/usr/share/psychtoolbox-3/PsychHardware/PsychVRToolbox/PsychOculusVR.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 | function varargout = PsychOculusVR(cmd, varargin)
% PsychOculusVR - A high level driver for Oculus VR hardware.
%
% Note: If you want to write VR code that is portable across
% VR headsets of different vendors, then use the PsychVRHMD()
% driver instead of this driver. The PsychVRHMD driver will use
% this driver as appropriate when connecting to a Oculus Rift
% or similar Oculus device, but it will also automaticaly work
% with other head mounted displays. This driver does however
% expose a few functions specific to Oculus hardware, so you can
% mix calls to this driver with calls to PsychVRHMD to do some
% mix & match.
%
% For setup instructions for Oculus HMDs see "help OculusVR".
%
%
% Usage:
%
% hmd = PsychOculusVR('AutoSetupHMD' [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, deviceIndex]);
% - Open a Oculus HMD, set it up with good default rendering and
% display parameters and generate a PsychImaging('AddTask', ...)
% line to setup the Psychtoolbox imaging pipeline for proper display
% on the HMD. This will also cause the device connection to get
% auto-closed as soon as the onscreen window which displays on
% the HMD is closed. Returns the 'hmd' handle of the HMD on success.
%
% By default, the first detected HMD will be used and if no VR HMD
% is connected, it will open an emulated/simulated one for basic
% testing and debugging. You can override this default choice of
% HMD by specifying the optional 'deviceIndex' parameter to choose
% a specific HMD.
%
% More optional parameters: 'basicTask' what kind of task should be implemented.
% The default is 'Tracked3DVR', which means to setup for stereoscopic 3D
% rendering, driven by head motion tracking, for a fully immersive experience
% in some kind of 3D virtual world. This is the default if omitted. The task
% 'Stereoscopic' sets up for display of stereoscopic stimuli, but without
% head tracking. 'Monoscopic' sets up for display of monocular stimuli, ie.
% the HMD is just used as a special kind of standard display monitor.
%
% 'basicRequirements' defines basic requirements for the task. Currently
% defined are the following strings which can be combined into a single
% 'basicRequirements' string: 'LowPersistence' = Try to keep exposure
% time of visual images on the retina low if possible, ie., try to approximate
% a pulse-type display instead of a hold-type display if possible. This has
% no effect on the Rift DK1. On the Rift DK2 it will enable low persistence
% scanning of the OLED display panel, to light up each pixel only a fraction
% of a video refresh cycle duration.
%
% 'FastResponse' = Try to switch images with minimal delay and fast
% pixel switching time. This will enable OLED panel overdrive processing
% on the Oculus Rift DK1 and DK2. OLED panel overdrive processing is a
% relatively expensive post processing step.
%
% 'TimingSupport' = Support some hardware specific means of timestamping
% or latency measurements. On the Rift DK1 this does nothing. On the DK2
% it enables dynamic prediction and timing measurements with the Rifts internal
% latency tester.
%
% 'TimeWarp' = Enable per eye image 2D timewarping via prediction of eye
% poses at scanout time. This mostly only makes sense for head-tracked 3D
% rendering. Depending on 'basicQuality' a more cheap or more expensive
% procedure is used.
%
% 'basicQuality' defines the basic tradeoff between quality and required
% computational power. A setting of 0 gives lowest quality, but with the
% lowest performance requirements. A setting of 1 gives maximum quality at
% maximum computational load. Values between 0 and 1 change the quality to
% performance tradeoff.
%
%
% hmd = PsychOculusVR('Open' [, deviceIndex], ...);
% - Open HMD with index 'deviceIndex'. See PsychOculusVRCore Open?
% for help on additional parameters.
%
%
% PsychOculusVR('SetAutoClose', hmd, mode);
% - Set autoclose mode for HMD with handle 'hmd'. 'mode' can be
% 0 (this is the default) to not do anything special. 1 will close
% the HMD 'hmd' when the onscreen window is closed which displays
% on the HMD. 2 will do the same as 1, but close all open HMDs and
% shutdown the complete driver and Oculus runtime - a full cleanup.
%
%
% isOpen = PsychOculusVR('IsOpen', hmd);
% - Returns 1 if 'hmd' corresponds to an open HMD, 0 otherwise.
%
%
% PsychOculusVR('Close' [, hmd])
% - Close provided HMD device 'hmd'. If no 'hmd' handle is provided,
% all HMDs will be closed and the driver will be shutdown.
%
%
% info = PsychOculusVR('GetInfo', hmd);
% - Retrieve a struct 'info' with information about the HMD 'hmd'.
% The returned info struct contains at least the following standardized
% fields with information:
% handle = Driver internal handle for the specific HMD.
% driver = Function handle to the actual driver for the HMD, e.g., @PsychOculusVR.
% type = Defines the type/vendor of the device, e.g., 'Oculus'.
% modelName = Name string with the name of the model of the device, e.g., 'Rift DK2'.
% separateEyePosesSupported = 1 if use of PsychOculusVR('GetEyePose') will improve
% the quality of the VR experience, 0 if no improvement
% is to be expected, so 'GetEyePose' can be avoided
% to save processing time without a loss of quality.
% This always returns 1 for at least the Rift DK1 and DK2,
% as use of that function can enhance the quality of the
% VR experience with fast head movements.
%
% The returned struct may contain more information, but the fields mentioned
% above are the only ones guaranteed to be available over the long run. Other
% fields may disappear or change their format and meaning anytime without
% warning.
%
%
% isSupported = PsychOculusVRCore('Supported');
% - Returns 1 if the Oculus driver is functional, 0 otherwise. The
% driver is functional if the VR runtime library was successfully
% initialized and a connection to the VR server process has been
% established. It would return 0 if the server process would not be
% running, or if the required runtime library would not be correctly
% installed.
%
%
% state = PsychOculusVRCore('PrepareRender', hmd [, userTransformMatrix][, reqmask=1][, targetTime]);
% - Mark the start of the rendering cycle for a new 3D rendered stereoframe.
% Return a struct 'state' which contains various useful bits of information
% for 3D stereoscopic rendering of a scene, based on head tracking data.
%
% 'hmd' is the handle of the HMD which delivers tracking data and receives the
% rendered content for display.
%
% 'reqmask' defines what kind of information is requested to be returned in
% struct 'state'. Only query information you actually need, as computing some
% of this info is expensive! See below for supported values for 'reqmask'.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results,
% e.g., the midpoint of scanout of the next video frame.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
%
% state always contains a field state.tracked, whose bits signal the status
% of head tracking for this frame. A +1 flag means that head orientation is
% tracked. A +2 flag means that head position is tracked via some absolute
% position tracker like, e.g., the Oculus Rift DK2 camera.
%
% 'reqmask' defaults to 1 and can have the following values added together:
%
% +1 = Return matrices for left and right "eye cameras" which can be directly
% used as OpenGL GL_MODELVIEW matrices for rendering the scene. 4x4 matrices
% for left- and right eye are contained in state.modelView{1} and {2}.
%
% Return position and orientation 4x4 camera view matrices which describe
% position and orientation of the "eye cameras" relative to the world
% reference frame. They are the inverses of state.modelView{}. These
% matrices can be directly used to define cameras for rendering of complex
% 3D scenes with the Horde3D 3D engine. Left- and right eye matrices are
% contained in state.cameraView{1} and {2}.
%
% Additionally tracked/predicted head pose is returned in state.localHeadPoseMatrix
% and the global head pose after application of the 'userTransformMatrix' is
% returned in state.globalHeadPoseMatrix - this is the basis for computing
% the camera transformation matrices.
%
% More flags to follow...
%
%
% eyePose = PsychOculusVR('GetEyePose', hmd, renderPass [, userTransformMatrix][, targetTime]);
% - Return a struct 'eyePose' which contains various useful bits of information
% for 3D stereoscopic rendering of the stereo view of one eye, based on head
% tracking data. This function provides essentially the same information as
% the 'PrepareRender' function, but only for one eye. Therefore you will need
% to call this function twice, once for each of the two renderpasses, at the
% beginning of each renderpass.
%
% 'hmd' is the handle of the HMD which delivers tracking data and receives the
% rendered content for display.
%
% 'renderPass' defines if information should be returned for the 1st renderpass
% (renderPass == 0) or for the 2nd renderpass (renderPass == 1). The driver will
% decide for you if the 1st renderpass should render the left eye and the 2nd
% pass the right eye, or if the 1st renderpass should render the right eye and
% then the 2nd renderpass the left eye. The ordering depends on the properties
% of the video display of your HMD, specifically on the video scanout order:
% Is it right to left, left to right, or top to bottom? For each scanout order
% there is an optimal order for the renderpasses to minimize perceived lag.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
% Return values in struct 'eyePose':
%
% 'eyeIndex' The eye for which this information applies. 0 = Left eye, 1 = Right eye.
