/usr/share/psychtoolbox-3/PsychGLImageProcessing/CreateDisplayWarp.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | function [warpstruct, filterMode] = CreateDisplayWarp(window, calibfilename, showCalibOutput, varargin)
% [warpstruct, filterMode] = CreateDisplayWarp(window, calibfilename [, showCalibOutput=0]);
%
% Helper routine for Geometric display undistortion mapping, not to be
% called inside normal PTB scripts!
%
% This function reads a display calibration file 'calibfilename' and builds
% a "geometric warp function" based on the calibration information in
% 'calibfilename' for the onscreen window with handle 'window'. It returns
% a struct 'warpstruct' that defines the created warp function. You could
% pass this 'warpstruct' as a parameter to the Psychtoolbox command...
%
% PsychImaging('AddTask', viewchannel, 'GeometryCorrection', warpstruct);
%
% However, you normally do not call this routine directly from your script. Its
% called internally by the PsychImaging() command...
%
% PsychImaging('AddTask', viewchannel, 'GeometryCorrection', calibfilename);
%
% ...in order to setup PTB's imaging pipeline for realtime geometry
% correction, based on the calibration info in the file 'calibfilename'.
%
% Example: You created a calibration file 'mycalib.mat' to undistort the
% left view display of a stereo setup. Then you could apply this
% undistortion function via the following setup code:
%
% PsychImaging('PrepareConfiguration');
% PsychImaging('AddTask', 'LeftView', 'GeometryCorrection', 'mycalib.mat');
% window = PsychImaging('OpenWindow', screenid);
%
% This would open an onscreen window just as window=Screen('OpenWindow', screenid);
% would do. It would configure the window for automatic undistortion based
% on the data in 'mycalib.mat'.
%
% Psychtoolbox provides multiple different interactive setup routines that
% allow you to create a calibration file for your setup. Currently the
% following routines are provided:
%
% DisplayUndistortionBVL.m -- Undistortion based on 3rd order polynomial
% surface. This is the recommended calibration procedure for most cases -
% Proven in real-world use on many different display types.
%
% When used with DisplayUndistortionBVL, the GeometryCorrection takes
% up to three optional parameters:
%
% PsychImaging('AddTask', 'LeftView', 'GeometryCorrection', 'mycalib.mat' [, debug=0][, xsampling=73][,ysampling=53][, replicate=[1,1]]);
% xsampling and ysampling specify the horizontal and vertical number of subdivisions
% for the warpmesh that is used for undistortion - higher numbers give more
% close approximations but increase drawing time. replicate is a vector which
% describes how often the mesh should be replicated into horizontal and vertical
% direction. Values other than the default [1,1] only make sense for special display
% devices like ProPixx.
%
% DisplayUndistortionBezier.m -- Undistortion based on a NURBS surface (Non
% uniform rational bezier spline surface). A simple procedure.
%
% DisplayUndistortionHalfCylinder.m -- Undistortion for projection of
% images to a half-cylindrical projection surface.
%
% DisplayUndistortionSphere.m -- Undistortion for projection of
% images to a spherical or half-spherical projection surface.
%
% DisplayUndistortionCSV.m -- Import undistortion information from
% a .csv file with a warp mesh description suitable for use with NVidia's
% Warp API. This creates a compatible display warping to use of that NVidia
% technology.
%
% History:
% 19.7.2007 Written (MK).
% 17.2.2008 Added undistortion method donated by the Banks Vision Lab (MK).
% 10.3.2008 Fixed image inversion bug in BVL calibration (MK).
% 2.5.2008 Add support for bilinear texture filter shader to handle float
% framebuffers on hw that doesn't filter float textures (MK).
% 13.4.2009 Improved support for bilinear texture filter shaders. (MK).
% Optional 'Query' command to query last warpstruct. (MK).
% Support for half-cylinder projection. (MK).
% 25.8.2011 Adapt code for sphere projection undistortion to new convention
% of Ingmar Schneider's shader code. (MK).
% 27.7.2012 Add support for DisplayUndistortionCSV() aka "NVidia Warp-API" format (MK).
% 14.3.2015 Add support for Propixx and similar devices via mesh replication to the BVL method (MK).
