/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/DrawDots3DDemo.m is in psychtoolbox-3-common 3.0.12.20160126.dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 | function DrawDots3DDemo(stereoMode, multiSample)
% DrawDots3DDemo -- Show fast drawing of 3D dots.
%
% Usage: DrawDots3DDemo([stereoMode=0][, multiSample=0]);
%
% This demo shows how to use the moglDrawDots3D() function to draw 3D dots
% in OpenGL 3D mode. The function is mostly equivalent to
% Screen('DrawDots') for drawing of 2D dots in regular 2D mode.
%
% The first subdemo simply fills the whole 3D scene with uniformly sampled
% random 3D dots, using the special sampling procedure
% CreateUniformDotsIn3DFrustum() which was contributed by Diederick
% Niehorster.
%
% The second subdemo shows how to use a GLSL vertex shader on modern GPU's
% to speed up complex drawing of complex 3D dot fields. It shows a nicely
% shaded, slowly rotating "Utah Teapot". Below the teapot is a primitive
% "sparkling fire" of 100 3D dots, which are lit by OpenGL and whose
% positions are computed in Matlab/Octave on the CPU. The teapot also emits
% a fountain of colorful particles from its nozzle. This fountain consists
% of 10000 particles, and the particle trajectories are computed on the GPU
% by use of a GLSL vertex shader. Please note that this subdemo may be
% pretty boring, not showing the magic fountain, if your GPU doesn't
% support shaders.
%
% The 3rd subdemo is a speed shootout: It draws the same fountain as demo
% 2, but as fast as it can, with sync of display updates to the vertical
% retrace disabled. The fountain is drawn 3 times a 20 seconds duration.
% First with purely Matlab computed trajectories, then with the same shader
% as in demo 2, then again with the shader, but additionally applying
% OpenGL display lists to store all data in the fast VRAM of the GPU to
% gain an additional speedup. At the end of these three benchmark runs, the
% demo will end and print out the average redraw rates attainable by the
% three methods. On a modern system with a modern graphics card, you should
% observe quite drastic speedups of GPU+VRAM vs. GPU vs. Matlab/CPU.
%
% The 4th subdemo simulates a "warp-flight" by creating a particle fountain
% that approaches the viewer, expanding while doing so.
%
%
% Btw. if you are a proud owner of a good 3D stereo setup, or at least of
% some anaglyph glasses, you should try the stereo display option as well,
% e.g., stereoMode == 8 for red-blue anaglyphs.
%
% Pressing the ESCape key continues the demo and progresses to next
% subdemo. Mouse clicks will pause some demos, until another mouse click
% continues the demo.
%
% Optional parameter:
%
% 'stereoMode' if set to a non-zero value, will render at lest the 2nd demo
% in a binocular stereo presentation mode, using the method specified in
% the 'stereoMode' flag. See for example ImagingStereoDemo for available
% modes.
%
% 'multiSample' if set to a non-zero value will enable multi-sample
% anti-aliasing. This however usually doesn't give good results with
% smoothed 3D dots.
%
% History:
% 03/01/2009 mk Written.
% GL data structure needed for all OpenGL demos:
global GL;
if nargin < 2
multiSample = 0;
end
if isempty(multiSample)
multiSample = 0;
end
if nargin < 1
stereoMode = [];
end
if isempty(stereoMode)
stereoMode = 0;
end
if stereoMode
stereoViews = 1;
else
stereoViews = 0;
end
% Is the script running in OpenGL Psychtoolbox? Abort, if not.
AssertOpenGL;
% Restrict KbCheck to checking of ESCAPE key:
KbName('UnifyKeynames');
RestrictKeysForKbCheck(KbName('ESCAPE'));
% Find the screen to use for display:
screenid=max(Screen('Screens'));
if ismember(stereoMode, [4,5]) && IsWin
screenid = 0;
end
try
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper:
InitializeMatlabOpenGL;
PsychImaging('PrepareConfiguration');
% Open a double-buffered full-screen window on the main displays screen.
