This file is indexed.

/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/FDFDemo.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
function FDFDemo(dotDensity, dotLifetime)
% FDFDemo(dotDensity, dotLifetime) - Demo of "formless dot field" stimulus
% via moglFDF.
%
% This demo generates a simple "formless dot field" random dot motion
% stimulus to create "structure from motion" percept by use of the moglFDF
% function for formless dot field rendering. See "help moglFDF" for more
% details.
%
% The demo shows a simple spinning 3D sphere, rendered as random dot
% stimulus.
%
% The following optional parameters can be provided to FDFDemo:
%
% dotDensity = Number of dots to use for both, the background- and
%              foreground distribution. Defaults to 10000.
%
% dotLifetime = Lifetime of dots in frames. Defaults to 10 frames.
%
%
% Control keys:
%
% ESCape key finishes the demo.
%
% SPACE key toggles between a slowly rotating sphere and a static sphere.
%
% 'd' toggles the display between the formless dot field stimulus and some
% debug visualization.
%
% 't' toggles drawing of foreground dots in the colors defined by the
% texture map of the drawn object.
%
% 'r' resets the distribution to empty, then incrementally recreates it.
%
% 'h' resets the distribution to a completely new random one.
%
% Arrow left/right control the density of dots, the 'dotDensity' paramter
% in decrements/increments of 5%.
%
% Arrow up-/down controls the 'dotLifetime' in steps of +/- 1.
%

% History:
% 05/02/08  Written (MK).
% 11/03/08  Documentation update, preparation for public release (MK).
% 11/15/08  Demonstrate new features of moglFDF, allow runtime change of
%           some params (MK).

% Setup default settings:
if nargin < 1 || isempty(dotDensity)
    % 10000 dots by default:
    dotDensity = 10000;
end

if nargin < 2 || isempty(dotLifetime)
    % 10 frames lifetime per dot by default:
    dotLifetime = 10;
end

debug = 0;

% Is the script running in OpenGL Psychtoolbox? Abort, if not.
AssertOpenGL;

% Setup unified keyboard mapping:
KbName('UnifyKeyNames');
escape = KbName('ESCAPE');
space = KbName('space');
dKey = KbName('d');
rkey = KbName('r');
hkey = KbName('h');
tkey = KbName('t');
upArrow = KbName('UpArrow');
downArrow = KbName('DownArrow');
leftArrow = KbName('LeftArrow');
rightArrow = KbName('RightArrow');

% Find the screen to use for display:
screenid=max(Screen('Screens'));

% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper:
InitializeMatlabOpenGL([], 0);

% Open a double-buffered full-screen window on the main displays screen,
% with fast Offscreen window support enabled and black background clear
% color. Fast Offscreen windows support is needed for moglFDF to work.
PsychImaging('PrepareConfiguration');
PsychImaging('AddTask', 'General', 'UseFastOffscreenWindows');
[win , winRect] = PsychImaging('OpenWindow', screenid, 0);

try
    % Prepare texture to by applied to the sphere: Load & create it from an image file:
    myimg = imread([PsychtoolboxRoot 'PsychDemos/OpenGL4MatlabDemos/earth_512by256.jpg']);

    % Make a special power-of-two texture from the image by setting the enforcepot - flag to 1
    % when calling 'MakeTexture'. GL_TEXTURE_2D textures (==power of two textures) are
    % especially easy to handle in OpenGL. If you use the enforcepot flag, it is important
    % that the texture image 'myimg' has a width and a height that is exactly a power of two,
    % otherwise this command will fail: Allowed values for image width and height are, e.g.,
    % 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and on some high-end gfx cards
    % 4096 pixels. Our example image has a size of 512 by 256 pixels...
    mytex = Screen('MakeTexture', win, myimg, [], 1);

    % Retrieve OpenGL handles to the PTB texture. These are needed to use the texture
    % from "normal" OpenGL code:
    [gltex, gltextarget] = Screen('GetOpenGLTexture', win, mytex);

    % Debug output settings for moglFDF: Most useful are -1 for real object
    % render and 1 for silhouette render, as well as 0 for normal op.
    moglFDF('DebugFlag', 0);

    % Stimulus parameters:

    % Size of the final output window to be drawn to:
    rect = Screen('Rect', win);
    
    % Texture coordinates on the surface of our demo object are in the
    % range 0.0 to 1.0 in both x- and y- direction:
    texCoordMin   = [0.0 , 0.0];
    texCoordMax   = [1.0 , 1.0];
    
    % Resolve motion with 512 x 512 resolution:
    texResolution = [256 , 256];
    
    % Probability with which a randomly located dot within the silhouette
    % is drawn -- Kind of "Signal to noise" ratio within the objects
    % silhouette, if the "object-induced dot motion" is considered the
    % signal and the noise is considered the noise.
    % Values between 0 - 1 are meaningful:
    BGSilhouetteAcceptanceProbability = 0.0;
    