% You can pass 'eyeIndex' into the Screen('SelectStereoDrawBuffer', win, eyeIndex)
% to select the proper eye target render buffer.
%
% 'modelView' is a 4x4 RHS OpenGL matrix which can be directly used as OpenGL
% GL_MODELVIEW matrix for rendering the scene.
%
% 'cameraView' contains a 4x4 RHS camera matrix which describes position and
% orientation of the "eye camera" relative to the world reference
% frame. It is the inverse of eyePose.modelView. This matrix can
% be directly used to define the camera for rendering of complex
% 3D scenes with the Horde3D 3D engine or other engines which want
% absolute camera pose instead of the inverse matrix.
%
% Additionally tracked/predicted head pose is returned in eyePose.localHeadPoseMatrix
% and the global head pose after application of the 'userTransformMatrix' is
% returned in eyePose.globalHeadPoseMatrix - this is the basis for computing
% the camera transformation matrix.
%
%
% PsychOculusVR('SetupRenderingParameters', hmd [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, fov=[HMDRecommended]][, pixelsPerDisplay=1])
% - Query the HMD 'hmd' for its properties and setup internal rendering
% parameters in preparation for opening an onscreen window with PsychImaging
% to display properly on the HMD. See section about 'AutoSetupHMD' above for
% the meaning of the optional parameters 'basicTask', 'basicRequirements'
% and 'basicQuality'.
%
% 'fov' Optional field of view in degrees, from line of sight: [leftdeg, rightdeg,
% updeg, downdeg]. If 'fov' is omitted, the HMD runtime will be asked for a
% good default field of view and that will be used. The field of view may be
% dependent on the settings in the HMD user profile of the currently selected
% user.
%
% 'pixelsPerDisplay' Ratio of the number of render target pixels to display pixels
% at the center of distortion. Defaults to 1.0 if omitted. Lower values can
% improve performance, at lower quality.
%
%
% PsychOculusVR('SetBasicQuality', hmd, basicQuality);
% - Set basic level of quality vs. required GPU performance.
%
%
% oldSetting = PsychOculusVR('SetFastResponse', hmd [, enable]);
% - Return old setting for 'FastResponse' mode in 'oldSetting',
% optionally disable or enable the mode via specifying the 'enable'
% parameter as 0 or greater than zero. Please note that if you want to
% use 'FastResponse', you must request and thereby enable it at the
% beginning of a session, as the driver must do some neccessary setup
% prep work at startup of the HMD. Once it was initially enabled, you
% can switch the setting at runtime with this function.
%
% Currently implemented are an algorithmic overdrive mode if 'enable'
% is set to 1, and two lookup table (LUT) based modes for 'enable'
% settings of 2 or 3, each selecting a slightly different lookup table.
%
%
% oldSetting = PsychOculusVR('SetTimeWarp', hmd [, enable]);
% - Return old setting for 'TimeWarp' mode in 'oldSetting',
% optionally enable or disable the mode via specifying the 'enable'
% parameter as 1 or 0. Please note that if you want to use 'TimeWarp',
% you must request and thereby enable it at the beginning of a session, as
% the driver must do some neccessary setup prep work at startup of the HMD.
% Once it was initially enabled, you can switch the setting at runtime with
% this function.
%
%
% oldSetting = PsychOculusVR('SetLowPersistence', hmd [, enable]);
% - Return old setting for 'LowPersistence' mode in 'oldSetting',
% optionally enable or disable the mode via specifying the 'enable'
% parameter as 1 or 0.
%
%
% oldSettings = PsychOculusVR('PanelOverdriveParameters', hmd [, newparams]);
% - Return old settings for panel overdrive mode in 'oldSettings',
% optionally set new settings in 'newparams'. This changes the operating
% parameters of OLED panel overdrive on the Rift DK-2 if 'FastResponse'
% mode is active. newparams is a vector [upscale, downscale, gamma] with
% the following meaning: gamma = 1 Use gamma/degamma pass to perform
% overdrive boost in gamma 2.2 corrected space. This is the startup default.
% upscale = How much should rising pixel color intensity values be boosted.
% Default is 0.10 for a 10% boost.
% downscale = How much should rising pixel color intensity values be reduced.
% Default is 0.05 for a 5% reduction.
% The Rift DK-2 OLED panel controller is slower on rising intensities than on
% falling intensities, therefore the higher boost on rising than on falling
% direction.
%
%
% PsychOculusVR('SetHSWDisplayDismiss', hmd [, dismissTypes=1+2+4]);
% - Set how the user can dismiss the "Health and safety warning display".
% 'dismissTypes' can be -1 to disable the HSWD, or a value >= 0 to show
% the HSWD until a timeout and or until the user dismisses the HSWD.
% The following flags can be added to define type of dismissal:
%
% +0 = Display until timeout, if any. Will wait forever if there isn't any timeout!
% +1 = Dismiss via keyboard keypress.
% +2 = Dismiss via mouse click or mousepad tap.
% +4 = Dismiss via a tap to the HMD (detected via accelerometer).
%
%
% [bufferSize, imagingFlags, stereoMode] = PsychOculusVR('GetClientRenderingParameters', hmd);
% - Retrieve recommended size in pixels 'bufferSize' = [width, height] of the client
% renderbuffer for each eye for rendering to the HMD. Returns parameters
% previously computed by PsychOculusVR('SetupRenderingParameters', hmd).
%
% Also returns 'imagingFlags', the required imaging mode flags for setup of
% the Screen imaging pipeline. Also returns the needed 'stereoMode' for the
% pipeline.
%
%
% isOutput = PsychOculusVR('IsHMDOutput', hmd, scanout);
% - Returns 1 (true) if 'scanout' describes the video output to which the
% HMD 'hmd' is connected. 'scanout' is a struct returned by the Screen
% function Screen('ConfigureDisplay', 'Scanout', screenid, outputid);
% This allows probing video outputs to find the one which feeds the HMD.
%
%
% [headToEyeShiftv, headToEyeShiftMatrix] = PsychOculusVR('GetEyeShiftVector', hmd, eye);
% - Retrieve 3D translation vector [tx, ty, tz] that defines the 3D position of the given
% eye 'eye' for the given HMD 'hmd', relative to the origin of the local head/HMD
% reference frame. This is needed to translate a global head pose into a eye
% pose, e.g., to translate the output of PsychOculusVR('GetEyePose') into actual
% tracked/predicted eye locations for stereo rendering.
%
% In addition to the 'headToEyeShiftv' vector, a corresponding 4x4 translation
% matrix is also returned in 'headToEyeShiftMatrix' for convenience.
%
%
% History:
% 07-Sep-2015 mk Written.
% Global GL handle for access to OpenGL constants needed in setup:
global GL;
persistent hmd;
if nargin < 1 || isempty(cmd)
help PsychOculusVR;
fprintf('\n\nAlso available are functions from PsychOculusVRCore:\n');
PsychOculusVRCore;
return;
end
% Fast-Path function 'TimeWarp'. Prepares 2D eye timewarp:
if cmd == 1
handle = varargin{1};
if hmd{handle}.useOverdrive > 0
% Find next output texture and bind it as 2nd rendertarget to the output fbo.
% It will capture a copy of the rendered output frame, with geometry correction,
% color aberration correction and vignette correction applied, but without the
% overdrive processing. That copy will be used as reference for the next frame,
% to compute per-pixel overdrive values:
currentOverdriveTex = mod(hmd{handle}.lastOverdriveTex + 1, 2);
glFramebufferTexture2D(GL.FRAMEBUFFER_EXT, GL.COLOR_ATTACHMENT1, GL.TEXTURE_RECTANGLE_EXT, hmd{handle}.overdriveTex(currentOverdriveTex + 1), 0);
glDrawBuffers(2, [GL.COLOR_ATTACHMENT0, GL.COLOR_ATTACHMENT1]);
% Bind lastOverdriveTex from previous presentation cycle as old image
% to texture unit. It will be used for overdrive computation for this
% frame rendercycle:
glActiveTextureARB(GL.TEXTURE2);
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, hmd{handle}.overdriveTex(hmd{handle}.lastOverdriveTex + 1));
% LUT based panel overdrive?
if hmd{handle}.useOverdrive > 1
% Bind overdrive lookup table texture to unit3 for LUT based overdrive:
% The LUT encodes all transitions from each of the 256 possible start
% values to each of the possible 256 end values, for each of the 3 color
% channels, as a 256x256x4 RGBA8 texture with alpha channel unused. The
% shader can directly use the optimal overdrive color at lut(startpix, endpix, colorchannel):
glActiveTextureARB(GL.TEXTURE3);
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, hmd{handle}.overdriveLut(hmd{handle}.useOverdrive - 1));
end
% Back to standard texture unit 0:
glActiveTextureARB(GL.TEXTURE0);
% Prepare next rendercycle already: Swap the textures.
