This file is indexed.

/usr/share/psychtoolbox-3/PsychGLImageProcessing/CreateDisplayWarp.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
function [warpstruct, filterMode] = CreateDisplayWarp(window, calibfilename, showCalibOutput, varargin)
% [warpstruct, filterMode] = CreateDisplayWarp(window, calibfilename [, showCalibOutput=0]);
%
% Helper routine for Geometric display undistortion mapping, not to be
% called inside normal PTB scripts!
%
% This function reads a display calibration file 'calibfilename' and builds
% a "geometric warp function" based on the calibration information in
% 'calibfilename' for the onscreen window with handle 'window'. It returns
% a struct 'warpstruct' that defines the created warp function. You could
% pass this 'warpstruct' as a parameter to the Psychtoolbox command...
%
% PsychImaging('AddTask', viewchannel, 'GeometryCorrection', warpstruct);
%
% However, you normally do not call this routine directly from your script. Its
% called internally by the PsychImaging() command...
% 
% PsychImaging('AddTask', viewchannel, 'GeometryCorrection', calibfilename);
%
% ...in order to setup PTB's imaging pipeline for realtime geometry
% correction, based on the calibration info in the file 'calibfilename'.
%
% Example: You created a calibration file 'mycalib.mat' to undistort the
% left view display of a stereo setup. Then you could apply this
% undistortion function via the following setup code:
%
% PsychImaging('PrepareConfiguration');
% PsychImaging('AddTask', 'LeftView', 'GeometryCorrection', 'mycalib.mat');
% window = PsychImaging('OpenWindow', screenid);
%
% This would open an onscreen window just as window=Screen('OpenWindow', screenid);
% would do. It would configure the window for automatic undistortion based
% on the data in 'mycalib.mat'.
%
% Psychtoolbox provides multiple different interactive setup routines that
% allow you to create a calibration file for your setup. Currently the
% following routines are provided:
%
% DisplayUndistortionBVL.m    -- Undistortion based on 3rd order polynomial
% surface. This is the recommended calibration procedure for most cases -
% Proven in real-world use on many different display types.
%
% When used with DisplayUndistortionBVL, the GeometryCorrection takes
% up to three optional parameters:
%
% PsychImaging('AddTask', 'LeftView', 'GeometryCorrection', 'mycalib.mat' [, debug=0][, xsampling=73][,ysampling=53][, replicate=[1,1]]);
% xsampling and ysampling specify the horizontal and vertical number of subdivisions
% for the warpmesh that is used for undistortion - higher numbers give more
% close approximations but increase drawing time. replicate is a vector which
% describes how often the mesh should be replicated into horizontal and vertical
% direction. Values other than the default [1,1] only make sense for special display
% devices like ProPixx.
%
% DisplayUndistortionBezier.m -- Undistortion based on a NURBS surface (Non
% uniform rational bezier spline surface). A simple procedure.
%
% DisplayUndistortionHalfCylinder.m -- Undistortion for projection of
% images to a half-cylindrical projection surface.
%
% DisplayUndistortionSphere.m -- Undistortion for projection of
% images to a spherical or half-spherical projection surface.
%
% DisplayUndistortionCSV.m -- Import undistortion information from
% a .csv file with a warp mesh description suitable for use with NVidia's
% Warp API. This creates a compatible display warping to use of that NVidia
% technology.
%

% History:
% 19.7.2007 Written (MK).
% 17.2.2008 Added undistortion method donated by the Banks Vision Lab (MK).
% 10.3.2008 Fixed image inversion bug in BVL calibration (MK).
%  2.5.2008 Add support for bilinear texture filter shader to handle float
%           framebuffers on hw that doesn't filter float textures (MK).
% 13.4.2009 Improved support for bilinear texture filter shaders. (MK).
%           Optional 'Query' command to query last warpstruct.    (MK).
%           Support for half-cylinder projection. (MK).
% 25.8.2011 Adapt code for sphere projection undistortion to new convention
%           of Ingmar Schneider's shader code. (MK).
% 27.7.2012 Add support for DisplayUndistortionCSV() aka "NVidia Warp-API" format (MK).
% 14.3.2015 Add support for Propixx and similar devices via mesh replication to the BVL method (MK).
% 24.7.2015 Add support for scal.useUnitDisplayCoords in CSV method. (MK)
% 24.7.2015 Fix brokenness in CSV method introduced at 14.3.2015 as regression with mesh replication. (MK)

