/usr/share/psychtoolbox-3/PsychGLImageProcessing/DisplayUndistortionBezier.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | function DisplayUndistortionBezier(caliboutfilename, xnum, ynum, subdivision, imagename, screenid, stereomode, winrect, calibinfilename, refimagename)
% DisplayUndistortionBezier([caliboutfilename] [, xnum=2][, ynum=2][, subdivision=100][, imagename=default][, screenid=max][, stereomode=0][, winrect=[]][, calibinfilename][, refimagename])
%
% Geometric display calibration procedure for geometric undistortion of
% distorted displays. Needs graphics hardware with support for PTB imaging
% pipeline.
%
% IMPORTANT: While this routine is easy to use, it is also limited! The
% Banks Vision Lab (University of California, Berkeley) has contributed a
% much more powerful and flexible calibration procedure.
%
% Read "help DisplayUndistortionBVL" for help and info on that one.
%
%
% Many display devices, e.g., video beamers and most CRT displays, cause
% some amount of spatial distortion to your visual stimuli during display.
% Psychtoolbox can "undistort" your visual stimuli for you: At stimulus
% onset time, PTB applies a geometric warping transformation to your
% stimulus which is meant to counteract or cancel out the geometric
% distortion caused by your display device. If both PTB's warp transform
% and the distortion transform of the display match, your stimulus will
% show up undistorted on the display device.
%
% For this to work, PTB needs two things:
%
% 1. Recent graphics hardware with support for the PTB imaging pipeline:
% See our Wiki for recommendations. However, all ATI cards starting with
% Radeon 9500 and all NVidia cards of type GeForce-FX5200 and later, as
% well as the Intel-GMA 950 and later should be able to do it, although
% more recent cards will have a higher performance.
%
% 2. A calibration file that defines the warp transformation to apply. Your
% experiment script will load that file into Screen's "warp engine" at the
% beginning of your experiment.
%
% This routine allows you to create such a calibration file in an
% interactive procedure: It applies some warp transformation, shows the
% result on your display, and you can change and tweak the transformation
% until it fits your needs, ie. it nicely undistorts your display. Then the
% corresponding calibration file is saved for later use with that display.
%
% As the name suggests, DisplayUndistortionBezier supports a continous
% mapping (x', y') = Beziersurface(x, y) from input pixel locations (x,y)
% in your stimulus image to output locations (x', y') on your display. This
% mapping is defined by a Bezier surface (see Chapter 12 "Evaluators and
% NURBS" or any other textbook about NURBS for a description of their
% mathematical properties).
%
% The shape of the Bezier surface is defined by the location of a couple of
% control points, which you can move around during the calibration
% procedure to modify the shape of the surface. You can select the number
% of control points to use: More control points (=degrees of freedom) allow
% for more flexibility and finer control, but make the calibration procedure
% more tedious for you. Their number doesn't affect computation time when
% your experiment script is running.
%
% How to use:
%
% 1. Start the script, providing all parameters that you don't want to have
% at default settings (all parameters have defaults):
%
% 'caliboutfilename' Name of the file to which calibration results should
% be stored. Defaults to 'BezierCalibdata.mat' in your current working directory.
%
% 'xnum' and 'ynum' Number of horizontal and vertical control points to
% use. Higher numbers mean finer and more flexible control, but also a more
% tedious calibration for you. Their number doesn't affect runtime
% behaviour of your stimulus script. For simple trapezoid correction or
% translation/rotation, the minimum allowed number of control points xnum=2
% and ynum=2 is sufficient - this is the default. For most other purposes
% a 3 by 3 grid of control points xnum=3 and ynum=3 may suffice. However,
% you are not limited by any upper bound...
%
% 'subdivision' Number of vertical and horizontal subdivisions of the
% bezier surface - the grid resolution: Higher numbers mean higher accuracy
% but also higher computational overhead in your script. However, recent
% graphics hardware shouldn't have much problems handling reasonably sized
% meshes. Defaults to a 100 by 100 grid.