    % Use max 'dotDensity' foreground dots for sampling the objects
    % surface: In the current moglFDF implementation, maxFGDots must be an
    % integral multiple of the dotLifetime!
    maxFGDots = (1 - BGSilhouetteAcceptanceProbability) * dotDensity;

    % Use max 'dotDensity' dots for background distribution:
    maxBGDots = dotDensity;
    
    % Init texture mapping toggle flag to "texturemapping off":
    textoggle = 1;
    
    % Use occlusion culling: Dots that would stick to the occluded part of
    % the 3D objects surface are not drawn. By default - if this parameter
    % is omitted or set > 1 - all dots are drawn, even "occluded" ones.
    zThreshold = 0.0001;
    
    fdf = moglFDF('CreateContext', win, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime, zThreshold, BGSilhouetteAcceptanceProbability);
    
    % Define actual string of commands that renders the 3D object or scene:
    % This command sequence will draw our sphere 'mysphere' at its current
    % orientation. See setup code below for the definition of 'mysphere'.
    callbackEvalString = 'gluSphere(mysphere, 0.7, 100, 100);';
    fdf = moglFDF('SetRenderCallback', fdf, callbackEvalString);

    % If texture mapping is on, load a texture mapping shader to
    % demonstrate mixing static color with texture:
    if textoggle > 0
        drawShader = LoadGLSLProgramFromFiles('moglFDFTexturedDotsRenderShader.frag', 1);
        glUseProgram(drawShader);
        glUniform1i(glGetUniformLocation(drawShader, 'Image'), 0);

        % Tell shader that it should roll its own pointsprite based
        % anti-aliasing, instead of leaving the job up to the GPU:
        % Very recent GPU's may be able to do this themselves, e.g., NVidia
        % Geforce 8800 and later on OS/X 10.5.6 and later. In such a case,
        % setting doPointSprites to zero may provide a slight speedup:
        doPointSprites = 1
        glUniform1i(glGetUniformLocation(drawShader, 'doSmooth'), doPointSprites);

        % Assign mixweight: 0.0 = static color only, 1.0 = texture only,
        % intermediate levels provide a mix between 0% and 100% texture:
        glUniform1f(glGetUniformLocation(drawShader, 'texWeight'), 0.5);
        glUseProgram(0);
        
        % Assign shader for 2D foreground dot draw:
        fdf = moglFDF('SetDrawShader', fdf, drawShader, [], doPointSprites);
        
        % Enable texture:
        fdf = moglFDF('SetColorTexture', fdf, gltex, gltextarget);
    else
        drawShader = [];
    end
    
    % Setup the OpenGL rendering context of the onscreen window for use by
    % OpenGL wrapper. After this command, all following OpenGL commands will
    % draw into the onscreen window 'win':
    Screen('BeginOpenGL', win);

    % Get the aspect ratio of the screen:
    ar=winRect(4)/winRect(3);

    % Setup default drawing color to white (R,G,B)=(1,1,1):
    glColor3f(1,1,1);

    % Enable proper occlusion handling via depth tests:
    glEnable(GL.DEPTH_TEST);

    % Set projection matrix: This defines a perspective projection,
    % corresponding to the model of a pin-hole camera - which is a good
    % approximation of the human eye and of standard real world cameras --
    % well, the best aproximation one can do with 3 lines of code ;-)
    glMatrixMode(GL.PROJECTION);
    glLoadIdentity;

    % Field of view is 25 degrees from line of sight. Objects closer than
    % 0.1 distance units or farther away than 100 distance units get clipped
    % away, aspect ratio is adapted to the monitors aspect ratio:
    gluPerspective(25,1/ar,0.1,100);

    % Setup modelview matrix: This defines the position, orientation and
    % looking direction of the virtual camera:
    glMatrixMode(GL.MODELVIEW);
    glLoadIdentity;

    % Reposition camera: Sitting at (x,y,z)==(0,0,5), looking at the origin
    % (0,0,0), in an upright (0,1,0) orientation:
    gluLookAt(0,0,5,0,0,0,0,1,0);

    % Set background clear color to 'black' (R,G,B,A)=(0,0,0,0):
    glClearColor(0,0,0,0);

    % Clear out the backbuffer: This also cleans the depth-buffer for
    % proper occlusion handling: You need to glClear the depth buffer whenever
    % you redraw your scene, e.g., in an animation loop. Otherwise occlusion
    % handling will screw up in funny ways...
    glClear;

    % Enable texture mapping for this type of textures...
    glEnable(gltextarget);

