/usr/share/psi/python/qcdb/libmintsbasisset.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 | import os
import re
import string
import hashlib
import itertools
from collections import defaultdict
try:
from collections import OrderedDict
except ImportError:
from oldpymodules import OrderedDict
from exceptions import *
from psiutil import search_file
from molecule import Molecule
from libmintsgshell import GaussianShell
from libmintsbasissetparser import Gaussian94BasisSetParser
from basislist import corresponding_basis
class BasisSet(object):
"""Basis set container class
Reads the basis set from a checkpoint file object. Also reads the molecule
from the checkpoint file storing the information in an internal Molecule class
which can be accessed using molecule().
"""
# <<< Globals >>>
# Has static information been initialized?
initialized_shared = False
# Global arrays of x, y, z exponents (Need libmint for max ang mom)
LIBINT_MAX_AM = 6 # TODO
exp_ao = [[] for l in range(LIBINT_MAX_AM)]
def __init__(self, *args):
# <<< Basic BasisSet Information >>>
# The name of this basis set (e.g. "BASIS", "RI BASIS")
self.name = None
# Array of gaussian shells
self.shells = None
# Molecule object.
self.molecule = None
# Shell information
self.atom_basis_shell = None
# <<< Scalars >>>
# Number of atomic orbitals (Cartesian)
self.PYnao = None
# Number of basis functions (either cartesian or spherical)
self.PYnbf = None
# The number of unique primitives
self.n_uprimitive = None
# The number of shells
self.n_shells = None
# The number of primitives
self.PYnprimitive = None
# The maximum angular momentum
self.PYmax_am = None
# The maximum number of primitives in a shell
self.PYmax_nprimitive = None
# Whether the basis set is uses spherical basis functions or not
self.puream = None
# <<< Arrays >>>
# The number of primitives (and exponents) in each shell
self.n_prim_per_shell = None
# The first (Cartesian) atomic orbital in each shell
self.shell_first_ao = None
# The first (Cartesian / spherical) basis function in each shell
self.shell_first_basis_function = None
# Shell number to atomic center.
self.shell_center = None
# Which shell does a given (Cartesian / spherical) function belong to?
self.function_to_shell = None
# Which shell does a given Cartesian function belong to?
self.ao_to_shell = None
# Which center is a given function on?
self.function_center = None
# How many shells are there on each center?
self.center_to_nshell = None
# What's the first shell on each center?
self.center_to_shell = None
# The flattened lists of unique exponents
self.uexponents = None
# The flattened lists of unique contraction coefficients (normalized)
self.ucoefficients = None
# The flattened lists of unique contraction coefficients (as provided by the user)
self.uoriginal_coefficients = None
# The flattened lists of ERD normalized contraction coefficients
self.uerd_coefficients = None
# The flattened list of Cartesian coordinates for each atom
self.xyz = None
# Divert to constructor functions
if len(args) == 0:
self.constructor_zero_ao_basis()
elif len(args) == 2 and \
isinstance(args[0], BasisSet) and \
isinstance(args[1], int):
self.constructor_basisset_center(*args)
elif len(args) == 3 and \
isinstance(args[0], basestring) and \
isinstance(args[1], Molecule) and \
isinstance(args[2], OrderedDict):
self.constructor_role_mol_shellmap(*args)
else:
raise ValidationError('BasisSet::constructor: Inappropriate configuration of constructor arguments')
# <<< Methods for Construction >>>
def initialize_singletons(self):
"""Initialize singleton values that are shared by all basis set objects."""
# Populate the exp_ao arrays
for l in range(self.LIBINT_MAX_AM):
for i in range(l + 1):
x = l - i
for j in range(i + 1):
y = i - j
z = j
self.exp_ao[l].append([x, y, z])
def constructor_zero_ao_basis(self):
"""Constructs a zero AO basis set"""
if not self.initialized_shared:
self.initialize_singletons()
self.initialized_shared = True
# Add a dummy atom at the origin, to hold this basis function
self.molecule = Molecule()
self.molecule.add_atom(0, 0.0, 0.0, 0.0)
# Fill with data representing a single S function, at the origin, with 0 exponent
self.n_uprimitive = 1
self.n_shells = 1
self.PYnprimitive = 1
self.PYnao = 1
self.PYnbf = 1
self.uerd_coefficients = [1.0]
self.n_prim_per_shell = [1]
self.uexponents = [0.0]
self.ucoefficients = [1.0]
self.uoriginal_coefficients = [1.0]
self.shell_first_ao = [0]
self.shell_first_basis_function = [0]
self.ao_to_shell = [0]
self.function_to_shell = [0]
self.function_center = [0]
self.shell_center = [0]
self.center_to_nshell = [0]
self.center_to_shell = [0]
self.puream = False
self.PYmax_am = 0
self.PYmax_nprimitive = 1
self.xyz = [0.0, 0.0, 0.0]
self.name = '(Empty Basis Set)'
self.shells = []
self.shells.append(GaussianShell(0, self.PYnprimitive,
self.uoriginal_coefficients, self.ucoefficients, self.uerd_coefficients,
self.uexponents, 'Cartesian', 0, self.xyz, 0))
def constructor_role_mol_shellmap(self, role, mol, shell_map):
"""The most commonly used constructor. Extracts basis set name for *role*
from each atom of *mol*, looks up basis and role entries in the
*shell_map* dictionary, retrieves the GaussianShell objects and returns
the BasisSet.