hmd{handle}.lastOverdriveTex = currentOverdriveTex;
end
if hmd{handle}.useTimeWarp
if hmd{handle}.useTimeWarp > 1
% Wait for warp point, then query warp matrices. We assume the warp point is
% 3 msecs before the target vblank and use our own high precision estimation of
% the warp point, as well as our own high precision wait. Oculus SDK v0.5 doesn't
% implement warp point calculation properly itself, therefore "do it yourself":
winfo = Screen('GetWindowInfo', hmd{handle}.win, 7);
warpPointSecs = winfo.LastVBLTime + hmd{handle}.videoRefreshDuration - 0.003;
WaitSecs('UntilTime', warpPointSecs);
end
% Get the matrices:
[hmd{handle}.eyeRotStartMatrixLeft, hmd{handle}.eyeRotEndMatrixLeft] = PsychOculusVRCore('GetEyeTimewarpMatrices', handle, 0, 0);
[hmd{handle}.eyeRotStartMatrixRight, hmd{handle}.eyeRotEndMatrixRight] = PsychOculusVRCore('GetEyeTimewarpMatrices', handle, 1, 0);
% Setup left shaders warp matrices:
glUseProgram(hmd{handle}.shaderLeft(1));
glUniformMatrix4fv(hmd{handle}.shaderLeft(2), 1, 1, hmd{handle}.eyeRotStartMatrixLeft);
glUniformMatrix4fv(hmd{handle}.shaderLeft(3), 1, 1, hmd{handle}.eyeRotEndMatrixLeft);
% Setup right shaders warp matrices:
glUseProgram(hmd{handle}.shaderRight(1));
glUniformMatrix4fv(hmd{handle}.shaderRight(2), 1, 1, hmd{handle}.eyeRotStartMatrixRight);
glUniformMatrix4fv(hmd{handle}.shaderRight(3), 1, 1, hmd{handle}.eyeRotEndMatrixRight);
% Ready for warp:
glUseProgram(0);
end
return;
end
if cmd == 2
handle = varargin{1};
latencyColor = PsychOculusVRCore('LatencyTester', handle, 0);
if ~isempty(latencyColor)
glColor3ubv(latencyColor);
glPointSize(4);
glBegin(GL.POINTS);
glVertex2i(1,1);
glEnd;
glPointSize(1);
end
return;
end
if strcmpi(cmd, 'PrepareRender')
% Get and validate handle - fast path open coded:
myhmd = varargin{1};
if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
error('PsychOculusVR:PrepareRender: Specified handle does not correspond to an open HMD!');
end
% Get 'userTransformMatrix' if any:
if length(varargin) >= 2 && ~isempty(varargin{2})
userTransformMatrix = varargin{2};
else
% Default: Identity transform to do nothing:
userTransformMatrix = diag([1 1 1 1]);
end
% Valid: Get request mask of information to return:
if length(varargin) >= 3 && ~isempty(varargin{3})
reqmask = varargin{3};
else
% Default to: Provide basic tracking status flags, and directly useable
% GL_MODELVIEW matrices for the cameras for rendering the left- and right-eye:
reqmask = 1;
end
% Get target time for predicted camera poses, head poses etc.:
if length(varargin) >= 4 && ~isempty(varargin{4})
targetTime = varargin{4};
else
% Default: Provide predicted value for the midpoint of the next video
% refresh cycle - assuming we hit the flip deadline for the next video
% frame, so that point in time will be exactly in the middle of both
% eyes:
winfo = Screen('GetWindowInfo', hmd{myhmd.handle}.win);
targetTime = winfo.LastVBLTime + 1.5 * hmd{myhmd.handle}.videoRefreshDuration;
end
% Mark start of a new frame render cycle for the runtime and get the data
% predicted for next scanout time:
[eyePose{1}, eyePose{2}, tracked] = PsychOculusVRCore('StartRender', myhmd.handle);
% Always return basic tracking status:
result.tracked = tracked;
% As a bonus we return the raw eye pose vectors, given that we have them anyway:
result.rawEyePose7{1} = eyePose{1};
result.rawEyePose7{2} = eyePose{2};
% Want matrices which take a usercode supplied global transformation into account?
if bitand(reqmask, 1)
% Yes: We need tracked + predicted head pose, so we can apply the user transform,
% and then per-eye transforms:
% Get predicted head pose for targetTime:
state = PsychOculusVRCore('GetTrackingState', myhmd.handle, targetTime);
% Bonus feature: HeadPose as 7 component translation + orientation quaternion vector:
result.headPose = state.HeadPose;
% Convert head pose vector to 4x4 OpenGL right handed reference frame matrix:
result.localHeadPoseMatrix = eyePoseToCameraMatrix(state.HeadPose);
% Premultiply usercode provided global transformation matrix:
result.globalHeadPoseMatrix = userTransformMatrix * result.localHeadPoseMatrix;
% Compute per-eye global pose matrices:
result.cameraView{1} = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{1};
result.cameraView{2} = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{2};
% Compute inverse matrices, useable as OpenGL GL_MODELVIEW matrices for rendering:
result.modelView{1} = inv(result.cameraView{1});
result.modelView{2} = inv(result.cameraView{2});
end
varargout{1} = result;
return;
end
if strcmpi(cmd, 'GetEyePose')
% Get and validate handle - fast path open coded:
myhmd = varargin{1};
if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
error('PsychOculusVR:GetEyePose: Specified handle does not correspond to an open HMD!');
end
% Valid: Get view render pass for which to return information:
if length(varargin) < 2 || isempty(varargin{2})
error('PsychOculusVR:GetEyePose: Required ''renderPass'' argument missing.');
end
renderPass = varargin{2};
% Get 'userTransformMatrix' if any:
if length(varargin) >= 3 && ~isempty(varargin{3})
userTransformMatrix = varargin{3};
else
% Default: Identity transform to do nothing:
userTransformMatrix = diag([1 1 1 1]);
end
% Get target time for predicted camera poses, head poses etc.:
% NOTE: Currently not used, as Oculus SDK 0.5 does not support passing
% targetTime into the underlying SDK function for 'GetEyePose'. The
% Oculus runtime predicts something meaningful internally.
%
% if length(varargin) >= 4 && ~isempty(varargin{4})
% targetTime = varargin{4};
% else
% % Default: Provide predicted value for the midpoint of the next video
% % refresh cycle - assuming we hit the flip deadline for the next video
% % frame, so that point in time will be exactly in the middle of both
% % eyes:
% winfo = Screen('GetWindowInfo', hmd{myhmd.handle}.win);
% targetTime = winfo.LastVBLTime + 1.5 * hmd{myhmd.handle}.videoRefreshDuration;
% end
% Get eye pose for this renderPass, or more exactly the headPose from which this
% renderPass eyePose will get computed:
[result.headPose, result.eyeIndex] = PsychOculusVRCore('GetEyePose', myhmd.handle, renderPass);
% Convert head pose vector to 4x4 OpenGL right handed reference frame matrix:
result.localHeadPoseMatrix = eyePoseToCameraMatrix(result.headPose);
% Premultiply usercode provided global transformation matrix:
result.globalHeadPoseMatrix = userTransformMatrix * result.localHeadPoseMatrix;
% Compute per-eye global pose matrix for this eyeIndex:
result.cameraView = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{result.eyeIndex + 1};
% Compute inverse matrix, useable as OpenGL GL_MODELVIEW matrix for rendering:
result.modelView = inv(result.cameraView);
varargout{1} = result;
return;
end
if strcmpi(cmd, 'Supported')
% Check if the Oculus VR runtime is supported and active on this
% installation, so it can be used to open connections to real HMDs,
% or at least to emulate a HMD for simple debugging purposes:
try
if exist('PsychOculusVRCore', 'file') && PsychOculusVRCore('GetCount') >= 0
varargout{1} = 1;
else
varargout{1} = 0;
end
catch
varargout{1} = 0;
end
return;
end
% Autodetect first connected HMD and open a connection to it. Open a
% emulated one, if none can be detected. Perform basic setup with
% default configuration, create a proper PsychImaging task.
if strcmpi(cmd, 'AutoSetupHMD')
% Do we have basic runtime support?
if ~PsychOculusVR('Supported')
% Nope: Game over.