% 24.7.2015 Add support for scal.useUnitDisplayCoords in CSV method. (MK)
% 24.7.2015 Fix brokenness in CSV method introduced at 14.3.2015 as regression with mesh replication. (MK)
% Global GL handle for access to OpenGL constants needed in setup:
global GL;
% Cache last generated warpstruct, so code can easily query it:
persistent oldwarpstruct;
if isempty(GL)
sca;
error('PTB internal error: GL struct not initialized?!?');
end
% Special case of simple query of last created 'warpstruct'?
if nargin == 1
if ~ischar(window)
error('Single provided argument is not a command string!');
end
if ~strcmpi(window, 'Query')
error('Single provided argument is not the command string ''Query''!');
end
% "Query" command recognized. Return last created warpstruct:
warpstruct = oldwarpstruct;
return;
end
if nargin < 2
sca;
error('PTB internal error: Must provide all parameters!');
end
if nargin < 3 || isempty(showCalibOutput)
showCalibOutput = 0;
end
% Is calibfilename a struct with calibration settings, or a filename of a
% calibration file?
if isstruct(calibfilename)
% A struct: Assign it directly.
calib = calibfilename;
else
% Supposedly the filename of a calibration file:
if ~ischar(calibfilename)
error('In setup of geometry undistortion: Parameter "calibfilename" is not a filename string!');
end
% Load calibration file:
if ~exist(calibfilename, 'file')
sca;
error('In setup of geometry undistortion: No such calibration file %s!', calibfilename);
end
calib = load(calibfilename);
end
% Preinit warpstruct:
warpstruct.glsl = [];
warpstruct.gld = [];
% Assume no need for texture filter shader:
needFilterShader = 0;
filterMode = ':Bilinear';
% Do we need a GLSL texture filter shader? We'd need one if the given
% gfx-hardware is not capable of filtering the input image buffer:
winfo = Screen('GetWindowInfo', window);
effectivebpc = 8;
if winfo.BitsPerColorComponent >= 16
% Window is a floating point window with at least 16bpc.
effectivebpc = 16;
if winfo.BitsPerColorComponent >= 32
% All buffers are 32 bpc for certain:
effectivebpc = 32;
end
if (winfo.BitsPerColorComponent == 16)
% First buffer is 16 bpc, following ones could be 32 bpc:
if bitand(winfo.ImagingMode, kPsychUse32BPCFloatAsap)
% All following buffers are 32bpc float. In the tradition of
% "better safe than sorry", we assume that the warp op will use
% one of the 32 bpc float buffers as input.
effectivebpc = 32;
end
end
end
% Highres input buffer?
if effectivebpc > 8
% Yes. Our input is a float texture. Check if the hardware can filter
% textures of effectivebpc bpc in hardware:
if effectivebpc > winfo.GLSupportsFilteringUpToBpc
% Hardware not capable of handling such deep textures. We need to
% create and attach our own bilinear texture filter shader:
needFilterShader = 1;
filterMode = '';
end
end
% Actual setup code for display warp struct.
% ==========================================
% Type of setup depends on type of calibration:
switch(calib.warptype)
case {'HalfCylinderProjection', 'SphereProjection'}
% Build combo of displaylist and GLSL shader for projection of flat
% screen image onto a half-cylinder or sphere:
% Query effective onscreen window size:
[winWidth, winHeight] = Screen('WindowSize', window);
% Build the unwarp mesh display list within the OpenGL context of
% Psychtoolbox:
Screen('BeginOpenGL', window, 1);
% Build a display list that corresponds to the current calibration:
gld = glGenLists(1);
glNewList(gld, GL.COMPILE);
% "Draw" the warp-mesh once, so it gets recorded in the display list:
if isempty(calib.rotationAngle)
calib.rotationAngle = 0;
end
if isempty(calib.inSize)
calib.inSize = [winWidth, winHeight];
end
if isempty(calib.inOffset)
calib.inOffset = [0, 0];
end
if isempty(calib.outOffset)
calib.outOffset = [0, 0];
end
if isempty(calib.outSize)
calib.outSize = [winWidth, winHeight];
end
if isempty(calib.Wflat)
calib.Wflat = 44;
end
if isempty(calib.R)
calib.R = 32;
end
% No color gain correction:
glColor4f(1,1,1,1);
