/usr/share/psi/python/qcdb/cfour.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
import re
import struct
from collections import defaultdict
from decimal import Decimal
from pdict import PreservingDict
from periodictable import *
from physconst import *
from exceptions import *
from molecule import Molecule
from orient import OrientMols
from options import conv_float2negexp
def harvest_output(outtext):
"""Function to separate portions of a CFOUR output file *outtest*,
divided by xjoda.
"""
pass_psivar = []
pass_coord = []
pass_grad = []
for outpass in re.split(r'--invoking executable xjoda', outtext, re.MULTILINE):
psivar, c4coord, c4grad = harvest_outfile_pass(outpass)
pass_psivar.append(psivar)
pass_coord.append(c4coord)
pass_grad.append(c4grad)
#print '\n\nXXXXXXXXXXXXXXXXXXXXXXXXXX\n\n'
#print outpass
#print psivar, c4coord, c4grad
#print psivar, c4grad
#print '\n\nxxxxxxxxxxxxxxxxxxxxxxxxxx\n\n'
retindx = -1 if pass_coord[-1] else -2
# print ' <<< C4 PSIVAR >>>'
# for item in pass_psivar[retindx]:
# print(' %30s %16.8f' % (item, pass_psivar[retindx][item]))
# print ' <<< C4 COORD >>>'
# for item in pass_coord[retindx]:
# print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
# print ' <<< C4 GRAD >>>'
# for item in pass_grad[retindx]:
# print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
return pass_psivar[retindx], pass_coord[retindx], pass_grad[retindx]
def harvest_outfile_pass(outtext):
"""Function to read CFOUR output file *outtext* and parse important
quantum chemical information from it in
"""
psivar = PreservingDict()
psivar_coord = None
psivar_grad = None
# TODO: BCC
# CI
# QCISD(T)
# other ROHF tests
# vcc/ecc
NUMBER = "((?:[-+]?\\d*\\.\\d+(?:[DdEe][-+]?\\d+)?)|(?:[-+]?\\d+\\.\\d*(?:[DdEe][-+]?\\d+)?))"
# Process NRE
mobj = re.search(r'^\s+' + r'(?:Nuclear repulsion energy :)' + r'\s+' + NUMBER + r'\s+a\.u\.\s*$',
outtext, re.MULTILINE)
if mobj:
print('matched nre')
psivar['NUCLEAR REPULSION ENERGY'] = mobj.group(1)
# Process SCF
mobj = re.search(
r'^\s+' + r'(?:E\(SCF\))' + r'\s+=\s+' + NUMBER + r'\s+a\.u\.\s*$',
outtext, re.MULTILINE)
if mobj:
print('matched scf1')
psivar['SCF TOTAL ENERGY'] = mobj.group(1)
mobj = re.search(
r'^\s+' + r'(?:E\(SCF\)=)' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE)
if mobj:
print('matched scf2')
psivar['SCF TOTAL ENERGY'] = mobj.group(1)
mobj = re.search(
r'^\s+' + r'(?:SCF has converged.)' + r'\s*$' +
r'(?:.*?)' +
r'^\s+' + r'(?:\d+)' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched scf3')
psivar['SCF TOTAL ENERGY'] = mobj.group(1)
# Process MP2
mobj = re.search(
r'^\s+' + r'(?:E2\(AA\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(AB\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(TOT\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:Total MP2 energy)' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*$',
outtext, re.MULTILINE)
if mobj:
print('matched mp2r')
psivar['MP2 SAME-SPIN CORRELATION ENERGY'] = 2 * Decimal(mobj.group(1))
psivar['MP2 OPPOSITE-SPIN CORRELATION ENERGY'] = mobj.group(2)
psivar['MP2 CORRELATION ENERGY'] = 2 * Decimal(mobj.group(1)) + Decimal(mobj.group(2))
psivar['MP2 TOTAL ENERGY'] = mobj.group(4)
mobj = re.search(
r'^\s+' + r'(?:E2\(AA\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(BB\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(AB\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(TOT\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:Total MP2 energy)' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*$',
outtext, re.MULTILINE)
if mobj:
print('matched mp2u')
psivar['MP2 SAME-SPIN CORRELATION ENERGY'] = Decimal(mobj.group(1)) + Decimal(mobj.group(2))
psivar['MP2 OPPOSITE-SPIN CORRELATION ENERGY'] = mobj.group(3)
psivar['MP2 CORRELATION ENERGY'] = Decimal(mobj.group(1)) + \
Decimal(mobj.group(2)) + Decimal(mobj.group(3))
psivar['MP2 TOTAL ENERGY'] = mobj.group(5)
mobj = re.search(
r'^\s+' + r'(?:E2\(AA\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(BB\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(AB\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(SINGLE\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:E2\(TOT\))' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'(?:Total MP2 energy)' + r'\s+=\s+' + NUMBER + r'\s+a.u.\s*$',
outtext, re.MULTILINE)
if mobj:
print('matched mp2ro')
psivar['MP2 SAME-SPIN CORRELATION ENERGY'] = Decimal(mobj.group(1)) + Decimal(mobj.group(2))
psivar['MP2 OPPOSITE-SPIN CORRELATION ENERGY'] = mobj.group(3)
psivar['MP2 SINGLES ENERGY'] = mobj.group(4)
psivar['MP2 CORRELATION ENERGY'] = Decimal(mobj.group(1)) + \