% Global GL handle for access to OpenGL constants needed in setup:
global GL;

% Cache last generated warpstruct, so code can easily query it:
persistent oldwarpstruct;

if isempty(GL)
    sca;
    error('PTB internal error: GL struct not initialized?!?');
end

% Special case of simple query of last created 'warpstruct'?
if nargin == 1
    if ~ischar(window)
        error('Single provided argument is not a command string!');
    end
    
    if ~strcmpi(window, 'Query')
        error('Single provided argument is not the command string ''Query''!');
    end
    
    % "Query" command recognized. Return last created warpstruct:
    warpstruct = oldwarpstruct;
    return;
end

if nargin < 2
    sca;
    error('PTB internal error: Must provide all parameters!');
end

if nargin < 3 || isempty(showCalibOutput)
    showCalibOutput = 0;
end

% Is calibfilename a struct with calibration settings, or a filename of a
% calibration file?
if isstruct(calibfilename)
    % A struct: Assign it directly.
    calib = calibfilename;
else
    % Supposedly the filename of a calibration file:
    if ~ischar(calibfilename)
        error('In setup of geometry undistortion: Parameter "calibfilename" is not a filename string!');
    end
    
    % Load calibration file:
    if ~exist(calibfilename, 'file')
        sca;
        error('In setup of geometry undistortion: No such calibration file %s!', calibfilename);
    end

    calib = load(calibfilename);
end

% Preinit warpstruct:
warpstruct.glsl = [];
warpstruct.gld = [];

% Assume no need for texture filter shader:
needFilterShader = 0;
filterMode = ':Bilinear';

% Do we need a GLSL texture filter shader? We'd need one if the given
% gfx-hardware is not capable of filtering the input image buffer:
winfo = Screen('GetWindowInfo', window);
effectivebpc = 8;
if winfo.BitsPerColorComponent >= 16
    % Window is a floating point window with at least 16bpc.
    effectivebpc = 16;
    
    if winfo.BitsPerColorComponent >= 32
        % All buffers are 32 bpc for certain:
        effectivebpc = 32;
    end
    
    if (winfo.BitsPerColorComponent == 16)
        % First buffer is 16 bpc, following ones could be 32 bpc:
        if bitand(winfo.ImagingMode, kPsychUse32BPCFloatAsap)
            % All following buffers are 32bpc float. In the tradition of
            % "better safe than sorry", we assume that the warp op will use
            % one of the 32 bpc float buffers as input.
            effectivebpc = 32;            
        end
    end    
end

% Highres input buffer?
if effectivebpc > 8
    % Yes. Our input is a float texture. Check if the hardware can filter
    % textures of effectivebpc bpc in hardware:
    if effectivebpc > winfo.GLSupportsFilteringUpToBpc
        % Hardware not capable of handling such deep textures. We need to
        % create and attach our own bilinear texture filter shader:
        needFilterShader = 1;
        filterMode = '';
    end
end

% Actual setup code for display warp struct.
% ==========================================

% Type of setup depends on type of calibration:
switch(calib.warptype)
    case {'HalfCylinderProjection', 'SphereProjection'}
        % Build combo of displaylist and GLSL shader for projection of flat
        % screen image onto a half-cylinder or sphere:

        % Query effective onscreen window size:
        [winWidth, winHeight] = Screen('WindowSize', window);
                
        % Build the unwarp mesh display list within the OpenGL context of
        % Psychtoolbox:
        Screen('BeginOpenGL', window, 1);
                
        % Build a display list that corresponds to the current calibration:
        gld = glGenLists(1);
        glNewList(gld, GL.COMPILE);
        