glTranslatef(calib.outOffset(1), calib.outOffset(2), 0);
% Apply some rotation correction for misaligned displays:
glTranslatef(calib.outSize(1)/2, calib.outSize(2)/2, 0);
glRotatef(calib.rotationAngle, 0.0, 0.0, 1.0);
glTranslatef(-calib.outSize(1)/2, -calib.outSize(2)/2, 0);
% Draw a single default quad:
glBegin(GL.QUADS)
glTexCoord2f(0,calib.outSize(2));
glVertex2f(0,0);
glTexCoord2f(calib.outSize(1),calib.outSize(2));
glVertex2f(calib.outSize(1),0);
glTexCoord2f(calib.outSize(1),0);
glVertex2f(calib.outSize(1),calib.outSize(2));
glTexCoord2f(0,0);
glVertex2f(0,calib.outSize(2));
glEnd;
% List ready - and already updated in the imaging pipeline:
glEndList;
Screen('EndOpenGL', window);
% Assign display list to output warpstruct:
warpstruct.gld = gld;
if strcmpi(calib.warptype, 'SphereProjection')
% Use spherical projection shader:
warpstruct.glsl = LoadGLSLProgramFromFiles('SphereProjectionShader');
else
% Use cylindrical projection shader:
warpstruct.glsl = LoadGLSLProgramFromFiles('CylinderProjectionShader');
end
glUseProgram(warpstruct.glsl);
glUniform1i(glGetUniformLocation(warpstruct.glsl, 'doFilter'), needFilterShader);
glUniform1i(glGetUniformLocation(warpstruct.glsl, 'Image'), 0);
glUniform2f(glGetUniformLocation(warpstruct.glsl, 'inSize'), calib.inSize(1), calib.inSize(2));
glUniform2f(glGetUniformLocation(warpstruct.glsl, 'inOffset'), calib.inOffset(1), calib.inOffset(2));
glUniform2f(glGetUniformLocation(warpstruct.glsl, 'outSize'), calib.outSize(1), calib.outSize(2));
if strcmpi(calib.warptype, 'SphereProjection')
% Additional parameters for sphere projection:
glUniform1f(glGetUniformLocation(warpstruct.glsl, 'Wflat'), calib.Wflat);
glUniform1f(glGetUniformLocation(warpstruct.glsl, 'R'), calib.R);
end
glUseProgram(0);
% Ready.
case {'BezierDisplayList'}
% Build warp display list for Bezier surface based
% calibration/remapping:
Screen('BeginOpenGL', window, 1);
gld = glGenLists(1);
% Build a display list that corresponds to the current calibration:
glNewList(gld, GL.COMPILE);
glColor4f(1,1,1,1);
subdivision = calib.subdivision;
% Setup a 2D parametric grid with 'subdivision' subdivisions:
glMapGrid2d(subdivision, 0, 1, subdivision, 0, 1);
% Enable Bezier evaluators:
glEnable(GL.MAP2_VERTEX_3);
glEnable(GL.MAP2_TEXTURE_COORD_2);
% Setup initial mapping table for texture coordinates (source image control
% points):
frompts = calib.frompts;
% Establish mapping for texture coordinates:
glMap2d(GL.MAP2_TEXTURE_COORD_2, 0, 1, 2, size(frompts,2), 0, 1, 2*size(frompts,2), size(frompts,3), frompts);
% Establish mapping for vertex coordinates:
topts = calib.topts;
% Setup mapping based on current control point matrix for destination
% points:
glMap2d(GL.MAP2_VERTEX_3, 0, 1, 3, size(topts,2), 0, 1, 3*size(topts,2), size(topts,3), topts);
% Compute the mesh based on current mappings:
glEvalMesh2(GL.FILL, 0, subdivision, 0, subdivision);
% Disable mesh evaluators:
glDisable(GL.MAP2_VERTEX_3);
glDisable(GL.MAP2_TEXTURE_COORD_2);
% List ready - and already updated in the imaging pipeline:
glEndList;
% Assign display list to output warpstruct:
warpstruct.gld = gld;
% Ready.
Screen('EndOpenGL', window);
case {'BVLDisplayList'}
% Build warp display list for calibration/remapping method
% donated by the Banks Vision Lab:
% Query effective onscreen window size:
[winWidth, winHeight] = Screen('WindowSize', window);
% Additional optional parameters provided?
xLoomSize = [];
yLoomSize = [];
if nargin >= 5
% At least two additional parameters. Really?
if ~isempty(varargin{1})
xLoomSize = varargin{1};
end
if ~isempty(varargin{2})
yLoomSize = varargin{2};
end
end
if (length(varargin) >= 3) && ~isempty(varargin{3})
% Subdivision/Replication [xdiv, ydiv] given. We shall
% generate a calibration display list which only has
% 1/xdiv the window widht, 1/ydiv the window height,
% but is replicated xdiv x ydiv times. E.g., a [2,2]
% subdivision will split the window into 4 quadrants and
% apply the undistortion independently to each quadrants.