Decimal(mobj.group(2)) + Decimal(mobj.group(3)) + Decimal(mobj.group(4))
psivar['MP2 TOTAL ENERGY'] = mobj.group(6)
# Process MP3
mobj = re.search(
r'^\s+' + r'(?:D-MBPT\(2\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:D-MBPT\(3\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched mp3r')
dmp2 = Decimal(mobj.group(1))
dmp3 = Decimal(mobj.group(3))
psivar['MP2 CORRELATION ENERGY'] = dmp2
psivar['MP2 TOTAL ENERGY'] = mobj.group(2)
psivar['MP3 CORRELATION ENERGY'] = dmp2 + dmp3
psivar['MP3 TOTAL ENERGY'] = mobj.group(4)
psivar['MP2.5 CORRELATION ENERGY'] = dmp2 + Decimal('0.500000000000') * dmp3
psivar['MP2.5 TOTAL ENERGY'] = psivar['MP2.5 CORRELATION ENERGY'] + psivar['SCF TOTAL ENERGY']
mobj = re.search(
r'^\s+' + r'(?:S-MBPT\(2\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:D-MBPT\(2\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:S-MBPT\(3\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:D-MBPT\(3\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched mp3ro')
dmp2 = Decimal(mobj.group(1)) + Decimal(mobj.group(3))
dmp3 = Decimal(mobj.group(5)) + Decimal(mobj.group(7))
psivar['MP3 CORRELATION ENERGY'] = dmp2 + dmp3
psivar['MP3 TOTAL ENERGY'] = mobj.group(8)
psivar['MP2.5 CORRELATION ENERGY'] = dmp2 + Decimal('0.500000000000') * dmp3
psivar['MP2.5 TOTAL ENERGY'] = psivar['MP2.5 CORRELATION ENERGY'] + psivar['SCF TOTAL ENERGY']
# Process MP4
mobj = re.search(
r'^\s+' + r'(?:D-MBPT\(2\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:D-MBPT\(3\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:D-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:Q-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:S-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched mp4r')
dmp2 = Decimal(mobj.group(1))
dmp3 = Decimal(mobj.group(3))
dmp4sdq = Decimal(mobj.group(5)) + Decimal(mobj.group(7)) + Decimal(mobj.group(9))
psivar['MP2 CORRELATION ENERGY'] = dmp2
psivar['MP2 TOTAL ENERGY'] = mobj.group(2)
psivar['MP3 CORRELATION ENERGY'] = dmp2 + dmp3
psivar['MP3 TOTAL ENERGY'] = mobj.group(4)
psivar['MP2.5 CORRELATION ENERGY'] = dmp2 + Decimal('0.500000000000') * dmp3
psivar['MP2.5 TOTAL ENERGY'] = psivar['MP2.5 CORRELATION ENERGY'] + psivar['SCF TOTAL ENERGY']
psivar['MP4(SDQ) CORRELATION ENERGY'] = dmp2 + dmp3 + dmp4sdq
psivar['MP4(SDQ) TOTAL ENERGY'] = mobj.group(10)
mobj = re.search(
r'^\s+' + r'(?:S-MBPT\(2\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:D-MBPT\(2\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:S-MBPT\(3\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:D-MBPT\(3\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:L-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:NL-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched mp4ro')
dmp2 = Decimal(mobj.group(1)) + Decimal(mobj.group(3))
dmp3 = Decimal(mobj.group(5)) + Decimal(mobj.group(7))
dmp4sdq = Decimal(mobj.group(9)) + Decimal(mobj.group(11))
psivar['MP2 CORRELATION ENERGY'] = dmp2
psivar['MP2 TOTAL ENERGY'] = mobj.group(4)
psivar['MP3 CORRELATION ENERGY'] = dmp2 + dmp3
psivar['MP3 TOTAL ENERGY'] = mobj.group(8)
psivar['MP2.5 CORRELATION ENERGY'] = dmp2 + Decimal('0.500000000000') * dmp3
psivar['MP2.5 TOTAL ENERGY'] = psivar['MP2.5 CORRELATION ENERGY'] + psivar['SCF TOTAL ENERGY']
psivar['MP4(SDQ) CORRELATION ENERGY'] = dmp2 + dmp3 + dmp4sdq
psivar['MP4(SDQ) TOTAL ENERGY'] = mobj.group(12)
mobj = re.search(
r'^\s+' + r'(?:D-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:Q-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:S-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:T-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched mp4tr')
dmp4sdq = Decimal(mobj.group(1)) + Decimal(mobj.group(3)) + Decimal(mobj.group(5))
dmp4t = Decimal(mobj.group(7))
psivar['MP4(SDQ) CORRELATION ENERGY'] = psivar['MP3 CORRELATION ENERGY'] + dmp4sdq
psivar['MP4(SDQ) TOTAL ENERGY'] = mobj.group(6)
psivar['MP4(T) CORRECTION ENERGY'] = dmp4t
psivar['MP4(SDTQ) CORRELATION ENERGY'] = psivar['MP3 CORRELATION ENERGY'] + dmp4sdq + dmp4t
psivar['MP4(SDTQ) TOTAL ENERGY'] = mobj.group(8)
psivar['MP4 CORRELATION ENERGY'] = psivar['MP4(SDTQ) CORRELATION ENERGY']
psivar['MP4 TOTAL ENERGY'] = psivar['MP4(SDTQ) TOTAL ENERGY']
mobj = re.search(
r'^\s+' + r'(?:L-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:NL-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:WT12-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'(?:T-MBPT\(4\))' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched mp4tro')
dmp4sdq = Decimal(mobj.group(1)) + Decimal(mobj.group(3))
dmp4t = Decimal(mobj.group(5)) + Decimal(mobj.group(7)) # TODO: WT12 with T, not SDQ?
