This file is indexed.

/usr/share/psychtoolbox-3/PsychHardware/PsychVRToolbox/PsychOculusVR.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
function varargout = PsychOculusVR(cmd, varargin)
% PsychOculusVR - A high level driver for Oculus VR hardware.
%
% Note: If you want to write VR code that is portable across
% VR headsets of different vendors, then use the PsychVRHMD()
% driver instead of this driver. The PsychVRHMD driver will use
% this driver as appropriate when connecting to a Oculus Rift
% or similar Oculus device, but it will also automaticaly work
% with other head mounted displays. This driver does however
% expose a few functions specific to Oculus hardware, so you can
% mix calls to this driver with calls to PsychVRHMD to do some
% mix & match.
%
% For setup instructions for Oculus HMDs see "help OculusVR".
%
%
% Usage:
%
% hmd = PsychOculusVR('AutoSetupHMD' [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, deviceIndex]);
% - Open a Oculus HMD, set it up with good default rendering and
% display parameters and generate a PsychImaging('AddTask', ...)
% line to setup the Psychtoolbox imaging pipeline for proper display
% on the HMD. This will also cause the device connection to get
% auto-closed as soon as the onscreen window which displays on
% the HMD is closed. Returns the 'hmd' handle of the HMD on success.
%
% By default, the first detected HMD will be used and if no VR HMD
% is connected, it will open an emulated/simulated one for basic
% testing and debugging. You can override this default choice of
% HMD by specifying the optional 'deviceIndex' parameter to choose
% a specific HMD.
%
% More optional parameters: 'basicTask' what kind of task should be implemented.
% The default is 'Tracked3DVR', which means to setup for stereoscopic 3D
% rendering, driven by head motion tracking, for a fully immersive experience
% in some kind of 3D virtual world. This is the default if omitted. The task
% 'Stereoscopic' sets up for display of stereoscopic stimuli, but without
% head tracking. 'Monoscopic' sets up for display of monocular stimuli, ie.
% the HMD is just used as a special kind of standard display monitor.
%
% 'basicRequirements' defines basic requirements for the task. Currently
% defined are the following strings which can be combined into a single
% 'basicRequirements' string: 'LowPersistence' = Try to keep exposure
% time of visual images on the retina low if possible, ie., try to approximate
% a pulse-type display instead of a hold-type display if possible. This has
% no effect on the Rift DK1. On the Rift DK2 it will enable low persistence
% scanning of the OLED display panel, to light up each pixel only a fraction
% of a video refresh cycle duration.
%
% 'FastResponse' = Try to switch images with minimal delay and fast
% pixel switching time. This will enable OLED panel overdrive processing
% on the Oculus Rift DK1 and DK2. OLED panel overdrive processing is a
% relatively expensive post processing step.
%
% 'TimingSupport' = Support some hardware specific means of timestamping
% or latency measurements. On the Rift DK1 this does nothing. On the DK2
% it enables dynamic prediction and timing measurements with the Rifts internal
% latency tester.
%
% 'TimeWarp' = Enable per eye image 2D timewarping via prediction of eye
% poses at scanout time. This mostly only makes sense for head-tracked 3D
% rendering. Depending on 'basicQuality' a more cheap or more expensive
% procedure is used.
%
% 'basicQuality' defines the basic tradeoff between quality and required
% computational power. A setting of 0 gives lowest quality, but with the
% lowest performance requirements. A setting of 1 gives maximum quality at
% maximum computational load. Values between 0 and 1 change the quality to
% performance tradeoff.
%
%
% hmd = PsychOculusVR('Open' [, deviceIndex], ...);
% - Open HMD with index 'deviceIndex'. See PsychOculusVRCore Open?
% for help on additional parameters.
%
%
% PsychOculusVR('SetAutoClose', hmd, mode);
% - Set autoclose mode for HMD with handle 'hmd'. 'mode' can be
% 0 (this is the default) to not do anything special. 1 will close
% the HMD 'hmd' when the onscreen window is closed which displays
% on the HMD. 2 will do the same as 1, but close all open HMDs and
% shutdown the complete driver and Oculus runtime - a full cleanup.
%
%
% isOpen = PsychOculusVR('IsOpen', hmd);
% - Returns 1 if 'hmd' corresponds to an open HMD, 0 otherwise.
%
%
% PsychOculusVR('Close' [, hmd])
% - Close provided HMD device 'hmd'. If no 'hmd' handle is provided,
% all HMDs will be closed and the driver will be shutdown.
%
%
% info = PsychOculusVR('GetInfo', hmd);
% - Retrieve a struct 'info' with information about the HMD 'hmd'.
% The returned info struct contains at least the following standardized
% fields with information:
% handle = Driver internal handle for the specific HMD.
% driver = Function handle to the actual driver for the HMD, e.g., @PsychOculusVR.
% type   = Defines the type/vendor of the device, e.g., 'Oculus'.
% modelName = Name string with the name of the model of the device, e.g., 'Rift DK2'.
% separateEyePosesSupported = 1 if use of PsychOculusVR('GetEyePose') will improve
%                             the quality of the VR experience, 0 if no improvement
%                             is to be expected, so 'GetEyePose' can be avoided
%                             to save processing time without a loss of quality.
%                             This always returns 1 for at least the Rift DK1 and DK2,
%                             as use of that function can enhance the quality of the
%                             VR experience with fast head movements.
%
% The returned struct may contain more information, but the fields mentioned
% above are the only ones guaranteed to be available over the long run. Other
% fields may disappear or change their format and meaning anytime without
% warning.
%
%
% isSupported = PsychOculusVRCore('Supported');
% - Returns 1 if the Oculus driver is functional, 0 otherwise. The
% driver is functional if the VR runtime library was successfully
% initialized and a connection to the VR server process has been
% established. It would return 0 if the server process would not be
% running, or if the required runtime library would not be correctly
% installed.
%
%
% state = PsychOculusVRCore('PrepareRender', hmd [, userTransformMatrix][, reqmask=1][, targetTime]);
% - Mark the start of the rendering cycle for a new 3D rendered stereoframe.
% Return a struct 'state' which contains various useful bits of information
% for 3D stereoscopic rendering of a scene, based on head tracking data.
%
% 'hmd' is the handle of the HMD which delivers tracking data and receives the
% rendered content for display.
%
% 'reqmask' defines what kind of information is requested to be returned in
% struct 'state'. Only query information you actually need, as computing some
% of this info is expensive! See below for supported values for 'reqmask'.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results,
% e.g., the midpoint of scanout of the next video frame.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
%
% state always contains a field state.tracked, whose bits signal the status
% of head tracking for this frame. A +1 flag means that head orientation is
% tracked. A +2 flag means that head position is tracked via some absolute
% position tracker like, e.g., the Oculus Rift DK2 camera.
%
% 'reqmask' defaults to 1 and can have the following values added together:
%
% +1 = Return matrices for left and right "eye cameras" which can be directly
%      used as OpenGL GL_MODELVIEW matrices for rendering the scene. 4x4 matrices
%      for left- and right eye are contained in state.modelView{1} and {2}.
%
%      Return position and orientation 4x4 camera view matrices which describe
%      position and orientation of the "eye cameras" relative to the world
%      reference frame. They are the inverses of state.modelView{}. These
%      matrices can be directly used to define cameras for rendering of complex
%      3D scenes with the Horde3D 3D engine. Left- and right eye matrices are
%      contained in state.cameraView{1} and {2}.
%
%      Additionally tracked/predicted head pose is returned in state.localHeadPoseMatrix
%      and the global head pose after application of the 'userTransformMatrix' is
%      returned in state.globalHeadPoseMatrix - this is the basis for computing
%      the camera transformation matrices.
%
% More flags to follow...
%
%
% eyePose = PsychOculusVR('GetEyePose', hmd, renderPass [, userTransformMatrix][, targetTime]);
% - Return a struct 'eyePose' which contains various useful bits of information
% for 3D stereoscopic rendering of the stereo view of one eye, based on head
% tracking data. This function provides essentially the same information as
% the 'PrepareRender' function, but only for one eye. Therefore you will need
% to call this function twice, once for each of the two renderpasses, at the
% beginning of each renderpass.
%
% 'hmd' is the handle of the HMD which delivers tracking data and receives the
% rendered content for display.
%
% 'renderPass' defines if information should be returned for the 1st renderpass
% (renderPass == 0) or for the 2nd renderpass (renderPass == 1). The driver will
% decide for you if the 1st renderpass should render the left eye and the 2nd
% pass the right eye, or if the 1st renderpass should render the right eye and
% then the 2nd renderpass the left eye. The ordering depends on the properties
% of the video display of your HMD, specifically on the video scanout order:
% Is it right to left, left to right, or top to bottom? For each scanout order
% there is an optimal order for the renderpasses to minimize perceived lag.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
% Return values in struct 'eyePose':
%
% 'eyeIndex' The eye for which this information applies. 0 = Left eye, 1 = Right eye.
%            You can pass 'eyeIndex' into the Screen('SelectStereoDrawBuffer', win, eyeIndex)
%            to select the proper eye target render buffer.
%
% 'modelView' is a 4x4 RHS OpenGL matrix which can be directly used as OpenGL
%             GL_MODELVIEW matrix for rendering the scene.
%
% 'cameraView' contains a 4x4 RHS camera matrix which describes position and
%              orientation of the "eye camera" relative to the world reference
%              frame. It is the inverse of eyePose.modelView. This matrix can
%              be directly used to define the camera for rendering of complex
%              3D scenes with the Horde3D 3D engine or other engines which want
%              absolute camera pose instead of the inverse matrix.
%
% Additionally tracked/predicted head pose is returned in eyePose.localHeadPoseMatrix
% and the global head pose after application of the 'userTransformMatrix' is
% returned in eyePose.globalHeadPoseMatrix - this is the basis for computing
% the camera transformation matrix.
%
%
% PsychOculusVR('SetupRenderingParameters', hmd [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, fov=[HMDRecommended]][, pixelsPerDisplay=1])
% - Query the HMD 'hmd' for its properties and setup internal rendering
% parameters in preparation for opening an onscreen window with PsychImaging
% to display properly on the HMD. See section about 'AutoSetupHMD' above for
% the meaning of the optional parameters 'basicTask', 'basicRequirements'
% and 'basicQuality'.
%
% 'fov' Optional field of view in degrees, from line of sight: [leftdeg, rightdeg,
% updeg, downdeg]. If 'fov' is omitted, the HMD runtime will be asked for a
% good default field of view and that will be used. The field of view may be
% dependent on the settings in the HMD user profile of the currently selected
% user.
%
% 'pixelsPerDisplay' Ratio of the number of render target pixels to display pixels
% at the center of distortion. Defaults to 1.0 if omitted. Lower values can
% improve performance, at lower quality.
%
%
% PsychOculusVR('SetBasicQuality', hmd, basicQuality);
% - Set basic level of quality vs. required GPU performance.
%
%
% oldSetting = PsychOculusVR('SetFastResponse', hmd [, enable]);
% - Return old setting for 'FastResponse' mode in 'oldSetting',
% optionally disable or enable the mode via specifying the 'enable'
% parameter as 0 or greater than zero. Please note that if you want to
% use 'FastResponse', you must request and thereby enable it at the
% beginning of a session, as the driver must do some neccessary setup
% prep work at startup of the HMD. Once it was initially enabled, you
% can switch the setting at runtime with this function.
%
% Currently implemented are an algorithmic overdrive mode if 'enable'
% is set to 1, and two lookup table (LUT) based modes for 'enable'
% settings of 2 or 3, each selecting a slightly different lookup table.
%
%
% oldSetting = PsychOculusVR('SetTimeWarp', hmd [, enable]);
% - Return old setting for 'TimeWarp' mode in 'oldSetting',
% optionally enable or disable the mode via specifying the 'enable'
% parameter as 1 or 0. Please note that if you want to use 'TimeWarp',
% you must request and thereby enable it at the beginning of a session, as
% the driver must do some neccessary setup prep work at startup of the HMD.
% Once it was initially enabled, you can switch the setting at runtime with
% this function.
%
%
% oldSetting = PsychOculusVR('SetLowPersistence', hmd [, enable]);
% - Return old setting for 'LowPersistence' mode in 'oldSetting',
% optionally enable or disable the mode via specifying the 'enable'
% parameter as 1 or 0.
%
%
% oldSettings = PsychOculusVR('PanelOverdriveParameters', hmd [, newparams]);
% - Return old settings for panel overdrive mode in 'oldSettings',
% optionally set new settings in 'newparams'. This changes the operating
% parameters of OLED panel overdrive on the Rift DK-2 if 'FastResponse'
% mode is active. newparams is a vector [upscale, downscale, gamma] with
% the following meaning: gamma = 1 Use gamma/degamma pass to perform
% overdrive boost in gamma 2.2 corrected space. This is the startup default.
% upscale = How much should rising pixel color intensity values be boosted.
% Default is 0.10 for a 10% boost.
% downscale = How much should rising pixel color intensity values be reduced.
% Default is 0.05 for a 5% reduction.
% The Rift DK-2 OLED panel controller is slower on rising intensities than on
% falling intensities, therefore the higher boost on rising than on falling
% direction.
%
%
% PsychOculusVR('SetHSWDisplayDismiss', hmd [, dismissTypes=1+2+4]);
% - Set how the user can dismiss the "Health and safety warning display".
% 'dismissTypes' can be -1 to disable the HSWD, or a value >= 0 to show
% the HSWD until a timeout and or until the user dismisses the HSWD.
% The following flags can be added to define type of dismissal:
%
% +0 = Display until timeout, if any. Will wait forever if there isn't any timeout!
% +1 = Dismiss via keyboard keypress.
% +2 = Dismiss via mouse click or mousepad tap.
% +4 = Dismiss via a tap to the HMD (detected via accelerometer).
%
%
% [bufferSize, imagingFlags, stereoMode] = PsychOculusVR('GetClientRenderingParameters', hmd);
% - Retrieve recommended size in pixels 'bufferSize' = [width, height] of the client
% renderbuffer for each eye for rendering to the HMD. Returns parameters
% previously computed by PsychOculusVR('SetupRenderingParameters', hmd).
%
% Also returns 'imagingFlags', the required imaging mode flags for setup of
% the Screen imaging pipeline. Also returns the needed 'stereoMode' for the
% pipeline.
%
%
% isOutput = PsychOculusVR('IsHMDOutput', hmd, scanout);
% - Returns 1 (true) if 'scanout' describes the video output to which the
% HMD 'hmd' is connected. 'scanout' is a struct returned by the Screen
% function Screen('ConfigureDisplay', 'Scanout', screenid, outputid);
% This allows probing video outputs to find the one which feeds the HMD.
%
%
% [headToEyeShiftv, headToEyeShiftMatrix] = PsychOculusVR('GetEyeShiftVector', hmd, eye);
% - Retrieve 3D translation vector [tx, ty, tz] that defines the 3D position of the given
% eye 'eye' for the given HMD 'hmd', relative to the origin of the local head/HMD
% reference frame. This is needed to translate a global head pose into a eye
% pose, e.g., to translate the output of PsychOculusVR('GetEyePose') into actual
% tracked/predicted eye locations for stereo rendering.
%
% In addition to the 'headToEyeShiftv' vector, a corresponding 4x4 translation
% matrix is also returned in 'headToEyeShiftMatrix' for convenience.
%
%