        % "Draw" the warp-mesh once, so it gets recorded in the display list:
        if isempty(calib.rotationAngle)
            calib.rotationAngle = 0;
        end
        
        if isempty(calib.inSize)
            calib.inSize = [winWidth, winHeight];
        end
        
        if isempty(calib.inOffset)
            calib.inOffset = [0, 0];
        end
        
        if isempty(calib.outOffset)
            calib.outOffset = [0, 0];
        end
        
        if isempty(calib.outSize)
            calib.outSize = [winWidth, winHeight];
        end

        if isempty(calib.Wflat)
            calib.Wflat = 44;
        end

        if isempty(calib.R)
            calib.R = 32;
        end

        % No color gain correction:
        glColor4f(1,1,1,1);
        
        glTranslatef(calib.outOffset(1), calib.outOffset(2), 0);
        
        % Apply some rotation correction for misaligned displays:
        glTranslatef(calib.outSize(1)/2, calib.outSize(2)/2, 0);
        glRotatef(calib.rotationAngle, 0.0, 0.0, 1.0);
        glTranslatef(-calib.outSize(1)/2, -calib.outSize(2)/2, 0);
        
        % Draw a single default quad:
        glBegin(GL.QUADS)
        glTexCoord2f(0,calib.outSize(2));
        glVertex2f(0,0);

        glTexCoord2f(calib.outSize(1),calib.outSize(2));
        glVertex2f(calib.outSize(1),0);

        glTexCoord2f(calib.outSize(1),0);
        glVertex2f(calib.outSize(1),calib.outSize(2));

        glTexCoord2f(0,0);
        glVertex2f(0,calib.outSize(2));
        glEnd;

        
        % List ready - and already updated in the imaging pipeline:
        glEndList;

        Screen('EndOpenGL', window);

        % Assign display list to output warpstruct:
        warpstruct.gld = gld;

        if strcmpi(calib.warptype, 'SphereProjection')
            % Use spherical projection shader:
            warpstruct.glsl = LoadGLSLProgramFromFiles('SphereProjectionShader');
        else
            % Use cylindrical projection shader:
            warpstruct.glsl = LoadGLSLProgramFromFiles('CylinderProjectionShader');
        end
        glUseProgram(warpstruct.glsl);
        
        glUniform1i(glGetUniformLocation(warpstruct.glsl, 'doFilter'), needFilterShader);
        glUniform1i(glGetUniformLocation(warpstruct.glsl, 'Image'), 0);
        glUniform2f(glGetUniformLocation(warpstruct.glsl, 'inSize'), calib.inSize(1), calib.inSize(2));
        glUniform2f(glGetUniformLocation(warpstruct.glsl, 'inOffset'), calib.inOffset(1), calib.inOffset(2));
        glUniform2f(glGetUniformLocation(warpstruct.glsl, 'outSize'), calib.outSize(1), calib.outSize(2));

        if strcmpi(calib.warptype, 'SphereProjection')
            % Additional parameters for sphere projection:
            glUniform1f(glGetUniformLocation(warpstruct.glsl, 'Wflat'), calib.Wflat);
            glUniform1f(glGetUniformLocation(warpstruct.glsl, 'R'), calib.R);
        end        
        
        glUseProgram(0);
        
        % Ready.
        
    case {'BezierDisplayList'}
        % Build warp display list for Bezier surface based
        % calibration/remapping:
        
        Screen('BeginOpenGL', window, 1);
        
        gld = glGenLists(1);
        
        % Build a display list that corresponds to the current calibration:
        glNewList(gld, GL.COMPILE);

        glColor4f(1,1,1,1);

        subdivision = calib.subdivision;
        
        % Setup a 2D parametric grid with 'subdivision' subdivisions:
        glMapGrid2d(subdivision, 0, 1, subdivision, 0, 1);

        % Enable Bezier evaluators:
        glEnable(GL.MAP2_VERTEX_3);
        glEnable(GL.MAP2_TEXTURE_COORD_2);