"""
self.molecule = mol
self.name = role
self.xyz = self.molecule.geometry() # not used in libmints but this seems to be the intent
self.atom_basis_shell = shell_map
natom = self.molecule.natom()
# Singletons
if not self.initialized_shared:
self.initialize_singletons()
self.initialized_shared = True
# These will tell us where the primitives for [basis][symbol] start and end in the compact array
primitive_start = {}
primitive_end = {}
# First, loop over the unique primitives, and store them
uexps = []
ucoefs = []
uoriginal_coefs = []
uerd_coefs = []
self.n_uprimitive = 0
for symbolfirst, symbolsecond in shell_map.items():
label = symbolfirst
basis_map = symbolsecond
primitive_start[label] = {}
primitive_end[label] = {}
for basisfirst, basissecond in basis_map.items():
basis = basisfirst
shells = basis_map[basis] # symbol --> label
primitive_start[label][basis] = self.n_uprimitive # symbol --> label
for i in range(len(shells)):
shell = shells[i]
for prim in range(shell.nprimitive()):
uexps.append(shell.exp(prim))
ucoefs.append(shell.coef(prim))
uoriginal_coefs.append(shell.original_coef(prim))
uerd_coefs.append(shell.erd_coef(prim))
self.n_uprimitive += 1
primitive_end[label][basis] = self.n_uprimitive # symbol --> label
# Count basis functions, shells and primitives
self.n_shells = 0
self.PYnprimitive = 0
self.PYnao = 0
self.PYnbf = 0
for n in range(natom):
atom = self.molecule.atom_entry(n)
basis = atom.basisset(role)
label = atom.label() # symbol --> label
shells = shell_map[label][basis] # symbol --> label
for i in range(len(shells)):
shell = shells[i]
nprim = shell.nprimitive()
self.PYnprimitive += nprim
self.n_shells += 1
self.PYnao += shell.ncartesian()
self.PYnbf += shell.nfunction()
# Allocate arrays
self.n_prim_per_shell = [0] * self.n_shells
# The unique primitives
self.uexponents = [0.0] * self.n_uprimitive
self.ucoefficients = [0.0] * self.n_uprimitive
self.uoriginal_coefficients = [0.0] * self.n_uprimitive
self.uerd_coefficients = [0.0] * self.n_uprimitive
for i in range(self.n_uprimitive):
self.uexponents[i] = uexps[i]
self.ucoefficients[i] = ucoefs[i]
self.uoriginal_coefficients[i] = uoriginal_coefs[i]
self.uerd_coefficients[i] = uerd_coefs[i]
self.shell_first_ao = [0] * self.n_shells
self.shell_first_basis_function = [0] * self.n_shells
self.shells = [None] * self.n_shells
self.ao_to_shell = [0] * self.PYnao
self.function_to_shell = [0] * self.PYnbf
self.function_center = [0] * self.PYnbf
self.shell_center = [0] * self.n_shells
self.center_to_nshell = [0] * natom
self.center_to_shell = [0] * natom
# Now loop over all atoms, and point to the appropriate unique data
shell_count = 0
ao_count = 0
bf_count = 0
xyz_ptr = [0.0, 0.0, 0.0] # libmints seems to be always passing GaussianShell zeros, so following suit
self.puream = False
self.PYmax_am = 0
self.PYmax_nprimitive = 0
for n in range(natom):
atom = self.molecule.atom_entry(n)
basis = atom.basisset(role)
label = atom.label() # symbol --> label
shells = shell_map[label][basis] # symbol --> label
ustart = primitive_start[label][basis] # symbol --> label
uend = primitive_end[label][basis] # symbol --> label
nshells = len(shells)
self.center_to_nshell[n] = nshells
self.center_to_shell[n] = shell_count
atom_nprim = 0
for i in range(nshells):
thisshell = shells[i]
self.shell_first_ao[shell_count] = ao_count
self.shell_first_basis_function[shell_count] = bf_count
shell_nprim = thisshell.nprimitive()
am = thisshell.am()
self.PYmax_nprimitive = max(shell_nprim, self.PYmax_nprimitive)
self.PYmax_am = max(am, self.PYmax_am)
self.shell_center[shell_count] = n
self.puream = thisshell.is_pure()
tst = ustart + atom_nprim
tsp = ustart + atom_nprim + shell_nprim
self.shells[shell_count] = GaussianShell(am, shell_nprim,
self.uoriginal_coefficients[tst:tsp],
self.ucoefficients[tst:tsp],
self.uerd_coefficients[tst:tsp],
self.uexponents[tst:tsp],
'Pure' if self.puream else 'Cartesian',
n, xyz_ptr, bf_count)
for thisbf in range(thisshell.nfunction()):
self.function_to_shell[bf_count] = shell_count
self.function_center[bf_count] = n
bf_count += 1
for thisao in range(thisshell.ncartesian()):
self.ao_to_shell[ao_count] = shell_count
ao_count += 1
atom_nprim += shell_nprim
shell_count += 1
if atom_nprim != uend - ustart:
raise ValidationError("Problem with nprimitive in basis set construction!")