% This is, e.g., useful for special display modes of special
% display devices like the ProPrixx.
subdiv = varargin{3};
if ~length(subdiv) == 2 || ~isnumeric(subdiv)
error('CreateDisplayWarp: Provided optional subdiv parameter is not a [xrep, yrep] vector as required.');
end
xrep = subdiv(1);
yrep = subdiv(2);
if xrep ~=round(xrep) || yrep ~= round(yrep)
error('CreateDisplayWarp: Provided subdiv parameter [xrep, yrep] does not contain integral values as required.');
end
% Adapt width and height of target area for calibration:
winWidth = winWidth / xrep;
winHeight = winHeight / yrep;
else
xrep = 1;
yrep = 1;
end
% Compute vertex- and texcoord-arrays that define the mesh
% of quadrilaterals which should be rendered (with the stimulus
% texture applied) to create the undistortion warp:
[xyzcalibpos, xytexcoords] = BVLComputeWarpMesh(winWidth, winHeight, calib.scal, showCalibOutput, xLoomSize, yLoomSize, xrep, yrep);
% Build the unwarp mesh display list within the OpenGL context of
% Psychtoolbox:
Screen('BeginOpenGL', window, 1);
% Build a display list that corresponds to the current calibration:
gld = glGenLists(1);
glNewList(gld, GL.COMPILE);
% "Draw" the warp-mesh once, so it gets recorded in the display list:
glColor4f(1,1,1,1);
glEnableClientState(GL.VERTEX_ARRAY);
glVertexPointer(2, GL.DOUBLE, 0, xyzcalibpos);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.DOUBLE, 0, xytexcoords);
glDrawArrays(GL.QUADS, 0, length(xyzcalibpos)/2);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glDisableClientState(GL.VERTEX_ARRAY);
% List ready - and already updated in the imaging pipeline:
glEndList;
Screen('EndOpenGL', window);
% Assign display list to output warpstruct:
warpstruct.gld = gld;
% Ready.
case {'CSVDisplayList'}
% Build warp display list for a calibration/remapping method that
% is compatible with the method used, e.g., by NVidia's Warp API:
% Query effective onscreen window size:
[winWidth, winHeight] = Screen('WindowSize', window);
% Compute vertex- and texcoord-arrays that define the mesh
% of quadrilaterals which should be rendered (with the stimulus
% texture applied) to create the undistortion warp:
[xyzcalibpos, xytexcoords] = CSVComputeWarpMesh(winWidth, winHeight, calib.scal, showCalibOutput);
% Build the unwarp mesh display list within the OpenGL context of
% Psychtoolbox:
Screen('BeginOpenGL', window, 1);
% Build a display list that corresponds to the current calibration:
gld = glGenLists(1);
glNewList(gld, GL.COMPILE);
% "Draw" the warp-mesh once, so it gets recorded in the display list:
glColor4f(1,1,1,1);
glEnableClientState(GL.VERTEX_ARRAY);
glVertexPointer(2, GL.DOUBLE, 0, xyzcalibpos);
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.DOUBLE, 0, xytexcoords);
glDrawArrays(GL.QUADS, 0, length(xyzcalibpos)/2);
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
glDisableClientState(GL.VERTEX_ARRAY);
% List ready - and already updated in the imaging pipeline:
glEndList;
Screen('EndOpenGL', window);
% Assign display list to output warpstruct:
warpstruct.gld = gld;
% Ready.
otherwise
sca;
error('Unknown calibration method id: %s!', calib.warptype);
end
% Need a filtershader and don't have one assigned yet?