        % Setup initial mapping table for texture coordinates (source image control
        % points):
        frompts = calib.frompts;
        % Establish mapping for texture coordinates:
        glMap2d(GL.MAP2_TEXTURE_COORD_2, 0, 1, 2, size(frompts,2), 0, 1, 2*size(frompts,2), size(frompts,3), frompts);

        % Establish mapping for vertex coordinates:
        topts = calib.topts;
        % Setup mapping based on current control point matrix for destination
        % points:
        glMap2d(GL.MAP2_VERTEX_3, 0, 1, 3, size(topts,2), 0, 1, 3*size(topts,2), size(topts,3), topts);
        
        % Compute the mesh based on current mappings:
        glEvalMesh2(GL.FILL, 0, subdivision, 0, subdivision);
        
        % Disable mesh evaluators:
        glDisable(GL.MAP2_VERTEX_3);
        glDisable(GL.MAP2_TEXTURE_COORD_2);

        % List ready - and already updated in the imaging pipeline:
        glEndList;

        % Assign display list to output warpstruct:
        warpstruct.gld = gld;

        % Ready.
        Screen('EndOpenGL', window);
        
    case {'BVLDisplayList'}
        % Build warp display list for calibration/remapping method
        % donated by the Banks Vision Lab:
        
        % Query effective onscreen window size:
        [winWidth, winHeight] = Screen('WindowSize', window);
        
        % Additional optional parameters provided?
        xLoomSize = [];
        yLoomSize = [];

        if nargin >= 5
            % At least two additional parameters. Really?
            if ~isempty(varargin{1})
                xLoomSize = varargin{1};
            end
            
            if ~isempty(varargin{2})
                yLoomSize = varargin{2};
            end
        end

        if (length(varargin) >= 3) && ~isempty(varargin{3})
            % Subdivision/Replication [xdiv, ydiv] given. We shall
            % generate a calibration display list which only has
            % 1/xdiv the window widht, 1/ydiv the window height,
            % but is replicated xdiv x ydiv times. E.g., a [2,2]
            % subdivision will split the window into 4 quadrants and
            % apply the undistortion independently to each quadrants.
            % This is, e.g., useful for special display modes of special
            % display devices like the ProPrixx.
            subdiv = varargin{3};
            if ~length(subdiv) == 2 || ~isnumeric(subdiv)
                error('CreateDisplayWarp: Provided optional subdiv parameter is not a [xrep, yrep] vector as required.');
            end

            xrep = subdiv(1);
            yrep = subdiv(2);

            if xrep ~=round(xrep) || yrep ~= round(yrep)
                error('CreateDisplayWarp: Provided subdiv parameter [xrep, yrep] does not contain integral values as required.');
            end

            % Adapt width and height of target area for calibration:
            winWidth = winWidth / xrep;
            winHeight = winHeight / yrep;
        else
            xrep = 1;
            yrep = 1;
        end

        % Compute vertex- and texcoord-arrays that define the mesh
        % of quadrilaterals which should be rendered (with the stimulus
        % texture applied) to create the undistortion warp:
        [xyzcalibpos, xytexcoords] = BVLComputeWarpMesh(winWidth, winHeight, calib.scal, showCalibOutput, xLoomSize, yLoomSize, xrep, yrep);

        % Build the unwarp mesh display list within the OpenGL context of
        % Psychtoolbox:
        Screen('BeginOpenGL', window, 1);
                
        % Build a display list that corresponds to the current calibration:
        gld = glGenLists(1);
        glNewList(gld, GL.COMPILE);
        
        % "Draw" the warp-mesh once, so it gets recorded in the display list:
        glColor4f(1,1,1,1);
        glEnableClientState(GL.VERTEX_ARRAY);
        glVertexPointer(2, GL.DOUBLE, 0, xyzcalibpos);
        glEnableClientState(GL.TEXTURE_COORD_ARRAY);
        glTexCoordPointer(2, GL.DOUBLE, 0, xytexcoords);

        glDrawArrays(GL.QUADS, 0, length(xyzcalibpos)/2);

        glDisableClientState(GL.TEXTURE_COORD_ARRAY);
        glDisableClientState(GL.VERTEX_ARRAY);

