark results for convolution:
%
% MacOS/X 10.4.10 + Matlab 7.1 + PowerPC G5 1.6 Ghz single core vs. NVidia
% GeforceFX-5200 Ultra:
%
% Gaussian kernel, 2D single pass, 1->1 channels, 512 x 512 image:
% Kernel of size 3x3: Speedup 2.5x
%
% Gaussian kernel, 1D separable dual pass, 1->1 channels, 512 x 512 image:
% Kernels of size 9: Speedup 3.5x
%
% -> Kernels greater than 3x3 2D or 9 1D are unsupported on GF5200, can
% cause a system crash!
%
% WindowsXP + Matlab 7.4 + PentiumIV, 3.0 Ghz DualCore (CPU) vs. NVidia
% Geforce7800-GTX:
%
% Case 1: Gaussian kernel, 2D single-pass, 1->1 channels, 512 x 512 image:
%
% Kernel of size 3x3: Speedup 21.0x
% Kernel of size 5x5: Speedup 12.3x
% Kernel of size 7x7: Speedup 10.5x
% Kernel of size 9x9: Speedup 3.4x
% Kernel of size 11x11: Speedup 6.9x
% Kernel of size 13x13: Speedup 6.8x
% Kernel of size 15x15: Speedup 7.0x
% Kernel of size 17x17: Speedup 6.8x
% Kernel of size 19x19: Speedup 6.9x
%
% 3x3 Sobel, Prewitt, Laplace: Speedup 70x
%
% Case 2: Gaussian kernel, 1D dual-pass, 1->1 channels, 512 x 512 image:
% size 5: 0.65ms vs. 21.7ms: Speedup 33.0x
% size 15: 1.62ms vs. 55.5ms: Speedup 34.3x
% size 33: 3.78ms vs. 115ms: Speedup 30.6x
% size 65: 7.57ms vs. 242ms: Speedup 32.0x
% size 129:14.85ms vs. 603ms: Speedup 40.6x
%
% --> 4-channels vs. 1 channel: CPU x4, GPU const. ---> Speedup times 4!
%
% History:
% 10/13/2007 Written (MK).
% 06/13/2009 Remove Octave special case handling.
global GL;
% Prepare test for this configuration:
% ------------------------------------
% Parse inputs, assign defaults:
if nargin < 2 || isempty(nrinchannels)
nrinchannels = 1;
end
if nargin < 3 || isempty(nroutchannels)
nroutchannels = 1;
end
if nargin < 4 || isempty(kernel1)
error('You must provide at least kernel1 !!');
end
if nargin < 5 || isempty(kernel2)
kernel2 = [];
end
noiseimg = [];
if nargin < 6 || isempty(imgsize)
imgsize = 512;
else
if length(imgsize)>1
% imgsize is an image matrix:
noiseimg = imgsize;
imgsize = length(imgsize);
end
end
if nargin < 7 || isempty(shadertype)
shadertype = [0 1 2 3];
end
if nargin < 8 || isempty(debug)
debug = 0;
end
if nargin < 1 || isempty(win) || win < 10
% No window provided: Open a suitable one:
if nargin >=1 && ~isempty(win) && win < 10
screenid = win;
win = 0;
else
screenid = max(Screen('Screens'));
end
win = Screen('OpenWindow', screenid, 0, [], [], [], [], [], kPsychNeedFastBackingStore);
doclose = 1;
else
doclose = 0;
end
try
Screen('TextSize', win, 24);
Screen('TextColor', win, 255);
DrawFormattedText(win, 'Preparing test\nThis can take multiple seconds\nPlease standby...', 'center', 'center');
Screen('Flip', win);
% Create operator's:
for i=1:length(shadertype)
% Store shader type:
gloperatorid(i) = shadertype(i);
% Create operator of maximum precision:
gloperator(i) = CreateGLOperator(win, kPsychNeed32BPCFloat);
try
% Separable or non-separable?