% History:
% 07-Sep-2015  mk   Written.

% Global GL handle for access to OpenGL constants needed in setup:
global GL;

persistent hmd;

if nargin < 1 || isempty(cmd)
  help PsychOculusVR;
  fprintf('\n\nAlso available are functions from PsychOculusVRCore:\n');
  PsychOculusVRCore;
  return;
end

% Fast-Path function 'TimeWarp'. Prepares 2D eye timewarp:
if cmd == 1
  handle = varargin{1};

  if hmd{handle}.useOverdrive > 0
    % Find next output texture and bind it as 2nd rendertarget to the output fbo.
    % It will capture a copy of the rendered output frame, with geometry correction,
    % color aberration correction and vignette correction applied, but without the
    % overdrive processing. That copy will be used as reference for the next frame,
    % to compute per-pixel overdrive values:
    currentOverdriveTex = mod(hmd{handle}.lastOverdriveTex + 1, 2);
    glFramebufferTexture2D(GL.FRAMEBUFFER_EXT, GL.COLOR_ATTACHMENT1, GL.TEXTURE_RECTANGLE_EXT, hmd{handle}.overdriveTex(currentOverdriveTex + 1), 0);
    glDrawBuffers(2, [GL.COLOR_ATTACHMENT0, GL.COLOR_ATTACHMENT1]);

    % Bind lastOverdriveTex from previous presentation cycle as old image
    % to texture unit. It will be used for overdrive computation for this
    % frame rendercycle:
    glActiveTextureARB(GL.TEXTURE2);
    glBindTexture(GL.TEXTURE_RECTANGLE_EXT, hmd{handle}.overdriveTex(hmd{handle}.lastOverdriveTex + 1));

    % LUT based panel overdrive?
    if hmd{handle}.useOverdrive > 1
      % Bind overdrive lookup table texture to unit3 for LUT based overdrive:
      % The LUT encodes all transitions from each of the 256 possible start
      % values to each of the possible 256 end values, for each of the 3 color
      % channels, as a 256x256x4 RGBA8 texture with alpha channel unused. The
      % shader can directly use the optimal overdrive color at lut(startpix, endpix, colorchannel):
      glActiveTextureARB(GL.TEXTURE3);
      glBindTexture(GL.TEXTURE_RECTANGLE_EXT, hmd{handle}.overdriveLut(hmd{handle}.useOverdrive - 1));
    end

    % Back to standard texture unit 0:
    glActiveTextureARB(GL.TEXTURE0);

