/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/SpinningCubeDemo.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | function SpinningCubeDemo
% SpinningCubeDemo - Demonstrate use of MATLAB-OpenGL toolbox
%
% This demo demonstrates use of OpenGL commands in a Matlab script to
% perform some funky 3D animation in Psychtoolbox.
% It shows a randomly spinning, textured cube. The six sides of the cube
% are textured via binary texture data loaded from a file.
%
% Stop the demo by pressing any key.
%
% Notable implementation details:
% The call InitializeMatlabOpenGL(1) at the top of the script initializes the
% Matlab-OpenGL toolbox and enables the 3D gfx support in Psychtoolbox to
% allow proper interfacing between the OpenGL toolbox and Psychtoolbox.
%
% After this call, all OpenGL functions are made available to Matlab with
% the same - or a very similar - calling syntax as in the C programming
% language. OpenGL constants are made available in C-Style, e.g.,
% GL_DEPTH_TEST, and in a format that is optimized for Matlab, where the
% first underscore is replaced by a dot, e.g., GL.DEPTH_TEST. The former
% style is more convenient if you want to copy & paste OpenGL code written
% in C into a Matlab M-File for use, but it only works if you put all your
% code into one single M-File or function. The second style works in
% subfunctions as well, if you place the commands "global GL" and "global
% GLU" at the top of each function... This inconvenience is unavoidable due
% to the design of Matlab.
%
% In order to execute OpenGL 3D drawing commands to draw 3D stims into a
% Psychtoolbox Onscreen- or offscreen window, one needs to call
% Screen('BeginOpenGL', windowPtr). After OpenGL drawing and before
% execution of standard Screen() commands, one needs to call
% Screen('EndOpenGL', windowPtr) to tell Psychtoolbox that 3D drawing is
% finished.
%
% Some OpenGL functions that return complex parameters to Matlab are not
% yet implemented - this is work in progress. The performance will be also
% lower than when coding in a compiled language like C++ or C -- that's the
% Matlab tax you'll have to pay ;-)
%
% Apart from that, use of OpenGL for Matlab is the same as OpenGL for the C
% programming language. If you are used to OpenGL coding in C, it should be
% a zero effort transition to code in Matlab+PTB. If you don't know OpenGL
% then get yourself one of the many good books or visit one of the many
% OpenGL tutorials on the internet.
%
% The OpenGL Red Book is a great introduction and reference for OpenGL
% programming. Release 1.0 is available online, later releases can be
% purchased in any good book store:
%
% http://www.opengl.org/documentation/red_book_1.0/
%
% For more infos, code samples, tutorials, online documentation, go to:
%
% http://www.opengl.org
%
% The OpenGL for Matlab toolbox was developed and contributed under
% GPL license by Prof. Richard F. Murray, University of York, Canada.
%
% 15-Dec-2005 -- created (RFM)
% 21-Jan-2006 -- Modified for use with OpenGL-Psychtoolbox (MK)
% 16-Feb-2006 -- Modified for use with new MOGL (MK)
% 05-Mar-2006 -- Cleaned up for public consumption (MK)
% 06-Apr-2013 -- Make compatible with OpenGL-ES1.1. (MK)
% Is the script running in OpenGL Psychtoolbox?
AssertOpenGL;
% Find the screen to use for display:
screenid=max(Screen('Screens'));
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper:
InitializeMatlabOpenGL(1);
% Open a double-buffered full-screen window on the main displays screen.
[win , winRect] = Screen('OpenWindow', screenid);
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
% Get the aspect ratio of the screen:
ar=winRect(4)/winRect(3);
% Turn on OpenGL local lighting model: The lighting model supported by
% OpenGL is a local Phong model with Gouraud shading.
glEnable(GL_LIGHTING);
% Enable the first local light source GL_LIGHT_0. Each OpenGL
% implementation is guaranteed to support at least 8 light sources.
glEnable(GL_LIGHT0);
% Enable two-sided lighting - Back sides of polygons are lit as well.
glLightModelfv(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
% Enable proper occlusion handling via depth tests:
glEnable(GL_DEPTH_TEST);
% Define the cubes light reflection properties by setting up reflection
% coefficients for ambient, diffuse and specular reflection:
glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT, [ .33 .22 .03 1 ]);
glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE, [ .78 .57 .11 1 ]);
glMaterialfv(GL_FRONT_AND_BACK,GL_SHININESS,27.8);
% Enable 2D texture mapping, so the faces of the cube will show some nice
% images:
glEnable(GL_TEXTURE_2D);
% Generate 6 textures and store their handles in vecotr 'texname'
texname=glGenTextures(6);
% Load a binary file which contains binary pixel data for the six textures:
matdemopath = [PsychtoolboxRoot 'PsychDemos/OpenGL4MatlabDemos/mogldemo.mat'];
load(matdemopath, 'face')
% Setup textures for all six sides of cube:
for i=1:6,
% Enable i'th texture by binding it:
glBindTexture(GL_TEXTURE_2D,texname(i));
% Compute image in matlab matrix 'tx'
f=max(min(128*(1+face{i}),255),0);
tx=repmat(flipdim(f,1),[ 1 1 3 ]);
tx=permute(flipdim(uint8(tx),1),[ 3 2 1 ]);
% Assign image in matrix 'tx' to i'th texture:
glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,256,256,0,GL_RGB,GL_UNSIGNED_BYTE,tx);
% Setup texture wrapping behaviour:
glTexParameterfv(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameterfv(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
% Setup filtering for the textures:
glTexParameterfv(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);
glTexParameterfv(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST);
% Choose texture application function: It shall modulate the light
% reflection properties of the the cubes face:
glTexEnvfv(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_MODULATE);
end
% Set projection matrix: This defines a perspective projection,
% corresponding to the model of a pin-hole camera - which is a good
% approximation of the human eye and of standard real world cameras --
% well, the best aproximation one can do with 3 lines of code ;-)
glMatrixMode(GL_PROJECTION);
glLoadIdentity;
% Field of view is 25 degrees from line of sight. Objects closer than
% 0.1 distance units or farther away than 100 distance units get clipped
% away, aspect ratio is adapted to the monitors aspect ratio:
gluPerspective(25,1/ar,0.1,100);
% Setup modelview matrix: This defines the position, orientation and
% looking direction of the virtual camera:
glMatrixMode(GL_MODELVIEW);
glLoadIdentity;
% Cam is located at 3D position (3,3,5), points upright (0,1,0) and fixates
% at the origin (0,0,0) of the worlds coordinate system:
gluLookAt(3,3,5,0,0,0,0,1,0);
% Setup position and emission properties of the light source:
% Set background color to 'black':
glClearColor(0,0,0,0);
% Point lightsource at (1,2,3)...