if isempty(kernel2)
% Non-separable: Full blown single-pass 2D convolution:
Add2DConvolutionToGLOperator(gloperator(i), kernel1, [], nrinchannels, nroutchannels, debug, shadertype(i));
else
% Separable: Two 1D convolutions:
Add2DSeparableConvolutionToGLOperator(gloperator(i), kernel1, kernel2, [], nrinchannels, nroutchannels, debug, shadertype(i));
end
catch
% Shader creation failed, e.g., GLSL compile/link failure due
% to shader which would overload hardware ressources. Mark this
% mode as invalid:
gloperator(i)=-1;
le = psychlasterror;
fprintf('Failed to create shader: %s\n', le.message);
end
end
% Test correctness and accuracy:
% Build test-image: Random noise with mean 128 and stddev. +/- 50:
if isempty(noiseimg)
noiseimg=(50*randn(imgsize, imgsize) + 128);
end
% Cast to uint8 to make sure both CPU and GPU get the same uint8 input
% data:
noiseimg=uint8(noiseimg);
% Convert it to a texture 'tex':
tex=Screen('MakeTexture', win, noiseimg);
% Show it onscreen:
Screen('DrawTexture', win, tex, [], Screen('Rect', tex));
Screen('Flip', win);
% Cast back to single precision for CPU:
noiseimg=single(noiseimg(:,:,1));
kernel1= single(kernel1);
kernel2= single(kernel2);
kernel = kernel1;
for i=1:length(shadertype)
if gloperator(i)==-1
maxdiff(i)=inf;
fprintf('Shadertype %i: Excluded - Beyond hardware limits.\n', shadertype(i));
continue;
end
% On GPU: Apply filter to texture:
xtex = Screen('TransformTexture', tex, gloperator(i));
% On CPU: Do the same with conv2 routine of Matlab/Octave:
if isempty(kernel2)
% Non-separable convolution with single-precision kernel:
ref = conv2(noiseimg, kernel1, 'same');
else
% Separable dual-pass convolution with single-precision kernels:
ref = conv2(kernel1, kernel2, noiseimg, 'same');
end
% Readback result from GPU with highest precision (ie. float):
clear gpu;
gpu = Screen('GetImage', xtex, [], [], 1, 1) * 255;
% Compute difference matrix:
difference = gpu(:,:,1) - ref;
% Only look at inner region, ie. ignore borders the size of the kernel
% to make sure we don't get confused by boundary artefacts. Compute
% absolute difference ie. discard sign:
kernel = kernel1;
difference = abs(difference(length(kernel):end-length(kernel), length(kernel):end-length(kernel)));
% Compute maximum difference:
maxdiff(i) = max(max(difference));
% Show original and xformed tex onscreen:
Screen('DrawTexture', win, tex, [], Screen('Rect', tex));
Screen('DrawTexture', win, xtex, [], AdjoinRect(Screen('Rect', xtex), Screen('Rect', tex), RectRight));
DrawFormattedText(win, sprintf('Result of mode %i.\nTesting...\n', shadertype(i)), 'center', 'center');
Screen('Flip', win);
% Discard old 'xtex':
Screen('Close', xtex);
fprintf('Shadertype %i: Maximum difference: %f units. --> ', shadertype(i), maxdiff(i));
if maxdiff(i) < 1
fprintf('PASSED!\n');
else
fprintf('FAILED!\n');
end
% Next shadertype...
end
% For those tests that passed, measure performance vs. Matlab/Octave:
for i=1:length(shadertype)
if maxdiff(i) < 1
% Perform 5 seconds of testing on GPU:
% On GPU: Apply filter to texture once to preheat:
xtex = Screen('TransformTexture', tex, gloperator(i));
Screen('DrawTexture', win, tex, [], Screen('Rect', tex));
Screen('DrawTexture', win, xtex, [], AdjoinRect(Screen('Rect', xtex), Screen('Rect', tex), RectRight),0,0);
DrawFormattedText(win, sprintf('Benchmarking mode %i.\nCan take more than 10 seconds - Please wait...\n', shadertype(i)), 'center', 'center');
Screen('Flip', win);
% Prepare test:
glFinish;
count = 0;
tstart=GetSecs;
% Do as many xforms as possible in 5 seconds...