    % Prepare next rendercycle already: Swap the textures.
    hmd{handle}.lastOverdriveTex = currentOverdriveTex;
  end

  if hmd{handle}.useTimeWarp
    if hmd{handle}.useTimeWarp > 1
      % Wait for warp point, then query warp matrices. We assume the warp point is
      % 3 msecs before the target vblank and use our own high precision estimation of
      % the warp point, as well as our own high precision wait. Oculus SDK v0.5 doesn't
      % implement warp point calculation properly itself, therefore "do it yourself":
      winfo = Screen('GetWindowInfo', hmd{handle}.win, 7);
      warpPointSecs = winfo.LastVBLTime + hmd{handle}.videoRefreshDuration - 0.003;
      WaitSecs('UntilTime', warpPointSecs);
    end

    % Get the matrices:
    [hmd{handle}.eyeRotStartMatrixLeft, hmd{handle}.eyeRotEndMatrixLeft] = PsychOculusVRCore('GetEyeTimewarpMatrices', handle, 0, 0);
    [hmd{handle}.eyeRotStartMatrixRight, hmd{handle}.eyeRotEndMatrixRight] = PsychOculusVRCore('GetEyeTimewarpMatrices', handle, 1, 0);

    % Setup left shaders warp matrices:
    glUseProgram(hmd{handle}.shaderLeft(1));
    glUniformMatrix4fv(hmd{handle}.shaderLeft(2), 1, 1, hmd{handle}.eyeRotStartMatrixLeft);
    glUniformMatrix4fv(hmd{handle}.shaderLeft(3), 1, 1, hmd{handle}.eyeRotEndMatrixLeft);

    % Setup right shaders warp matrices:
    glUseProgram(hmd{handle}.shaderRight(1));
    glUniformMatrix4fv(hmd{handle}.shaderRight(2), 1, 1, hmd{handle}.eyeRotStartMatrixRight);
    glUniformMatrix4fv(hmd{handle}.shaderRight(3), 1, 1, hmd{handle}.eyeRotEndMatrixRight);

    % Ready for warp:
    glUseProgram(0);
  end

  return;
end

if cmd == 2
  handle = varargin{1};
  latencyColor = PsychOculusVRCore('LatencyTester', handle, 0);
  if ~isempty(latencyColor)
    glColor3ubv(latencyColor);
    glPointSize(4);
    glBegin(GL.POINTS);
    glVertex2i(1,1);
    glEnd;
    glPointSize(1);
  end

  return;
end

if strcmpi(cmd, 'PrepareRender')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOculusVR:PrepareRender: Specified handle does not correspond to an open HMD!');
  end

  % Get 'userTransformMatrix' if any:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    userTransformMatrix = varargin{2};
  else
    % Default: Identity transform to do nothing:
    userTransformMatrix = diag([1 1 1 1]);
  end

  % Valid: Get request mask of information to return:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    reqmask = varargin{3};
  else
    % Default to: Provide basic tracking status flags, and directly useable
    % GL_MODELVIEW matrices for the cameras for rendering the left- and right-eye:
    reqmask = 1;
  end

  % Get target time for predicted camera poses, head poses etc.:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    targetTime = varargin{4};
  else
    % Default: Provide predicted value for the midpoint of the next video
    % refresh cycle - assuming we hit the flip deadline for the next video
    % frame, so that point in time will be exactly in the middle of both
    % eyes:
    winfo = Screen('GetWindowInfo', hmd{myhmd.handle}.win);
    targetTime = winfo.LastVBLTime + 1.5 * hmd{myhmd.handle}.videoRefreshDuration;
  end

  % Mark start of a new frame render cycle for the runtime and get the data
  % predicted for next scanout time:
  [eyePose{1}, eyePose{2}, tracked] = PsychOculusVRCore('StartRender', myhmd.handle);

  % Always return basic tracking status:
  result.tracked = tracked;

  % As a bonus we return the raw eye pose vectors, given that we have them anyway:
  result.rawEyePose7{1} = eyePose{1};
  result.rawEyePose7{2} = eyePose{2};

  % Want matrices which take a usercode supplied global transformation into account?
  if bitand(reqmask, 1)
    % Yes: We need tracked + predicted head pose, so we can apply the user transform,
    % and then per-eye transforms:

    % Get predicted head pose for targetTime:
    state = PsychOculusVRCore('GetTrackingState', myhmd.handle, targetTime);

    % Bonus feature: HeadPose as 7 component translation + orientation quaternion vector:
    result.headPose = state.HeadPose;

    % Convert head pose vector to 4x4 OpenGL right handed reference frame matrix:
    result.localHeadPoseMatrix = eyePoseToCameraMatrix(state.HeadPose);

    % Premultiply usercode provided global transformation matrix:
    result.globalHeadPoseMatrix = userTransformMatrix * result.localHeadPoseMatrix;

    % Compute per-eye global pose matrices:
    result.cameraView{1} = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{1};
    result.cameraView{2} = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{2};

    % Compute inverse matrices, useable as OpenGL GL_MODELVIEW matrices for rendering:
    result.modelView{1} = inv(result.cameraView{1});
    result.modelView{2} = inv(result.cameraView{2});
  end

  varargout{1} = result;

  return;
end

if strcmpi(cmd, 'GetEyePose')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOculusVR:GetEyePose: Specified handle does not correspond to an open HMD!');
  end

  % Valid: Get view render pass for which to return information:
  if length(varargin) < 2 || isempty(varargin{2})
    error('PsychOculusVR:GetEyePose: Required ''renderPass'' argument missing.');
  end
  renderPass = varargin{2};

  % Get 'userTransformMatrix' if any:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    userTransformMatrix = varargin{3};
  else
    % Default: Identity transform to do nothing:
    userTransformMatrix = diag([1 1 1 1]);
  end

  % Get target time for predicted camera poses, head poses etc.:
  % NOTE: Currently not used, as Oculus SDK 0.5 does not support passing
  % targetTime into the underlying SDK function for 'GetEyePose'. The
  % Oculus runtime predicts something meaningful internally.
  %
  %  if length(varargin) >= 4 && ~isempty(varargin{4})
  %    targetTime = varargin{4};
  %  else
  %    % Default: Provide predicted value for the midpoint of the next video
  %    % refresh cycle - assuming we hit the flip deadline for the next video
  %    % frame, so that point in time will be exactly in the middle of both
  %    % eyes:
  %    winfo = Screen('GetWindowInfo', hmd{myhmd.handle}.win);
  %    targetTime = winfo.LastVBLTime + 1.5 * hmd{myhmd.handle}.videoRefreshDuration;
  %  end

  % Get eye pose for this renderPass, or more exactly the headPose from which this
  % renderPass eyePose will get computed:
  [result.headPose, result.eyeIndex] = PsychOculusVRCore('GetEyePose', myhmd.handle, renderPass);

  % Convert head pose vector to 4x4 OpenGL right handed reference frame matrix:
  result.localHeadPoseMatrix = eyePoseToCameraMatrix(result.headPose);

  % Premultiply usercode provided global transformation matrix:
  result.globalHeadPoseMatrix = userTransformMatrix * result.localHeadPoseMatrix;

  % Compute per-eye global pose matrix for this eyeIndex:
  result.cameraView = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{result.eyeIndex + 1};

  % Compute inverse matrix, useable as OpenGL GL_MODELVIEW matrix for rendering:
  result.modelView = inv(result.cameraView);

  varargout{1} = result;

  return;
end

if strcmpi(cmd, 'Supported')
  % Check if the Oculus VR runtime is supported and active on this
  % installation, so it can be used to open connections to real HMDs,
  % or at least to emulate a HMD for simple debugging purposes:
  try
    if exist('PsychOculusVRCore', 'file') && PsychOculusVRCore('GetCount') >= 0
      varargout{1} = 1;
    else
      varargout{1} = 0;
    end
  catch
    varargout{1} = 0;
  end
  return;
end

% Autodetect first connected HMD and open a connection to it. Open a
% emulated one, if none can be detected. Perform basic setup with
% default configuration, create a proper PsychImaging task.
if strcmpi(cmd, 'AutoSetupHMD')
  % Do we have basic runtime support?
  if ~PsychOculusVR('Supported')
    % Nope: Game over.
    fprintf('PsychOculusVR:AutoSetupHMD: Could not initialize Oculus driver. Game over!\n');

    % Return an empty handle to signal lack of VR HMD support to caller,
    % so caller can cope with it somehow:
    varargout{1} = [];
    return;
  end

  % Basic task this HMD should fulfill:
  if length(varargin) >= 1 && ~isempty(varargin{1})
    basicTask = varargin{1};
  else
    basicTask = 'Tracked3DVR';
  end

  % Basic basicRequirements to choose:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    basicRequirements = varargin{2};
  else
    basicRequirements = '';
  end

  % Basic quality/performance tradeoff to choose:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    basicQuality = varargin{3};
  else
    basicQuality = 0;
  end

  % HMD device selection:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    deviceIndex = varargin{4};
    newhmd = PsychOculusVR('Open', deviceIndex);
  else
    % Check if at least one Oculus HMD is connected and available:
    if PsychOculusVR('GetCount') > 0
      % Yes. Open and initialize connection to first detected HMD:
      fprintf('PsychOculusVR: Opening the first connected Oculus VR headset.\n');
      newhmd = PsychOculusVR('Open', 0);
    else
      % No. Open an emulated/simulated HMD for basic testing and debugging:
      fprintf('PsychOculusVR: No Oculus HMD detected. Opening a simulated HMD.\n');
      newhmd = PsychOculusVR('Open', -1);
    end
  end