    % Bind our texture, so it gets applied to all following objects:
    % Btw. this whole texture setup is pretty futile for random dot field
    % rendering as we don't apply any textures, we only use the texture
    % coordinates! We apply a texture anyway, so the users sees something
    % nice if one of the debug modes is enabled where the object is
    % renderered in a "normal way" for illustrative purposes.
    glBindTexture(gltextarget, gltex);

    % Textures color texel values shall modulate the color computed by lighting model:
    glTexEnvfv(GL.TEXTURE_ENV,GL.TEXTURE_ENV_MODE,GL.MODULATE);

    % Clamping behaviour shall be a cyclic repeat:
    glTexParameteri(gltextarget, GL.TEXTURE_WRAP_S, GL.REPEAT);
    glTexParameteri(gltextarget, GL.TEXTURE_WRAP_T, GL.REPEAT);

    % Set up minification and magnification filters. This is crucial for the thing to work!
    glTexParameteri(gltextarget, GL.TEXTURE_MIN_FILTER, GL.LINEAR);
    glTexParameteri(gltextarget, GL.TEXTURE_MAG_FILTER, GL.LINEAR);

    % Create the sphere as a quadric object. This is needed because the simple glutSolidSphere
    % command does not automatically assign texture coordinates for texture mapping onto a sphere:
    % mysphere is a handle that you need to pass to all quadric functions:
    mysphere = gluNewQuadric;

    % Enable automatic generation of texture coordinates for our quadric object:
    gluQuadricTexture(mysphere, GL.TRUE);

    % Apply some static rotation to the object to have a nice view onto it:
    % This basically rotates our spinning earth into an orientation that
    % roughly matches the real orientation in space...
    % First -90 degrees around its x-axis...
    glRotatef(-90, 1,0,0);

    % ...then 18 degrees around its new (rotated) y-axis...
    glRotatef(18,0,1,0);

    % OpenGL setup done: Switch back to 2D mode:
    Screen('EndOpenGL', win);

    % Init the rotation 'toggle' flag (see above) to "rotation enabled":
    toggle = 1;
    
    % Our framecounter, we love stats ;-)
    fcount = 0;
    
    % Toggle reset of dot distribution at first loop iteration:
    resetDistribution = 1;
    
    % Initial Flip to have a nice black display, and to record the 'tstart'
    % timestamp of this demo animation:
    tstart = Screen('Flip', win);
    
    % Now for our little animation loop. This loop will run until a key is pressed.
    % It rotates the object by a few degrees (actually: Applies a rotation transformation
    % to all objects to be drawn) and then redraws it at its new
    % orientation:
    while 1
        
        % Want to reinit the dot distribution?
        if resetDistribution
            if resetDistribution == 2
                % Perform a single initial object-render, update & recompute cycle for
                % set of dots. moglFDF will compute the new dot distribution, based on
                % the current 3D scene appearance, but it won't draw the new dot
                % distribution for the next frame yet. The special flag '1' asks
                % 'Update' to generate a full initial distribution:
                fdf = moglFDF('Update', fdf, 1);
            else
                % Reset state to empty distribution, so it can recreate from scratch:
                fdf = moglFDF('ResetState', fdf);
            end
            
            resetDistribution = 0;
        end
        
        % Update rotation angle of rotating sphere for this redraw cycle:
        % glRotate the object by 0.1 degrees around its z-axis if toggle is set to 1. 
        Screen('BeginOpenGL', win);
        glRotatef(toggle * 0.1, 0, 0, 1); 
        Screen('EndOpenGL', win);
        
        % Perform object-render, update & recompute cycle for set of dots.
        % moglFDF will compute the new dot distribution, based on the
        % current 3D scene appearance, but it won't draw the new dot
        % distribution for the next frame yet:
        fdf = moglFDF('Update', fdf);

        % Wanna have nice looking random dots?
        if 1
            % Enable alpha blending and smooth dots for nice looking
            % anti-aliased dots:
            glBlendFunc(GL.SRC_ALPHA, GL.ONE_MINUS_SRC_ALPHA);
            glEnable(GL.BLEND);
            glPointSize(5.0);
            glEnable(GL.POINT_SMOOTH);
        end
        
        % Render 2D dot set in white:
        glColor3f(1,1,1);
                
        % This performs the actual high-speed drawing of the dot field into
        % window 'win':
        fdf = moglFDF('Render', fdf, win, [1 1]);

        % Set to 1 for readback of dots and "manual" visualization:
        if 0
            % This is a slow alternative to moglFDF('Render'):
            % The final dot distribution is read back from the GPU into a
            % Matlab dot matrix 'xydots'...
            xydots = moglFDF('GetResults', fdf);

