This file is indexed.

/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/VRHMDDemo1.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
function VRHMDDemo1(doSeparateEyeRender, multiSample, fountain)
% VRHMDDemo1 -- Show 3D stereo display via MOGL OpenGL on a VR headset.
%
% This demo shows how to use Psychtoolbox PsychVRHMD() driver to display
% stereoscopically rendered 3D scenes on a Virtual Reality head mounted display
% (HMD). The HMD position and orientation is tracked via head tracking, and the
% tracked head pose is used to position the observer in the 3D scene, in this
% case in "Happy teapot land". Obviously, this demo will only work if you have
% one of the supported HMDs connected to your machine.
%
% Usage: VRHMDDemo1([doSeparateEyeRender][, multiSample=0][, fountain=0]);
%
% Optional parameters:
%
% 'doSeparateEyeRender' if set to 1, perform per eye render passes in an optimized
% order, as recommended by the HMD driver, and query the per eye camera matrices
% individually during each render pass to optimize for head tracking prediction
% accuracy. If set to 0, query matrices for rendering simultaneously for both eyes,
% and render in a potentially non-optimized order. The latter is a bit simpler, but
% potentially less accurate, causing additional motion artifacts. If the setting is
% omitted then the underlying HMD driver will be asked for the optimal value.
%
% 'multiSample' if set to a non-zero value will enable multi-sample
% anti-aliasing. Can increase quality but also increases GPU load.
%
% 'fountain' if set to 1 will also emit a particle fountain from the nozzle
% of the teapot. Nicer, but higher gpu load.
%
% Press any key to end the demo.
%
% Plots a timing chart at the end, showing how many milliseconds of GPU processing
% time were needed for each frame. However, these results are often wrong on the
% buggy OSX operating system!
%
% Mouse left/right = Global camera movement left/right.
% Mouse up/down = Global camera movement up/down.
% Mouse up/down + Left mouse button pressed = Global camera movement forward/backward.
% Mouse left/right + Middle or right button pressed: Change looking direction (heading).
%

% History:
% 10-Sep-2015  mk  Written. Derived from DrawDots3DDemo.m

% GL data structure needed for all OpenGL demos:
global GL;

if nargin < 1 || isempty(doSeparateEyeRender)
  doSeparateEyeRender = [];
end

if nargin < 2 || isempty(multiSample)
  multiSample = 0;
end

if nargin < 3 || isempty(fountain)
  fountain = 0;
end

% Default setup:
PsychDefaultSetup(2);

% Find the screen to use for display:
screenid = max(Screen('Screens'));

try
  % Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
  % mogl OpenGL for Matlab/Octave wrapper:
  InitializeMatlabOpenGL;

  % Setup the HMD and open and setup the onscreen window for VR display:
  PsychImaging('PrepareConfiguration');
  hmd = PsychVRHMD('AutoSetupHMD', 'Tracked3DVR', 'LowPersistence TimeWarp FastResponse', 0);
  %hmd = PsychVRHMD('AutoSetupHMD', 'Tracked3DVR', 'LowPersistence TimeWarp', 0);
  if isempty(hmd)
    fprintf('No VR-HMD available, giving up!\n');
    return;
  end
  [win, winRect] = PsychImaging('OpenWindow', screenid, 0, [], [], [], [], multiSample);

  % Query infos about this HMD:
  hmdinfo = PsychVRHMD('GetInfo', hmd);

  % Did user leave the choice to us, if separate eye rendering passes
  % should be used?
  if isempty(doSeparateEyeRender)
    % Yes: Ask the driver if separate passes would be beneficial, and
    % use them if the driver claims it is good for us:
    doSeparateEyeRender = hmdinfo.separateEyePosesSupported;
  end

  if doSeparateEyeRender
    fprintf('Will use separate eye render passes for enhanced quality on this HMD.\n');
  else
    fprintf('Will not use separate eye render passes, because on this HMD they would not be beneficial for quality.\n');
  end

  % Textsize for text:
  Screen('TextSize', win, 18);

  % Setup the OpenGL rendering context of the onscreen window for use by
  % OpenGL wrapper. After this command, all following OpenGL commands will
  % draw into the onscreen window 'win':
  Screen('BeginOpenGL', win);

  % Set viewport properly:
  glViewport(0, 0, RectWidth(winRect), RectHeight(winRect));

  % Setup default drawing color to yellow (R,G,B)=(1,1,0). This color only
  % gets used when lighting is disabled - if you comment out the call to
  % glEnable(GL.LIGHTING).
  glColor3f(1,1,0);

  % Setup OpenGL local lighting model: The lighting model supported by
  % OpenGL is a local Phong model with Gouraud shading.