def constructor_basisset_center(self, bs, center):
"""
* Creates a new basis set object for an atom, from an existing basis set
* bs: the basis set to copy data from
* center: the atom in bs to copy over
"""
# Singletons; these should've been initialized by this point, but just in case
if not self.initialized_shared:
self.initialize_singletons()
self.initialized_shared = True
# First, find the shells we need, and grab the data
uexps = []
ucoefs = []
uoriginal_coefs = []
uerd_coefs = []
self.name = bs.name
self.n_shells = 0
self.n_uprimitive = 0
self.PYnao = 0
self.PYnbf = 0
for shelln in range(bs.nshell()):
shell = bs.shell(shelln)
if shell.ncenter() == center:
nprim = shell.nprimitive()
for prim in range(nprim):
uexps.append(shell.exp(prim))
ucoefs.append(shell.coef(prim))
uoriginal_coefs.append(shell.original_coef(prim))
uerd_coefs.append(shell.erd_coef(prim))
self.n_uprimitive += 1
self.n_shells += 1
self.PYnao += shell.ncartesian()
self.PYnbf += shell.nfunction()
self.PYnprimitive = self.n_uprimitive
# Create a "molecule", i.e., an atom, with 1 fragment
mol = bs.molecule
self.molecule = Molecule()
self.molecule.add_atom(mol.Z(center), 0.0, 0.0, 0.0, \
mol.label(center), mol.mass(center), mol.charge(center))
self.molecule.fragments.append([0, 0])
self.molecule.fragment_types.append('Real')
self.molecule.fragment_charges.append(0)
self.molecule.fragment_multiplicities.append(1)
self.molecule.update_geometry()
# Allocate arrays
self.n_prim_per_shell = [0] * self.n_shells
# The unique primitives
self.uexponents = [0.0] * self.n_uprimitive
self.ucoefficients = [0.0] * self.n_uprimitive
self.uoriginal_coefficients = [0.0] * self.n_uprimitive
self.uerd_coefficients = [0.0] * self.n_uprimitive
for i in range(self.n_uprimitive):
self.uexponents[i] = uexps[i]
self.ucoefficients[i] = ucoefs[i]
self.uoriginal_coefficients[i] = uoriginal_coefs[i]
self.uerd_coefficients[i] = uerd_coefs[i]
self.shell_first_ao = [0] * self.n_shells
self.shell_first_basis_function = [0] * self.n_shells
self.shells = [None] * self.n_shells
self.ao_to_shell = [0] * self.PYnao
self.function_to_shell = [0] * self.PYnbf
self.function_center = [0] * self.PYnbf
self.shell_center = [0] * self.n_shells
self.center_to_nshell = [0]
self.center_to_shell = [0]
self.xyz = [0.0, 0.0, 0.0]
# Now loop over shell for this atom, and point to the appropriate unique data
shell_count = 0
ao_count = 0
bf_count = 0
self.puream = False
self.PYmax_am = 0
self.PYmax_nprimitive = 0
prim_count = 0
for shelln in range(bs.nshell()):
shell = bs.shell(shelln)
if shell.ncenter() == center:
self.center_to_nshell[0] = self.n_shells
#self.center_to_shell[0] = shell_count # diff from libmints
self.shell_first_ao[shell_count] = ao_count
self.shell_first_basis_function[shell_count] = bf_count
shell_nprim = shell.nprimitive()
am = shell.am()
self.PYmax_nprimitive = shell_nprim if shell_nprim > self.PYmax_nprimitive else self.PYmax_nprimitive
self.PYmax_am = max(self.PYmax_am, am)
self.shell_center[shell_count] = center
self.puream = shell.is_pure()
tst = prim_count
tsp = prim_count + shell_nprim
self.shells[shell_count] = GaussianShell(am, shell_nprim,
self.uoriginal_coefficients[tst:tsp],
self.ucoefficients[tst:tsp],
self.uerd_coefficients[tst:tsp],
self.uexponents[tst:tsp],
'Pure' if self.puream else 'Cartesian',
center, self.xyz, bf_count)
self.shells[shell_count].pyprint()
for thisbf in range(shell.nfunction()):
self.function_to_shell[bf_count] = shell_count
self.function_center[bf_count] = center
bf_count += 1
for thisao in range(shell.ncartesian()):
self.ao_to_shell[ao_count] = shell_count
ao_count += 1
shell_count += 1
prim_count += shell_nprim
# <<< Methods for Construction by Another Name >>>
@staticmethod
def zero_ao_basis_set():
"""Returns an empty basis set object.
Returns a BasisSet object that actually has a single s-function
at the origin with an exponent of 0.0 and contraction of 1.0.
* @return A new empty BasisSet object.
"""
# In the new implementation, we simply call the default constructor
return BasisSet()
def atomic_basis_set(self, center):
"""Return a BasisSet object containing all shells at center i (0-index)
* Used for Atomic HF computations for SAD Guesses
* @param center Atomic center to provide a basis object for.
* @returns A new basis set object for the atomic center.