  % Trigger an automatic device close at onscreen window close for the HMD display window:
  PsychOculusVR('SetAutoClose', newhmd, 1);

  % Setup default rendering parameters:
  PsychOculusVR('SetupRenderingParameters', newhmd, basicTask, basicRequirements, basicQuality);

  % Add a PsychImaging task to use this HMD with the next opened onscreen window:
  PsychImaging('AddTask', 'General', 'UseVRHMD', newhmd);

  % Return the device handle:
  varargout{1} = newhmd;

  % Ready.
  return;
end

if strcmpi(cmd, 'SetAutoClose')
  myhmd = varargin{1};

  if ~PsychOculusVR('IsOpen', myhmd)
    error('PsychOculusVR:SetAutoClose: Specified handle does not correspond to an open HMD!');
  end

  % Assign autoclose flag:
  hmd{myhmd.handle}.autoclose = varargin{2};

  return;
end

if strcmpi(cmd, 'SetHSWDisplayDismiss')
  myhmd = varargin{1};

  if ~PsychOculusVR('IsOpen', myhmd)
    error('PsychOculusVR:SetHSWDisplay: Specified handle does not correspond to an open HMD!');
  end

  % Method of dismissing HSW display:
  if length(varargin) < 2 || isempty(varargin{2})
    % Default is keyboard, mouse click, or HMD tap:
    hmd{myhmd.handle}.hswdismiss = 1 + 2 + 4;
  else
    hmd{myhmd.handle}.hswdismiss = varargin{2};
  end

  return;
end

% Open a HMD:
if strcmpi(cmd, 'Open')
  % Hack to make sure the VR runtime detects the HMD on a secondary X-Screen:
  if IsLinux && ~IsWayland && length(Screen('Screens')) > 1
    olddisp = getenv('DISPLAY');
    setenv('DISPLAY', sprintf(':0.%i', max(Screen('Screens'))));
  end

  [handle, modelName] = PsychOculusVRCore('Open', varargin{:});

  % Restore DISPLAY for other clients, e.g., Octave's gnuplot et al.:
  if exist('olddisp', 'var')
    setenv('DISPLAY', olddisp);
  end

  newhmd.handle = handle;
  newhmd.driver = @PsychOculusVR;
  newhmd.type   = 'Oculus';
  newhmd.open = 1;
  newhmd.modelName = modelName;
  newhmd.separateEyePosesSupported = 1;

  % Default autoclose flag to "no autoclose":
  newhmd.autoclose = 0;

  % Default to no use of timewarp:
  newhmd.useTimeWarp = 0;
  newhmd.readyForWarp = 0;

  % Default to no use of pixel luminance overdrive:
  newhmd.useOverdrive = 0;
  newhmd.lastOverdriveTex = -1;

  % Assign default overdrive contrast scale factors for rising
  % (UpScale) and falling (DownScale) pixel color component
  % intensities wrt. previous rendered frame:
  newhmd.overdriveUpScale   = 0.10;
  newhmd.overdriveDownScale = 0.05;

  % Perform a gamma / degamma pass on color values for a
  % gamma correction of 2.2 (hard-coded in the shader) by
  % default.
  %
  % Overdrive is optimized to operate in gamma space. As
  % we normally render and process in linear space, we
  % need to convert linear -> gamma -> Overdrive -> linear.
  % A setting of 0 for overdriveGammaCorrect would disable
  % gamma->degamma and operate purely linear:
  newhmd.overdriveGammaCorrect = 1;

  % By default allow user to dismiss HSW display via key press,
  % mouse click, or HMD tap:
  newhmd.hswdismiss = 1 + 2 + 4;

  % Setup basic task/requirement/quality specs to "nothing":
  newhmd.basicQuality = 0;
  newhmd.basicTask = '';
  newhmd.basicRequirements = '';

  % Store in internal array:
  hmd{handle} = newhmd;

  % Return device struct:
  varargout{1} = newhmd;
  varargout{2} = modelName;

  return;
end

if strcmpi(cmd, 'IsOpen')
  myhmd = varargin{1};
  if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
    varargout{1} = 1;
  else
    varargout{1} = 0;
  end
  return;
end

if strcmpi(cmd, 'GetInfo')
  % Ok, cheap trick: We just return the passed in 'hmd' struct - the up to date
  % internal copy that is:
  if ~PsychOculusVR('IsOpen', varargin{1})
    error('GetInfo: Passed in handle does not refer to a valid and open HMD.');
  end

  myhmd = varargin{1};
  varargout{1} = hmd{myhmd.handle};

  return;
end

if strcmpi(cmd, 'Close')
  if ~isempty(varargin) && ~isempty(varargin{1})
    % Close a specific hmd device:
    myhmd = varargin{1};

    % This function can be called with the raw index handle by
    % the autoclose code path. In that case, map index back into
    % full handle struct:
    if ~isstruct(myhmd)
      if length(hmd) >= myhmd
        myhmd = hmd{myhmd};
      else
        return;
      end
    end

    if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
      PsychOculusVRCore('Close', myhmd.handle);
      hmd{myhmd.handle}.open = 0;
    end
  else
    % Shutdown whole driver:
    PsychOculusVRCore('Close');
    hmd = [];
  end

  return;
end

if strcmpi(cmd, 'IsHMDOutput')
  myhmd = varargin{1}; %#ok<NASGU>
  scanout = varargin{2};

  % Is this a Rift DK2 panel?
  if (scanout.width == 1080) && (scanout.height == 1920)
    varargout{1} = 1;
  else
    varargout{1} = 0;
  end
  return;
end

if strcmpi(cmd, 'SetBasicQuality')
  myhmd = varargin{1};
  handle = myhmd.handle;
  basicQuality = varargin{2};
  basicQuality = min(max(basicQuality, 0), 1);
  hmd{handle}.basicQuality = basicQuality;

  if ~isempty(strfind(hmd{handle}.basicRequirements, 'FastResponse'))
    hmd{handle}.useOverdrive = 1;
  else
    % Overdrive off by default because expensive:
    hmd{handle}.useOverdrive = 0;
  end

  if ~isempty(strfind(hmd{handle}.basicRequirements, 'TimeWarp'))
    if basicQuality >= 0.5
      hmd{handle}.useTimeWarp = 2;
    else
      hmd{handle}.useTimeWarp = 1;
    end
  else
    % TimeWarp is off by default:
    hmd{handle}.useTimeWarp = 0;
  end

  if ~isempty(strfind(hmd{handle}.basicRequirements, 'LowPersistence'))
    PsychOculusVRCore('SetLowPersistence', handle, 1);
  else
    PsychOculusVRCore('SetLowPersistence', handle, 0);
  end

  % Dynamic prediction enables the DK2 latency tester, advanced head tracking
  % prediction and eye timewarping:
  if ~isempty(strfind(hmd{handle}.basicRequirements, 'TimingSupport')) || ...
     hmd{handle}.useTimeWarp || ~isempty(strfind(hmd{handle}.basicTask, 'Tracked3DVR'))
    PsychOculusVRCore('SetDynamicPrediction', handle, 1);
  else
    PsychOculusVRCore('SetDynamicPrediction', handle, 0);
  end

  return;
end

if strcmpi(cmd, 'SetFastResponse')
  myhmd = varargin{1};
  if ~PsychOculusVR('IsOpen', myhmd)
    error('SetFastResponse: Passed in handle does not refer to a valid and open HMD.');
  end
  handle = myhmd.handle;

  % FastResponse determines use of GPU accelerated panel overdrive
  % on the Rift DK1/DK2. Return old setting:
  varargout{1} = hmd{handle}.useOverdrive;

  % New setting requested?
  if (length(varargin) >= 2) && ~isempty(varargin{2})
    % Check if an enable is requested, and if so, if the neccessary prep work
    % has been done during AutoSetupHMD / SetupRenderingParameters  etc. at
    % startup:
    if (varargin{2} > 0)  && (hmd{handle}.lastOverdriveTex < 0)
      error('SetFastResponse: Tried to enable fast response mode, but feature has not been requested during initial HMD setup, as required.');
    end

    % All good. Can select the new overdrive mode between 0 and 3:
    hmd{handle}.useOverdrive = max(0, min(varargin{2}, 3));

    % Set new overdrive parameters for shaders:
    if hmd{handle}.useOverdrive > 0
      if hmd{handle}.useOverdrive > 1
        % LUT based overdrive - signal to the shader via value > 1000:
        overdriveUpScale = 10000;
      else
        % Algorithmic overdrive:
        overdriveUpScale = hmd{handle}.overdriveUpScale;
      end
      overdriveDownScale = hmd{handle}.overdriveDownScale;
      overdriveGammaCorrect = hmd{handle}.overdriveGammaCorrect;
    else
      overdriveUpScale = 0;
      overdriveDownScale = 0;
      overdriveGammaCorrect = 0;
    end

    glUseProgram(hmd{handle}.shaderLeft(1));
    glUniform3f(glGetUniformLocation(hmd{handle}.shaderLeft(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
    glUseProgram(hmd{handle}.shaderRight(1));
    glUniform3f(glGetUniformLocation(hmd{handle}.shaderRight(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
    glUseProgram(0);
  end

  return;
end

if strcmpi(cmd, 'PanelOverdriveParameters')
  myhmd = varargin{1};
  if ~PsychOculusVR('IsOpen', myhmd)
    error('PanelOverdriveParameters: Passed in handle does not refer to a valid and open HMD.');
  end
  handle = myhmd.handle;