glLightfv(GL_LIGHT0,GL_POSITION,[ 1 2 3 0 ]);
% Emits white (1,1,1,1) diffuse light:
glLightfv(GL_LIGHT0,GL_DIFFUSE, [ 1 1 1 1 ]);
% There's also some white, but weak (R,G,B) = (0.1, 0.1, 0.1)
% ambient light present:
glLightfv(GL_LIGHT0,GL_AMBIENT, [ .1 .1 .1 1 ]);
% Initialize amount and direction of rotation
theta=0;
rotatev=[ 0 0 1 ];
% Animation loop: Run until key press...
while (1)
% Calculate rotation angle for next frame:
theta=mod(theta+0.3,360);
rotatev=rotatev+0.1*[ sin((pi/180)*theta) sin((pi/180)*2*theta) sin((pi/180)*theta/5) ];
rotatev=rotatev/sqrt(sum(rotatev.^2));
% Setup cubes rotation around axis:
glPushMatrix;
glRotatef(theta,rotatev(1),rotatev(2),rotatev(3));
% Clear out the backbuffer: This also cleans the depth-buffer for
% proper occlusion handling:
glClear;
% The subroutine cubeface (see below) draws one side of the cube, so we
% call it six times with different settings:
cubeface([ 4 3 2 1 ],texname(1));
cubeface([ 5 6 7 8 ],texname(2));
cubeface([ 1 2 6 5 ],texname(3));
cubeface([ 3 4 8 7 ],texname(4));
cubeface([ 2 3 7 6 ],texname(5));
cubeface([ 4 1 5 8 ],texname(6));
glPopMatrix;
% Finish OpenGL rendering into PTB window and check for OpenGL errors.
Screen('EndOpenGL', win);
% Show rendered image at next vertical retrace:
Screen('Flip', win);
% Switch to OpenGL rendering again for drawing of next frame:
Screen('BeginOpenGL', win);
% Check for keyboard press and exit, if so:
if KbCheck
break;
end;
end
% Delete all allocated OpenGL textures:
glDeleteTextures(length(texname),texname);
% Shut down OpenGL rendering:
Screen('EndOpenGL', win);
% Close onscreen window and release all other ressources:
Screen('CloseAll');
% Well done!
return
% Subroutine for drawing of one face of a textured cube:
% Draw a quadrilateral polygon, defined by indices in vector 'i' and apply
% the texture image 'tx' to it:
function cubeface( i, tx )
% We want to access OpenGL constants. They are defined in the global
% variable GL. GLU constants and AGL constants are also available in the
% variables GLU and AGL...
global GL
% Vector v maps indices to 3D positions of the corners of a face:
v=[ 0 0 0 ; 1 0 0 ; 1 1 0 ; 0 1 0 ; 0 0 1 ; 1 0 1 ; 1 1 1 ; 0 1 1 ]'-0.5;
% Compute surface normal vector. Needed for proper lighting calculation:
n=cross(v(:,i(2))-v(:,i(1)),v(:,i(3))-v(:,i(2)));
% Bind (Select) texture 'tx' for drawing:
glBindTexture(GL.TEXTURE_2D,tx);
% Begin drawing of a new quad:
glBegin(GL.QUADS);
% Assign n as normal vector for this polygons surface normal:
glNormal3f(n(1), n(2), n(3));
% Define vertex 1 by assigning a texture coordinate and a 3D position:
glTexCoord2f(0, 0);
glVertex3f(v(1,i(1)),v(2,i(1)),v(3,i(1)));
% Define vertex 2 by assigning a texture coordinate and a 3D position:
glTexCoord2f(1, 0);
glVertex3f(v(1,i(2)),v(2,i(2)),v(3,i(2)));
% Define vertex 3 by assigning a texture coordinate and a 3D position:
glTexCoord2f(1, 1);
glVertex3f(v(1,i(3)),v(2,i(3)),v(3,i(3)));
% Define vertex 4 by assigning a texture coordinate and a 3D position:
glTexCoord2f(0, 1);
glVertex3f(v(1,i(4)),v(2,i(4)),v(3,i(4)));
% Done with this polygon:
glEnd;
% Return to main function:
return
|