        % List ready - and already updated in the imaging pipeline:
        glEndList;

        Screen('EndOpenGL', window);

        % Assign display list to output warpstruct:
        warpstruct.gld = gld;

        % Ready.
        
    case {'CSVDisplayList'}
        % Build warp display list for a calibration/remapping method that
        % is compatible with the method used, e.g., by NVidia's Warp API:
        
        % Query effective onscreen window size:
        [winWidth, winHeight] = Screen('WindowSize', window);
        
        % Compute vertex- and texcoord-arrays that define the mesh
        % of quadrilaterals which should be rendered (with the stimulus
        % texture applied) to create the undistortion warp:
        [xyzcalibpos, xytexcoords] = CSVComputeWarpMesh(winWidth, winHeight, calib.scal, showCalibOutput);

        % Build the unwarp mesh display list within the OpenGL context of
        % Psychtoolbox:
        Screen('BeginOpenGL', window, 1);
        
        % Build a display list that corresponds to the current calibration:
        gld = glGenLists(1);
        glNewList(gld, GL.COMPILE);
        
        % "Draw" the warp-mesh once, so it gets recorded in the display list:
        glColor4f(1,1,1,1);
        glEnableClientState(GL.VERTEX_ARRAY);
        glVertexPointer(2, GL.DOUBLE, 0, xyzcalibpos);
        glEnableClientState(GL.TEXTURE_COORD_ARRAY);
        glTexCoordPointer(2, GL.DOUBLE, 0, xytexcoords);

        glDrawArrays(GL.QUADS, 0, length(xyzcalibpos)/2);

        glDisableClientState(GL.TEXTURE_COORD_ARRAY);
        glDisableClientState(GL.VERTEX_ARRAY);

        % List ready - and already updated in the imaging pipeline:
        glEndList;

        Screen('EndOpenGL', window);

        % Assign display list to output warpstruct:
        warpstruct.gld = gld;

        % Ready.
        
    otherwise
        sca;
        error('Unknown calibration method id: %s!', calib.warptype);
end

% Need a filtershader and don't have one assigned yet?
if (needFilterShader > 0) && isempty(warpstruct.glsl)
    % Yes. Load, create and assign our default bilinear texture filter
    % shader:
    warpstruct.glsl = LoadGLSLProgramFromFiles('BilinearTextureFilterShader');
    glUseProgram(warpstruct.glsl);
    glUniform1i(glGetUniformLocation(warpstruct.glsl, 'Image'), 0);
    glUseProgram(0);
end

% Cache created warptstruct for later queries:
oldwarpstruct = warpstruct;

% Done. Return the warpstruct:
return;

% --- Helper routines for setup of the calibration method 'BVLDisplayList' ---

function [xyzcalibpos, xytexcoords] = BVLComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput, xLoomSize, yLoomSize, xrep, yrep)
% [xyzcalibpos, xytexcoords] = BVLComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput, xLoomSize, yLoomSize, xrep, yrep)
%
% Internal helper routine: Called by CreateDisplayWarp.m, which is in turn
% called by PsychImaging.m. Implements the geometric display calibration
% and undistortion procedure developed by the Banks Vision Lab at UC
% Berkeley.
%
% Use the calibration information stored in 'scal', together with the
% current 'windowWidth' and 'windowHeight' of the onscreen window to
% calibrate and compute vectors of vertex coordinates and texture
% coordinates for a mesh that performs the proper "display undistortion".
%
% History:
% 02/17/08  Derived from BFloadtimecalib.m with minimal modifications. (MK)
%

% Check resolution against the calibration file resolutions:
if ((windowWidth * xrep) ~= RectWidth(scal.rect)) || ((windowHeight * yrep) ~= RectHeight(scal.rect))
    fprintf('\n\nCALIBRATION WARNING!\n');
    fprintf('Onscreen window resolution (%d, %d) does not match ', ...
        windowWidth, windowHeight);
    fprintf('the resolution used in the calibration file (%d, %d)!\n', ...
        RectWidth(scal.rect), RectHeight(scal.rect));
    fprintf('Using the window resolution to draw the stimuli, scaling down proportionally.\n');
    fprintf('\n\n');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calibration
% Generate the calibration vertices here so we only do this once.
% We calculate the uncalibrated vertex coordinates, in screenspace
% (pixel coordinates), then pass them into our fitting routine to
% interpolate the calibrated coordinates.