"""
return BasisSet(self, center)
@staticmethod
def build(molecule, shells):
"""Builder factory method
* @param molecule the molecule to build the BasisSet around
* @param shells array of *atom-numbered* GaussianShells to build the BasisSet from
* @return BasisSet corresponding to this molecule and set of shells
"""
raise FeatureNotImplemented('BasisSet::build')
@staticmethod
def pyconstruct_combined(mol, keys, targets, fitroles, others):
# make sure the lengths are all the same
if len(keys) != len(targets) or len(keys) != len(fitroles):
raise ValidationError("""Lengths of keys, targets, and fitroles must be equal""")
# Create (if necessary) and update qcdb.Molecule
if isinstance(mol, basestring):
mol = Molecule(mol)
returnBasisSet = False
elif isinstance(mol, Molecule):
returnBasisSet = True
else:
raise ValidationError("""Argument mol must be psi4string or qcdb.Molecule""")
mol.update_geometry()
# load in the basis sets
sets = []
name = ""
for at in range(len(keys)):
bas = BasisSet.pyconstruct(mol, keys[at], targets[at], fitroles[at], others[at])
name += targets[at] + " + "
sets.append(bas)
name = name[:-3].strip()
# work our way through the sets merging them
combined_atom_basis_shell = OrderedDict()
for at in range(len(sets)):
atom_basis_shell = sets[at].atom_basis_shell
for label, basis_map in atom_basis_shell.items():
if label not in combined_atom_basis_shell:
combined_atom_basis_shell[label] = OrderedDict()
combined_atom_basis_shell[label][name] = []
for basis, shells in basis_map.items():
combined_atom_basis_shell[label][name].extend(shells)
#for label, basis_map in combined_atom_basis_shell.items():
# # sort the shells by angular momentum
# combined_atom_basis_shell[label][name] = sorted(combined_atom_basis_shell[label][name], key=lambda shell: shell.am())
# Molecule and parser prepped, call the constructor
mol.set_basis_all_atoms(name, "CABS")
# Construct the grand BasisSet for mol
basisset = BasisSet("CABS", mol, combined_atom_basis_shell)
# Construct all the one-atom BasisSet-s for mol's CoordEntry-s
for at in range(mol.natom()):
oneatombasis = BasisSet(basisset, at)
oneatombasishash = hashlib.sha1(oneatombasis.print_detail(numbersonly=True)).hexdigest()
mol.set_shell_by_number(at, oneatombasishash, role="CABS")
mol.update_geometry() # re-evaluate symmetry taking basissets into account
text = """ => Creating Basis Set <=\n\n"""
text += """ Role: %s\n""" % (fitroles)
text += """ Keyword: %s\n""" % (keys)
text += """ Name: %s\n""" % (name)
if returnBasisSet:
print text
return basisset
else:
bsdict = {}
bsdict['message'] = text
bsdict['name'] = basisset.name
bsdict['puream'] = int(basisset.has_puream())
bsdict['shell_map'] = basisset.export_for_libmints("CABS")
return bsdict
@staticmethod
def pyconstruct(mol, key, target, fitrole='BASIS', other=None):
"""Builds a BasisSet object for *mol* (either a qcdb.Molecule or
a string that can be instantiated into one) from basis set
specifications passed in as python functions or as a string that
names a basis to be applied to all atoms. Always required is the
keyword *key* and string/function *target* of the basis to be
constructed. For orbital basis sets, *key* will likely be 'BASIS'
and, together with *target*, these arguments suffice.
pyconstruct(smol, "BASIS", basisspec_psi4_yo_631pg_d_p_)
pyconstruct(mol, "BASIS", "6-31+G**")
When building an auxiliary basis, *key* is again the keyword,
*target* is the string or function for the fitting basis (this
may also be an empty string). In case the fitting basis isn't
fully specified, also provide a *fitrole* and the string/function
of the orbital basis as *other*, so that orbital hints can be
used to look up a suitable default basis in BasisFamily.
pyconstruct(smol, "DF_BASIS_MP2", basisspec_psi4_yo_ccpvdzri, 'RIFIT', basisspec_psi4_yo_631pg_d_p_)
pyconstruct(mol, "DF_BASIS_MP2", "", "RIFIT", "6-31+G(d,p)")
"""
#print type(mol), type(key), type(target), type(fitrole), type(other)
orbonly = True if (fitrole == 'BASIS' and other is None) else False
if orbonly:
orb = target
aux = None
else:
orb = other
aux = target
#print 'BasisSet::pyconstructP', 'key =', key, 'aux =', aux, 'fitrole =', fitrole, 'orb =', orb, 'orbonly =', orbonly #, mol
# Create (if necessary) and update qcdb.Molecule
if isinstance(mol, basestring):
mol = Molecule(mol)
returnBasisSet = False
elif isinstance(mol, Molecule):
returnBasisSet = True
else:
raise ValidationError("""Argument mol must be psi4string or qcdb.Molecule""")
mol.update_geometry()
# Apply requested basis set(s) to the molecule
# - basstrings only a temp object so using fitrole as dict key instead of psi4 keyword
# - error checking not needed since C-side already checked for NULL ptr
mol.clear_basis_all_atoms()
# TODO now need to clear shells, too
basstrings = defaultdict(dict)
if orb is None or orb == '':
raise ValidationError("""Orbital basis argument must not be empty.""")
elif callable(orb):
basstrings['BASIS'] = orb(mol, 'BASIS')
elif isinstance(orb, basestring):
mol.set_basis_all_atoms(orb, role='BASIS')
else:
raise ValidationError("""Orbital basis argument must be function that applies basis sets to Molecule or a string of the basis to be applied to all atoms.""")
if aux is None or aux == '':
pass
elif callable(aux):
basstrings[fitrole] = aux(mol, fitrole)
elif isinstance(aux, basestring):
mol.set_basis_all_atoms(aux, role=fitrole)
else:
raise ValidationError("""Auxiliary basis argument must be function that applies basis sets to Molecule or a string of the basis to be applied to all atoms.""")
# Not like we're ever using a non-G94 format
parser = Gaussian94BasisSetParser()
# Molecule and parser prepped, call the constructor
bs, msg = BasisSet.construct(parser, mol, fitrole, None if fitrole == 'BASIS' else fitrole, basstrings[fitrole])
text = """ => Loading Basis Set <=\n\n"""
text += """ Role: %s\n""" % (fitrole)
text += """ Keyword: %s\n""" % (key)
text += """ Name: %s\n""" % (target)
text += msg
if returnBasisSet:
return bs
else:
bsdict = {}
bsdict['message'] = text
bsdict['name'] = bs.name
bsdict['puream'] = int(bs.has_puream())
bsdict['shell_map'] = bs.export_for_libmints(fitrole)
return bsdict
@classmethod
def construct(cls, parser, mol, role, deffit=None, basstrings=None):
"""Returns a new BasisSet object configured from the *mol*
Molecule object for *role* (generally a Psi4 keyword: BASIS,
DF_BASIS_SCF, etc.). Fails utterly if a basis has not been set for
*role* for every atom in *mol*, unless *deffit* is set (JFIT,
JKFIT, or RIFIT), whereupon empty atoms are assigned to *role*
from the :py:class:`~BasisFamily`. This function is significantly
re-worked from its libmints analog.