  % Enable the first local light source GL.LIGHT_0. Each OpenGL
  % implementation is guaranteed to support at least 8 light sources,
  % GL.LIGHT0, ..., GL.LIGHT7
  glEnable(GL.LIGHT0);

  % Enable alpha-blending for smooth dot drawing:
  glEnable(GL.BLEND);
  glBlendFunc(GL.SRC_ALPHA, GL.ONE_MINUS_SRC_ALPHA);

  % Set projection matrix: This defines a perspective projection,
  % corresponding to the model of a pin-hole camera - which is a good
  % approximation of the human eye and of standard real world cameras --
  % well, the best aproximation one can do with 3 lines of code ;-)
  glMatrixMode(GL.PROJECTION);

  % Retrieve and set camera projection matrix for optimal rendering on the HMD:
  projMatrix = PsychVRHMD('GetStaticRenderParameters', hmd);
  glLoadMatrixd(projMatrix);

  % Setup modelview matrix: This defines the position, orientation and
  % looking direction of the virtual camera:
  glMatrixMode(GL.MODELVIEW);
  glLoadIdentity;

  % Set background clear color to 'black' (R,G,B,A)=(0,0,0,0):
  glClearColor(0,0,0,0);

  % Clear out the backbuffer: This also cleans the depth-buffer for
  % proper occlusion handling: You need to glClear the depth buffer whenever
  % you redraw your scene, e.g., in an animation loop. Otherwise occlusion
  % handling will screw up in funny ways...
  glClear;

  % Finish OpenGL rendering into PTB window. This will switch back to the
  % standard 2D drawing functions of Screen and will check for OpenGL errors.
  Screen('EndOpenGL', win);

  % Number of random dots, whose positions are computed in Matlab on CPU:
  ndots = 100;

  % Number of fountain particles whose positions are computed on the GPU:
  nparticles = 10000;

  % Diameter of particles in pixels:
  particleSize = 5;

  % 'StartPosition' is the 3D position where all particles originate. It is
  % faked to a position, so that the particles seem to originate from the
  % teapots "nozzle":
  StartPosition = [1.44, 0.40, 0.0];

  % Lifetime for each simulated particle, is chosen so that there seems to be
  % an infinite stream of particles, although the same particles are recycled
  % over and over:
  particlelifetime = 2;

  % Amount of "flow": A value of 1 will create a continuous stream, whereas
  % smaller value create bursts of particles:
  flowfactor = 1;

  % Load and setup the vertex shader for particle fountain animation:
  shaderpath = [PsychtoolboxRoot 'PsychDemos/OpenGL4MatlabDemos/GLSLDemoShaders/ParticleSimple'];
  glsl = LoadGLSLProgramFromFiles(shaderpath,1);

  % Bind shader so it can be setup:
  glUseProgram(glsl);

  % Assign static 3D startposition for fountain:
  glUniform3f(glGetUniformLocation(glsl, 'StartPosition'), StartPosition(1), StartPosition(2), StartPosition(3));

  % Assign lifetime:
  glUniform1f(glGetUniformLocation(glsl, 'LifeTime'), particlelifetime);

  % Assign simulated gravity constant 'g' for proper trajectory:
  glUniform1f(glGetUniformLocation(glsl, 'Acceleration'), 1.5);

  % Done with setup:
  glUseProgram(0);

  % Assign random RGB colors to the particles: The shader will use these, but
  % also assign an alpha value that makes the particles "fade out" at the end
  % of there lifetime:
  particlecolors = rand(3, nparticles);
  