% PreCompute vertex values
if isempty(xLoomSize)
    xLoomSize   = 73; %length(XVALUES)   %Can reduce loom resolution to speed up calib
end

if isempty(yLoomSize)
    yLoomSize   = 53; %length(YVALUES)
end

% Compute sampling positions for the calibration data:
xStep       = RectWidth(scal.rect) / (xLoomSize-1);
yStep       = RectHeight(scal.rect) / (yLoomSize-1);

% Compute scale factor in case the output window size doesn't
% match the size used for generating the scal calibration data:
scaleX = windowWidth / RectWidth(scal.rect);
scaleY = windowHeight / RectHeight(scal.rect);

numVerts    = xLoomSize * yLoomSize;
% vertexCoords = Nx2 array, N rows of [x y] pairs.
vertexCoords    = zeros(numVerts, 2);
vertexCoordsFit = zeros(numVerts, 2);

% Calculate the 'uncalibrated' vertex coordinates
for y=1:yLoomSize
    for x=1:xLoomSize
        index = ((y-1) * xLoomSize) + x;
        xCoord = (x-1) * xStep;
        yCoord = (y-1) * yStep;
        vertexCoords(index, :) = [xCoord yCoord];
        %fprintf('(%f, %f)\n', vertexCoords(index, 1), vertexCoords(index, 2));
    end
end

% Some debug plots, if requested:
if showCalibOutput
    figure(9)
    hold off
    plot(scal.XCALIBDOTS, scal.YCALIBDOTS, 'b.')
    hold on
    plot(scal.SELECTXCALIBDOTS, scal.SELECTYCALIBDOTS, 'r.')
    size(scal.XCALIBDOTS)
    size(scal.YCALIBDOTS)
    size(scal.SELECTXCALIBDOTS)
    size(vertexCoords(:,1))
    size(vertexCoords(:,2))
end

% Fit mesh vertices to locations of calibrated points - Use Matlabs
% griddata fitting and interpolation routine:
if ~IsOctave
    % Matlab: Use 'v4' method - the interpolation method used by Matlab V4
    % for interpolation:
    vertexCoordsFit(:,1)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTXCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2), 'v4'); %#ok<*GRIDD>
    vertexCoordsFit(:,2)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTYCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2), 'v4');
else
    % Octave: griddata() is also supported by GNU/Octave, but the 'v4' method is
    % only supported by Matlab, not by Octave. 'Cubic' isn't supported
    % either, so the best we can do is to use the default 'linear' method.
    % This is problematic as it creates different results when running on
    % Octave vs. Matlab:
    % Ok - Actually it doesn't work at all on Octave, because the relevant
    % implementation of Octave's griddata() seems to be quite buggy :-(
    % TODO FIXME: Is this still true? Octave 3.4 supports 'cubic' and maybe
    % 'linear' has been fixed already?
    vertexCoordsFit(:,1)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTXCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2));
    vertexCoordsFit(:,2)= griddata(scal.XCALIBDOTS, scal.YCALIBDOTS, scal.SELECTYCALIBDOTS, vertexCoords(:,1), vertexCoords(:,2));
end

% Rescale input/output positions to fit output window:
vertexCoords(:,1) = vertexCoords(:,1) * scaleX;
vertexCoordsFit(:,1) = vertexCoordsFit(:,1) * scaleX;

vertexCoords(:,2) = vertexCoords(:,2) * scaleY;
vertexCoordsFit(:,2) = vertexCoordsFit(:,2) * scaleY;

% Some debug plots, if requested:
if showCalibOutput
    figure(10)
    hold off
    plot(vertexCoords(:,1), vertexCoords(:,2), 'b.')
    hold on
    plot(vertexCoordsFit(:,1), vertexCoordsFit(:,2), 'r.')