while GetSecs - tstart < 5
% We recycle the cached xtex target texture as we would do in a
% real experiment script:
xtex = Screen('TransformTexture', tex, gloperator(i), [], xtex);
% Increment counter:
count = count + 1;
end
% Done. Sync the pipeline, take elapsed time:
glFinish;
telapsed = GetSecs - tstart;
avggpu(i) = telapsed / count;
% Retain last texture for double-checking:
clear gpu;
%err = glGetError;
%fprintf('GL-ERROR1: %i %s\n', err, gluErrorString(err));
gpu = Screen('GetImage', xtex, [], [], 1, 1) * 255;
%err = glGetError;
%fprintf('GL-ERROR2: %i %s\n', err, gluErrorString(err));
% Compute difference matrix:
difference = gpu(:,:,1) - ref;
% Only look at inner region, ie. ignore borders the size of the kernel
% to make sure we don't get confused by boundary artefacts. Compute
% absolute difference ie. discard sign:
kernel = kernel1;
difference = abs(difference(length(kernel):end-length(kernel), length(kernel):end-length(kernel)));
% Compute maximum difference:
maxdiff2(i) = max(max(difference));
if maxdiff2(i) > 1
fprintf('Shadertype %i FAILED revalidation with error %f!\n', shadertype(i), maxdiff2(i));
else
fprintf('Shadertype %i revalidated with error %f!\n', shadertype(i), maxdiff2(i));
end
% Close texture:
Screen('Close', xtex);
xtex = 0;
% Now the same game on the CPU:
% On CPU: Do the same with conv2 routine of Matlab/Octave:
if isempty(kernel2)
% Non-separable convolution with single-precision kernel:
ref = conv2(noiseimg, kernel1, 'same');
else
% Separable dual-pass convolution with single-precision kernels:
ref = conv2(kernel1, kernel2, noiseimg, 'same');
end
count = 0;
tstart=GetSecs;
% Do as many xforms as possible in 5 seconds...
while GetSecs - tstart < 5
% On CPU: Do the same with conv2 routine of Matlab/Octave:
if isempty(kernel2)
% Non-separable convolution with single-precision kernel:
ref = conv2(noiseimg, kernel, 'same');
else
% Separable dual-pass convolution with single-precision kernels:
ref = conv2(kernel1, kernel2, noiseimg, 'same');
end
% Increment counter:
count = count + 1;
end
% Done. Sync the pipeline, take elapsed time:
telapsed = GetSecs - tstart;
avgcpu(i) = telapsed / count;
fprintf('Shadertype %i: Msecs per xform: GPU = %f : CPU = %f --> ', shadertype(i), 1000 * avggpu(i), 1000 * avgcpu(i));
fprintf('Speedup is %f times vs. CPU.\n', avgcpu(i) / avggpu(i));
speedup(i) = avgcpu(i) / avggpu(i);
else
% This one failed the test:
avgcpu(i)=inf;
avggpu(i)=inf;
speedup(i)=0;
end
% Next shadertype...
end
% Done. Destroy operators and textures:
if doclose
% Close onscreen window as well:
Screen('CloseAll');
else
% Do not close onscreen window:
Screen('Close');
end
if exist('maxdiff2', 'var')
for i=1:length(maxdiff2)
if maxdiff2(i)>1
speedup(i)=0;
end
end
[maxspeedup bestid] = max(speedup);
bestid = gloperatorid(bestid);
fprintf('Finished: Optimum configuration is mode %i with a speedup of %f x.\n', bestid, maxspeedup);
end
return;
catch
Screen('CloseAll');
psychrethrow(psychlasterror);
end
|