  % Maximum speed for particles:
  maxspeed = 1.25;

  % Per-component speed: We select these to shape the fountain in our wanted
  % direction:
  vxmax = maxspeed;
  vymax = maxspeed;
  vzmax = 0.4 * maxspeed;

  % Assign random velocities in (vx,vy,vz) direction: Intervals chosen to
  % shape the beam into something visually pleasing for a teapot:
  particlesxyzt(1,:) = RandLim([1, nparticles],    0.7, +vxmax);
  particlesxyzt(2,:) = RandLim([1, nparticles],    0.7, +vymax);
  particlesxyzt(3,:) = RandLim([1, nparticles], -vzmax, +vzmax);

  % The w-component (4th dimension) encodes the birthtime of the particle. We
  % assign random birthtimes within the possible particlelifetime to get a
  % nice continuous stream of particles. Well, kind of: The flowfactor
  % controls the "burstiness" of particle flow. A value of 1 will create a
  % continous stream, whereas smaller values will create bursts of particles,
  % as if the teapot is choking:
  particlesxyzt(4,:) = RandLim([1, nparticles], 0.0, particlelifetime * flowfactor);

  % Manually enable 3D mode:
  Screen('BeginOpenGL', win);

  % Predraw the particles. Here particlesxyzt does not encode position, but
  % speed -- this because our shader interprets positions as velocities!
  gld = glGenLists(1);
  glNewList(gld, GL.COMPILE);
  moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, [], 1);
  glEndList;

  % Enable lighting:
  glEnable(GL.LIGHTING);

  % Enable proper occlusion handling via depth tests:
  glEnable(GL.DEPTH_TEST);

  % Manually disable 3D mode.
  Screen('EndOpenGL', win);

  telapsed = 0;
  fcount = 0;

  % Allocate for up to 1000 seconds at 75 fps:
  gpudur = zeros(1, 75 * 1000);

  % Make sure all keys are released:
  KbReleaseWait;

  Priority(MaxPriority(win));

  % Get duration of a single frame:
  ifi = Screen('GetFlipInterval', win);

  globalPos = [0, 0, 3];
  heading = 0;

  [xc, yc] = RectCenter(winRect);
  SetMouse(xc,yc, screenid);
  HideCursor(screenid);
  [xo, yo] = GetMouse(screenid);

  % Initial flip to sync us to VBL and get start timestamp:
  [vbl, onset] = Screen('Flip', win);
  tstart = vbl;

  % VR render loop: Runs until keypress:
  while ~KbCheck
    % Update global position (x,y,z) by mouse movement:
    [xm, ym, buttons] = GetMouse(screenid);
    if ~any(buttons)
      % x-movement:
      globalPos(1) = globalPos(1) + 0.005 * (xm - xo);

      % y-movement:
      globalPos(2) = globalPos(2) + 0.005 * (yo - ym);
    else
      if buttons(1)
        % z-movement:
        globalPos(3) = globalPos(3) + 0.005 * (ym - yo);
      end

      if buttons(2)
        % Heading, ie. looking direction:
        heading = heading + 0.01 * (xm - xo);
      end
    end

    % Reposition mouse cursor for next drive cycle:
    SetMouse(xc,yc, screenid);
    [xo, yo] = GetMouse(screenid);

    % Compute a transformation matrix to globally position and orient the
    % observer in the scene. This allows mouse control of observer position
    % and heading on top of the head tracking:
    globalHeadPose = PsychGetPositionYawMatrix(globalPos, heading);

    % Track and predict head position and orientation, retrieve modelview
    % camera matrices for rendering of each eye. Apply some global transformation
    % to returned camera matrices. In this case a translation + rotation, as defined
    % by the PsychGetPositionYawMatrix() helper function:
    state = PsychVRHMD('PrepareRender', hmd, globalHeadPose);

    % Start rendertime measurement on GPU: 'gpumeasure' will be 1 if
    % this is supported by the current GPU + driver combo:
    gpumeasure = Screen('GetWindowInfo', win, 5);