if (needFilterShader > 0) && isempty(warpstruct.glsl)
% Yes. Load, create and assign our default bilinear texture filter
% shader:
warpstruct.glsl = LoadGLSLProgramFromFiles('BilinearTextureFilterShader');
glUseProgram(warpstruct.glsl);
glUniform1i(glGetUniformLocation(warpstruct.glsl, 'Image'), 0);
glUseProgram(0);
end
% Cache created warptstruct for later queries:
oldwarpstruct = warpstruct;
% Done. Return the warpstruct:
return;
% --- Helper routines for setup of the calibration method 'BVLDisplayList' ---
function [xyzcalibpos, xytexcoords] = BVLComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput, xLoomSize, yLoomSize, xrep, yrep)
% [xyzcalibpos, xytexcoords] = BVLComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput, xLoomSize, yLoomSize, xrep, yrep)
%
% Internal helper routine: Called by CreateDisplayWarp.m, which is in turn
% called by PsychImaging.m. Implements the geometric display calibration
% and undistortion procedure developed by the Banks Vision Lab at UC
% Berkeley.
%
% Use the calibration information stored in 'scal', together with the
% current 'windowWidth' and 'windowHeight' of the onscreen window to
% calibrate and compute vectors of vertex coordinates and texture
% coordinates for a mesh that performs the proper "display undistortion".
%
% History:
% 02/17/08 Derived from BFloadtimecalib.m with minimal modifications. (MK)
%
% Check resolution against the calibration file resolutions:
if ((windowWidth * xrep) ~= RectWidth(scal.rect)) || ((windowHeight * yrep) ~= RectHeight(scal.rect))
fprintf('\n\nCALIBRATION WARNING!\n');
fprintf('Onscreen window resolution (%d, %d) does not match ', ...
windowWidth, windowHeight);
fprintf('the resolution used in the calibration file (%d, %d)!\n', ...
RectWidth(scal.rect), RectHeight(scal.rect));
fprintf('Using the window resolution to draw the stimuli, scaling down proportionally.\n');
fprintf('\n\n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calibration
% Generate the calibration vertices here so we only do this once.
% We calculate the uncalibrated vertex coordinates, in screenspace
% (pixel coordinates), then pass them into our fitting routine to
% interpolate the calibrated coordinates.
% PreCompute vertex values
if isempty(xLoomSize)
xLoomSize = 73; %length(XVALUES) %Can reduce loom resolution to speed up calib
end
if isempty(yLoomSize)
yLoomSize = 53; %length(YVALUES)
end
% Compute sampling positions for the calibration data:
xStep = RectWidth(scal.rect) / (xLoomSize-1);
yStep = RectHeight(scal.rect) / (yLoomSize-1);
% Compute scale factor in case the output window size doesn't
% match the size used for generating the scal calibration data:
scaleX = windowWidth / RectWidth(scal.rect);
scaleY = windowHeight / RectHeight(scal.rect);
numVerts = xLoomSize * yLoomSize;
% vertexCoords = Nx2 array, N rows of [x y] pairs.
vertexCoords = zeros(numVerts, 2);
vertexCoordsFit = zeros(numVerts, 2);
% Calculate the 'uncalibrated' vertex coordinates
for y=1:yLoomSize
for x=1:xLoomSize
index = ((y-1) * xLoomSize) + x;
xCoord = (x-1) * xStep;
yCoord = (y-1) * yStep;
vertexCoords(index, :) = [xCoord yCoord];
%fprintf('(%f, %f)\n', vertexCoords(index, 1), vertexCoords(index, 2));
end
end
% Some debug plots, if requested:
if showCalibOutput
figure(9)
hold off
plot(scal.XCALIBDOTS, scal.YCALIBDOTS, 'b.')
hold on
plot(scal.SELECTXCALIBDOTS, scal.SELECTYCALIBDOTS, 'r.')
size(scal.XCALIBDOTS)
size(scal.YCALIBDOTS)
size(scal.SELECTXCALIBDOTS)
size(vertexCoords(:,1))
size(vertexCoords(:,2))
end
% Fit mesh vertices to locations of calibrated points - Use Matlabs
% griddata fitting and interpolation routine:
if ~IsOctave
% Matlab: Use 'v4' method - the interpolation method used by Matlab V4
% for interpolation:
vertexCoordsFit(:,1)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTXCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2), 'v4'); %#ok<*GRIDD>
vertexCoordsFit(:,2)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTYCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2), 'v4');
else
% Octave: griddata() is also supported by GNU/Octave, but the 'v4' method is
% only supported by Matlab, not by Octave. 'Cubic' isn't supported
% either, so the best we can do is to use the default 'linear' method.