fprintf('PsychOculusVR:AutoSetupHMD: Could not initialize Oculus driver. Game over!\n');
% Return an empty handle to signal lack of VR HMD support to caller,
% so caller can cope with it somehow:
varargout{1} = [];
return;
end
% Basic task this HMD should fulfill:
if length(varargin) >= 1 && ~isempty(varargin{1})
basicTask = varargin{1};
else
basicTask = 'Tracked3DVR';
end
% Basic basicRequirements to choose:
if length(varargin) >= 2 && ~isempty(varargin{2})
basicRequirements = varargin{2};
else
basicRequirements = '';
end
% Basic quality/performance tradeoff to choose:
if length(varargin) >= 3 && ~isempty(varargin{3})
basicQuality = varargin{3};
else
basicQuality = 0;
end
% HMD device selection:
if length(varargin) >= 4 && ~isempty(varargin{4})
deviceIndex = varargin{4};
newhmd = PsychOculusVR('Open', deviceIndex);
else
% Check if at least one Oculus HMD is connected and available:
if PsychOculusVR('GetCount') > 0
% Yes. Open and initialize connection to first detected HMD:
fprintf('PsychOculusVR: Opening the first connected Oculus VR headset.\n');
newhmd = PsychOculusVR('Open', 0);
else
% No. Open an emulated/simulated HMD for basic testing and debugging:
fprintf('PsychOculusVR: No Oculus HMD detected. Opening a simulated HMD.\n');
newhmd = PsychOculusVR('Open', -1);
end
end
% Trigger an automatic device close at onscreen window close for the HMD display window:
PsychOculusVR('SetAutoClose', newhmd, 1);
% Setup default rendering parameters:
PsychOculusVR('SetupRenderingParameters', newhmd, basicTask, basicRequirements, basicQuality);
% Add a PsychImaging task to use this HMD with the next opened onscreen window:
PsychImaging('AddTask', 'General', 'UseVRHMD', newhmd);
% Return the device handle:
varargout{1} = newhmd;
% Ready.
return;
end
if strcmpi(cmd, 'SetAutoClose')
myhmd = varargin{1};
if ~PsychOculusVR('IsOpen', myhmd)
error('PsychOculusVR:SetAutoClose: Specified handle does not correspond to an open HMD!');
end
% Assign autoclose flag:
hmd{myhmd.handle}.autoclose = varargin{2};
return;
end
if strcmpi(cmd, 'SetHSWDisplayDismiss')
myhmd = varargin{1};
if ~PsychOculusVR('IsOpen', myhmd)
error('PsychOculusVR:SetHSWDisplay: Specified handle does not correspond to an open HMD!');
end
% Method of dismissing HSW display:
if length(varargin) < 2 || isempty(varargin{2})
% Default is keyboard, mouse click, or HMD tap:
hmd{myhmd.handle}.hswdismiss = 1 + 2 + 4;
else
hmd{myhmd.handle}.hswdismiss = varargin{2};
end
return;
end
% Open a HMD:
if strcmpi(cmd, 'Open')
% Hack to make sure the VR runtime detects the HMD on a secondary X-Screen:
if IsLinux && ~IsWayland && length(Screen('Screens')) > 1
olddisp = getenv('DISPLAY');
setenv('DISPLAY', sprintf(':0.%i', max(Screen('Screens'))));
end
[handle, modelName] = PsychOculusVRCore('Open', varargin{:});
% Restore DISPLAY for other clients, e.g., Octave's gnuplot et al.:
if exist('olddisp', 'var')
setenv('DISPLAY', olddisp);
end
newhmd.handle = handle;
newhmd.driver = @PsychOculusVR;
newhmd.type = 'Oculus';
newhmd.open = 1;
newhmd.modelName = modelName;
newhmd.separateEyePosesSupported = 1;
% Default autoclose flag to "no autoclose":
newhmd.autoclose = 0;
% Default to no use of timewarp:
newhmd.useTimeWarp = 0;
newhmd.readyForWarp = 0;
% Default to no use of pixel luminance overdrive:
newhmd.useOverdrive = 0;
newhmd.lastOverdriveTex = -1;
% Assign default overdrive contrast scale factors for rising
% (UpScale) and falling (DownScale) pixel color component
% intensities wrt. previous rendered frame:
newhmd.overdriveUpScale = 0.10;
newhmd.overdriveDownScale = 0.05;
% Perform a gamma / degamma pass on color values for a
% gamma correction of 2.2 (hard-coded in the shader) by
% default.
%
% Overdrive is optimized to operate in gamma space. As
% we normally render and process in linear space, we
% need to convert linear -> gamma -> Overdrive -> linear.
% A setting of 0 for overdriveGammaCorrect would disable
% gamma->degamma and operate purely linear:
newhmd.overdriveGammaCorrect = 1;
% By default allow user to dismiss HSW display via key press,
% mouse click, or HMD tap:
newhmd.hswdismiss = 1 + 2 + 4;
% Setup basic task/requirement/quality specs to "nothing":
newhmd.basicQuality = 0;
newhmd.basicTask = '';
newhmd.basicRequirements = '';
% Store in internal array:
hmd{handle} = newhmd;
% Return device struct:
varargout{1} = newhmd;
varargout{2} = modelName;
return;
end
if strcmpi(cmd, 'IsOpen')
myhmd = varargin{1};
if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
varargout{1} = 1;
else
varargout{1} = 0;
end
return;
end
if strcmpi(cmd, 'GetInfo')
% Ok, cheap trick: We just return the passed in 'hmd' struct - the up to date
% internal copy that is:
if ~PsychOculusVR('IsOpen', varargin{1})
error('GetInfo: Passed in handle does not refer to a valid and open HMD.');
end
myhmd = varargin{1};
varargout{1} = hmd{myhmd.handle};
return;
end
if strcmpi(cmd, 'Close')
if ~isempty(varargin) && ~isempty(varargin{1})
% Close a specific hmd device:
myhmd = varargin{1};
% This function can be called with the raw index handle by
% the autoclose code path. In that case, map index back into
% full handle struct:
if ~isstruct(myhmd)
if length(hmd) >= myhmd
myhmd = hmd{myhmd};
else
return;
end
end
if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
PsychOculusVRCore('Close', myhmd.handle);
hmd{myhmd.handle}.open = 0;
end
else
% Shutdown whole driver:
PsychOculusVRCore('Close');
hmd = [];
end
return;
end
if strcmpi(cmd, 'IsHMDOutput')
myhmd = varargin{1}; %#ok<NASGU>
scanout = varargin{2};
% Is this a Rift DK2 panel?
if (scanout.width == 1080) && (scanout.height == 1920)
varargout{1} = 1;
else
varargout{1} = 0;
end
return;
end
if strcmpi(cmd, 'SetBasicQuality')
myhmd = varargin{1};
handle = myhmd.handle;
basicQuality = varargin{2};
basicQuality = min(max(basicQuality, 0), 1);
hmd{handle}.basicQuality = basicQuality;
if ~isempty(strfind(hmd{handle}.basicRequirements, 'FastResponse'))
hmd{handle}.useOverdrive = 1;
else
% Overdrive off by default because expensive:
hmd{handle}.useOverdrive = 0;
end
if ~isempty(strfind(hmd{handle}.basicRequirements, 'TimeWarp'))
if basicQuality >= 0.5
hmd{handle}.useTimeWarp = 2;
else
hmd{handle}.useTimeWarp = 1;
end
else
% TimeWarp is off by default:
hmd{handle}.useTimeWarp = 0;
end
if ~isempty(strfind(hmd{handle}.basicRequirements, 'LowPersistence'))
PsychOculusVRCore('SetLowPersistence', handle, 1);
else
PsychOculusVRCore('SetLowPersistence', handle, 0);
end
% Dynamic prediction enables the DK2 latency tester, advanced head tracking
% prediction and eye timewarping:
if ~isempty(strfind(hmd{handle}.basicRequirements, 'TimingSupport')) || ...
hmd{handle}.useTimeWarp || ~isempty(strfind(hmd{handle}.basicTask, 'Tracked3DVR'))
PsychOculusVRCore('SetDynamicPrediction', handle, 1);
else
PsychOculusVRCore('SetDynamicPrediction', handle, 0);
end
return;
end
if strcmpi(cmd, 'SetFastResponse')
myhmd = varargin{1};
if ~PsychOculusVR('IsOpen', myhmd)
error('SetFastResponse: Passed in handle does not refer to a valid and open HMD.');
end
handle = myhmd.handle;
% FastResponse determines use of GPU accelerated panel overdrive
% on the Rift DK1/DK2. Return old setting:
varargout{1} = hmd{handle}.useOverdrive;
% New setting requested?
