This file is indexed.

/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/DrawDots3DDemo.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
function DrawDots3DDemo(stereoMode, multiSample)
% DrawDots3DDemo -- Show fast drawing of 3D dots.
%
% Usage: DrawDots3DDemo([stereoMode=0][, multiSample=0]);
%
% This demo shows how to use the moglDrawDots3D() function to draw 3D dots
% in OpenGL 3D mode. The function is mostly equivalent to
% Screen('DrawDots') for drawing of 2D dots in regular 2D mode.
%
% The first subdemo simply fills the whole 3D scene with uniformly sampled
% random 3D dots, using the special sampling procedure
% CreateUniformDotsIn3DFrustum() which was contributed by Diederick
% Niehorster.
%
% The second subdemo shows how to use a GLSL vertex shader on modern GPU's
% to speed up complex drawing of complex 3D dot fields. It shows a nicely
% shaded, slowly rotating "Utah Teapot". Below the teapot is a primitive
% "sparkling fire" of 100 3D dots, which are lit by OpenGL and whose
% positions are computed in Matlab/Octave on the CPU. The teapot also emits
% a fountain of colorful particles from its nozzle. This fountain consists
% of 10000 particles, and the particle trajectories are computed on the GPU
% by use of a GLSL vertex shader. Please note that this subdemo may be
% pretty boring, not showing the magic fountain, if your GPU doesn't
% support shaders.
%
% The 3rd subdemo is a speed shootout: It draws the same fountain as demo
% 2, but as fast as it can, with sync of display updates to the vertical
% retrace disabled. The fountain is drawn 3 times a 20 seconds duration.
% First with purely Matlab computed trajectories, then with the same shader
% as in demo 2, then again with the shader, but additionally applying
% OpenGL display lists to store all data in the fast VRAM of the GPU to
% gain an additional speedup. At the end of these three benchmark runs, the
% demo will end and print out the average redraw rates attainable by the
% three methods. On a modern system with a modern graphics card, you should
% observe quite drastic speedups of GPU+VRAM vs. GPU vs. Matlab/CPU.
%
% The 4th subdemo simulates a "warp-flight" by creating a particle fountain
% that approaches the viewer, expanding while doing so.
%
%
% Btw. if you are a proud owner of a good 3D stereo setup, or at least of
% some anaglyph glasses, you should try the stereo display option as well,
% e.g., stereoMode == 8 for red-blue anaglyphs.
%
% Pressing the ESCape key continues the demo and progresses to next
% subdemo. Mouse clicks will pause some demos, until another mouse click
% continues the demo.
%
% Optional parameter:
%
% 'stereoMode' if set to a non-zero value, will render at lest the 2nd demo
% in a binocular stereo presentation mode, using the method specified in
% the 'stereoMode' flag. See for example ImagingStereoDemo for available
% modes.
%
% 'multiSample' if set to a non-zero value will enable multi-sample
% anti-aliasing. This however usually doesn't give good results with
% smoothed 3D dots.
%

% History:
% 03/01/2009  mk  Written.

% GL data structure needed for all OpenGL demos:
global GL;

if nargin < 2
    multiSample = 0;
end

if isempty(multiSample)
    multiSample = 0;
end

if nargin < 1
    stereoMode = [];
end

if isempty(stereoMode)
    stereoMode = 0;
end

if stereoMode
    stereoViews = 1;
else
    stereoViews = 0;
end

% Is the script running in OpenGL Psychtoolbox? Abort, if not.
AssertOpenGL;

% Restrict KbCheck to checking of ESCAPE key:
KbName('UnifyKeynames');
RestrictKeysForKbCheck(KbName('ESCAPE'));

% Find the screen to use for display:
screenid=max(Screen('Screens'));
if ismember(stereoMode, [4,5]) && IsWin
	screenid = 0;
end

try
    % Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
    % mogl OpenGL for Matlab wrapper:
    InitializeMatlabOpenGL;

    PsychImaging('PrepareConfiguration');

    % Open a double-buffered full-screen window on the main displays screen.
    [win, winRect] = PsychImaging('OpenWindow', screenid, 0, [], [], [], stereoMode, multiSample);

    if ismember(stereoMode, [6,7,8,9])
        SetAnaglyphStereoParameters('FullColorAnaglyphMode', win);
    end

    Screen('TextSize', win, 18);