[win, winRect] = PsychImaging('OpenWindow', screenid, 0, [], [], [], stereoMode, multiSample);
if ismember(stereoMode, [6,7,8,9])
SetAnaglyphStereoParameters('FullColorAnaglyphMode', win);
end
Screen('TextSize', win, 18);
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
% Get the aspect ratio of the screen:
ar=RectHeight(winRect) / RectWidth(winRect);
% Set viewport properly:
glViewport(0, 0, RectWidth(winRect), RectHeight(winRect));
% Setup default drawing color to yellow (R,G,B)=(1,1,0). This color only
% gets used when lighting is disabled - if you comment out the call to
% glEnable(GL.LIGHTING).
glColor3f(1,1,0);
% Setup OpenGL local lighting model: The lighting model supported by
% OpenGL is a local Phong model with Gouraud shading.
% Enable the first local light source GL.LIGHT_0. Each OpenGL
% implementation is guaranteed to support at least 8 light sources,
% GL.LIGHT0, ..., GL.LIGHT7
glEnable(GL.LIGHT0);
% Enable alpha-blending for smooth dot drawing:
glEnable(GL.BLEND);
glBlendFunc(GL.SRC_ALPHA, GL.ONE_MINUS_SRC_ALPHA);
% Set projection matrix: This defines a perspective projection,
% corresponding to the model of a pin-hole camera - which is a good
% approximation of the human eye and of standard real world cameras --
% well, the best aproximation one can do with 3 lines of code ;-)
glMatrixMode(GL.PROJECTION);
glLoadIdentity;
% Field of view is 25 degrees from line of sight. Objects closer than
% 0.1 distance units or farther away than 100 distance units get clipped
% away, aspect ratio is adapted to the monitors aspect ratio:
gluPerspective(25, 1/ar, 0.1, 100);
% Setup modelview matrix: This defines the position, orientation and
% looking direction of the virtual camera:
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% Our point lightsource is at position (x,y,z) == (1,2,3)...
glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);
% Cam is located at 3D position (3,3,5), points upright (0,1,0) and fixates
% at the origin (0,0,0) of the worlds coordinate system:
% The OpenGL coordinate system is a right-handed system as follows:
% Default origin is in the center of the display.
% Positive x-Axis points horizontally to the right.
% Positive y-Axis points vertically upwards.
% Positive z-Axis points to the observer, perpendicular to the display
% screens surface.
gluLookAt(0,0,10,0,0,0,0,1,0);
% Set background clear color to 'black' (R,G,B,A)=(0,0,0,0):
glClearColor(0,0,0,0);
% Clear out the backbuffer: This also cleans the depth-buffer for
% proper occlusion handling: You need to glClear the depth buffer whenever
% you redraw your scene, e.g., in an animation loop. Otherwise occlusion
% handling will screw up in funny ways...
glClear;
% Finish OpenGL rendering into PTB window. This will switch back to the
% standard 2D drawing functions of Screen and will check for OpenGL errors.
Screen('EndOpenGL', win);
KbReleaseWait;
DrawFormattedText(win, 'Now for a ugly demo of CPU based drawing of a uniform random dot field.\nPress ESCape key to continue and to finish a subdemo.', 'center', 'center', [255 255 0]);
Screen('Flip', win);
KbStrokeWait;
% Show rendered image at next vertical retrace:
Screen('Flip', win);
ndots = 1000;
% First version: Does not use occlusion testing via depth buffer, does not
% use lighting. Uses auto-switching between 2D and 3D for simpler code:
% 3D Dots animation loop: Runs until keypress:
while ~KbCheck
% Create random distribution of 3D dots inside our viewing frustum:
[x,y,z] = CreateUniformDotsIn3DFrustum(ndots, 25, 1/ar, 0.1, 100);
% Draw dots quickly: Common dotdiameter is 10 pixels, common color is
% yellow. We move the center of the dots (aka position (0,0,0) to
% position (0,0,10), so the above random transform applies properly:
moglDrawDots3D(win, [x ; y; z], 10, [255 255 0 255], [0, 0, 10], 1, []);
% Show'em:
Screen('Flip', win, 0, 0);
% A mouse button press will pause the animation:
[x,y,buttons] = GetMouse;
if any(buttons)
% And wait for a single mouse click to continue:
GetClicks;
end
end
% Does this GPU support shaders?