  % PanelOverdriveParameters determines the parameters of GPU accelerated panel overdrive
  % on the Rift DK1/DK2. Return old setting:
  varargout{1} = [hmd{handle}.overdriveUpScale, hmd{handle}.overdriveDownScale, hmd{handle}.overdriveGammaCorrect];

  % New setting requested?
  if (length(varargin) >= 2) && ~isempty(varargin{2})
    % Set new overdrive parameters for shaders:
    newparams = varargin{2};
    if length(newparams) ~= 3
      error('PanelOverdriveParameters: Invalid new overdrive parameters. Not a 3-component vector [upscale, downscale, gamma].');
    end

    hmd{handle}.overdriveUpScale = newparams(1);
    hmd{handle}.overdriveDownScale = newparams(2);
    hmd{handle}.overdriveGammaCorrect = newparams(3);

    if hmd{handle}.useOverdrive > 1
      % LUT based overdrive - signal to the shader via value > 1000:
      overdriveUpScale = 10000;
    else
      % Algorithmic overdrive:
      overdriveUpScale = hmd{handle}.overdriveUpScale;
    end

    overdriveDownScale = hmd{handle}.overdriveDownScale;
    overdriveGammaCorrect = hmd{handle}.overdriveGammaCorrect;

    glUseProgram(hmd{handle}.shaderLeft(1));
    glUniform3f(glGetUniformLocation(hmd{handle}.shaderLeft(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
    glUseProgram(hmd{handle}.shaderRight(1));
    glUniform3f(glGetUniformLocation(hmd{handle}.shaderRight(1), 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
    glUseProgram(0);
  end

  return;
end

if strcmpi(cmd, 'SetTimeWarp')
  myhmd = varargin{1};
  if ~PsychOculusVR('IsOpen', myhmd)
    error('SetTimeWarp: Passed in handle does not refer to a valid and open HMD.');
  end

  % SetTimeWarp determines use of GPU accelerated 2D texture sampling
  % warp on the Rift DK1/DK2. Return old setting:
  varargout{1} = hmd{myhmd.handle}.useTimeWarp;

  % New setting requested?
  if (length(varargin) >= 2) && ~isempty(varargin{2})
    % Check if an enable is requested, and if so, if the neccessary prep work
    % has been done during AutoSetupHMD / SetupRenderingParameters  etc. at
    % startup:
    if (varargin{2} > 0)  && ~hmd{myhmd.handle}.readyForWarp
      error('SetTimeWarp: Tried to enable eye timewarp mode, but feature has not been requested during initial HMD setup, as required.');
    end

    % TimeWarp transition from enabled to disabled?
    if (varargin{2} <= 0) && (hmd{myhmd.handle}.useTimeWarp > 0)
      % Need to reset shaders matrices to identity matrices:
      handle = myhmd.handle;

      % Setup left shaders warp matrices:
      glUseProgram(hmd{handle}.shaderLeft(1));
      hmd{handle}.eyeRotStartMatrixLeft = diag([1 1 1 1]);
      hmd{handle}.eyeRotEndMatrixLeft   = diag([1 1 1 1]);
      glUniformMatrix4fv(hmd{handle}.shaderLeft(2), 1, 1, hmd{handle}.eyeRotStartMatrixLeft);
      glUniformMatrix4fv(hmd{handle}.shaderLeft(3), 1, 1, hmd{handle}.eyeRotEndMatrixLeft);

      % Setup right shaders warp matrices:
      glUseProgram(hmd{handle}.shaderRight(1));
      hmd{handle}.eyeRotStartMatrixRight = diag([1 1 1 1]);
      hmd{handle}.eyeRotEndMatrixRight   = diag([1 1 1 1]);
      glUniformMatrix4fv(hmd{handle}.shaderRight(2), 1, 1, hmd{handle}.eyeRotStartMatrixRight);
      glUniformMatrix4fv(hmd{handle}.shaderRight(3), 1, 1, hmd{handle}.eyeRotEndMatrixRight);
      glUseProgram(0);
    end

    % All good. Can select the new timeWarp mode:
    hmd{myhmd.handle}.useTimeWarp = varargin{2};
  end

  return;
end

if strcmpi(cmd, 'SetLowPersistence')
  myhmd = varargin{1};
  if ~PsychOculusVR('IsOpen', myhmd)
    error('SetLowPersistence: Passed in handle does not refer to a valid and open HMD.');
  end

  % SetLowPersistence determines use low persistence mode on the Rift DK2. Return old setting:
  varargout{1} = PsychOculusVRCore('SetLowPersistence', myhmd.handle);

  % New setting requested?
  if (length(varargin) >= 2) && ~isempty(varargin{2})
    PsychOculusVRCore('SetLowPersistence', myhmd.handle, varargin{2});
  end

  return;
end

if strcmpi(cmd, 'SetupRenderingParameters')
  myhmd = varargin{1};

  % Basic task this HMD should fulfill:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    basicTask = varargin{2};
  else
    basicTask = 'Tracked3DVR';
  end

  % Basic requirements to choose:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    basicRequirements = varargin{3};
  else
    basicRequirements = '';
  end

  % Basic quality/performance tradeoff to choose:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    basicQuality = varargin{4};
  else
    basicQuality = 0;
  end

  hmd{myhmd.handle}.basicTask = basicTask;
  hmd{myhmd.handle}.basicRequirements = basicRequirements;

  PsychOculusVR('SetBasicQuality', myhmd, basicQuality);

  % Get optimal client renderbuffer size - the size of our virtual framebuffer for left eye:
  [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fov] = PsychOculusVRCore('GetFovTextureSize', myhmd.handle, 0, varargin{5:end});

  % Get optimal client renderbuffer size - the size of our virtual framebuffer for right eye:
  [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fov] = PsychOculusVRCore('GetFovTextureSize', myhmd.handle, 1, varargin{5:end});

  return;
end

if strcmpi(cmd, 'GetClientRenderingParameters')
  myhmd = varargin{1};
  varargout{1} = [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight];

  % We need fast backing store support for virtual framebuffers:
  imagingMode = mor(kPsychNeedTwiceWidthWindow, kPsychNeedFastBackingStore);
  imagingMode = mor(imagingMode, kPsychNeedClientRectNoFitter);

  % Need an output FBO for our panel overdrive implementation:
  if hmd{myhmd.handle}.useOverdrive || strcmpi(hmd{myhmd.handle}.basicTask, 'Monoscopic')
    imagingMode = mor(imagingMode, kPsychNeedOutputConversion);
  end

  if ~strcmpi(hmd{myhmd.handle}.basicTask, 'Monoscopic')
    % We must use stereomode 6, so we get separate draw buffers for left and
    % right eye, and the stereo compositor (merger) to fuse both eyes into a
    % single output framebuffer, but with all internal buffers at at least
    % full output framebuffer resolution. This will generate anaglyph shaders
    % which we will need to replace with a very special shader for the HMD:
    stereoMode = 6;
  else
    % Monoscopic presentation will do:
    stereoMode = 0;
  end

  varargout{2} = imagingMode;
  varargout{3} = stereoMode;
  return;
end

if strcmpi(cmd, 'GetEyeShiftVector')
  myhmd = varargin{1};

  if varargin{2} == 0
    varargout{1} = hmd{myhmd.handle}.HmdToEyeViewOffsetLeft;
    varargout{2} = hmd{myhmd.handle}.eyeShiftMatrix{1};
  else
    varargout{1} = hmd{myhmd.handle}.HmdToEyeViewOffsetRight;
    varargout{2} = hmd{myhmd.handle}.eyeShiftMatrix{2};
  end

  return;
end

if strcmpi(cmd, 'PerformPostWindowOpenSetup')

  % Must have global GL constants:
  if isempty(GL)
    varargout{1} = 0;
    warning('PTB internal error in PsychOculusVR: GL struct not initialized?!?');
    return;
  end

  % Oculus device handle:
  myhmd = varargin{1};
  handle = myhmd.handle;

  % Onscreen window handle:
  win = varargin{2};

  % Keep track of window handle of associated onscreen window:
  hmd{handle}.win = win;

  % Need to know user selected clearcolor:
  clearcolor = varargin{3};

  % Also keep track of video refresh duration of the HMD:
  hmd{handle}.videoRefreshDuration = Screen('Framerate', win);
  if hmd{handle}.videoRefreshDuration == 0
    % Unlikely to ever hit this situation, but if we would, just
    % default to the Rift DK-2's default video refresh rate of 75 Hz:
    hmd{handle}.videoRefreshDuration = 75;
  end
  hmd{handle}.videoRefreshDuration = 1 / hmd{handle}.videoRefreshDuration;