if (length(varargin) >= 2) && ~isempty(varargin{2})
% Check if an enable is requested, and if so, if the neccessary prep work
% has been done during AutoSetupHMD / SetupRenderingParameters etc. at
% startup:
if (varargin{2} > 0) && (hmd{handle}.lastOverdriveTex < 0)
error('SetFastResponse: Tried to enable fast response mode, but feature has not been requested during initial HMD setup, as required.');
end
% All good. Can select the new overdrive mode between 0 and 3:
hmd{handle}.useOverdrive = max(0, min(varargin{2}, 3));
% Set new overdrive parameters for shaders:
if hmd{handle}.useOverdrive > 0
if hmd{handle}.useOverdrive > 1
% LUT based overdrive - signal to the shader via value > 1000:
overdriveUpScale = 10000;
else
% Algorithmic overdrive:
overdriveUpScale = hmd{handle}.overdriveUpScale;
end
overdriveDownScale = hmd{handle}.overdriveDownScale;
overdriveGammaCorrect = hmd{handle}.overdriveGammaCorrect;
else
overdriveUpScale = 0;
overdriveDownScale = 0;
overdriveGammaCorrect = 0;
end
glUseProgram(hmd{handle}.shaderLeft(1));
glUniform3f(glGetUniformLocation(hmd{handle}.shaderLeft(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
glUseProgram(hmd{handle}.shaderRight(1));
glUniform3f(glGetUniformLocation(hmd{handle}.shaderRight(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
glUseProgram(0);
end
return;
end
if strcmpi(cmd, 'PanelOverdriveParameters')
myhmd = varargin{1};
if ~PsychOculusVR('IsOpen', myhmd)
error('PanelOverdriveParameters: Passed in handle does not refer to a valid and open HMD.');
end
handle = myhmd.handle;
% PanelOverdriveParameters determines the parameters of GPU accelerated panel overdrive
% on the Rift DK1/DK2. Return old setting:
varargout{1} = [hmd{handle}.overdriveUpScale, hmd{handle}.overdriveDownScale, hmd{handle}.overdriveGammaCorrect];
% New setting requested?
if (length(varargin) >= 2) && ~isempty(varargin{2})
% Set new overdrive parameters for shaders:
newparams = varargin{2};
if length(newparams) ~= 3
error('PanelOverdriveParameters: Invalid new overdrive parameters. Not a 3-component vector [upscale, downscale, gamma].');
end
hmd{handle}.overdriveUpScale = newparams(1);
hmd{handle}.overdriveDownScale = newparams(2);
hmd{handle}.overdriveGammaCorrect = newparams(3);
if hmd{handle}.useOverdrive > 1
% LUT based overdrive - signal to the shader via value > 1000:
overdriveUpScale = 10000;
else
% Algorithmic overdrive:
overdriveUpScale = hmd{handle}.overdriveUpScale;
end
overdriveDownScale = hmd{handle}.overdriveDownScale;
overdriveGammaCorrect = hmd{handle}.overdriveGammaCorrect;
glUseProgram(hmd{handle}.shaderLeft(1));
glUniform3f(glGetUniformLocation(hmd{handle}.shaderLeft(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
glUseProgram(hmd{handle}.shaderRight(1));
glUniform3f(glGetUniformLocation(hmd{handle}.shaderRight(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
glUseProgram(0);
end
return;
end
if strcmpi(cmd, 'SetTimeWarp')
myhmd = varargin{1};
if ~PsychOculusVR('IsOpen', myhmd)
error('SetTimeWarp: Passed in handle does not refer to a valid and open HMD.');
end
% SetTimeWarp determines use of GPU accelerated 2D texture sampling
% warp on the Rift DK1/DK2. Return old setting:
varargout{1} = hmd{myhmd.handle}.useTimeWarp;
% New setting requested?
if (length(varargin) >= 2) && ~isempty(varargin{2})
% Check if an enable is requested, and if so, if the neccessary prep work
% has been done during AutoSetupHMD / SetupRenderingParameters etc. at
% startup:
if (varargin{2} > 0) && ~hmd{myhmd.handle}.readyForWarp
error('SetTimeWarp: Tried to enable eye timewarp mode, but feature has not been requested during initial HMD setup, as required.');
end
% TimeWarp transition from enabled to disabled?
if (varargin{2} <= 0) && (hmd{myhmd.handle}.useTimeWarp > 0)
% Need to reset shaders matrices to identity matrices:
handle = myhmd.handle;
% Setup left shaders warp matrices:
glUseProgram(hmd{handle}.shaderLeft(1));
hmd{handle}.eyeRotStartMatrixLeft = diag([1 1 1 1]);
hmd{handle}.eyeRotEndMatrixLeft = diag([1 1 1 1]);
glUniformMatrix4fv(hmd{handle}.shaderLeft(2), 1, 1, hmd{handle}.eyeRotStartMatrixLeft);
glUniformMatrix4fv(hmd{handle}.shaderLeft(3), 1, 1, hmd{handle}.eyeRotEndMatrixLeft);
% Setup right shaders warp matrices:
glUseProgram(hmd{handle}.shaderRight(1));
hmd{handle}.eyeRotStartMatrixRight = diag([1 1 1 1]);
hmd{handle}.eyeRotEndMatrixRight = diag([1 1 1 1]);
glUniformMatrix4fv(hmd{handle}.shaderRight(2), 1, 1, hmd{handle}.eyeRotStartMatrixRight);
glUniformMatrix4fv(hmd{handle}.shaderRight(3), 1, 1, hmd{handle}.eyeRotEndMatrixRight);
glUseProgram(0);
end
% All good. Can select the new timeWarp mode:
hmd{myhmd.handle}.useTimeWarp = varargin{2};
end
return;
end
if strcmpi(cmd, 'SetLowPersistence')
myhmd = varargin{1};
if ~PsychOculusVR('IsOpen', myhmd)
error('SetLowPersistence: Passed in handle does not refer to a valid and open HMD.');
end
% SetLowPersistence determines use low persistence mode on the Rift DK2. Return old setting:
varargout{1} = PsychOculusVRCore('SetLowPersistence', myhmd.handle);
% New setting requested?
if (length(varargin) >= 2) && ~isempty(varargin{2})
PsychOculusVRCore('SetLowPersistence', myhmd.handle, varargin{2});
end
return;
end
if strcmpi(cmd, 'SetupRenderingParameters')
myhmd = varargin{1};
% Basic task this HMD should fulfill:
if length(varargin) >= 2 && ~isempty(varargin{2})
basicTask = varargin{2};
else
basicTask = 'Tracked3DVR';
end
% Basic requirements to choose:
if length(varargin) >= 3 && ~isempty(varargin{3})
basicRequirements = varargin{3};
else
basicRequirements = '';
end
% Basic quality/performance tradeoff to choose:
if length(varargin) >= 4 && ~isempty(varargin{4})
basicQuality = varargin{4};
else
basicQuality = 0;
end
hmd{myhmd.handle}.basicTask = basicTask;
hmd{myhmd.handle}.basicRequirements = basicRequirements;
PsychOculusVR('SetBasicQuality', myhmd, basicQuality);
% Get optimal client renderbuffer size - the size of our virtual framebuffer for left eye:
[hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fov] = PsychOculusVRCore('GetFovTextureSize', myhmd.handle, 0, varargin{5:end});
% Get optimal client renderbuffer size - the size of our virtual framebuffer for right eye:
[hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fov] = PsychOculusVRCore('GetFovTextureSize', myhmd.handle, 1, varargin{5:end});
return;
end
if strcmpi(cmd, 'GetClientRenderingParameters')
myhmd = varargin{1};
varargout{1} = [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight];
% We need fast backing store support for virtual framebuffers:
imagingMode = mor(kPsychNeedTwiceWidthWindow, kPsychNeedFastBackingStore);
imagingMode = mor(imagingMode, kPsychNeedClientRectNoFitter);
% Need an output FBO for our panel overdrive implementation:
if hmd{myhmd.handle}.useOverdrive || strcmpi(hmd{myhmd.handle}.basicTask, 'Monoscopic')
imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
end
if ~strcmpi(hmd{myhmd.handle}.basicTask, 'Monoscopic')
% We must use stereomode 6, so we get separate draw buffers for left and
% right eye, and the stereo compositor (merger) to fuse both eyes into a
% single output framebuffer, but with all internal buffers at at least
% full output framebuffer resolution. This will generate anaglyph shaders
% which we will need to replace with a very special shader for the HMD:
stereoMode = 6;
else
% Monoscopic presentation will do:
stereoMode = 0;
end
varargout{2} = imagingMode;
varargout{3} = stereoMode;
return;
end
if strcmpi(cmd, 'GetEyeShiftVector')
myhmd = varargin{1};
if varargin{2} == 0
varargout{1} = hmd{myhmd.handle}.HmdToEyeViewOffsetLeft;
varargout{2} = hmd{myhmd.handle}.eyeShiftMatrix{1};
else
varargout{1} = hmd{myhmd.handle}.HmdToEyeViewOffsetRight;
varargout{2} = hmd{myhmd.handle}.eyeShiftMatrix{2};
end
return;
end
if strcmpi(cmd, 'PerformPostWindowOpenSetup')
% Must have global GL constants:
if isempty(GL)
varargout{1} = 0;
warning('PTB internal error in PsychOculusVR: GL struct not initialized?!?');
return;
end
% Oculus device handle:
myhmd = varargin{1};
handle = myhmd.handle;
% Onscreen window handle:
win = varargin{2};
% Keep track of window handle of associated onscreen window:
hmd{handle}.win = win;
% Need to know user selected clearcolor:
clearcolor = varargin{3};
% Also keep track of video refresh duration of the HMD:
hmd{handle}.videoRefreshDuration = Screen('Framerate', win);
if hmd{handle}.videoRefreshDuration == 0
% Unlikely to ever hit this situation, but if we would, just
% default to the Rift DK-2's default video refresh rate of 75 Hz:
hmd{handle}.videoRefreshDuration = 75;
end
hmd{handle}.videoRefreshDuration = 1 / hmd{handle}.videoRefreshDuration;
% Compute effective size of per-eye input buffer for undistortion render.