extensions = glGetString(GL.EXTENSIONS);
if isempty(findstr(extensions, 'GL_ARB_shading_language')) || isempty(findstr(extensions, 'GL_ARB_shader_objects')) || isempty(findstr(extensions, 'GL_ARB_vertex_shader'))
% Ok, no support for shading.
shadingavail = 0;
else
% Use the shader stuff below this point...
shadingavail = 1;
end;
KbReleaseWait;
if shadingavail
DrawFormattedText(win, 'Now for a beautiful demo of GPU based shading.\nPress ESCape key to continue and to finish a subdemo.', 'center', 'center', [255 255 0]);
else
DrawFormattedText(win, 'Now for another demo of CPU based drawing.\nPress ESCape key to continue and to finish a subdemo.\n\nUnfortunately your GPU does not support vertex shading\nso all following stuff will be pretty boring.', 'center', 'center', [255 255 0]);
end
Screen('Flip', win);
KbStrokeWait;
% Second version: Does use occlusion testing via depth buffer, does use
% lighting. Uses manual switching between 2D and 3D for higher efficiency.
% Creates a real 3D point-cloud around a teapot, as well as a vertex-shaded
% fountain of particles that is emitted by the teapot:
% Number of random dots, whose positions are computed in Matlab on CPU:
ndots = 100;
% Number of fountain particles whose positions are computed on the GPU:
nparticles = 10000;
% Diameter of particles in pixels:
particleSize = 5;
% 'StartPosition' is the 3D position where all particles originate. It is
% faked to a position, so that the particles seem to originate from the
% teapots "nozzle":
StartPosition = [1.44, 0.40, 0];
% Lifetime for each simulated particle, is chosen so that there seems to be
% an infinite stream of particles, although the same particles are recycled
% over and over:
particlelifetime = 2;
% Amount of "flow": A value of 1 will create a continuous stream, whereas
% smaller value create bursts of particles:
flowfactor = 1;
if shadingavail
% Load and setup the vertex shader for particle fountain animation:
shaderpath = [PsychtoolboxRoot 'PsychDemos/OpenGL4MatlabDemos/GLSLDemoShaders/ParticleSimple'];
glsl = LoadGLSLProgramFromFiles(shaderpath,1);
% Bind shader so it can be setup:
glUseProgram(glsl);
% Assign static 3D startposition for fountain:
glUniform3f(glGetUniformLocation(glsl, 'StartPosition'), StartPosition(1), StartPosition(2), StartPosition(3));
% Assign lifetime:
glUniform1f(glGetUniformLocation(glsl, 'LifeTime'), particlelifetime);
% Assign simulated gravity constant 'g' for proper trajectory:
glUniform1f(glGetUniformLocation(glsl, 'Acceleration'), 1.5);
% Done with setup:
glUseProgram(0);
end
if ~ismember(stereoMode, [6,7,8,9])
% Assign random RGB colors to the particles: The shader will use these, but
% also assign an alpha value that makes the particles "fade out" at the end
% of there lifetime:
particlecolors = rand(3, nparticles);
else
particlecolors = ones(3, nparticles) * 0.8;
end
% Maximum speed for particles:
maxspeed = 1.25;
% Per-component speed: We select these to shape the fountain in our wanted
% direction:
vxmax = maxspeed;
vymax = maxspeed;
vzmax = 0.4 * maxspeed;
% Assign random velocities in (vx,vy,vz) direction: Intervals chosen to
% shape the beam into something visually pleasing for a teapot:
particlesxyzt(1,:) = RandLim([1, nparticles], 0.7, +vxmax);
particlesxyzt(2,:) = RandLim([1, nparticles], 0.7, +vymax);
particlesxyzt(3,:) = RandLim([1, nparticles], -vzmax, +vzmax);
% The w-component (4th dimension) encodes the birthtime of the particle. We
% assign random birthtimes within the possible particlelifetime to get a
% nice continuous stream of particles. Well, kind of: The flowfactor
% controls the "burstiness" of particle flow. A value of 1 will create a
% continous stream, whereas smaller values will create bursts of particles,
% as if the teapot is choking:
particlesxyzt(4,:) = RandLim([1, nparticles], 0.0, particlelifetime * flowfactor);
% Get duration of a single frame:
ifi = Screen('GetFlipInterval', win);
% Initial flip to sync us to VBL and get start timestamp:
vbl = Screen('Flip', win);
tstart = vbl;
telapsed = 0;
% Manually enable 3D mode:
Screen('BeginOpenGL', win);
% Enable lighting:
glEnable(GL.LIGHTING);
% Enable proper occlusion handling via depth tests:
glEnable(GL.DEPTH_TEST);
% Set light position:
glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);
% Manually disable 3D mode.