% This is problematic as it creates different results when running on
% Octave vs. Matlab:
% Ok - Actually it doesn't work at all on Octave, because the relevant
% implementation of Octave's griddata() seems to be quite buggy :-(
% TODO FIXME: Is this still true? Octave 3.4 supports 'cubic' and maybe
% 'linear' has been fixed already?
vertexCoordsFit(:,1)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTXCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2));
vertexCoordsFit(:,2)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTYCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2));
end
% Rescale input/output positions to fit output window:
vertexCoords(:,1) = vertexCoords(:,1) * scaleX;
vertexCoordsFit(:,1) = vertexCoordsFit(:,1) * scaleX;
vertexCoords(:,2) = vertexCoords(:,2) * scaleY;
vertexCoordsFit(:,2) = vertexCoordsFit(:,2) * scaleY;
% Some debug plots, if requested:
if showCalibOutput
figure(10)
hold off
plot(vertexCoords(:,1), vertexCoords(:,2), 'b.')
hold on
plot(vertexCoordsFit(:,1), vertexCoordsFit(:,2), 'r.')
figure(11)
hold off
plot(scal.SELECTXCALIBDOTS, scal.SELECTYCALIBDOTS, 'o')
hold on
plot(vertexCoordsFit(:,1), vertexCoordsFit(:,2), 'r.')
end
% Fit the coordinates to the calibrated space (values are in pixels)
% [vertexCoordsFit(:,1) vertexCoordsFit(:,2)] = BFbvlFitCoords(vertexCoords(:,1), ...
% vertexCoords(:,2), xFitCoef_R, yFitCoef_R);
% Compute final vertex- and texcoords. Need to swap y-positions upside-down
% as our internal vertex/texcoord assignment is upside down wrt. original
% Banks lab calibration:
vertexCoords(:,2) = windowHeight - vertexCoords(:,2);
xyzcalibpos = [];
xytexcoords = [];
for x = 0:xrep-1
for y = 0:yrep-1
xoffset = x * windowWidth;
yoffset = y * windowHeight;
[newxyzcalibpos, newxytexcoords] = BVLGeneratetextcoord(yLoomSize, xLoomSize, vertexCoords, vertexCoordsFit, showCalibOutput, xoffset, yoffset);
xyzcalibpos = [xyzcalibpos, newxyzcalibpos];
xytexcoords = [xytexcoords, newxytexcoords];
end
end
% Done. Return results:
return;
function [xyzcalibpos, xytexcoords]=BVLGeneratetextcoord(yLoomSize, xLoomSize, vertexCoords, vertexCoordsFit, showCalibOutput, xoffset, yoffset)
% Internal helper routine: Called by BVLComputeWarpMesh.m.
% Implements the geometric display calibration and undistortion procedure
% developed by the Banks Vision Lab at UC Berkeley.
%
% History:
% 02/17/08 Derived from BFGeneratetextcoord.m with minimal modifications. (MK)
%
numVerts = (xLoomSize-1) * (yLoomSize-1) * 4;
xyzcalibpos = zeros(1, numVerts*2);
xytexcoords = zeros(1, numVerts*2);
xtemp = zeros(1, numVerts);
ytemp = zeros(1, numVerts);
xverts= zeros(1, numVerts);
yverts= zeros(1, numVerts);
vectaddress=0;
if showCalibOutput
figure(100);
axis ij;
hold on;
plot(vertexCoords(:,1), vertexCoords(:,2), 'r.');
plot(vertexCoordsFit(:,1), vertexCoordsFit(:,2), 'b.');
end
for y=1:(yLoomSize-1)
for x=1:(xLoomSize-1)
index = ((y-1) * xLoomSize) + x;
vectaddress=vectaddress+1;
xtemp(vectaddress) = vertexCoords(index, 1); %LowerLeftXTex
ytemp(vectaddress) = vertexCoords(index, 2); %LowerLeftYTex
xverts(vectaddress) = vertexCoordsFit(index, 1); % Lower left fit coord x
yverts(vectaddress) = vertexCoordsFit(index, 2); % lower left fit coord y
vectaddress=vectaddress+1;
xtemp(vectaddress) = vertexCoords(index+1, 1); %LowerrightXTex
ytemp(vectaddress) = vertexCoords(index+1, 2); %LowerrightYTex
xverts(vectaddress) = vertexCoordsFit(index+1, 1); %lower right fit coord x
yverts(vectaddress) = vertexCoordsFit(index+1, 2); %lower right fit coord y
vectaddress=vectaddress+1;