%
% 'imagename' Name of the image file for the test image to be rendered as
% an alternative to the mesh grid. We default to our standard 'konintjes'
% image.
%
% 'screenid' screen id of the target display for calibration.
% max(Screen('Screens')) by default.
%
% 'stereomode' Stereomode for which calibration should be applied: Defaults
% to 0 == Mono mode. [6 1] would mean: "Use stereomode 6 (Anaglyph stereo)
% and the right-eye view (1)".
%
% 'winrect' Size of the calibration window: Defaults to full-screen.
%
% 'calibinfilename' Defaults to none. If provided, results of a previous
% calibration are loaded from file 'calibinfilename' instead of starting
% from scratch. Useful for incremental calibration.
%
% 2. After startup, the script will display a grid onscreen, which
% represents the displayed area after calibration. Your job is to tweak,
% shift and bend that grid so that it looks as flat and rectilinear as
% possible on your display from the viewpoint of your subject. The grid has
% green control points placed at regular intervals. These are the tweakable
% points that you can move: Moving these control points will bend the
% calibration grid in a smooth fashion, as if the grid would be attached to
% the points with some springs.
%
% Mouse operation:
%
% To select a control point, just move the mouse pointer close to it, then
% press a mouse key. The selected control point will change color to yellow
% and a yellow line will connect its current position to its original
% position in the uncalibrated display.
%
% You can move the point by moving the mouse pointer while keeping the
% mouse key pressed.
%
%
% Keys and their meaning:
%
% You can also move the currently selected control point via the Cursor
% keys, at slow speed, or at a faster speed when holding down the shift
% key.
%
% Press the 'space' key to toggle between grid display and display of the
% test image 'imagename'. A good way to test the calibration would be to
% load a screenshot of one of your typical stimuli as image file
% 'imagename'.
%
% You finish the calibration and write it into a calibration file by
% pressing the ESCape key. This will end the calibration script.
% History:
% 07/16/07 Initial (incomplete) version. (MK)
% Running on PTB-3? Abort otherwise:
PsychDefaultSetup(1);
% No need for synctests here...
oldsynclevel = Screen('Preference', 'SkipSyncTests', 1);
KbName('UnifyKeyNames');
UpArrow = KbName('UpArrow');
DownArrow = KbName('DownArrow');
LeftArrow = KbName('LeftArrow');
RightArrow = KbName('RightArrow');
esc = KbName('ESCAPE');
shift = KbName('RightShift');
space = KbName('space');
if nargin < 1 || isempty(caliboutfilename)
caliboutfilename = 'BezierCalibdata.mat';
fprintf('Warning: No name for calibration file provided. Using default name...\n');
end
fprintf('Name of calibration result file: %s\n', caliboutfilename);
if exist(caliboutfilename, 'file')
answer = input('This file already exists. Overwrite it [y/n]?','s');
if ~strcmp(lower(answer), 'y') %#ok<STCI>
error('Calibration aborted. Please choose a different name for calibration result file.');
end
end
if nargin < 2 || isempty(xnum)
xnum = 2;
end
if xnum < 2
fprintf('xnum set to an invalid value (smaller than 2): Reset to 2...\n');
xnum = 2;
end
if nargin < 3 || isempty(ynum)
ynum = 2;
end
if ynum < 2
fprintf('ynum set to an invalid value (smaller than 2): Reset to 2...\n');
ynum = 2;
end
if nargin < 4 || isempty(subdivision)
subdivision = 100;
end
fprintf('Will use %i subdivisions of calibration warp mesh for undistortion.\n', subdivision);
if nargin < 5 || isempty(imagename)
imagename = [PsychtoolboxRoot 'PsychDemos/konijntjes1024x768.jpg'];
end
if nargin < 6 || isempty(screenid)
screenid = max(Screen('Screens'));
end
if nargin < 7 || isempty(stereomode)
viewid = 0;
stereomode = 0;
else