    % Setup the OpenGL rendering context of the onscreen window for use by
    % OpenGL wrapper. After this command, all following OpenGL commands will
    % draw into the onscreen window 'win':
    Screen('BeginOpenGL', win);

    % Get the aspect ratio of the screen:
    ar=RectHeight(winRect) / RectWidth(winRect);

	% Set viewport properly:
	glViewport(0, 0, RectWidth(winRect), RectHeight(winRect));
	
    % Setup default drawing color to yellow (R,G,B)=(1,1,0). This color only
    % gets used when lighting is disabled - if you comment out the call to
    % glEnable(GL.LIGHTING).
    glColor3f(1,1,0);

    % Setup OpenGL local lighting model: The lighting model supported by
    % OpenGL is a local Phong model with Gouraud shading.

    % Enable the first local light source GL.LIGHT_0. Each OpenGL
    % implementation is guaranteed to support at least 8 light sources,
    % GL.LIGHT0, ..., GL.LIGHT7
    glEnable(GL.LIGHT0);

    % Enable alpha-blending for smooth dot drawing:
    glEnable(GL.BLEND);
    glBlendFunc(GL.SRC_ALPHA, GL.ONE_MINUS_SRC_ALPHA);

    % Set projection matrix: This defines a perspective projection,
    % corresponding to the model of a pin-hole camera - which is a good
    % approximation of the human eye and of standard real world cameras --
    % well, the best aproximation one can do with 3 lines of code ;-)
    glMatrixMode(GL.PROJECTION);
    glLoadIdentity;

    % Field of view is 25 degrees from line of sight. Objects closer than
    % 0.1 distance units or farther away than 100 distance units get clipped
    % away, aspect ratio is adapted to the monitors aspect ratio:
    gluPerspective(25, 1/ar, 0.1, 100);

    % Setup modelview matrix: This defines the position, orientation and
    % looking direction of the virtual camera:
    glMatrixMode(GL.MODELVIEW);
    glLoadIdentity;

    % Our point lightsource is at position (x,y,z) == (1,2,3)...
    glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);

    % Cam is located at 3D position (3,3,5), points upright (0,1,0) and fixates
    % at the origin (0,0,0) of the worlds coordinate system:
    % The OpenGL coordinate system is a right-handed system as follows:
    % Default origin is in the center of the display.
    % Positive x-Axis points horizontally to the right.
    % Positive y-Axis points vertically upwards.
    % Positive z-Axis points to the observer, perpendicular to the display
    % screens surface.
    gluLookAt(0,0,10,0,0,0,0,1,0);

    % Set background clear color to 'black' (R,G,B,A)=(0,0,0,0):
    glClearColor(0,0,0,0);

    % Clear out the backbuffer: This also cleans the depth-buffer for
    % proper occlusion handling: You need to glClear the depth buffer whenever
    % you redraw your scene, e.g., in an animation loop. Otherwise occlusion
    % handling will screw up in funny ways...
    glClear;

    % Finish OpenGL rendering into PTB window. This will switch back to the
    % standard 2D drawing functions of Screen and will check for OpenGL errors.
    Screen('EndOpenGL', win);

    KbReleaseWait;
    DrawFormattedText(win, 'Now for a ugly demo of CPU based drawing of a uniform random dot field.\nPress ESCape key to continue and to finish a subdemo.', 'center', 'center', [255 255 0]);
    Screen('Flip', win);
    KbStrokeWait;

    % Show rendered image at next vertical retrace:
    Screen('Flip', win);

    ndots = 1000;

    % First version: Does not use occlusion testing via depth buffer, does not
    % use lighting. Uses auto-switching between 2D and 3D for simpler code:

    % 3D Dots animation loop: Runs until keypress:
    while ~KbCheck
        % Create random distribution of 3D dots inside our viewing frustum:
        [x,y,z] = CreateUniformDotsIn3DFrustum(ndots, 25, 1/ar, 0.1, 100);

        % Draw dots quickly: Common dotdiameter is 10 pixels, common color is
        % yellow. We move the center of the dots (aka position (0,0,0) to
        % position (0,0,10), so the above random transform applies properly:
        moglDrawDots3D(win, [x ; y; z], 10, [255 255 0 255], [0, 0, 10], 1, []);

        % Show'em:
        Screen('Flip', win, 0, 0);

        % A mouse button press will pause the animation:
        [x,y,buttons] = GetMouse;
        if any(buttons)
            % And wait for a single mouse click to continue:
            GetClicks;
        end
    end