  % Compute effective size of per-eye input buffer for undistortion render.
  % The input buffers for undistortion are the processedDrawbufferFBO's aka
  % inputBufferFBO's, or if the panelfitter is skipped the drawBufferFBO's.
  %
  % In our current implementation we allocate said buffers to twice the horizontal
  % size of the real framebuffer, ie., twice the panel width of the HMD, as
  % that should be plenty for all typical use cases - and is also the maximum
  % possible with the current Screen imaging pipeline.
  %
  % However, we don't use the full size of those buffers as input, but only
  % sample a rectangular subregion which corresponds to the renderbuffer size
  % recommended by the Oculus runtime. Either the panelfitter is used to blit
  % 1-to-1 from the drawBufferFBO to a correspondingly sized subregion of the
  % inputBuffers - if the panelfitter is needed for convenient 2D stimulus drawing
  % or MSAA resolve - or usercode has to restrict its rendering to the subregion by
  % proper use of glViewPorts or scissor rectangles.
  %
  % So for all practical means [inputWidth, inputHeight] == [rbwidth, rbheight] and
  % we save processing bandwidth, although due to the overallocation not VRAM memory
  % space.
  hmd{handle}.inputWidth = hmd{handle}.rbwidth;
  hmd{handle}.inputHeight = hmd{handle}.rbheight;

  % Query undistortion parameters for left eye view:
  [hmd{handle}.rbwidth, hmd{handle}.rbheight, vx, vy, vw, vh, ptx, pty, hsx, hsy, hsz, meshVL, meshIL, uvScale(1), uvScale(2), uvOffset(1), uvOffset(2)] = PsychOculusVRCore('GetUndistortionParameters', handle, 0, hmd{handle}.inputWidth, hmd{handle}.inputHeight, hmd{handle}.fov);
  hmd{handle}.viewportLeft = [vx, vy, vw, vh];
  hmd{handle}.PixelsPerTanAngleAtCenterLeft = [ptx, pty];
  hmd{handle}.HmdToEyeViewOffsetLeft = -1 * [hsx, hsy, hsz];
  hmd{handle}.meshVerticesLeft = meshVL;
  hmd{handle}.meshIndicesLeft = meshIL;
  hmd{handle}.uvScaleLeft = uvScale;
  hmd{handle}.uvOffsetLeft = uvOffset;

  % Init warp matrices to identity, until we get something better from live tracking:
  hmd{handle}.eyeRotStartMatrixLeft = diag([1 1 1 1]);
  hmd{handle}.eyeRotEndMatrixLeft   = diag([1 1 1 1]);

  % Query parameters for right eye view:
  [hmd{handle}.rbwidth, hmd{handle}.rbheight, vx, vy, vw, vh, ptx, pty, hsx, hsy, hsz, meshVR, meshIR, uvScale(1), uvScale(2), uvOffset(1), uvOffset(2)] = PsychOculusVRCore('GetUndistortionParameters', handle, 1, hmd{handle}.inputWidth, hmd{handle}.inputHeight, hmd{handle}.fov);
  hmd{handle}.viewportRight = [vx, vy, vw, vh];
  hmd{handle}.PixelsPerTanAngleAtCenterRight = [ptx, pty];
  hmd{handle}.HmdToEyeViewOffsetRight = -1 * [hsx, hsy, hsz];
  hmd{handle}.meshVerticesRight = meshVR;
  hmd{handle}.meshIndicesRight = meshIR;
  hmd{handle}.uvScaleRight = uvScale;
  hmd{handle}.uvOffsetRight = uvOffset;

  % Init warp matrices to identity, until we get something better from live tracking:
  hmd{handle}.eyeRotStartMatrixRight = diag([1 1 1 1]);
  hmd{handle}.eyeRotEndMatrixRight   = diag([1 1 1 1]);

  % Convert head to eye shift vectors into 4x4 matrices, as we'll need
  % them frequently:
  EyeT = diag([1 1 1 1]);
  EyeT(1:3, 4) = hmd{handle}.HmdToEyeViewOffsetLeft';
  hmd{handle}.eyeShiftMatrix{1} = EyeT;

  EyeT = diag([1 1 1 1]);
  EyeT(1:3, 4) = hmd{handle}.HmdToEyeViewOffsetRight';
  hmd{handle}.eyeShiftMatrix{2} = EyeT;

  % Switch to clear color black and do a clear by double flip:
  Screen('FillRect', win, 0);
  Screen('Flip', win);
  Screen('Flip', win);

  % Assign proper target processing chain for imaging pipeline:
  if ~strcmpi(hmd{handle}.basicTask, 'Monoscopic')
    % Stereoscopic display: Stereo composer chain.
    procchain = 'StereoCompositingBlit';

    % Find slot with preexisting stereo composition shader, so we can replace it by our thing:
    [slot, shaderid, blittercfg, voidptr, glsl] = Screen('HookFunction', win, 'Query', procchain, 'StereoCompositingShaderAnaglyph'); %#ok<ASGLU>
    if slot == -1
      varargout{1} = 0;
      warning('Either the imaging pipeline is not enabled for given onscreen window, or it is not switched to Anaglyph stereo mode.');
      return;
    end

    if glsl == 0
      varargout{1} = 0;
      warning('Anaglyph shader is not operational for unknown reason. Sorry...');
      return;
    end

    % Remove old standard anaglyph shader:
    Screen('HookFunction', win, 'Remove', procchain, slot);

    % Play more stupid tricks to get intermediate (bounce buffer FBOs) buffers cleared to black:
    Screen('HookFunction', win, 'AppendBuiltin', procchain, 'Builtin:IdentityBlit', '');
    Screen('Flip', win);
    Screen('Flip', win);
    Screen('HookFunction', win, 'Remove', procchain, slot);
  else
    % Monoscopic display: Final output formatter:
    procchain = 'FinalOutputFormattingBlit';
    Screen('HookFunction', win, 'Enable', procchain);

    % For overdrive need stupid tricks to get intermediate bounce buffer FBO's cleared:
    if hmd{handle}.useOverdrive
      % Need a bufferflip command:
      Screen('HookFunction', win, 'PrependBuiltin', procchain, 'Builtin:FlipFBOs', '');
      Screen('HookFunction', win, 'PrependBuiltin', procchain, 'Builtin:IdentityBlit', '');
      Screen('Flip', win);
      Screen('HookFunction', win, 'Remove', procchain, 0);
      Screen('HookFunction', win, 'Remove', procchain, 0);
    end

    slot = 0;
    glsl = 0;
  end

  % Go back to user requested clear color, now that all our buffers
  % are cleared to black:
  Screen('FillRect', win, clearcolor);

  % Build the unwarp mesh display list within the OpenGL context of Screen():
  Screen('BeginOpenGL', win, 1);

  % Left eye setup:
  % ---------------

  % Build a display list that corresponds to the current calibration,
  % drawing the warp-mesh once, so it gets recorded in the display list:
  gldLeft = glGenLists(1);
  glNewList(gldLeft, GL.COMPILE);

  % Caution: Must *copy* the different rows with data into *separate* variables, so
  % the vertex array pointers to the different variables actually point to something
  % persistent! If we'd pass the meshVerticesLeft() subarrays directly to glTexCoordPointer
  % and friends then Octave/Matlab would just create a temporary copy of the extracted
  % rows, OpenGL would retrieve/assign pointers to those temporary copies, but then
  % at the end of a glVertexPointer/glTexCoordPointer call, those temporary copies would
  % go out of scope and Octave/Matlab would potentially garbage collect the variables again
  % *before* the call to glDrawElements permanently records the content of the variables.
  % The net results would be stale/dangling pointers, random data trash getting read from
  % memory and recorded in the display list - and thereby corrupted rendering! This hazard
  % doesn't exist within regular Octave/Matlab scripts, because the interpreter doesn't
  % deal with memory pointers. It is a unique hazard from the combination of C memory
  % pointers for OpenGL and Octave/Matlabs copy-on-write/data-sharing/garbage collection
  % behaviour. When we are at it, lets also cast the data to single() precision floating
  % point, to save some memory:
  vertexpos = single(hmd{handle}.meshVerticesLeft(1:4, :));

  if ~IsLinux
      % Both Windows and OSX need special treatment, because the 0.5 SDK
      % doesn't generate a properly rotated undistortion mesh. Rotate
      % vertex (x,y) positions by 90 degrees counter-clockwise, so the mesh
      % aligns with the 90 degrees rotated full HD panel of the Rift DK-1
      % and DK-2. This allows to keep the video mode on at, e.g. for the
      % DK-2, native 1080 x 1920 without enabling output rotation. That in
      % turn keeps page flipping enabled for bufferswaps, at least on the
      % non-broken graphics drivers, and that in turn keeps PTB's timing
      % happy and performance up:
      R = single([0, -1 ; 1, 0]);
      vertexpos(1:2, :) = R * vertexpos(1:2, :);
  end

  texR = single(hmd{handle}.meshVerticesLeft(5:6, :));
  texG = single(hmd{handle}.meshVerticesLeft(7:8, :));
  texB = single(hmd{handle}.meshVerticesLeft(9:10, :));