% The input buffers for undistortion are the processedDrawbufferFBO's aka
% inputBufferFBO's, or if the panelfitter is skipped the drawBufferFBO's.
%
% In our current implementation we allocate said buffers to twice the horizontal
% size of the real framebuffer, ie., twice the panel width of the HMD, as
% that should be plenty for all typical use cases - and is also the maximum
% possible with the current Screen imaging pipeline.
%
% However, we don't use the full size of those buffers as input, but only
% sample a rectangular subregion which corresponds to the renderbuffer size
% recommended by the Oculus runtime. Either the panelfitter is used to blit
% 1-to-1 from the drawBufferFBO to a correspondingly sized subregion of the
% inputBuffers - if the panelfitter is needed for convenient 2D stimulus drawing
% or MSAA resolve - or usercode has to restrict its rendering to the subregion by
% proper use of glViewPorts or scissor rectangles.
%
% So for all practical means [inputWidth, inputHeight] == [rbwidth, rbheight] and
% we save processing bandwidth, although due to the overallocation not VRAM memory
% space.
hmd{handle}.inputWidth = hmd{handle}.rbwidth;
hmd{handle}.inputHeight = hmd{handle}.rbheight;
% Query undistortion parameters for left eye view:
[hmd{handle}.rbwidth, hmd{handle}.rbheight, vx, vy, vw, vh, ptx, pty, hsx, hsy, hsz, meshVL, meshIL, uvScale(1), uvScale(2), uvOffset(1), uvOffset(2)] = PsychOculusVRCore('GetUndistortionParameters', handle, 0, hmd{handle}.inputWidth, hmd{handle}.inputHeight, hmd{handle}.fov);
hmd{handle}.viewportLeft = [vx, vy, vw, vh];
hmd{handle}.PixelsPerTanAngleAtCenterLeft = [ptx, pty];
hmd{handle}.HmdToEyeViewOffsetLeft = -1 * [hsx, hsy, hsz];
hmd{handle}.meshVerticesLeft = meshVL;
hmd{handle}.meshIndicesLeft = meshIL;
hmd{handle}.uvScaleLeft = uvScale;
hmd{handle}.uvOffsetLeft = uvOffset;
% Init warp matrices to identity, until we get something better from live tracking:
hmd{handle}.eyeRotStartMatrixLeft = diag([1 1 1 1]);
hmd{handle}.eyeRotEndMatrixLeft = diag([1 1 1 1]);
% Query parameters for right eye view:
[hmd{handle}.rbwidth, hmd{handle}.rbheight, vx, vy, vw, vh, ptx, pty, hsx, hsy, hsz, meshVR, meshIR, uvScale(1), uvScale(2), uvOffset(1), uvOffset(2)] = PsychOculusVRCore('GetUndistortionParameters', handle, 1, hmd{handle}.inputWidth, hmd{handle}.inputHeight, hmd{handle}.fov);
hmd{handle}.viewportRight = [vx, vy, vw, vh];
hmd{handle}.PixelsPerTanAngleAtCenterRight = [ptx, pty];
hmd{handle}.HmdToEyeViewOffsetRight = -1 * [hsx, hsy, hsz];
hmd{handle}.meshVerticesRight = meshVR;
hmd{handle}.meshIndicesRight = meshIR;
hmd{handle}.uvScaleRight = uvScale;
hmd{handle}.uvOffsetRight = uvOffset;
% Init warp matrices to identity, until we get something better from live tracking:
hmd{handle}.eyeRotStartMatrixRight = diag([1 1 1 1]);
hmd{handle}.eyeRotEndMatrixRight = diag([1 1 1 1]);
% Convert head to eye shift vectors into 4x4 matrices, as we'll need
% them frequently:
EyeT = diag([1 1 1 1]);
EyeT(1:3, 4) = hmd{handle}.HmdToEyeViewOffsetLeft';
hmd{handle}.eyeShiftMatrix{1} = EyeT;
EyeT = diag([1 1 1 1]);
EyeT(1:3, 4) = hmd{handle}.HmdToEyeViewOffsetRight';
hmd{handle}.eyeShiftMatrix{2} = EyeT;
% Switch to clear color black and do a clear by double flip:
Screen('FillRect', win, 0);
Screen('Flip', win);
Screen('Flip', win);
% Assign proper target processing chain for imaging pipeline:
if ~strcmpi(hmd{handle}.basicTask, 'Monoscopic')
% Stereoscopic display: Stereo composer chain.
procchain = 'StereoCompositingBlit';
% Find slot with preexisting stereo composition shader, so we can replace it by our thing:
[slot, shaderid, blittercfg, voidptr, glsl] = Screen('HookFunction', win, 'Query', procchain, 'StereoCompositingShaderAnaglyph'); %#ok<ASGLU>
if slot == -1
varargout{1} = 0;
warning('Either the imaging pipeline is not enabled for given onscreen window, or it is not switched to Anaglyph stereo mode.');
return;
end
if glsl == 0
varargout{1} = 0;
warning('Anaglyph shader is not operational for unknown reason. Sorry...');
return;
end
% Remove old standard anaglyph shader:
Screen('HookFunction', win, 'Remove', procchain, slot);
% Play more stupid tricks to get intermediate (bounce buffer FBOs) buffers cleared to black:
Screen('HookFunction', win, 'AppendBuiltin', procchain, 'Builtin:IdentityBlit', '');
Screen('Flip', win);
Screen('Flip', win);
Screen('HookFunction', win, 'Remove', procchain, slot);
else
% Monoscopic display: Final output formatter:
procchain = 'FinalOutputFormattingBlit';
Screen('HookFunction', win, 'Enable', procchain);
% For overdrive need stupid tricks to get intermediate bounce buffer FBO's cleared:
if hmd{handle}.useOverdrive
% Need a bufferflip command:
Screen('HookFunction', win, 'PrependBuiltin', procchain, 'Builtin:FlipFBOs', '');
Screen('HookFunction', win, 'PrependBuiltin', procchain, 'Builtin:IdentityBlit', '');
Screen('Flip', win);
Screen('HookFunction', win, 'Remove', procchain, 0);
Screen('HookFunction', win, 'Remove', procchain, 0);
end
slot = 0;
glsl = 0;
end
% Go back to user requested clear color, now that all our buffers
% are cleared to black:
Screen('FillRect', win, clearcolor);
% Build the unwarp mesh display list within the OpenGL context of Screen():
Screen('BeginOpenGL', win, 1);
% Left eye setup:
% ---------------
% Build a display list that corresponds to the current calibration,
% drawing the warp-mesh once, so it gets recorded in the display list:
gldLeft = glGenLists(1);
glNewList(gldLeft, GL.COMPILE);
% Caution: Must *copy* the different rows with data into *separate* variables, so
% the vertex array pointers to the different variables actually point to something
% persistent! If we'd pass the meshVerticesLeft() subarrays directly to glTexCoordPointer
% and friends then Octave/Matlab would just create a temporary copy of the extracted
% rows, OpenGL would retrieve/assign pointers to those temporary copies, but then
% at the end of a glVertexPointer/glTexCoordPointer call, those temporary copies would
% go out of scope and Octave/Matlab would potentially garbage collect the variables again
% *before* the call to glDrawElements permanently records the content of the variables.