    % Does this GPU support shaders?
    extensions = glGetString(GL.EXTENSIONS);
    if isempty(findstr(extensions, 'GL_ARB_shading_language')) || isempty(findstr(extensions, 'GL_ARB_shader_objects')) || isempty(findstr(extensions, 'GL_ARB_vertex_shader'))
        % Ok, no support for shading.
        shadingavail = 0;
    else
        % Use the shader stuff below this point...
        shadingavail = 1;
    end;

    KbReleaseWait;
    if shadingavail
        DrawFormattedText(win, 'Now for a beautiful demo of GPU based shading.\nPress ESCape key to continue and to finish a subdemo.', 'center', 'center', [255 255 0]);
    else
        DrawFormattedText(win, 'Now for another demo of CPU based drawing.\nPress ESCape key to continue and to finish a subdemo.\n\nUnfortunately your GPU does not support vertex shading\nso all following stuff will be pretty boring.', 'center', 'center', [255 255 0]);
    end

    Screen('Flip', win);
    KbStrokeWait;

    % Second version: Does use occlusion testing via depth buffer, does use
    % lighting. Uses manual switching between 2D and 3D for higher efficiency.
    % Creates a real 3D point-cloud around a teapot, as well as a vertex-shaded
    % fountain of particles that is emitted by the teapot:

    % Number of random dots, whose positions are computed in Matlab on CPU:
    ndots = 100;

    % Number of fountain particles whose positions are computed on the GPU:
    nparticles = 10000;

    % Diameter of particles in pixels:
    particleSize = 5;

    % 'StartPosition' is the 3D position where all particles originate. It is
    % faked to a position, so that the particles seem to originate from the
    % teapots "nozzle":
    StartPosition = [1.44, 0.40, 0];

    % Lifetime for each simulated particle, is chosen so that there seems to be
    % an infinite stream of particles, although the same particles are recycled
    % over and over:
    particlelifetime = 2;

    % Amount of "flow": A value of 1 will create a continuous stream, whereas
    % smaller value create bursts of particles:
    flowfactor = 1;

    if shadingavail
        % Load and setup the vertex shader for particle fountain animation:
        shaderpath = [PsychtoolboxRoot 'PsychDemos/OpenGL4MatlabDemos/GLSLDemoShaders/ParticleSimple'];
        glsl = LoadGLSLProgramFromFiles(shaderpath,1);

        % Bind shader so it can be setup:
        glUseProgram(glsl);

        % Assign static 3D startposition for fountain:
        glUniform3f(glGetUniformLocation(glsl, 'StartPosition'), StartPosition(1), StartPosition(2), StartPosition(3));

        % Assign lifetime:
        glUniform1f(glGetUniformLocation(glsl, 'LifeTime'), particlelifetime);

        % Assign simulated gravity constant 'g' for proper trajectory:
        glUniform1f(glGetUniformLocation(glsl, 'Acceleration'), 1.5);

        % Done with setup:
        glUseProgram(0);
    end

    if ~ismember(stereoMode, [6,7,8,9])
        % Assign random RGB colors to the particles: The shader will use these, but
        % also assign an alpha value that makes the particles "fade out" at the end
        % of there lifetime:
        particlecolors = rand(3, nparticles);
    else
        particlecolors = ones(3, nparticles) * 0.8;
    end
    
    % Maximum speed for particles:
    maxspeed = 1.25;

    % Per-component speed: We select these to shape the fountain in our wanted
    % direction:
    vxmax = maxspeed;
    vymax = maxspeed;
    vzmax = 0.4 * maxspeed;

    % Assign random velocities in (vx,vy,vz) direction: Intervals chosen to
    % shape the beam into something visually pleasing for a teapot:
    particlesxyzt(1,:) = RandLim([1, nparticles],    0.7, +vxmax);
    particlesxyzt(2,:) = RandLim([1, nparticles],    0.7, +vymax);
    particlesxyzt(3,:) = RandLim([1, nparticles], -vzmax, +vzmax);

    % The w-component (4th dimension) encodes the birthtime of the particle. We
    % assign random birthtimes within the possible particlelifetime to get a
    % nice continuous stream of particles. Well, kind of: The flowfactor
    % controls the "burstiness" of particle flow. A value of 1 will create a
    % continous stream, whereas smaller values will create bursts of particles,
    % as if the teapot is choking:
    particlesxyzt(4,:) = RandLim([1, nparticles], 0.0, particlelifetime * flowfactor);