  % vertex xy encodes 2D position from rows 1 and 2, z encodes timeWarp interpolation factors
  % from row 3 and w encodes vignette correction factors from row 4:
  glEnableClientState(GL.VERTEX_ARRAY);
  glVertexPointer(4, GL.FLOAT, 0, vertexpos);

  % Need separate texture coordinate sets for the three color channel to encode
  % channel specific color aberration correction sampling:

  % TexCoord set 0 encodes coordinates for the Red color channel:
  glClientActiveTexture(GL.TEXTURE0);
  glEnableClientState(GL.TEXTURE_COORD_ARRAY);
  glTexCoordPointer(2, GL.FLOAT, 0, texR);
  
  % TexCoord set 1 encodes coordinates for the Green color channel:
  glClientActiveTexture(GL.TEXTURE1);
  glEnableClientState(GL.TEXTURE_COORD_ARRAY);
  glTexCoordPointer(2, GL.FLOAT, 0, texG);

  % TexCoord set 2 encodes coordinates for the Blue color channel:
  glClientActiveTexture(GL.TEXTURE2);
  glEnableClientState(GL.TEXTURE_COORD_ARRAY);
  glTexCoordPointer(2, GL.FLOAT, 0, texB);

  % Draw the mesh. This records the content from all the variables persistently into
  % the display list storage, so they can be freed afterwards:
  glDrawElements(GL.TRIANGLES, length(hmd{handle}.meshIndicesLeft), GL.UNSIGNED_SHORT, uint16(hmd{handle}.meshIndicesLeft));

  % Disable stuff, so we can release or recycle the variables:
  glClientActiveTexture(GL.TEXTURE3);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glClientActiveTexture(GL.TEXTURE2);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glClientActiveTexture(GL.TEXTURE1);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glClientActiveTexture(GL.TEXTURE0);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glDisableClientState(GL.VERTEX_ARRAY);
  
  % Left eye display list done.
  glEndList;

  % Right eye setup:
  % ---------------

  % Build a display list that corresponds to the current calibration,
  % drawing the warp-mesh once, so it gets recorded in the display list:
  gldRight = glGenLists(1);
  glNewList(gldRight, GL.COMPILE);

  vertexpos = single(hmd{handle}.meshVerticesRight(1:4, :));

  if ~IsLinux
      % Same special treatment on non-Linux as for the left eye. Rotate mesh by
      % 90 degrees counter-clockwise:
      vertexpos(1:2, :) = R * vertexpos(1:2, :);
  end

  texR = single(hmd{handle}.meshVerticesRight(5:6, :));
  texG = single(hmd{handle}.meshVerticesRight(7:8, :));
  texB = single(hmd{handle}.meshVerticesRight(9:10, :));

  % vertex xy encodes 2D position from rows 1 and 2, z encodes timeWarp interpolation factors
  % from row 3 and w encodes vignette correction factors from row 4:
  glEnableClientState(GL.VERTEX_ARRAY);
  glVertexPointer(4, GL.FLOAT, 0, vertexpos);

  % Need separate texture coordinate sets for the three color channel to encode
  % channel specific color aberration correction sampling:

  % TexCoord set 0 encodes coordinates for the Red color channel:
  glClientActiveTexture(GL.TEXTURE0);
  glEnableClientState(GL.TEXTURE_COORD_ARRAY);
  glTexCoordPointer(2, GL.FLOAT, 0, texR);
  
  % TexCoord set 1 encodes coordinates for the Green color channel:
  glClientActiveTexture(GL.TEXTURE1);
  glEnableClientState(GL.TEXTURE_COORD_ARRAY);
  glTexCoordPointer(2, GL.FLOAT, 0, texG);

  % TexCoord set 2 encodes coordinates for the Blue color channel:
  glClientActiveTexture(GL.TEXTURE2);
  glEnableClientState(GL.TEXTURE_COORD_ARRAY);
  glTexCoordPointer(2, GL.FLOAT, 0, texB);

  % Draw the mesh. This records the content from all the variables persistently into
  % the display list storage, so they can be freed afterwards:
  glDrawElements(GL.TRIANGLES, length(hmd{handle}.meshIndicesRight), GL.UNSIGNED_SHORT, uint16(hmd{handle}.meshIndicesRight));

  % Disable stuff, so we can release or recycle the variables:
  glClientActiveTexture(GL.TEXTURE3);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glClientActiveTexture(GL.TEXTURE2);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glClientActiveTexture(GL.TEXTURE1);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glClientActiveTexture(GL.TEXTURE0);
  glDisableClientState(GL.TEXTURE_COORD_ARRAY);

  glDisableClientState(GL.VERTEX_ARRAY);
  
  % Right eye display list done.
  glEndList;

  Screen('EndOpenGL', win);

  if hmd{handle}.useOverdrive
    % Overdrive enabled: Assign overdrive contrast scale factors for
    % rising (UpScale) and falling (DownScale) pixel color component
    % intensities wrt. previous rendered frame:
    if hmd{handle}.useOverdrive > 1
      % LUT based overdrive - signal to the shader via value > 1000:
      overdriveUpScale = 10000;
    else
      % Algorithmic overdrive:
      overdriveUpScale = hmd{handle}.overdriveUpScale;
    end

    overdriveDownScale = hmd{handle}.overdriveDownScale;

    % Perform a gamma / degamma pass on color values for a
    % gamma correction of 2.2 (hard-coded in the shader).
    % Overdrive is optimized to operate in gamma space. As
    % we normally render and process in linear space, we
    % need to convert linear -> gamma -> Overdrive -> linear.
    % A setting of 0 for overdriveGammaCorrect would disable
    % gamma->degamma and operate purely linear:
    overdriveGammaCorrect = hmd{handle}.overdriveGammaCorrect;
  else
    % Overdrive disabled:
    overdriveUpScale = 0;
    overdriveDownScale = 0;
    overdriveGammaCorrect = 0;
  end

  % Setup left eye shader:
  glsl = LoadGLSLProgramFromFiles([fileparts(mfilename('fullpath')) filesep 'OculusRiftCorrectionShader']);
  glUseProgram(glsl);
  glUniform1i(glGetUniformLocation(glsl, 'Image'), 0);
  glUniform1i(glGetUniformLocation(glsl, 'PrevImage'), 2);
  glUniform1i(glGetUniformLocation(glsl, 'OverdriveLUT'), 3);
  glUniform3f(glGetUniformLocation(glsl, 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
  glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVOffset'), hmd{handle}.uvOffsetLeft(1) * hmd{handle}.inputWidth, hmd{handle}.uvOffsetLeft(2) * hmd{handle}.inputHeight);
  glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVScale'), hmd{handle}.uvScaleLeft(1) * hmd{handle}.inputWidth, hmd{handle}.uvScaleLeft(2) * hmd{handle}.inputHeight);
  glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationStart'), 1, 1, hmd{handle}.eyeRotStartMatrixLeft);
  glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationEnd'), 1, 1, hmd{handle}.eyeRotEndMatrixLeft);
  hmd{handle}.shaderLeft = [glsl, glGetUniformLocation(glsl, 'EyeRotationStart'), glGetUniformLocation(glsl, 'EyeRotationEnd')];
  glUseProgram(0);

  % Insert it at former position of the old shader:
  posstring = sprintf('InsertAt%iShader', slot);
  
  % xOffset and yOffset encode the viewport location and size for the left-eye vs.
  % right eye view in the shared output window - or the source renderbuffer if both eyes
  % would be rendered into a shared texture. However, the meshes provided by the SDK
  % already encode proper left and right offsets for output, and the inputs are separate
  % textures for left and right eye, so using the offset is not needed. Also our correction
  % shader ignores the modelview matrix which would get updated with the "Offset:%i%i" blittercfg,
  % instead is takes normalized device coordinates NDC directly from the distortion mesh. Iow, not
  % only is xOffset/yOffset not needed, it would also be a no operation due to our specific shader.
  % We leave this here for documentation for now, in case we need to change our ways of doing this.
  %leftViewPort = hmd{handle}.viewportLeft
  blittercfg = sprintf('Blitter:DisplayListBlit:Handle:%i:Bilinear', gldLeft);
  Screen('Hookfunction', win, posstring, procchain, 'OculusVRClientCompositingShaderLeftEye', glsl, blittercfg);

  % Setup right eye shader:
  glsl = LoadGLSLProgramFromFiles([fileparts(mfilename('fullpath')) filesep 'OculusRiftCorrectionShader']);
  glUseProgram(glsl);
  if ~strcmpi(hmd{handle}.basicTask, 'Monoscopic')
    % Stereoscopic display: Source from right eye buffer:
    glUniform1i(glGetUniformLocation(glsl, 'Image'), 1);
  else
    % Monoscopic display: Source right eye image also from left-eye (aka mono) buffer:
    glUniform1i(glGetUniformLocation(glsl, 'Image'), 0);
  end

  glUniform1i(glGetUniformLocation(glsl, 'PrevImage'), 2);
  glUniform1i(glGetUniformLocation(glsl, 'OverdriveLUT'), 3);
  glUniform3f(glGetUniformLocation(glsl, 'OverdriveScales'), overdriveUpScale, overdriveDownScale, overdriveGammaCorrect);
  glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVOffset'), hmd{handle}.uvOffsetRight(1) * hmd{handle}.inputWidth, hmd{handle}.uvOffsetRight(2) * hmd{handle}.inputHeight);
  glUniform2f(glGetUniformLocation(glsl, 'EyeToSourceUVScale'), hmd{handle}.uvScaleRight(1) * hmd{handle}.inputWidth, hmd{handle}.uvScaleRight(2) * hmd{handle}.inputHeight);
  glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationStart'), 1, 1, hmd{handle}.eyeRotStartMatrixRight);
  glUniformMatrix4fv(glGetUniformLocation(glsl, 'EyeRotationEnd'), 1, 1, hmd{handle}.eyeRotEndMatrixRight);
  hmd{handle}.shaderRight = [glsl, glGetUniformLocation(glsl, 'EyeRotationStart'), glGetUniformLocation(glsl, 'EyeRotationEnd')];
  glUseProgram(0);