Screen('EndOpenGL', win);
% We start with an empty dot array 'xyz' in first frame:
xyz = [];
% 3D Dots animation loop: Runs until keypress:
while ~KbCheck
% I a stereo display mode, we render the scene for both eyes:
for view = 0:stereoViews
% Select 'view' to render (left- or right-eye):
Screen('SelectStereoDrawbuffer', win, view);
% Manually reenable 3D mode in preparation of eye draw cycle:
Screen('BeginOpenGL', win);
% Setup camera for this eyes 'view':
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% This is a bit faked. For a proper solution see help for
% moglStereoProjection:
gluLookAt(-0.4 + view * 0.8 , 0, 10, 0, 0, 0, 0, 1, 0);
% Clear color and depths buffers:
glClear;
% Bring a bit of extra spin into this :-)
glRotated(10 * telapsed, 0, 1, 0);
glRotated(5 * telapsed, 1, 0, 0);
% Draw a solid teapot of size 1.0:
glutSolidTeapot(1.0);
% For drawing of dots, we need to respecify the light source position,
% but this must not apply to other objects like the teapot. Therefore
% we first backup the current lighting settings...
glPushAttrib(GL.LIGHTING_BIT);
% ... then set the new light source position ...
glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);
% Draw dots of random dot cloud quickly: Common dotdiameter is 5
% pixels, point smoothing is on, but this time we don't set a dotcolor
% at all. This way the color can be determined by OpenGL's lighting
% calculations:
moglDrawDots3D(win, xyz, 5, [], [], 1);
% Compute simulation time for this draw cycle:
telapsed = vbl - tstart;
if shadingavail
% Draw the particle fountain. We use a vertex shader in the shader
% program glsl to compute the physics:
glUseProgram(glsl);
% Assign updated simulation time to shader:
glUniform1f(glGetUniformLocation(glsl, 'Time'), telapsed);
% Draw the particles. Here particlesxyzt does not encode position,
% but speed vectors -- this because our shader interprets positions
% as velocities!
moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, [], 1);
% Done with shaded drawing:
glUseProgram(0);
end
% ... restore old light settings from backup ...
glPopAttrib;
% Manually disable 3D mode before calling Screen('Flip')!
Screen('EndOpenGL', win);
% Repeat for other eyes view if in stereo presentation mode...
end
% Mark end of all graphics operation (until flip). This allows GPU to
% optimize its operations:
Screen('DrawingFinished', win, 2);
% Create uniform random distribution of 3D dots inside a cube for next
% frame. We do it here after the Screen('DrawingFinished') command, so
% Matlab can compute this random stuff while the GPU is drawing the dot
% clouds etc. --> Parallelization allows for potential speedup.
xyz = [RandLim([1,ndots], -1, 1) ; RandLim([1,ndots], -1, -0.7) ; RandLim([1,ndots], -1, 1)];
% Show'em: We don't clear the color buffer here, as this is done in
% next iteration via glClear() call anyway:
vbl = Screen('Flip', win, vbl + 0.5 * ifi, 2);
% A mouse button press will pause the animation:
[x,y,buttons] = GetMouse;
if any(buttons)
% Wait for a single mouse click to continue:
GetClicks;
end
end
% Now a benchmark run to test different strategies for their speed...