    % Get duration of a single frame:
    ifi = Screen('GetFlipInterval', win);

    % Initial flip to sync us to VBL and get start timestamp:
    vbl = Screen('Flip', win);
    tstart = vbl;
    telapsed = 0;

    % Manually enable 3D mode:
    Screen('BeginOpenGL', win);

    % Enable lighting:
    glEnable(GL.LIGHTING);

    % Enable proper occlusion handling via depth tests:
    glEnable(GL.DEPTH_TEST);

    % Set light position:
    glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);

    % Manually disable 3D mode.
    Screen('EndOpenGL', win);

    % We start with an empty dot array 'xyz' in first frame:
    xyz = [];

    % 3D Dots animation loop: Runs until keypress:
    while ~KbCheck
        % I a stereo display mode, we render the scene for both eyes:
        for view = 0:stereoViews
            % Select 'view' to render (left- or right-eye):
            Screen('SelectStereoDrawbuffer', win, view);

            % Manually reenable 3D mode in preparation of eye draw cycle:
            Screen('BeginOpenGL', win);

            % Setup camera for this eyes 'view':
            glMatrixMode(GL.MODELVIEW);
            glLoadIdentity;

            % This is a bit faked. For a proper solution see help for
            % moglStereoProjection:
            gluLookAt(-0.4 + view * 0.8 , 0, 10, 0, 0, 0, 0, 1, 0);

            % Clear color and depths buffers:
            glClear;

            % Bring a bit of extra spin into this :-)
            glRotated(10 * telapsed, 0, 1, 0);
            glRotated(5  * telapsed, 1, 0, 0);

            % Draw a solid teapot of size 1.0:
            glutSolidTeapot(1.0);

            % For drawing of dots, we need to respecify the light source position,
            % but this must not apply to other objects like the teapot. Therefore
            % we first backup the current lighting settings...
            glPushAttrib(GL.LIGHTING_BIT);

            % ... then set the new light source position ...
            glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);

            % Draw dots of random dot cloud quickly: Common dotdiameter is 5
            % pixels, point smoothing is on, but this time we don't set a dotcolor
            % at all. This way the color can be determined by OpenGL's lighting
            % calculations:
            moglDrawDots3D(win, xyz, 5, [], [], 1);

            % Compute simulation time for this draw cycle:
            telapsed = vbl - tstart;

            if shadingavail
                % Draw the particle fountain. We use a vertex shader in the shader
                % program glsl to compute the physics:
                glUseProgram(glsl);

                % Assign updated simulation time to shader:
                glUniform1f(glGetUniformLocation(glsl, 'Time'), telapsed);

                % Draw the particles. Here particlesxyzt does not encode position,
                % but speed vectors -- this because our shader interprets positions
                % as velocities!
                moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, [], 1);

                % Done with shaded drawing:
                glUseProgram(0);
            end

            % ... restore old light settings from backup ...
            glPopAttrib;

            % Manually disable 3D mode before calling Screen('Flip')!
            Screen('EndOpenGL', win);

            % Repeat for other eyes view if in stereo presentation mode...
        end

        % Mark end of all graphics operation (until flip). This allows GPU to
        % optimize its operations:
        Screen('DrawingFinished', win, 2);

        % Create uniform random distribution of 3D dots inside a cube for next
        % frame. We do it here after the Screen('DrawingFinished') command, so
        % Matlab can compute this random stuff while the GPU is drawing the dot
        % clouds etc. --> Parallelization allows for potential speedup.
        xyz = [RandLim([1,ndots], -1, 1) ; RandLim([1,ndots], -1, -0.7) ; RandLim([1,ndots], -1, 1)];

        % Show'em: We don't clear the color buffer here, as this is done in
        % next iteration via glClear() call anyway:
        vbl = Screen('Flip', win, vbl + 0.5 * ifi, 2);

        % A mouse button press will pause the animation:
        [x,y,buttons] = GetMouse;
        if any(buttons)
            % Wait for a single mouse click to continue:
            GetClicks;
        end
    end

    % Now a benchmark run to test different strategies for their speed...