"""
# Update geometry in molecule, if there is a problem an exception is thrown.
mol.update_geometry()
# Paths to search for gbs files: here + PSIPATH + library
psidatadir = os.environ.get('PSIDATADIR', None)
psidatadir = __file__ + '/../../..' if psidatadir is None else psidatadir
libraryPath = ':' + os.path.abspath(psidatadir) + '/basis'
basisPath = os.path.abspath('.') + \
':' + ':'.join([os.path.abspath(x) for x in os.environ.get('PSIPATH', '').split(':')]) + \
libraryPath
# Validate deffit for role
univdef = {'JFIT': 'def2-qzvpp-jfit',
'JKFIT': 'def2-qzvpp-jkfit',
'RIFIT': 'def2-qzvpp-ri',
'F12': 'def2-qzvpp-f12'}
if deffit is not None:
if deffit not in univdef.keys():
raise ValidationError("""BasisSet::construct: deffit argument invalid: %s""" % (deffit))
# Map of GaussianShells
atom_basis_shell = OrderedDict()
names = {}
summary = []
for at in range(mol.natom()):
symbol = mol.atom_entry(at).symbol() # O, He
label = mol.atom_entry(at).label() # O3, C_Drot, He
basdict = mol.atom_entry(at).basissets() # {'BASIS': 'sto-3g', 'DF_BASIS_MP2': 'cc-pvtz-ri'}
if label not in atom_basis_shell:
atom_basis_shell[label] = OrderedDict()
# Establish search parameters for what/where basis entries suitable for atom
seek = {}
try:
requested_basname = basdict[role]
except KeyError:
if role == 'BASIS' or deffit is None:
raise BasisSetNotDefined("""BasisSet::construct: No basis set specified for %s and %s.""" %
(symbol, role))
else:
# No auxiliary basis set for atom, so try darnedest to find one.
# This involves querying the BasisFamily for default and
# default-default and finally the universal default (defined
# in this function). Since user hasn't indicated any specifics,
# look only in Psi4's library and for symbol only, not label.
tmp = []
tmp.append(corresponding_basis(basdict['BASIS'], deffit))
tmp.append(corresponding_basis(basdict['BASIS'], deffit + '-DEFAULT'))
tmp.append(univdef[deffit])
seek['basis'] = filter(None, tmp)
seek['entry'] = [symbol]
seek['path'] = libraryPath
seek['strings'] = ''
else:
# User (I hope ... dratted has_changed) has set basis for atom,
# so look only for basis (don't try defaults), look for label (N88)
# or symbol (N) (in that order; don't want to restrict use of atom
# labels to basis set spec), look everywhere (don't just look
# in library)
seek['basis'] = [requested_basname]
seek['entry'] = [symbol] if symbol == label else [label, symbol]
seek['path'] = basisPath
seek['strings'] = '' if basstrings is None else basstrings.keys()
# Search through paths, bases, entries
for bas in seek['basis']:
filename = cls.make_filename(bas)
# -- First seek bas string in input file strings
if filename[:-4] in seek['strings']:
index = 'inputblock %s' % (filename[:-4])
# Store contents
if index not in names:
names[index] = basstrings[filename[:-4]].split('\n')
else:
# -- Else seek bas.gbs file in path
fullfilename = search_file(filename, seek['path'])
if fullfilename is None:
# -- Else skip to next bas
continue
# Store contents so not reloading files
index = 'file %s' % (fullfilename)
if index not in names:
names[index] = parser.load_file(fullfilename)
lines = names[index]
for entry in seek['entry']:
# Seek entry in lines, else skip to next entry
shells, msg = parser.parse(entry, lines)
if shells is None:
continue
# Found!
atom_basis_shell[label][bas] = shells
mol.set_basis_by_number(at, bas, role=role)
summary.append("""entry %-10s %s %s""" % (entry, msg, index))
break
# Break from outer loop if inner loop breaks
else:
continue
break
else:
# Ne'er found :-(
text2 = """ Shell Entries: %s\n""" % (seek['entry'])
text2 += """ Basis Sets: %s\n""" % (seek['basis'])
text2 += """ File Path: %s\n""" % (', '.join(map(str, seek['path'].split(':'))))
text2 += """ Input Blocks: %s\n""" % (', '.join(seek['strings']))
raise BasisSetNotFound('BasisSet::construct: Unable to find a basis set for atom %d for role %s among:\n%s' % \
(at + 1, role, text2))
# Construct the grand BasisSet for mol
basisset = BasisSet(role, mol, atom_basis_shell)
# Construct all the one-atom BasisSet-s for mol's CoordEntry-s
for at in range(mol.natom()):
oneatombasis = BasisSet(basisset, at)
oneatombasishash = hashlib.sha1(oneatombasis.print_detail(numbersonly=True)).hexdigest()
mol.set_shell_by_number(at, oneatombasishash, role=role)
mol.update_geometry() # re-evaluate symmetry taking basissets into account
#TODO fix name
basisset.name = ' + '.join(names)
# Summary printing
tmp = defaultdict(list)
for at, v in enumerate(summary):
tmp[v].append(at + 1)
tmp2 = OrderedDict()
maxsats = 0
for item in sorted(tmp.values()):
for msg, ats in tmp.items():
if item == ats:
G = (list(x) for _, x in itertools.groupby(ats, lambda x, c=itertools.count(): next(c) - x))
sats = ", ".join("-".join(map(str, (g[0], g[-1])[:len(g)])) for g in G)
maxsats = max(maxsats, len(sats))
tmp2[sats] = msg
#text = """ ==> Loading Basis Set <==\n\n"""
#text += """ Role: %s\n""" % (role)
#text += """ Basis Set: %s\n""" % (basisset.name)
text = ''
for ats, msg in tmp2.items():
text += """ atoms %s %s\n""" % (string.ljust(ats, width=maxsats), msg)
#print text
return basisset, text
# <<< Simple Methods for Basic BasisSet Information >>>
def name(self):
"""Returns the name of this basis set"""
return self.name
def set_name(self, name):
"""Sets the name of this basis set"""
self.name = name
def atom_shell_map(self):
return self.atom_shell_map
def nprimitive(self):
"""Number of primitives.
* @return The total number of primitives in all contractions.
"""
return self.PYnprimitive
def max_nprimitive(self):
"""Maximum number of primitives in a shell.
* Examines each shell and find the shell with the maximum number of primitives returns that
* number of primitives.
* @return Maximum number of primitives.
"""
return self.PYmax_nprimitive
def nshell(self):
"""Number of shells.
* @return Number of shells.
"""
return self.n_shells
def nao(self):
"""Number of atomic orbitals (Cartesian).
* @return The number of atomic orbitals (Cartesian orbitals, always).
"""
return self.PYnao
def nbf(self):
"""Number of basis functions (Spherical).
* @return The number of basis functions (Spherical, if has_puream() == true).
"""
return self.PYnbf
def max_am(self):
"""Maximum angular momentum used in the basis set.
* @return Maximum angular momentum.
"""
return self.PYmax_am
def has_puream(self):
"""Spherical harmonics?
* @return true if using spherical harmonics
"""
return self.puream
def max_function_per_shell(self):
"""Compute the maximum number of basis functions contained in a shell.
* @return The max number of basis functions in a shell.
"""
return 2 * self.PYmax_am + 1 if self.puream else (self.PYmax_am + 1) * (self.PYmax_am + 2) / 2
def molecule(self):
"""Molecule this basis is for.
* @return Shared pointer to the molecule for this basis set.
"""
return self.molecule
def shell_to_ao_function(self, i):
"""Given a shell what is its first AO function
* @param i Shell number
* @return The function number for the first function for the i'th shell.
"""
return self.shell_first_ao[i]
def shell_to_center(self, i):
"""Given a shell what is its atomic center
* @param i Shell number
* @return The atomic center for the i'th shell.
"""
return self.shell_center[i]
def shell_to_basis_function(self, i):
"""Given a shell what is its first basis function (spherical) function
* @param i Shell number
* @return The function number for the first function for the i'th shell.
"""
return self.shell_first_basis_function[i]
def function_to_shell(self, i):
"""Given a function number what shell does it correspond to."""
return self.function_to_shell[i]
def function_to_center(self, i):
"""Given a function what is its atomic center
* @param i Function number
* @return The atomic center for the i'th function.
"""
return self.function_center[i]
def ao_to_shell(self, i):
"""Given a Cartesian function (AO) number what shell does it correspond to."""
return self.ao_to_shell[i]
def shell(self, si, center=None):
"""Return the si'th Gaussian shell on center
* @param i Shell number
* @return A shared pointer to the GaussianShell object for the i'th shell.
"""
if center is not None:
si += self.center_to_shell[center]
if si < 0 or si > self.nshell():
text = """BasisSet::shell(si = %d), requested a shell out-of-bound.\n Max shell size: %d\n Name: %s\n""" % \
(si, self.nshell(), self.name())
raise ValidationError("BasisSet::shell: requested shell is out-of-bounds:\n%s" % (text))
return self.shells[si]
def nshell_on_center(self, i):
"""Return the number of shells on a given center."""
return self.center_to_nshell[i]
def shell_on_center(self, center, shell):
"""Return the overall shell number"""
return self.center_to_shell[center] + shell
# <<< Methods for Printing >>>
def print_by_level(self, out=None, level=2):
"""Print basis set information according to the level of detail in print_level
* @param out The file stream to use for printing. Defaults to outfile.
* @param print_level: < 1: Nothing
1: Brief summary
2: Summary and contraction details
> 2: Full details
Defaults to 2
"""
if level < 1:
return
elif level == 1:
text = self.pyprint(out=None)
elif level == 2:
text = self.print_summary(out=None)
elif level > 2:
text = self.print_detail(out=None)
if out is None:
print text
else:
with open(out, mode='w') as handle:
handle.write(text)
def pyprint(self, out=None):
"""Print the basis set.
* @param out The file stream to use for printing. Defaults to outfile.
"""
text = ''
text += """ Basis Set: %s\n""" % (self.name)
text += """ Number of shells: %d\n""" % (self.nshell())
text += """ Number of basis function: %d\n""" % (self.nbf())
text += """ Number of Cartesian functions: %d\n""" % (self.nao())
text += """ Spherical Harmonics?: %s\n""" % ('true' if self.has_puream() else 'false')
text += """ Max angular momentum: %d\n\n""" % (self.max_am())
#text += """ Source:\n%s\n""" % (self.source()) # TODO
if out is None:
return text
else:
with open(outfile, mode='w') as handle:
handle.write(text)
def print_summary(self, out=None):
"""Prints a short string summarizing the basis set
* @param out The file stream to use for printing. Defaults to outfile.