KbReleaseWait;
Screen('Flip', win);
if shadingavail
maxrendermode = 2;
else
maxrendermode = 0;
end
for rendermode=0:maxrendermode
switch(rendermode)
case 0,
msgtxt = 'Testing now Matlab + CPU animation.';
case 1,
msgtxt = 'Testing now vertex shader GPU animation.';
case 2
msgtxt = 'Testing now optimized vertex shader GPU animation by use of display lists.';
end
DrawFormattedText(win, [msgtxt '\nMax test duration will be 20 seconds.\nPress ESCape key to continue and to finish a subdemo.'], 'center', 'center', [255 255 0]);
Screen('Flip', win);
KbStrokeWait;
% Initial flip to sync us to VBL and get start timestamp:
vbl = Screen('Flip', win);
tstart = vbl;
fc = 0;
Screen('BeginOpenGL', win);
glDisable(GL.LIGHTING);
if rendermode == 2
% Predraw the particles. Here particlesxyzt does not encode position, but
% speed -- this because our shader interprets positions as velocities!
gld = glGenLists(1);
glNewList(gld, GL.COMPILE);
moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, -StartPosition, 1);
glEndList;
end
Screen('EndOpenGL', win);
% For the fun of it, a little shoot-out between a purely Matlab + CPU based
% solution, and two different GPU approaches:
% 3D Dots animation loop: Runs until keypress or 20 seconds elapsed.
while ~KbCheck && (vbl - tstart < 20)
% Manually reenable 3D mode in preparation of eye draw cycle:
Screen('BeginOpenGL', win);
% Clear color and depths buffers:
glClear;
% Compute simulation time for this draw cycle:
telapsed = vbl - tstart;
if rendermode > 0
% Draw the particle fountain. We use a vertex shader in the shader
% program glsl to compute the physics:
glUseProgram(glsl);
% Assign updated simulation time to shader:
glUniform1f(glGetUniformLocation(glsl, 'Time'), telapsed);
if rendermode == 1
% Draw the particles. Here particlesxyzt does not encode position, but
% speed -- this because our shader interprets positions as velocities!
moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, -StartPosition, 1);
else
% Draw particles, but use display list instead of direct call
glCallList(gld);
end
% Done with shaded drawing:
glUseProgram(0);
else
% Do it yourself in Matlab:
t = max( (telapsed - particlesxyzt(4,:)) , repmat(0.0, 1, nparticles) );
t = mod(t, particlelifetime);
Acceleration = 1.5;
vpositions(1:3,:) = (particlesxyzt(1:3,:) .* repmat(t, 3, 1));
vpositions(2,:) = vpositions(2,:) - (Acceleration * (t.^2));
particlecolors(4,:) = 1.0 - (t / particlelifetime);
moglDrawDots3D(win, vpositions, particleSize, particlecolors, [], 1);
end
% Manually disable 3D mode before calling Screen('Flip')!
Screen('EndOpenGL', win);
% Show'em: We don't clear the color buffer here, as this is done in
% next iteration via glClear() call anyway. We swap asap, without sync
% to VBL as this is a benchmark:
Screen('Flip', win, [], 2, 2);
% Need a fake vbl timestamp to keep simulation running:
vbl = GetSecs;
% Count of drawn frame:
fc = fc + 1;
end
tend = Screen('Flip', win);
avgfps = fc / (tend - tstart);
switch(rendermode)
case 0,
msgtxt = 'Matlab + CPU';
case 1,
msgtxt = 'Shader + GPU';
case 2
msgtxt = 'Shader + GPU + VRAM Display lists';
end
fprintf('Average framerate FPS for rendermode %i [%s] is: %f Hz.\n', rendermode, msgtxt, avgfps);
if rendermode == 2
glDeleteLists(gld,1);
end
% Repeat benchmark for other renderModes:
end
% A last demo: Warp Drive!