    KbReleaseWait;
    Screen('Flip', win);

    if shadingavail
        maxrendermode = 2;
    else
        maxrendermode = 0;
    end

    for rendermode=0:maxrendermode
        switch(rendermode)
            case 0,
                msgtxt = 'Testing now Matlab + CPU animation.';
            case 1,
                msgtxt = 'Testing now vertex shader GPU animation.';
            case 2
                msgtxt = 'Testing now optimized vertex shader GPU animation by use of display lists.';
        end

        DrawFormattedText(win, [msgtxt '\nMax test duration will be 20 seconds.\nPress ESCape key to continue and to finish a subdemo.'], 'center', 'center', [255 255 0]);
        Screen('Flip', win);
        KbStrokeWait;

        % Initial flip to sync us to VBL and get start timestamp:
        vbl = Screen('Flip', win);
        tstart = vbl;
        fc = 0;

        Screen('BeginOpenGL', win);
        glDisable(GL.LIGHTING);

        if rendermode == 2
            % Predraw the particles. Here particlesxyzt does not encode position, but
            % speed -- this because our shader interprets positions as velocities!
            gld = glGenLists(1);
            glNewList(gld, GL.COMPILE);
            moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, -StartPosition, 1);
            glEndList;
        end

        Screen('EndOpenGL', win);

        % For the fun of it, a little shoot-out between a purely Matlab + CPU based
        % solution, and two different GPU approaches:
        % 3D Dots animation loop: Runs until keypress or 20 seconds elapsed.
        while ~KbCheck && (vbl - tstart < 20)
            % Manually reenable 3D mode in preparation of eye draw cycle:
            Screen('BeginOpenGL', win);

            % Clear color and depths buffers:
            glClear;

            % Compute simulation time for this draw cycle:
            telapsed = vbl - tstart;

            if rendermode > 0
                % Draw the particle fountain. We use a vertex shader in the shader
                % program glsl to compute the physics:
                glUseProgram(glsl);

                % Assign updated simulation time to shader:
                glUniform1f(glGetUniformLocation(glsl, 'Time'), telapsed);

                if rendermode == 1
                    % Draw the particles. Here particlesxyzt does not encode position, but
                    % speed -- this because our shader interprets positions as velocities!
                    moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, -StartPosition, 1);
                else
                    % Draw particles, but use display list instead of direct call
                    glCallList(gld);
                end

                % Done with shaded drawing:
                glUseProgram(0);
            else
                % Do it yourself in Matlab:
                t = max( (telapsed - particlesxyzt(4,:)) , repmat(0.0, 1, nparticles) );
                t = mod(t, particlelifetime);

                Acceleration = 1.5;
                vpositions(1:3,:) = (particlesxyzt(1:3,:) .* repmat(t, 3, 1));
                vpositions(2,:)   = vpositions(2,:) - (Acceleration * (t.^2));

                particlecolors(4,:) = 1.0 - (t / particlelifetime);

                moglDrawDots3D(win, vpositions, particleSize, particlecolors, [], 1);
            end

            % Manually disable 3D mode before calling Screen('Flip')!
            Screen('EndOpenGL', win);

            % Show'em: We don't clear the color buffer here, as this is done in
            % next iteration via glClear() call anyway. We swap asap, without sync
            % to VBL as this is a benchmark:
            Screen('Flip', win, [], 2, 2);

            % Need a fake vbl timestamp to keep simulation running:
            vbl = GetSecs;

            % Count of drawn frame:
            fc = fc + 1;
        end

        tend = Screen('Flip', win);
        avgfps = fc / (tend - tstart);

        switch(rendermode)
            case 0,
                msgtxt = 'Matlab + CPU';
            case 1,
                msgtxt = 'Shader + GPU';
            case 2
                msgtxt = 'Shader + GPU + VRAM Display lists';
        end

        fprintf('Average framerate FPS for rendermode %i [%s] is: %f Hz.\n', rendermode, msgtxt, avgfps);
        if rendermode == 2
            glDeleteLists(gld,1);
        end

        % Repeat benchmark for other renderModes:
    end

    % A last demo: Warp Drive!
    KbReleaseWait;

    % Respecify StartPosition for particle flow to "behind origin":
    StartPosition = [0, 0, -60];

    if shadingavail
        % Setup the vertex shader for particle fountain animation:

        % Bind shader so it can be setup:
        glUseProgram(glsl);

        % Assign static 3D startposition for fountain:
        glUniform3f(glGetUniformLocation(glsl, 'StartPosition'), StartPosition(1), StartPosition(2), StartPosition(3));