"""
text = ''
text += """ -AO BASIS SET INFORMATION:\n"""
text += """ Name = %s\n""" % (self.name)
text += """ Total number of shells = %d\n""" % (self.nshell())
text += """ Number of primitives = %d\n""" % (self.nprimitive())
text += """ Number of AO = %d\n""" % (self.nao())
text += """ Number of SO = %d\n""" % (self.nbf())
text += """ Maximum AM = %d\n""" % (self.max_am())
text += """ Spherical Harmonics = %s\n""" % ('TRUE' if self.puream else 'FALSE')
text += """\n"""
text += """ -Contraction Scheme:\n"""
text += """ Atom Type All Primitives // Shells:\n"""
text += """ ------ ------ --------------------------\n"""
for A in range(self.molecule.natom()):
nprims = [0] * (self.PYmax_am + 1)
nunique = [0] * (self.PYmax_am + 1)
nshells = [0] * (self.PYmax_am + 1)
amtypes = [None] * (self.PYmax_am + 1)
text += """ %4d """ % (A + 1)
text += """%2s """ % (self.molecule.symbol(A))
first_shell = self.center_to_shell[A]
n_shell = self.center_to_nshell[A]
for Q in range(n_shell):
shell = self.shells[Q + first_shell]
nshells[shell.am()] += 1
nunique[shell.am()] += shell.nprimitive()
nprims[shell.am()] += shell.nprimitive()
amtypes[shell.am()] = shell.amchar()
# All Primitives
for l in range(self.PYmax_am + 1):
if nprims[l] == 0:
continue
text += """%d%c """ % (nprims[l], amtypes[l])
# Shells
text += """// """
for l in range(self.PYmax_am + 1):
if nshells[l] == 0:
continue
text += """%d%c """ % (nshells[l], amtypes[l])
text += """\n"""
text += """\n"""
if out is None:
return text
else:
with open(out, mode='w') as handle:
handle.write(text)
def print_detail(self, out=None, numbersonly=False):
"""Prints a detailed PSI3-style summary of the basis (per-atom)
* @param out The file stream to use for printing. Defaults to outfile.
"""
text = ''
if not numbersonly:
text += self.print_summary(out=None)
text += """ ==> AO Basis Functions <==\n"""
text += '\n'
text += """ [ %s ]\n""" % (self.name)
text += """ spherical\n""" if self.has_puream() else """ cartesian\n"""
text += """ ****\n"""
for uA in range(self.molecule.nunique()):
A = self.molecule.unique(uA)
if not numbersonly:
text += """ %2s %3d\n""" % (self.molecule.symbol(A), A + 1)
first_shell = self.center_to_shell[A]
n_shell = self.center_to_nshell[A]
for Q in range(n_shell):
text += self.shells[Q + first_shell].pyprint(outfile=None)
text += """ ****\n"""
text += """\n"""
if out is None:
return text
else:
with open(out, mode='w') as handle:
handle.write(text)
def export_for_libmints(self, role):
"""From complete BasisSet object, returns array where
triplets of elements are each unique atom label, the hash
of the string shells entry in gbs format and the
shells entry in gbs format for that label. This packaging is
intended for return to libmints BasisSet::pyconstruct for
instantiation of a libmints BasisSet clone of *self*.
"""
basstrings = []
tally = []
for A in range(self.molecule.natom()):
if self.molecule.label(A) not in tally:
label = self.molecule.label(A)
first_shell = self.center_to_shell[A]
n_shell = self.center_to_nshell[A]
basstrings.append(label)
basstrings.append(self.molecule.atoms[A].shell(key=role))
text = """ %s 0\n""" % (label)
for Q in range(n_shell):
text += self.shells[Q + first_shell].pyprint(outfile=None)
text += """ ****\n"""
basstrings.append(text)
return basstrings
def print_detail_cfour(self, out=None):
"""Returns a string in CFOUR-style of the basis (per-atom)
* Format from http://slater.chemie.uni-mainz.de/cfour/index.php?n=Main.OldFormatOfAnEntryInTheGENBASFile
"""
text = ''
for uA in range(self.molecule.nunique()):
A = self.molecule.unique(uA)
text += """%s:P4_%d\n""" % (self.molecule.symbol(A), A + 1)
text += """PSI4 basis %s for element %s atom %d\n\n""" % \
(self.name.upper(), self.molecule.symbol(A), A + 1)
first_shell = self.center_to_shell[A]
n_shell = self.center_to_nshell[A]
max_am_center = 0
for Q in range(n_shell):
max_am_center = self.shells[Q + first_shell].am() if \
self.shells[Q + first_shell].am() > max_am_center else max_am_center
shell_per_am = [[] for i in range(max_am_center + 1)]
for Q in range(n_shell):
shell_per_am[self.shells[Q + first_shell].am()].append(Q)
# Write number of shells in the basis set
text += """%3d\n""" % (max_am_center + 1)
# Write angular momentum for each shell
for am in range(max_am_center + 1):
text += """%5d""" % (am)
text += '\n'
# Write number of contracted basis functions for each shell
for am in range(max_am_center + 1):
text += """%5d""" % (len(shell_per_am[am]))
text += '\n'
exp_per_am = [[] for i in range(max_am_center + 1)]
coef_per_am = [[] for i in range(max_am_center + 1)]
for am in range(max_am_center + 1):
# Collect unique exponents among all functions
for Q in range(len(shell_per_am[am])):