            % For the fun of it, some stats of the xydots are computed and
            % printed -- here the minimum and maximum 2D dot locations...
            minx=min(xydots(1,:)) %#ok<NOPRT,NASGU>
            miny=min(xydots(2,:)) %#ok<NOPRT,NASGU>
            maxx=max(xydots(1,:)) %#ok<NOPRT,NASGU>
            maxy=max(xydots(2,:)) %#ok<NOPRT,NASGU>

            % And good'ol Screen('DrawDots') is used to draw the 'xydots'
            % vector of dots:
            Screen('DrawDots', win, xydots, 2, [255 0 0], [], 1);
        end

        % Done with drawing, disable alpha blending again:
        glDisable(GL.BLEND);
        
        % Check for and handle keyboard input:
        [pressed secs keyCode] = KbCheck;
        if pressed
            % Pressing ESCape finishes the demo by breaking out of the
            % animation loop:
            if keyCode(escape)
                break;
            end
            
            % Pressing SPACE toggles the 3D rotation of the sphere. As soon
            % as rotation stops and motion information therefore gets lost,
            % the perception of the sphere will quickly degrade into random
            % dot blinking:
            if keyCode(space)
                KbReleaseWait;
                toggle = 1 - toggle;
            end

            if keyCode(tkey)
                KbReleaseWait;
                textoggle = 1 - textoggle;
                if textoggle
                    % Enable texture mapping:
                    fdf = moglFDF('SetColorTexture', fdf, gltex, gltextarget);
                    if ~isempty(drawShader)
                        fdf = moglFDF('SetDrawShader', fdf, drawShader);
                    end
                else
                    % Disable texture mapping:
                    fdf = moglFDF('SetColorTexture', fdf, [], []);
                    fdf = moglFDF('SetDrawShader', fdf, []);
                end
            end
            
            % 'r' key resets the distribution:
            if keyCode(rkey)
                resetDistribution = 1;
            end
            
            % 'h' key resets the distribution and reinits it immediately:
            if keyCode(hkey)
                resetDistribution = 2;
            end

            % Arroy keys control dot density and lifetime:
            if any(keyCode([leftArrow, rightArrow, upArrow, downArrow]))
                % Change of distribution parameters requested:
                
                if keyCode(leftArrow)
                    dotDensity = max(dotLifetime, round(dotDensity * 0.95));
                end
                
                if keyCode(rightArrow)
                    dotDensity = min(1000000, round(dotDensity * 1.05));
                end

                if keyCode(upArrow)
                    dotLifetime = min(500, dotLifetime + 1);
                end
                
                if keyCode(downArrow)
                    dotLifetime = max(1, dotLifetime - 1);
                end

                % Recompute number of dots in distribution:
                maxFGDots = (1 - BGSilhouetteAcceptanceProbability) * dotDensity;

                % Use max 'dotDensity' dots for background distribution:
                maxBGDots = dotDensity;

                % Reinit context with new settings, but disable debug
                % output while doing so, so we don't clutter the Matlab
                % window:
                olddebug = moglFDF('DebugFlag', -2);
                fdf = moglFDF('ReinitContext', fdf, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime, zThreshold, BGSilhouetteAcceptanceProbability);
                moglFDF('DebugFlag', olddebug);

                % Hotstart the context, as if 'h' key is pressed:
                resetDistribution = 2;
            end
            
            if keyCode(dKey)
                KbReleaseWait;
                debug = mod(debug+1, 3);
                switch debug
                    case 0,
                        moglFDF('DebugFlag', 0);
                    case 1,
                        moglFDF('DebugFlag', 1);
                    case 2,
                        moglFDF('DebugFlag', -1);
                end
            end
        end
        
        % Show new image at next retrace:
        Screen('Flip', win);

        % Update framecounter:
        fcount = fcount + 1;

        % Ready for next draw loop iteration...
    end;
    
    % End of animation loop: Take end-timestamp:
    tend = Screen('Flip', win);

    % Compute and show average framerate:
    avgfps = fcount / (tend - tstart) %#ok<NOPRT>
    avgdur = 1000/avgfps %#ok<NASGU,NOPRT>

    % Enable OpenGL context for cleanup work:
    Screen('BeginOpenGL', win);

    % Delete our sphere object:
    gluDeleteQuadric(mysphere);

    % Unselect our texture...
    glBindTexture(gltextarget, 0);

    % ... and disable texture mapping:
    glDisable(gltextarget);

    % End of OpenGL rendering...
    Screen('EndOpenGL', win);

    % Destroy FDF context, release all ressources:
    moglFDF('DestroyContext', fdf);

    % Close onscreen window and release all other ressources:
    Screen('CloseAll');
catch
    % In case of error, a Screen('CloseAll') will also do a good
    % post-mortem cleanup job:
    Screen('CloseAll');
    
    psychrethrow(psychlasterror);
end

% Well done!
return