% The net results would be stale/dangling pointers, random data trash getting read from
% memory and recorded in the display list - and thereby corrupted rendering! This hazard
% doesn't exist within regular Octave/Matlab scripts, because the interpreter doesn't
% deal with memory pointers. It is a unique hazard from the combination of C memory
% pointers for OpenGL and Octave/Matlabs copy-on-write/data-sharing/garbage collection
% behaviour. When we are at it, lets also cast the data to single() precision floating
% point, to save some memory:
vertexpos = single(hmd{handle}.meshVerticesLeft(1:4, :));
if ~IsLinux
% Both Windows and OSX need special treatment, because the 0.5 SDK
% doesn't generate a properly rotated undistortion mesh. Rotate
% vertex (x,y) positions by 90 degrees counter-clockwise, so the mesh
% aligns with the 90 degrees rotated full HD panel of the Rift DK-1
% and DK-2. This allows to keep the video mode on at, e.g. for the
% DK-2, native 1080 x 1920 without enabling output rotation. That in
% turn keeps page flipping enabled for bufferswaps, at least on the
% non-broken graphics drivers, and that in turn keeps PTB's timing
% happy and performance up:
R = single([0, -1 ; 1, 0]);
vertexpos(1:2, :) = R * vertexpos(1:2, :);
end
texR = single(hmd{handle}.meshVerticesLeft(5:6, :));
texG = single(hmd{handle}.meshVerticesLeft(7:8, :));
texB = single(hmd{handle}.meshVerticesLeft(9:10, :));
% vertex xy encodes 2D position from rows 1 and 2, z encodes timeWarp interpolation factors
% from row 3 and w encodes vignette correction factors from row 4:
glEnableClientState(GL.VERTEX_ARRAY);
glVertexPointer(4, GL.FLOAT, 0, vertexpos);
% Need separate texture coordinate sets for the three color channel to encode
% channel specific color aberration correction sampling:
% TexCoord set 0 encodes coordinates for the Red color channel:
glClientActiveTexture(GL.TEXTURE0);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.FLOAT, 0, texR);
% TexCoord set 1 encodes coordinates for the Green color channel:
glClientActiveTexture(GL.TEXTURE1);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.FLOAT, 0, texG);
% TexCoord set 2 encodes coordinates for the Blue color channel:
glClientActiveTexture(GL.TEXTURE2);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.FLOAT, 0, texB);
% Draw the mesh. This records the content from all the variables persistently into
% the display list storage, so they can be freed afterwards:
glDrawElements(GL.TRIANGLES, length(hmd{handle}.meshIndicesLeft), GL.UNSIGNED_SHORT, uint16(hmd{handle}.meshIndicesLeft));
% Disable stuff, so we can release or recycle the variables:
glClientActiveTexture(GL.TEXTURE3);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL.TEXTURE2);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL.TEXTURE1);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL.TEXTURE0);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glDisableClientState(GL.VERTEX_ARRAY);
% Left eye display list done.
glEndList;
% Right eye setup:
% ---------------
% Build a display list that corresponds to the current calibration,
% drawing the warp-mesh once, so it gets recorded in the display list:
gldRight = glGenLists(1);
glNewList(gldRight, GL.COMPILE);
vertexpos = single(hmd{handle}.meshVerticesRight(1:4, :));
if ~IsLinux
% Same special treatment on non-Linux as for the left eye. Rotate mesh by
% 90 degrees counter-clockwise:
vertexpos(1:2, :) = R * vertexpos(1:2, :);
end
texR = single(hmd{handle}.meshVerticesRight(5:6, :));
texG = single(hmd{handle}.meshVerticesRight(7:8, :));
texB = single(hmd{handle}.meshVerticesRight(9:10, :));
% vertex xy encodes 2D position from rows 1 and 2, z encodes timeWarp interpolation factors
% from row 3 and w encodes vignette correction factors from row 4:
glEnableClientState(GL.VERTEX_ARRAY);
glVertexPointer(4, GL.FLOAT, 0, vertexpos);
% Need separate texture coordinate sets for the three color channel to encode
% channel specific color aberration correction sampling:
% TexCoord set 0 encodes coordinates for the Red color channel:
glClientActiveTexture(GL.TEXTURE0);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.FLOAT, 0, texR);
% TexCoord set 1 encodes coordinates for the Green color channel:
glClientActiveTexture(GL.TEXTURE1);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.FLOAT, 0, texG);
% TexCoord set 2 encodes coordinates for the Blue color channel:
glClientActiveTexture(GL.TEXTURE2);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.FLOAT, 0, texB);
% Draw the mesh. This records the content from all the variables persistently into
% the display list storage, so they can be freed afterwards:
glDrawElements(GL.TRIANGLES, length(hmd{handle}.meshIndicesRight), GL.UNSIGNED_SHORT, uint16(hmd{handle}.meshIndicesRight));
% Disable stuff, so we can release or recycle the variables:
glClientActiveTexture(GL.TEXTURE3);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL.TEXTURE2);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL.TEXTURE1);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL.TEXTURE0);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glDisableClientState(GL.VERTEX_ARRAY);
% Right eye display list done.
glEndList;
Screen('EndOpenGL', win);
if hmd{handle}.useOverdrive
% Overdrive enabled: Assign overdrive contrast scale factors for
% rising (UpScale) and falling (DownScale) pixel color component
% intensities wrt. previous rendered frame:
if hmd{handle}.useOverdrive > 1
% LUT based overdrive - signal to the shader via value > 1000:
overdriveUpScale = 10000;
else
% Algorithmic overdrive:
overdriveUpScale = hmd{handle}.overdriveUpScale;
end
overdriveDownScale = hmd{handle}.overdriveDownScale;
% Perform a gamma / degamma pass on color values for a
% gamma correction of 2.2 (hard-coded in the shader).
% Overdrive is optimized to operate in gamma space. As
% we normally render and process in linear space, we
% need to convert linear -> gamma -> Overdrive -> linear.
% A setting of 0 for overdriveGammaCorrect would disable
% gamma->degamma and operate purely linear:
overdriveGammaCorrect = hmd{handle}.overdriveGammaCorrect;
else
% Overdrive disabled:
overdriveUpScale = 0;
overdriveDownScale = 0;
overdriveGammaCorrect = 0;
end
% Setup left eye shader:
glsl = LoadGLSLProgramFromFiles([fileparts(mfilename('fullpath')) filesep 'OculusRiftCorrectionShader']);
glUseProgram(glsl);
glUniform1i(glGetUniformLocation(glsl, 'Image'), 0);
glUniform1i(glGetUniformLocation(glsl, 'PrevImage'), 2);
glUniform1i(glGetUniformLocation(glsl, 'OverdriveLUT'), 3);
glUniform3f(glGetUniformLocation(glsl, 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVOffset'), hmd{handle}.uvOffsetLeft(1) * hmd{handle}.inputWidth, hmd{handle}.uvOffsetLeft(2) * hmd{handle}.inputHeight);
glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVScale'), hmd{handle}.uvScaleLeft(1) * hmd{handle}.inputWidth, hmd{handle}.uvScaleLeft(2) * hmd{handle}.inputHeight);
glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationStart'), 1, 1, hmd{handle}.eyeRotStartMatrixLeft);
glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationEnd'), 1, 1, hmd{handle}.eyeRotEndMatrixLeft);
hmd{handle}.shaderLeft = [glsl, glGetUniformLocation(glsl, 'EyeRotationStart'), glGetUniformLocation(glsl, 'EyeRotationEnd')];
glUseProgram(0);
% Insert it at former position of the old shader:
posstring = sprintf('InsertAt%iShader', slot);
% xOffset and yOffset encode the viewport location and size for the left-eye vs.
% right eye view in the shared output window - or the source renderbuffer if both eyes
% would be rendered into a shared texture. However, the meshes provided by the SDK
% already encode proper left and right offsets for output, and the inputs are separate
% textures for left and right eye, so using the offset is not needed. Also our correction
% shader ignores the modelview matrix which would get updated with the "Offset:%i%i" blittercfg,
% instead is takes normalized device coordinates NDC directly from the distortion mesh. Iow, not
% only is xOffset/yOffset not needed, it would also be a no operation due to our specific shader.
% We leave this here for documentation for now, in case we need to change our ways of doing this.