xtemp(vectaddress) = vertexCoords(index+xLoomSize+1, 1); %UpperRightXTex
ytemp(vectaddress) = vertexCoords(index+xLoomSize+1, 2); %UpperRightYTex
xverts(vectaddress) = vertexCoordsFit(index+xLoomSize+1, 1); %Upper right fit coord x
yverts(vectaddress) = vertexCoordsFit(index+xLoomSize+1, 2); %upper right fit coord y
vectaddress=vectaddress+1;
xtemp(vectaddress) = vertexCoords(index+xLoomSize, 1); %UpperLeft X Tex
ytemp(vectaddress) = vertexCoords(index+xLoomSize, 2); %Upperleft Y tex
xverts(vectaddress) = vertexCoordsFit(index+xLoomSize, 1); %upper left fit coord x
yverts(vectaddress) = vertexCoordsFit(index+xLoomSize, 2); %upper left fit coord y
end
end
xyzcalibpos(1:2:end) = xverts + xoffset;
xyzcalibpos(2:2:end) = yverts + yoffset;
xytexcoords(1:2:end) = xtemp + xoffset;
xytexcoords(2:2:end) = ytemp + yoffset;
return;
% --- End of Helper routines for setup of the calibration method 'BVLDisplayList' ---
% --- Helper routines for setup of the calibration method 'CSVDisplayList' ---
function [xyzcalibpos, xytexcoords] = CSVComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput)
% [xyzcalibpos, xytexcoords] = CSVComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput)
%
% Use the calibration information stored in 'scal', together with the
% current 'windowWidth' and 'windowHeight' of the onscreen window to
% generate vectors of vertex coordinates and texture coordinates for a mesh
% that performs the proper "display undistortion".
%
% History:
% 07/26/12 Derived from BVLComputeWarpMesh.m with major simplifications. (MK)
%
% Generate the calibration vertices here so we only do this once.
xLoomSize = size(scal.vcoords, 2);
yLoomSize = size(scal.vcoords, 1);
numVerts = xLoomSize * yLoomSize;
% vertexCoords = Nx2 array, N rows of [x y] pairs. Row-Major format encoding.
textureCoords = zeros(numVerts, 2);
vertexCoords = zeros(numVerts, 2);
% Parse the matrices passed in scal and rearrange them to the format of the
% vertexCoords and textureCoords vectors: Scanning is row-major order.
if ~isfield(scal, 'useUnitDisplayCoords') || scal.useUnitDisplayCoords
% We also scale all positions with window width and height, as the scal
% matrices contain normalized coordinates in 0.0 - 1.0 range for display
% width/height of a "unit display". vcoords can exceed that range or be
% negative - they are assigned to positions outside the framebuffer.
scaleWidth = windowWidth;
scaleHeight = windowHeight;
else
% scal contains absolute pixel locations, not 0-1 normalized range:
scaleWidth = 1;
scaleHeight = 1;
end
for y=1:yLoomSize
for x=1:xLoomSize
index = ((y-1) * xLoomSize) + x;
vertexCoords(index, :) = [scal.vcoords(y, x, 1) * scaleWidth, scal.vcoords(y, x, 2) * scaleHeight];
textureCoords(index, :) = [scal.tcoords(y, x, 1) * scaleWidth, scal.tcoords(y, x, 2) * scaleHeight];
end
end
% Compute final vertex- and texcoords. Need to swap y-positions upside-down
% as our internal vertex/texcoord assignment is upside down wrt. original
% calibration:
textureCoords(:,2) = windowHeight - textureCoords(:,2);
% Some debug plots, if requested:
if showCalibOutput
figure;
hold on;
axis ij;
plot(textureCoords(:,1), textureCoords(:,2), 'b.');
plot(vertexCoords(:,1), vertexCoords(:,2), 'r.');
hold off;
end
% textureCoords are regularly spaced texture 2D coordinates.
% vertexCoords are irregularly placed vertex 2D coordinates.
[xyzcalibpos, xytexcoords] = BVLGeneratetextcoord(yLoomSize, xLoomSize, textureCoords, vertexCoords, showCalibOutput, 0 , 0);
% Done. Return results:
return;
% --- End of helper routines for setup of the calibration method 'CSVDisplayList' ---
|