    figure(11)
    hold off
    plot(scal.SELECTXCALIBDOTS, scal.SELECTYCALIBDOTS, 'o')
    hold on
    plot(vertexCoordsFit(:,1), vertexCoordsFit(:,2), 'r.')
end

% Fit the coordinates to the calibrated space (values are in pixels)
%    [vertexCoordsFit(:,1) vertexCoordsFit(:,2)] = BFbvlFitCoords(vertexCoords(:,1), ...
%        vertexCoords(:,2), xFitCoef_R, yFitCoef_R);

% Compute final vertex- and texcoords. Need to swap y-positions upside-down
% as our internal vertex/texcoord assignment is upside down wrt. original
% Banks lab calibration:
vertexCoords(:,2) = windowHeight - vertexCoords(:,2);

xyzcalibpos = [];
xytexcoords = [];
for x = 0:xrep-1
    for y = 0:yrep-1
        xoffset = x * windowWidth;
        yoffset = y * windowHeight;
        [newxyzcalibpos, newxytexcoords] = BVLGeneratetextcoord(yLoomSize, xLoomSize, vertexCoords, vertexCoordsFit, showCalibOutput, xoffset, yoffset);

        xyzcalibpos = [xyzcalibpos, newxyzcalibpos];
        xytexcoords = [xytexcoords, newxytexcoords];
    end
end

% Done. Return results:
return;


function [xyzcalibpos, xytexcoords]=BVLGeneratetextcoord(yLoomSize, xLoomSize, vertexCoords, vertexCoordsFit, showCalibOutput, xoffset, yoffset)
% Internal helper routine: Called by BVLComputeWarpMesh.m.
% Implements the geometric display calibration and undistortion procedure
% developed by the Banks Vision Lab at UC Berkeley.
%
% History:
% 02/17/08  Derived from BFGeneratetextcoord.m with minimal modifications. (MK)
%

numVerts = (xLoomSize-1) * (yLoomSize-1) * 4;

xyzcalibpos = zeros(1, numVerts*2);
xytexcoords = zeros(1, numVerts*2);

xtemp = zeros(1, numVerts);
ytemp = zeros(1, numVerts);

xverts= zeros(1, numVerts);
yverts= zeros(1, numVerts);

vectaddress=0;

if showCalibOutput
    figure(100);
    axis ij;
    hold on;
    plot(vertexCoords(:,1), vertexCoords(:,2), 'r.');
    plot(vertexCoordsFit(:,1), vertexCoordsFit(:,2), 'b.');
end

for y=1:(yLoomSize-1)
    for x=1:(xLoomSize-1)
        index = ((y-1) * xLoomSize) + x;

        vectaddress=vectaddress+1;

        xtemp(vectaddress)  = vertexCoords(index, 1);  %LowerLeftXTex
        ytemp(vectaddress)  = vertexCoords(index, 2);  %LowerLeftYTex

        xverts(vectaddress) = vertexCoordsFit(index, 1);  % Lower left fit coord  x
        yverts(vectaddress) = vertexCoordsFit(index, 2);  % lower left fit coord  y

        vectaddress=vectaddress+1;

        xtemp(vectaddress)  = vertexCoords(index+1, 1);  %LowerrightXTex
        ytemp(vectaddress)  = vertexCoords(index+1, 2); %LowerrightYTex

        xverts(vectaddress) = vertexCoordsFit(index+1, 1);   %lower right fit coord  x
        yverts(vectaddress) = vertexCoordsFit(index+1, 2);   %lower right fit coord  y

        vectaddress=vectaddress+1;

        xtemp(vectaddress)  = vertexCoords(index+xLoomSize+1, 1);  %UpperRightXTex
        ytemp(vectaddress)  = vertexCoords(index+xLoomSize+1, 2);  %UpperRightYTex

        xverts(vectaddress) = vertexCoordsFit(index+xLoomSize+1, 1);  %Upper right fit coord  x
        yverts(vectaddress) = vertexCoordsFit(index+xLoomSize+1, 2);  %upper right fit coord  y