%leftViewPort = hmd{handle}.viewportLeft
blittercfg = sprintf('Blitter:DisplayListBlit:Handle:%i:Bilinear', gldLeft);
Screen('Hookfunction', win, posstring, procchain, 'OculusVRClientCompositingShaderLeftEye', glsl, blittercfg);
% Setup right eye shader:
glsl = LoadGLSLProgramFromFiles([fileparts(mfilename('fullpath')) filesep 'OculusRiftCorrectionShader']);
glUseProgram(glsl);
if ~strcmpi(hmd{handle}.basicTask, 'Monoscopic')
% Stereoscopic display: Source from right eye buffer:
glUniform1i(glGetUniformLocation(glsl, 'Image'), 1);
else
% Monoscopic display: Source right eye image also from left-eye (aka mono) buffer:
glUniform1i(glGetUniformLocation(glsl, 'Image'), 0);
end
glUniform1i(glGetUniformLocation(glsl, 'PrevImage'), 2);
glUniform1i(glGetUniformLocation(glsl, 'OverdriveLUT'), 3);
glUniform3f(glGetUniformLocation(glsl, 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVOffset'), hmd{handle}.uvOffsetRight(1) * hmd{handle}.inputWidth, hmd{handle}.uvOffsetRight(2) * hmd{handle}.inputHeight);
glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVScale'), hmd{handle}.uvScaleRight(1) * hmd{handle}.inputWidth, hmd{handle}.uvScaleRight(2) * hmd{handle}.inputHeight);
glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationStart'), 1, 1, hmd{handle}.eyeRotStartMatrixRight);
glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationEnd'), 1, 1, hmd{handle}.eyeRotEndMatrixRight);
hmd{handle}.shaderRight = [glsl, glGetUniformLocation(glsl, 'EyeRotationStart'), glGetUniformLocation(glsl, 'EyeRotationEnd')];
glUseProgram(0);
% Insert it at former position of the old shader:
posstring = sprintf('InsertAt%iShader', slot);
blittercfg = sprintf('Blitter:DisplayListBlit:Handle:%i:Bilinear', gldRight);
Screen('Hookfunction', win, posstring, procchain, 'OculusVRClientCompositingShaderRightEye', glsl, blittercfg);
if hmd{handle}.useOverdrive
if strcmpi(hmd{handle}.basicTask, 'Monoscopic')
% Need a bufferflip command:
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
end
[realw, realh] = Screen('Windowsize', win, 1);
Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:IdentityBlit', sprintf('Blitter:IdentityBlit:OvrSize:%i:%i', realw, realh));
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
woverdrive1 = Screen('OpenOffscreenwindow', win, 0, [0, 0, realw * 2, realh], [], 32);
hmd{handle}.overdriveTex(1) = Screen('GetOpenGLTexture', woverdrive1, woverdrive1);
woverdrive2 = Screen('OpenOffscreenwindow', win, 0, [0, 0, realw * 2, realh], [], 32);
hmd{handle}.overdriveTex(2) = Screen('GetOpenGLTexture', woverdrive2, woverdrive2);
hmd{handle}.lastOverdriveTex = 0;
% Load precomputed overdrive lut into variable 'lut', then build a overdriveLut
% texture out of it:
load([fileparts(mfilename('fullpath')) filesep 'RiftDK2lut1.mat']);
luttex = Screen('MakeTexture', win, lut, [], 32, [], 2);
hmd{handle}.overdriveLut(1) = Screen('GetOpenGLTexture', win, luttex);
load([fileparts(mfilename('fullpath')) filesep 'RiftDK2lut2.mat']);
luttex = Screen('MakeTexture', win, lut, [], 32, [], 2);
hmd{handle}.overdriveLut(2) = Screen('GetOpenGLTexture', win, luttex);
end
% TimeWarp or panel overdrive in use?
if hmd{handle}.useTimeWarp || hmd{handle}.useOverdrive
% Need to call the PsychOculusVR(1) callback to do needed setup work:
posstring = sprintf('InsertAt%iMFunction', slot);
cmdString = sprintf('PsychOculusVR(1, %i);', handle);
Screen('Hookfunction', win, posstring, procchain, 'OculusVRTimeWarpSetup', cmdString);
hmd{handle}.readyForWarp = 1;
end
% Need to call the PsychOculusVR(2) callback to do needed finalizer work:
cmdString = sprintf('PsychOculusVR(2, %i);', handle);
Screen('Hookfunction', win, 'AppendMFunction', 'LeftFinalizerBlitChain', 'OculusVRLatencyTesterSetup', cmdString);
Screen('Hookfunction', win, 'Enable', 'LeftFinalizerBlitChain');
% Need to call the end frame marker function of the Oculus runtime:
cmdString = sprintf('PsychOculusVRCore(''EndFrameTiming'', %i);', handle);
Screen('Hookfunction', win, 'PrependMFunction', 'ScreenFlipImpliedOperations', 'OculusVRPostPresentCallback', cmdString);
Screen('Hookfunction', win, 'Enable', 'ScreenFlipImpliedOperations');
% Does usercode request auto-closing the HMD or driver when the onscreen window is closed?
if hmd{handle}.autoclose > 0
% Attach a window close callback for Device teardown at window close time:
if hmd{handle}.autoclose == 2
% Shutdown driver completely:
Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychOculusVR driver.', 'PsychOculusVR(''Close'');');
else
% Only close this HMD:
Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychOculusVR driver.', sprintf('PsychOculusVR(''Close'', %i);', handle));
end
Screen('HookFunction', win, 'Enable', 'CloseOnscreenWindowPostGLShutdown');
end
% Need HSW display?
if (hmd{handle}.hswdismiss >= 0) && isempty(getenv('PSYCH_OCULUS_HSWSKIP'))
if IsWin
% Windows doesn't distinguish keyboards, so don't query "all"
% keyboards. This gives the same effect as on Linux/OSX, but avoids
% use of PsychHID and potential "libusb not installed" warnings:
kbddev = [];
else
kbddev = -1;
end
if bitand(hmd{myhmd.handle}.hswdismiss, 1)
KbReleaseWait(kbddev);
end
dismiss = 0;
if PsychOculusVRCore('GetHSWState', handle)
% Yes: Display HSW text:
hswtext = ['HEALTH & SAFETY WARNING\n\n' ...
'Read and follow all warnings\n' ...
'and instructions included with\n' ...
'the Headset before use. Headset\n' ...
'should be calibrated for each user.\n' ...
'Not for use by children under 13.\n' ...
'Stop use if you experience any\n' ...
'discomfort or health reactions.\n\n' ...
'More: www.oculus.com/warnings\n\n' ...
'To acknowledge:\n'];
if bitand(hmd{myhmd.handle}.hswdismiss, 1)
hswtext = [hswtext 'Press a key\n'];
end
if bitand(hmd{myhmd.handle}.hswdismiss, 2)
hswtext = [hswtext 'Click any mouse button\n'];
end
if bitand(hmd{myhmd.handle}.hswdismiss, 4)
hswtext = [hswtext 'Slightly tap the headset'];
end
oldTextSize = Screen('TextSize', win, 16);
Screen('SelectStereoDrawBuffer', win, 1);
DrawFormattedText(win, hswtext, 'center', 'center', [0 255 0]);
Screen('SelectStereoDrawBuffer', win, 0);
DrawFormattedText(win, hswtext, 'center', 'center', [0 255 0]);
Screen('TextSize', win, oldTextSize);
Screen('Flip', win, [], 1);
% Allow dismiss via tap to the HMD?
if bitand(hmd{myhmd.handle}.hswdismiss, 4)
% Enable tracking so we can allow user to dismiss HSW via a
% slight tap to the HMD - accelerometers will do their thing:
PsychOculusVRCore('Start', handle);
end
% Wait for dismiss via keypress, mouse button click or HMD tap:
while PsychOculusVRCore('GetHSWState', handle, dismiss)
% Allow dismiss via keypress?
if bitand(hmd{myhmd.handle}.hswdismiss, 1) && KbCheck(kbddev)
dismiss = 1;
end
% Allow dismiss via mouse click?
if bitand(hmd{myhmd.handle}.hswdismiss, 2)
[dummy1, dummy2, buttons] = GetMouse; %#ok<ASGLU>
if any(buttons)
dismiss = 1;
while any(buttons)
[dummy1, dummy2, buttons] = GetMouse; %#ok<ASGLU>
end
end
end
% Need to idle flip here to drive timewarp rendering in
% case some stuff is enabled:
Screen('Flip', win, [], 1);
end
if bitand(hmd{myhmd.handle}.hswdismiss, 1)
KbReleaseWait(kbddev);
end
if bitand(hmd{myhmd.handle}.hswdismiss, 4)
% Stop tracking for tap detection:
PsychOculusVRCore('Stop', handle);
WaitSecs(1);
end
% Clear HSW text:
Screen('Flip', win);
end
end
if ~isempty(strfind(hmd{myhmd.handle}.basicTask, 'Tracked3DVR'))
% 3D head tracked VR rendering task: Start tracking as a convenience:
PsychOculusVRCore('Start', handle);
end
% Return success result code 1:
varargout{1} = 1;
return;
end
% 'cmd' so far not dispatched? Let's assume it is a command
% meant for PsychOculusVRCore:
if (length(varargin) >= 1) && isstruct(varargin{1})
myhmd = varargin{1};
handle = myhmd.handle;
[ varargout{1:nargout} ] = PsychOculusVRCore(cmd, handle, varargin{2:end});
else
[ varargout{1:nargout} ] = PsychOculusVRCore(cmd, varargin{:});
end
return;
end
|