/usr/share/psychtoolbox-3/PsychOneliners/CreateUniformDotsIn3DFrustum.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | function [x,y,z] = CreateUniformDotsIn3DFrustum(ndots,FOV,aspectr,depthrangen,depthrangef,eyeheight)
% [x,y,z] = CreateUniformDotsIn3DFrustum(ndots,FOV,aspectr,depthrangen,depthrangef,eyeheight)
%
% Sample dots in frustum uniformly, creating a cloud tightly fitting in the
% frustum. When the optional 6th parameter eyeheight is given, dots will be
% uniformly sampled on a ground plane at -eyeheight.
%
% z is not sampled from a uniform distribution, but from a parabolic
% distribution as the area of cross sections of the frustum is a quadratic
% function of the depth plane's depth ( (z*2*tan(FOV/2))^2 * aspectr )
%
% Here, I use Inverse transform sampling to transform a uniform random
% variable into the quadratic shape random variable
% see Luc Devroye. Non-Uniform Random Variate Generation. New York:
% Springer-Verlag, 1986. Chapter 2
% (http://cg.scs.carleton.ca/~luc/chapter_two.pdf)
% compile following in latex to see full derivation:
% ----
% \documentclass[12pt,a4paper]{minimal}
% \usepackage{amsmath} % math
%
% \begin{document}
% \textbf{Derivation}:\\
% Use pdf related to cross-section surface of frustum:
% \(\left(2 z \tan\left(\frac{FOV}{2}\right)\right)^2 aspectr\)\\
% \(z_1\) is the distance of the near depth plane\\
% \(z_2\) is the distance of the far depth plane\\
% \(y\) is a uniform random variable\\
% Given: \(F(z_2)=1\) and \(F(z_1)=0\).
% \begin{align}
% F(z) &= \int\limits^z_{z_1} k z^2 \, \mathrm{d}z\\
% F(z) &= \frac{k}{3} \left(z^3 - z_1^3\right)\\
% k &= \frac{3}{z_2^3-z_1^3}\\
% F(z) &= \frac{z^3-z_1^3}{z_2^3-z_1^3}
% \end{align}
% Substitute \(y\) for \(F(z)\) and factor out \(z\):
% \begin{align}
% z^3 &= y\left(z_2^3-z_1^3\right) + z_1^3\\
% z &= \sqrt[3]{y\left(z_2^3-z_1^3\right) + z_1^3}
% \end{align}\\
% For a ground plane, the width of the frustum at depth \(z\) is given by
% \(2 z \tan\left(\frac{FOV}{2}\right) aspectr\).\\
% By following the same inverse transform sampling steps, we would end up
% with
% \[ z = \sqrt{y\left(z_2^2-z_1^2\right) + z_1^2} \]
% for the linear distribution between \(z_1\) and \(z_2\).
%
% \end{document}
% ----
% 2008 DN Wrote it.
% 2009-06-06 DN Changed input check to allow for vector near and far
% depthrange and allowed near and far depthrange to be
% the same, to place dots at exactly that depth
% 2010-06-08 DN Added support for uniform groundplanes
psychassert(all(depthrangen<=depthrangef),'Near clipping plane should be closer than far clipping plane');
u = RandLim([1,ndots],0,1); % get uniform random variable
if nargin>5
% eye height specified, ground plane
z = -(u.*(depthrangef.^2-depthrangen.^2)+depthrangen.^2).^(1/2); % transform to linear distribution (negate as depth postiion is a negative number
else
% cloud
z = -(u.*(depthrangef.^3-depthrangen.^3)+depthrangen.^3).^(1/3); % transform to parabolar distribution (negate as depth postiion is a negative number
end
yrs = -z*tand(FOV/2);
if nargin>5
y = -eyeheight*ones(1,ndots);
else
y = RandLim([1,ndots],-yrs,yrs);
end
xrs = yrs * aspectr;
x = RandLim([1,ndots],-xrs,xrs);
% for a uniform sample over z:
% z = -RandLim([1,ndots],depthrangen,depthrangef);
|