KbReleaseWait;
% Respecify StartPosition for particle flow to "behind origin":
StartPosition = [0, 0, -60];
if shadingavail
% Setup the vertex shader for particle fountain animation:
% Bind shader so it can be setup:
glUseProgram(glsl);
% Assign static 3D startposition for fountain:
glUniform3f(glGetUniformLocation(glsl, 'StartPosition'), StartPosition(1), StartPosition(2), StartPosition(3));
% Assign lifetime: 10 x increased for starfield simulation...
glUniform1f(glGetUniformLocation(glsl, 'LifeTime'), 10 * particlelifetime);
particlesxyzt(4,:) = 10 * particlesxyzt(4,:);
% Assign no simulated gravity, i.e., set to zero, so we don't get
% gravity in space:
glUniform1f(glGetUniformLocation(glsl, 'Acceleration'), 0.0);
% Done with setup:
glUseProgram(0);
end
% Reassign random velocities in (vx,vy,vz) direction: Intervals chosen to
% shape the beam into something visually pleasing for a warp-flight:
maxspeed = 1;
particlesxyzt(1,:) = RandLim([1, nparticles], -maxspeed, +maxspeed);
particlesxyzt(2,:) = RandLim([1, nparticles], -maxspeed, +maxspeed);
particlesxyzt(3,:) = RandLim([1, nparticles], 0, 5 * maxspeed);
particlesxyzt(3,:) = 5 * maxspeed;
% Initial flip to sync us to VBL and get start timestamp:
vbl = Screen('Flip', win);
tstart = vbl;
telapsed = 0;
% Manually enable 3D mode:
Screen('BeginOpenGL', win);
% Enable lighting:
glEnable(GL.LIGHTING);
% Enable proper occlusion handling via depth tests:
glEnable(GL.DEPTH_TEST);
% Set light position:
glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);
% Manually disable 3D mode.
Screen('EndOpenGL', win);
% 3D Dots animation loop: Runs until keypress:
while ~KbCheck
% I a stereo display mode, we render the scene for both eyes:
for view = 0:stereoViews
% Select 'view' to render (left- or right-eye):
Screen('SelectStereoDrawbuffer', win, view);
% Manually reenable 3D mode in preparation of eye draw cycle:
Screen('BeginOpenGL', win);
% Setup camera for this eyes 'view':
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% This is a bit faked. For a proper solution see help for
% moglStereoProjection:
gluLookAt(-0.4 + view * 0.8 , 0, 10, 0, 0, 0, 0, 1, 0);
% Clear color and depths buffers:
glClear;
% Bring a bit of extra spin into this :-)
glRotated(5 * telapsed, 0, 0, 1);
% For drawing of dots, we need to respecify the light source position,
% but this must not apply to other objects like the teapot. Therefore
% we first backup the current lighting settings...
glPushAttrib(GL.LIGHTING_BIT);
% ... then set the new light source position ...
glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);
% Compute simulation time for this draw cycle:
telapsed = vbl - tstart;
if shadingavail
% Draw the particle fountain. We use a vertex shader in the shader
% program glsl to compute the physics:
glUseProgram(glsl);
% Assign updated simulation time to shader:
glUniform1f(glGetUniformLocation(glsl, 'Time'), telapsed);
% Draw the particles. Here particlesxyzt does not encode position,
% but speed vectors -- this because our shader interprets positions
% as velocities!
moglDrawDots3D(win, particlesxyzt, particleSize, particlecolors, [], 1);
% Done with shaded drawing:
glUseProgram(0);
end
% ... restore old light settings from backup ...
glPopAttrib;
% Manually disable 3D mode before calling Screen('Flip')!
Screen('EndOpenGL', win);
% Repeat for other eyes view if in stereo presentation mode...
end
% Mark end of all graphics operation (until flip). This allows GPU to
% optimize its operations:
Screen('DrawingFinished', win, 2);
% Show'em: We don't clear the color buffer here, as this is done in
% next iteration via glClear() call anyway:
vbl = Screen('Flip', win, vbl + 0.5 * ifi, 2);
% A mouse button press will pause the animation:
[x,y,buttons] = GetMouse;
if any(buttons)
% Wait for a single mouse click to continue:
GetClicks;
end
end
% Done. Close screen and exit:
Screen('CloseAll');
% Reenable all keys for KbCheck:
RestrictKeysForKbCheck([]);
catch
sca;
% Reenable all keys for KbCheck:
RestrictKeysForKbCheck([]);
psychrethrow(psychlasterror);
end
return;
|