        % Assign lifetime: 10 x increased for starfield simulation...
        glUniform1f(glGetUniformLocation(glsl, 'LifeTime'), 10 * particlelifetime);
        particlesxyzt(4,:) = 10 * particlesxyzt(4,:);

        % Assign no simulated gravity, i.e., set to zero, so we don't get
        % gravity in space:
        glUniform1f(glGetUniformLocation(glsl, 'Acceleration'), 0.0);

        % Done with setup:
        glUseProgram(0);
    end

    % Reassign random velocities in (vx,vy,vz) direction: Intervals chosen to
    % shape the beam into something visually pleasing for a warp-flight:
    maxspeed = 1;
    particlesxyzt(1,:) = RandLim([1, nparticles],  -maxspeed, +maxspeed);
    particlesxyzt(2,:) = RandLim([1, nparticles],  -maxspeed, +maxspeed);
    particlesxyzt(3,:) = RandLim([1, nparticles],          0, 5 * maxspeed);
    particlesxyzt(3,:) = 5 * maxspeed;
    
    % Initial flip to sync us to VBL and get start timestamp:
    vbl = Screen('Flip', win);
    tstart = vbl;
    telapsed = 0;

    % Manually enable 3D mode:
    Screen('BeginOpenGL', win);

    % Enable lighting:
    glEnable(GL.LIGHTING);

    % Enable proper occlusion handling via depth tests:
    glEnable(GL.DEPTH_TEST);

    % Set light position:
    glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);

    % Manually disable 3D mode.
    Screen('EndOpenGL', win);

    % 3D Dots animation loop: Runs until keypress:
    while ~KbCheck
        % I a stereo display mode, we render the scene for both eyes:
        for view = 0:stereoViews
            % Select 'view' to render (left- or right-eye):
            Screen('SelectStereoDrawbuffer', win, view);

            % Manually reenable 3D mode in preparation of eye draw cycle:
            Screen('BeginOpenGL', win);

            % Setup camera for this eyes 'view':
            glMatrixMode(GL.MODELVIEW);
            glLoadIdentity;

            % This is a bit faked. For a proper solution see help for
            % moglStereoProjection:
            gluLookAt(-0.4 + view * 0.8 , 0, 10, 0, 0, 0, 0, 1, 0);

            % Clear color and depths buffers:
            glClear;

            % Bring a bit of extra spin into this :-)
            glRotated(5 * telapsed, 0, 0, 1);

            % For drawing of dots, we need to respecify the light source position,
            % but this must not apply to other objects like the teapot. Therefore
            % we first backup the current lighting settings...
            glPushAttrib(GL.LIGHTING_BIT);

            % ... then set the new light source position ...
            glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);

            % Compute simulation time for this draw cycle:
            telapsed = vbl - tstart;

            if shadingavail
                % Draw the particle fountain. We use a vertex shader in the shader
                % program glsl to compute the physics:
                glUseProgram(glsl);

                % Assign updated simulation time to shader:
                glUniform1f(glGetUniformLocation(glsl, 'Time'), telapsed);

                % Draw the particles. Here particlesxyzt does not encode position,
                % but speed vectors -- this because our shader interprets positions
                % as velocities!
                moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, [], 1);

                % Done with shaded drawing:
                glUseProgram(0);
            end

            % ... restore old light settings from backup ...
            glPopAttrib;

            % Manually disable 3D mode before calling Screen('Flip')!
            Screen('EndOpenGL', win);

            % Repeat for other eyes view if in stereo presentation mode...
        end

        % Mark end of all graphics operation (until flip). This allows GPU to
        % optimize its operations:
        Screen('DrawingFinished', win, 2);

        % Show'em: We don't clear the color buffer here, as this is done in
        % next iteration via glClear() call anyway:
        vbl = Screen('Flip', win, vbl + 0.5 * ifi, 2);

        % A mouse button press will pause the animation:
        [x,y,buttons] = GetMouse;
        if any(buttons)
            % Wait for a single mouse click to continue:
            GetClicks;
        end
    end
    % Done. Close screen and exit:
    Screen('CloseAll');

    % Reenable all keys for KbCheck:
    RestrictKeysForKbCheck([]);

catch
    sca;
    % Reenable all keys for KbCheck:
    RestrictKeysForKbCheck([]);
    psychrethrow(psychlasterror);
end

return;