    % We render the scene separately for each eye:
    for renderPass = 0:1
      % doSeparateEyeRender = 1 uses a method which may give slightly better
      % quality for fast head movements results on some manufacturers HMDs.
      % However, this comes at a small additional performance cost, so should
      % be avoided on HMDs where we know it won't help. See above on how one
      % can find out automatically if this will help or not, ie. how the value
      % of doSeparateEyeRender can be determined automatically.
      if doSeparateEyeRender
        % Query which eye to render in this renderpass, and query its
        % eyePose vector for the predicted eye position to use for the virtual
        % camera rendering that eyes view. The returned pose vector actually
        % describes tracked head pose, ie. HMD position and orientation in space.
        eye = PsychVRHMD('GetEyePose', hmd, renderPass, globalHeadPose);

        % Select 'eyeIndex' to render (left- or right-eye):
        Screen('SelectStereoDrawbuffer', win, eye.eyeIndex);

        % Extract modelView matrix for this eye:
        modelView = eye.modelView;
      else
        % Selected 'view' to render (left- or right-eye) equals the renderPass,
        % as order of rendering does not matter in this mode:
        Screen('SelectStereoDrawbuffer', win, renderPass);

        % Extract modelView matrix for this renderPass's eye:
        modelView = state.modelView{renderPass + 1};
      end

      % Manually reenable 3D mode in preparation of eye draw cycle:
      Screen('BeginOpenGL', win);

      % Setup camera position and orientation for this eyes view:
      glMatrixMode(GL.MODELVIEW);
      glLoadMatrixd(modelView);

      glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);

      % Clear color and depths buffers:
      glClear;

      % Bring a bit of extra spin into this :-)
      glRotated(10 * telapsed, 0, 1, 0);
      glRotated(5  * telapsed, 1, 0, 0);

      % Draw a solid teapot of size 1.0:
      glutSolidTeapot(1);

      % Compute simulation time for this draw cycle:
      telapsed = (vbl - tstart) * 1;

      if fountain
        % Draw the particle fountain. We use a vertex shader in the shader
        % program glsl to compute the physics:
        glUseProgram(glsl);

        % Assign updated simulation time to shader:
        glUniform1f(glGetUniformLocation(glsl, 'Time'), telapsed);

        % Draw the particles: We have preencoded them into a OpenGL display list
        % above for higher performance of drawing:
        glCallList(gld);

        % Done with shaded drawing:
        glUseProgram(0);
      end

      % Manually disable 3D mode before switching to other eye or to flip:
      Screen('EndOpenGL', win);

      % Repeat for renderPass of other eye:
    end

    % Head position tracked?
    if ~bitand(state.tracked, 2)
      % Nope, user out of cameras view frustum. Tell it like it is:
      DrawFormattedText(win, 'Vision based tracking lost\nGet back into the cameras field of view!', 'center', 'center', [1 0 0]);
    end

    % Stimulus ready. Show it on the HMD. We don't clear the color buffer here,
    % as this is done in the next iteration via glClear() call anyway:
    [vbl, onset] = Screen('Flip', win, [], 1);
    fcount = fcount + 1;

    % Result of GPU time measurement expected?
    if gpumeasure
        % Retrieve results from GPU load measurement:
        % Need to poll, as this is asynchronous and non-blocking,
        % so may return a zero time value at first invocation(s),
        % depending on how deep the rendering pipeline is:
        while 1
            winfo = Screen('GetWindowInfo', win);
            if winfo.GPULastFrameRenderTime > 0
                break;
            end
        end

        % Store it:
        gpudur(fcount) = winfo.GPULastFrameRenderTime;
    end

    % Next frame ...
  end

  % Cleanup:
  Priority(0);
  ShowCursor(screenid);
  sca;

  % Stats for nerds:
  fps = fcount / (vbl - tstart);
  gpudur = gpudur(1:fcount);
  fprintf('Average framerate was %f fps. Average GPU rendertime per frame = %f msec.\n', fps, 1000 * mean(gpudur));
  plot(1000 * gpudur);
  title('GPU processing time per frame [msecs]: (Often wrong on buggy OSX!)');
catch
  sca;
  psychrethrow(psychlasterror);
end