  % Insert it at former position of the old shader:
  posstring = sprintf('InsertAt%iShader', slot);
  blittercfg = sprintf('Blitter:DisplayListBlit:Handle:%i:Bilinear', gldRight);
  Screen('Hookfunction', win, posstring, procchain, 'OculusVRClientCompositingShaderRightEye', glsl, blittercfg);

  if hmd{handle}.useOverdrive
    if strcmpi(hmd{handle}.basicTask, 'Monoscopic')
      % Need a bufferflip command:
      Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:FlipFBOs', '');
    end

    [realw, realh] = Screen('Windowsize', win, 1);
    Screen('HookFunction', win, 'AppendBuiltin', 'FinalOutputFormattingBlit', 'Builtin:IdentityBlit', sprintf('Blitter:IdentityBlit:OvrSize:%i:%i', realw, realh));
    Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');

    woverdrive1 = Screen('OpenOffscreenwindow', win, 0, [0, 0, realw * 2, realh], [], 32);
    hmd{handle}.overdriveTex(1) = Screen('GetOpenGLTexture', woverdrive1, woverdrive1);
    woverdrive2 = Screen('OpenOffscreenwindow', win, 0, [0, 0, realw * 2, realh], [], 32);
    hmd{handle}.overdriveTex(2) = Screen('GetOpenGLTexture', woverdrive2, woverdrive2);
    hmd{handle}.lastOverdriveTex = 0;

    % Load precomputed overdrive lut into variable 'lut', then build a overdriveLut
    % texture out of it:
    load([fileparts(mfilename('fullpath')) filesep 'RiftDK2lut1.mat']);
    luttex = Screen('MakeTexture', win, lut, [], 32, [], 2);
    hmd{handle}.overdriveLut(1) = Screen('GetOpenGLTexture', win, luttex);

    load([fileparts(mfilename('fullpath')) filesep 'RiftDK2lut2.mat']);
    luttex = Screen('MakeTexture', win, lut, [], 32, [], 2);
    hmd{handle}.overdriveLut(2) = Screen('GetOpenGLTexture', win, luttex);
  end

  % TimeWarp or panel overdrive in use?
  if hmd{handle}.useTimeWarp || hmd{handle}.useOverdrive
    % Need to call the PsychOculusVR(1) callback to do needed setup work:
    posstring = sprintf('InsertAt%iMFunction', slot);
    cmdString = sprintf('PsychOculusVR(1, %i);', handle);
    Screen('Hookfunction', win, posstring, procchain, 'OculusVRTimeWarpSetup', cmdString);
    hmd{handle}.readyForWarp = 1;
  end

  % Need to call the PsychOculusVR(2) callback to do needed finalizer work:
  cmdString = sprintf('PsychOculusVR(2, %i);', handle);
  Screen('Hookfunction', win, 'AppendMFunction', 'LeftFinalizerBlitChain', 'OculusVRLatencyTesterSetup', cmdString);
  Screen('Hookfunction', win, 'Enable', 'LeftFinalizerBlitChain');

  % Need to call the end frame marker function of the Oculus runtime:
  cmdString = sprintf('PsychOculusVRCore(''EndFrameTiming'', %i);', handle);
  Screen('Hookfunction', win, 'PrependMFunction', 'ScreenFlipImpliedOperations', 'OculusVRPostPresentCallback', cmdString);
  Screen('Hookfunction', win, 'Enable', 'ScreenFlipImpliedOperations');

  % Does usercode request auto-closing the HMD or driver when the onscreen window is closed?
  if hmd{handle}.autoclose > 0
    % Attach a window close callback for Device teardown at window close time:
    if hmd{handle}.autoclose == 2
      % Shutdown driver completely:
      Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychOculusVR driver.', 'PsychOculusVR(''Close'');');
    else
      % Only close this HMD:
      Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychOculusVR driver.', sprintf('PsychOculusVR(''Close'', %i);', handle));
    end

    Screen('HookFunction', win, 'Enable', 'CloseOnscreenWindowPostGLShutdown');
  end

  % Need HSW display?
  if (hmd{handle}.hswdismiss >= 0) && isempty(getenv('PSYCH_OCULUS_HSWSKIP'))
    if IsWin
      % Windows doesn't distinguish keyboards, so don't query "all"
      % keyboards. This gives the same effect as on Linux/OSX, but avoids
      % use of PsychHID and potential "libusb not installed" warnings:
      kbddev = [];
    else
      kbddev = -1;
    end

    if bitand(hmd{myhmd.handle}.hswdismiss, 1)
      KbReleaseWait(kbddev);
    end

    dismiss = 0;
    if PsychOculusVRCore('GetHSWState', handle)
      % Yes: Display HSW text:
      hswtext = ['HEALTH & SAFETY WARNING\n\n' ...
                'Read and follow all warnings\n' ...
                'and instructions included with\n' ...
                'the Headset before use. Headset\n' ...
                'should be calibrated for each user.\n' ...
                'Not for use by children under 13.\n' ...
                'Stop use if you experience any\n' ...
                'discomfort or health reactions.\n\n' ...
                'More: www.oculus.com/warnings\n\n' ...
                'To acknowledge:\n'];

      if bitand(hmd{myhmd.handle}.hswdismiss, 1)
        hswtext = [hswtext 'Press a key\n'];
      end

      if bitand(hmd{myhmd.handle}.hswdismiss, 2)
        hswtext = [hswtext 'Click any mouse button\n'];
      end

      if bitand(hmd{myhmd.handle}.hswdismiss, 4)
        hswtext = [hswtext 'Slightly tap the headset'];
      end

      oldTextSize = Screen('TextSize', win, 16);
      Screen('SelectStereoDrawBuffer', win, 1);
      DrawFormattedText(win, hswtext, 'center', 'center', [0 255 0]);
      Screen('SelectStereoDrawBuffer', win, 0);
      DrawFormattedText(win, hswtext, 'center', 'center', [0 255 0]);
      Screen('TextSize', win, oldTextSize);
      Screen('Flip', win, [], 1);

      % Allow dismiss via tap to the HMD?
      if bitand(hmd{myhmd.handle}.hswdismiss, 4)
        % Enable tracking so we can allow user to dismiss HSW via a
        % slight tap to the HMD - accelerometers will do their thing:
        PsychOculusVRCore('Start', handle);
      end

      % Wait for dismiss via keypress, mouse button click or HMD tap:
      while PsychOculusVRCore('GetHSWState', handle, dismiss)
        % Allow dismiss via keypress?
        if bitand(hmd{myhmd.handle}.hswdismiss, 1) && KbCheck(kbddev)
          dismiss = 1;
        end

        % Allow dismiss via mouse click?
        if bitand(hmd{myhmd.handle}.hswdismiss, 2)
          [dummy1, dummy2, buttons] = GetMouse; %#ok<ASGLU>
          if any(buttons)
            dismiss = 1;
            while any(buttons)
              [dummy1, dummy2, buttons] = GetMouse; %#ok<ASGLU>
            end
          end
        end

        % Need to idle flip here to drive timewarp rendering in
        % case some stuff is enabled:
        Screen('Flip', win, [], 1);
      end

      if bitand(hmd{myhmd.handle}.hswdismiss, 1)
        KbReleaseWait(kbddev);
      end

      if bitand(hmd{myhmd.handle}.hswdismiss, 4)
        % Stop tracking for tap detection:
        PsychOculusVRCore('Stop', handle);
        WaitSecs(1);
      end

      % Clear HSW text:
      Screen('Flip', win);
    end
  end

  if ~isempty(strfind(hmd{myhmd.handle}.basicTask, 'Tracked3DVR'))
    % 3D head tracked VR rendering task: Start tracking as a convenience:
    PsychOculusVRCore('Start', handle);
  end

  % Return success result code 1:
  varargout{1} = 1;
  return;
end

% 'cmd' so far not dispatched? Let's assume it is a command
% meant for PsychOculusVRCore:
if (length(varargin) >= 1) && isstruct(varargin{1})
  myhmd = varargin{1};
  handle = myhmd.handle;
  [ varargout{1:nargout} ] = PsychOculusVRCore(cmd, handle, varargin{2:end});
else
  [ varargout{1:nargout} ] = PsychOculusVRCore(cmd, varargin{:});
end

return;

end