viewid = stereomode(2);
stereomode = stereomode(1);
end
if nargin < 8 || isempty(winrect)
winrect = [];
end
if nargin < 9
calibinfilename = [];
end
if nargin < 10
refimagename = [];
end
if ~isempty(refimagename)
refimg = imread(refimagename);
end
if nargin >= 8 && ~isempty(winrect) && strcmpi(winrect, 'REFIMAGE')
if ~isempty(refimagename)
winrect = [0, 0, size(refimg, 2), size(refimg, 1)];
else
winrect = [];
end
end
InitializeMatlabOpenGL([], [], 1);
win = Screen('OpenWindow', screenid, 0, winrect, [], [], stereomode, [], mor(kPsychNeedFastBackingStore, kPsychNeedOutputConversion));
if ~isempty(refimagename)
reftex = Screen('MakeTexture', win, refimg);
else
reftex = [];
end
% Allocate display list handle and build initial warpstruct:
gld = glGenLists(1);
warpstruct.glsl = [];
warpstruct.gld = gld;
PsychImaging('PrepareConfiguration');
PsychImaging('AddTask', 'FinalFormatting', 'GeometryCorrection', warpstruct);
PsychImaging('FinalizeConfiguration');
PsychImaging('PostConfiguration', win);
img = imread(imagename);
tex = Screen('MakeTexture', win, img);
Screen('Flip', win);
Screen('SelectStereoDrawBuffer', win, viewid);
% Determine width and height of window:
[w, h] = Screen('WindowSize', win);
% Read parameters from previous calibration file?
if ~isempty(calibinfilename)
% Old file provided: Setup from that file:
calib = load(calibinfilename);
if ~strcmp(calib.warptype, 'BezierDisplayList')
Screen('CloseAll');
error('Provided input calibration file %s does not describe a calibration created with this routine!', calibinfilename);
end
subdivision = calib.subdivision;
frompts = calib.frompts;
topts = calib.topts;
else
% No old file: Initialize based on call arguments:
% Setup initial mapping table for texture coordinates (source image control
% points):
frompts = zeros(2, 2, 2);
frompts(:, 1, 1) = [0 h];
frompts(:, 1, 2) = [w h];
frompts(:, 2, 2) = [w 0];
frompts(:, 2, 1) = [0 0];
% Setup initial mapping table for vertex coordinates (target image control
% points). We start with a uniform rectilinear spacing of points:
topts = zeros(3, ynum, xnum);
dx = w / (xnum - 1);
dy = h / (ynum - 1);
for y=1:ynum
for x=1:xnum
topts(1, y, x) = ((x-1) * dx);
topts(2, y, x) = ((y-1) * dy);
end
end
end
% Setup a 2D parametric grid with 'subdivision' subdivisions:
glMapGrid2d(subdivision, 0, 1, subdivision, 0, 1);
% Enable Bezier evaluators:
glEnable(GL.MAP2_VERTEX_3);
glEnable(GL.MAP2_TEXTURE_COORD_2);
% Establish mapping for texture coordinates:
glMap2d(GL.MAP2_TEXTURE_COORD_2, 0, 1, 2, size(frompts,2), 0, 1, 2*size(frompts,2), size(frompts,3), frompts);
% Make sure all mouse buttons are released:
oldbuttons = 1;
while oldbuttons
[xm ym oldbuttons] = GetMouse(win);
oldbuttons = any(oldbuttons);
end
maxx = -1;
maxy = -1;
oldtopts = topts;
applycalib = 0;
% Prevent keypresses from spilling into Matlab window:
ListenChar(2);
% Calibration loop: Runs until keypress:
while 1
% Setup mapping based on current control point matrix for destination
% points:
glMap2d(GL.MAP2_VERTEX_3, 0, 1, 3, size(topts,2), 0, 1, 3*size(topts,2), size(topts,3), topts);
% Drawing color for calibration grid is red:
glColor3f(1, 0, 0);
if applycalib
% Build a display list that corresponds to the current calibration:
glNewList(gld, GL.COMPILE);
% Compute the mesh based on current mappings:
glEvalMesh2(GL.FILL, 0, subdivision, 0, subdivision);
% List ready - and already updated in the imaging pipeline:
glEndList;
% Draw test image to backbuffer:
Screen('FrameRect', win, [255 0 0], [1 1 w-1 h-1]);
Screen('DrawTexture', win, tex);
% Enable pipeline: It will use the computed calibration:
Screen('HookFunction', win, 'Enable', 'FinalOutputFormattingBlit');
% The next Screen('Flip') will show the testimage with calibration
% applied...
else
% Visualization of the calibration grid requested.