        vectaddress=vectaddress+1;

        xtemp(vectaddress)  = vertexCoords(index+xLoomSize, 1);  %UpperLeft X Tex
        ytemp(vectaddress)  = vertexCoords(index+xLoomSize, 2);  %Upperleft Y tex

        xverts(vectaddress) = vertexCoordsFit(index+xLoomSize, 1);   %upper left fit coord   x
        yverts(vectaddress) = vertexCoordsFit(index+xLoomSize, 2);   %upper left fit coord   y
    end
end

xyzcalibpos(1:2:end) = xverts + xoffset;
xyzcalibpos(2:2:end) = yverts + yoffset;
xytexcoords(1:2:end) = xtemp + xoffset;
xytexcoords(2:2:end) = ytemp + yoffset;

return;

% --- End of Helper routines for setup of the calibration method 'BVLDisplayList' ---

% --- Helper routines for setup of the calibration method 'CSVDisplayList' ---

function [xyzcalibpos, xytexcoords] = CSVComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput)
% [xyzcalibpos, xytexcoords] = CSVComputeWarpMesh(windowWidth, windowHeight, scal, showCalibOutput)
%
% Use the calibration information stored in 'scal', together with the
% current 'windowWidth' and 'windowHeight' of the onscreen window to
% generate vectors of vertex coordinates and texture coordinates for a mesh
% that performs the proper "display undistortion".
%
% History:
% 07/26/12  Derived from BVLComputeWarpMesh.m with major simplifications. (MK)
%

% Generate the calibration vertices here so we only do this once.
xLoomSize = size(scal.vcoords, 2);
yLoomSize = size(scal.vcoords, 1);
numVerts = xLoomSize * yLoomSize;

% vertexCoords = Nx2 array, N rows of [x y] pairs. Row-Major format encoding.
textureCoords = zeros(numVerts, 2);
vertexCoords  = zeros(numVerts, 2);

% Parse the matrices passed in scal and rearrange them to the format of the
% vertexCoords and textureCoords vectors: Scanning is row-major order.
if ~isfield(scal, 'useUnitDisplayCoords') || scal.useUnitDisplayCoords
    % We also scale all positions with window width and height, as the scal
    % matrices contain normalized coordinates in 0.0 - 1.0 range for display
    % width/height of a "unit display". vcoords can exceed that range or be
    % negative - they are assigned to positions outside the framebuffer.
    scaleWidth = windowWidth;
    scaleHeight = windowHeight;
else
    % scal contains absolute pixel locations, not 0-1 normalized range:
    scaleWidth = 1;
    scaleHeight = 1;
end

for y=1:yLoomSize
    for x=1:xLoomSize
        index = ((y-1) * xLoomSize) + x;
        vertexCoords(index, :)  = [scal.vcoords(y, x, 1) * scaleWidth, scal.vcoords(y, x, 2) * scaleHeight];
        textureCoords(index, :) = [scal.tcoords(y, x, 1) * scaleWidth, scal.tcoords(y, x, 2) * scaleHeight];
    end
end

% Compute final vertex- and texcoords. Need to swap y-positions upside-down
% as our internal vertex/texcoord assignment is upside down wrt. original
% calibration:
textureCoords(:,2) = windowHeight - textureCoords(:,2);

% Some debug plots, if requested:
if showCalibOutput
    figure;
    hold on;
    axis ij;
    plot(textureCoords(:,1), textureCoords(:,2), 'b.');
    plot(vertexCoords(:,1), vertexCoords(:,2), 'r.');
    hold off;
end

% textureCoords are regularly spaced texture 2D coordinates.
% vertexCoords are irregularly placed vertex 2D coordinates.
[xyzcalibpos, xytexcoords] = BVLGeneratetextcoord(yLoomSize, xLoomSize, textureCoords, vertexCoords, showCalibOutput, 0 , 0);

% Done. Return results:
return;

% --- End of helper routines for setup of the calibration method 'CSVDisplayList' ---