for K in range(self.shells[shell_per_am[am][Q] + first_shell].nprimitive()):
if self.shells[shell_per_am[am][Q] + first_shell].exp(K) not in exp_per_am[am]:
exp_per_am[am].append(self.shells[shell_per_am[am][Q] + first_shell].exp(K))
# Collect coefficients for each exp among all functions, zero otherwise
for Q in range(len(shell_per_am[am])):
K = 0
for ep in range(len(exp_per_am[am])):
if abs(exp_per_am[am][ep] - self.shells[shell_per_am[am][Q] + first_shell].exp(K)) < 1.0e-8:
coef_per_am[am].append(self.shells[shell_per_am[am][Q] + first_shell].original_coef(K))
if (K + 1) != self.shells[shell_per_am[am][Q] + first_shell].nprimitive():
K += 1
else:
coef_per_am[am].append(0.0)
# Write number of exponents for each shell
for am in range(max_am_center + 1):
text += """%5d""" % (len(exp_per_am[am]))
text += '\n\n'
for am in range(max_am_center + 1):
# Write exponents for each shell
for ep in range(len(exp_per_am[am])):
text += """%14.7f""" % (exp_per_am[am][ep])
if ((ep + 1) % 5 == 0) or ((ep + 1) == len(exp_per_am[am])):
text += '\n'
text += '\n'
# Write contraction coefficients for each shell
for ep in range(len(exp_per_am[am])):
for bf in range(len(shell_per_am[am])):
text += """%10.7f """ % (coef_per_am[am][bf * len(exp_per_am[am]) + ep])
text += '\n'
text += '\n'
if out is None:
return text
else:
with open(out, mode='w') as handle:
handle.write(text)
# <<< Misc. Methods >>>
def refresh(self):
"""Refresh internal basis set data. Useful if someone has pushed
to shells_. Pushing to shells_ happens in the BasisSetParsers, so
the parsers will call refresh(). This function is now defunct.
"""
raise FeatureNotImplemented('BasisSet::refresh')
@staticmethod
def make_filename(name):
"""Converts basis set name to a compatible filename.
* @param basisname Basis name
* @return Compatible file name.
"""
# Modify the name of the basis set to generate a filename: STO-3G -> sto-3g
basisname = name
# First make it lower case
basisname = basisname.lower()
# Replace all '(' with '_'
basisname = basisname.replace('(', '_')
# Replace all ')' with '_'
basisname = basisname.replace(')', '_')
# Replace all ',' with '_'
basisname = basisname.replace(',', '_')
# Replace all '*' with 's'
basisname = basisname.replace('*', 's')
# Replace all '+' with 'p'
basisname = basisname.replace('+', 'p')
# Add file extension
basisname += '.gbs'
return basisname
# <<< Methods not Implemented >>>
def zero_so_basis_set(cls, factory):
""" **NYI** Returns an empty SO basis set object.
* Returns an SOBasis object that actually has a single s-function
* at the origin with an exponent of 0.0 and contraction of 1.0.
* @return A new empty SOBasis object.
"""
raise FeatureNotImplemented('BasisSet::zero_so_basis_set') # FINAL
@staticmethod
def test_basis_set(max_am):
"""Returns a shell-labeled test basis set object
* @param max_am maximum angular momentum to build
* @return pair containing shell labels and four-center
* test basis for use in benchmarking
* See libmints/benchmark.cc for details
The libmints version seems not to have been updated along with the classes.
"""
raise FeatureNotImplemented('BasisSet::test_basis_set')
def get_ao_sorted_shell(self, i):
"""Returns the value of the sorted shell list. Defunct"""
raise FeatureNotImplemented('BasisSet::get_ao_sorted_shell')
def get_ao_sorted_list(self):
"""Returns the vector of sorted shell list. Defunct"""
raise FeatureNotImplemented('BasisSet::get_ao_sorted_list')
def compute_phi(self, phi_ao, x, y, z):
"""Returns the values of the basis functions at a point"""
phi_ao = [0.0] * self.nao()
ao = 0
for ns in range(self.nshell()):
shell = self.shells[ns]
am = shell.am()
nprim = shell.nprimitive()
a = shell.exps()
c = shell.coefs()
xyz = shell.center()
dx = x - xyz[0]
dy = y - xyz[1]
dz = z - xyz[2]
rr = dx * dx + dy * dy + dz * dz
cexpr = 0
for np in range(nprim):
cexpr += c[np] * math.exp(-a[np] * rr)
for l in range(INT_NCART(am)):
components = exp_ao[am][l]
phi_ao[ao + l] += pow(dx, components[0]) * \
pow(dy, components[1]) * \
pow(dz, components[2]) * \
cexpr
ao += INT_NCART(am)
def concatenate(self, b):
"""Concatenates two basis sets together into a new basis without
reordering anything. Unless you know what you're doing, you should
use the '+' operator instead of this method. Appears defunct.
"""
raise FeatureNotImplemented('BasisSet::concatenate')
def add(self, b):
"""Adds this plus another basis set and returns the result.
Equivalent to the '+' operator. Appears defunct.
"""
raise FeatureNotImplemented('BasisSet::add')
@staticmethod
def shell_sorter_ncenter(d1, d2):
return d1.ncenter() < d2.ncenter()
@staticmethod
def shell_sorter_am(d1, d2):
return d1.am() < d2.am()
|