% Draw backdrop image, if there is one:
if ~isempty(reftex)
Screen('DrawTexture', win, reftex, [], Screen('Rect', reftex));
% Reset drawing color for calibration grid to red:
glColor3f(1, 0, 0);
end
% Draw calibration grid:
glEvalMesh2(GL.LINE, 0, subdivision, 0, subdivision);
% Disable pipeline so the mesh gets shown one-to-one onscreen:
Screen('HookFunction', win, 'Disable', 'FinalOutputFormattingBlit');
end
% Draw control points in green:
for y=1:size(topts, 2)
for x=1:size(topts, 3)
Screen('DrawDots', win, topts(1:2, y, x), 10, [0 255 0]);
end
end
% Draw currently selected control point and its connecting line to
% initial position in yellow:
if maxx~=-1
Screen('DrawDots', win, topts(1:2, maxy, maxx), 10, [255 255 0]);
Screen('DrawLine', win, [255 255 0], topts(1, maxy, maxx), topts(2, maxy, maxx), oldtopts(1, maxy, maxx), oldtopts(2, maxy, maxx));
end
% Show it:
Screen('Flip', win);
% Query mouse:
[xm ym buttons] = GetMouse(win);
buttons = any(buttons);
if buttons
% Mouse button pressed. First press?
if oldbuttons
% Nope. This is an update of the control point location:
topts(1, maxy, maxx) = xm;
topts(2, maxy, maxx) = ym;
else
% Yes. Find closest controlpoint and select it as active one:
maxdist = inf;
maxx = -1;
maxy = -1;
for y=1:size(topts, 2)
for x=1:size(topts, 3)
dx = xm - topts(1, y, x);
dy = ym - topts(2, y, x);
d = sqrt(dx*dx + dy*dy);
if d < maxdist
maxdist = d;
maxx = x;
maxy = y;
end
end
end
end
end
% Store old buttons state:
oldbuttons = buttons;
% Check keyboard:
[isdown secs keycode] = KbCheck;
if isdown
if maxx~=-1
% Holding down shift increases the stepwidth of keyboard based
% control point movements:
if keycode(shift)
delta = 1;
else
delta = 0.1;
end
% Movement of current selected controlpoint via cursor keys:
if keycode(UpArrow)
topts(2, maxy, maxx) = topts(2, maxy, maxx) - delta;
end
if keycode(DownArrow)
topts(2, maxy, maxx) = topts(2, maxy, maxx) + delta;
end
if keycode(LeftArrow)
topts(1, maxy, maxx) = topts(1, maxy, maxx) - delta;
end
if keycode(RightArrow)
topts(1, maxy, maxx) = topts(1, maxy, maxx) + delta;
end
end
% Space toggles between grid visualization and visualization of
% applied calibration:
if keycode(space)
applycalib = 1 - applycalib;
while KbCheck; end;
end
% ESCape key marks end of calibration procedure:
if keycode(esc)
break;
end
end
end
% End of calibration.
% Reenable Matlabs keyboard handling:
ListenChar(0);
% Reenable sync tests:
Screen('Preference', 'SkipSyncTests', oldsynclevel);
% Disable mesh evaluators:
glDisable(GL.MAP2_VERTEX_3);
glDisable(GL.MAP2_TEXTURE_COORD_2);
% Writeout of calibration/undistortion matrices:
% Define type of mapping for this calibration method:
warptype = 'BezierDisplayList'; %#ok<NASGU>
% Save relevant calibration variables to file 'caliboutfilename':
save(caliboutfilename, 'warptype', 'subdivision', 'frompts', 'topts', '-mat', '-V6');
% Close Display:
Screen('CloseAll');
% Done.
return;
|