psivar['MP4(SDQ) CORRELATION ENERGY'] = psivar['MP3 CORRELATION ENERGY'] + dmp4sdq
psivar['MP4(SDQ) TOTAL ENERGY'] = mobj.group(4)
psivar['MP4(T) CORRECTION ENERGY'] = dmp4t
psivar['MP4(SDTQ) CORRELATION ENERGY'] = psivar['MP3 CORRELATION ENERGY'] + dmp4sdq + dmp4t
psivar['MP4(SDTQ) TOTAL ENERGY'] = mobj.group(8)
psivar['MP4 CORRELATION ENERGY'] = psivar['MP4(SDTQ) CORRELATION ENERGY']
psivar['MP4 TOTAL ENERGY'] = psivar['MP4(SDTQ) TOTAL ENERGY']
# Process CC Iterations
mobj = re.search(
r'^\s+' + r'(?P<fullCC>(?P<iterCC>CC(?:\w+))(?:\(T\))?)' + r'\s+(?:energy will be calculated.)\s*' +
r'(?:.*?)' +
r'^\s+' + r'(?:\d+)' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s+DIIS\s*' +
r'^\s*(?:-+)\s*' +
r'^\s*(?:A miracle (?:has come|come) to pass. The CC iterations have converged.)\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched cc with full %s iterating %s' % (mobj.group('fullCC'), mobj.group('iterCC')))
psivar['%s CORRELATION ENERGY' % (mobj.group('iterCC'))] = mobj.group(3)
psivar['%s TOTAL ENERGY' % (mobj.group('iterCC'))] = mobj.group(4)
# Process CC(T)
mobj = re.search(
r'^\s+' + r'(?:E\(SCF\))' + r'\s+=\s+' + NUMBER + r'\s+a\.u\.\s*' +
r'(?:.*?)' +
r'^\s+' + r'(?:E\(CCSD\))' + r'\s+=\s+' + NUMBER + r'\s*' +
r'(?:.*?)' +
r'^\s+' + r'(?:E\(CCSD\(T\)\))' + r'\s+=\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched ccsd(t) vcc')
psivar['SCF TOTAL ENERGY'] = mobj.group(1)
psivar['CCSD TOTAL ENERGY'] = mobj.group(2)
psivar['(T) CORRECTION ENERGY'] = Decimal(mobj.group(3)) - Decimal(mobj.group(2))
psivar['CCSD(T) CORRELATION ENERGY'] = Decimal(mobj.group(3)) - Decimal(mobj.group(1))
psivar['CCSD(T) TOTAL ENERGY'] = mobj.group(3)
mobj = re.search(
r'^\s+' + r'(?:E\(SCF\))' + r'\s+=\s*' + NUMBER + r'\s+a\.u\.\s*' +
r'(?:.*?)' +
r'^\s+' + r'(?:CCSD energy)' + r'\s+' + NUMBER + r'\s*' +
r'(?:.*?)' +
r'^\s+' + r'(?:Total perturbative triples energy:)' + r'\s+' + NUMBER + r'\s*' +
r'^\s*(?:-+)\s*' +
r'^\s+' + r'(?:CCSD\(T\) energy)' + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched ccsd(t) ecc')
psivar['SCF TOTAL ENERGY'] = mobj.group(1)
psivar['CCSD TOTAL ENERGY'] = mobj.group(2)
psivar['(T) CORRECTION ENERGY'] = mobj.group(3)
psivar['CCSD(T) CORRELATION ENERGY'] = Decimal(mobj.group(4)) - Decimal(mobj.group(1))
psivar['CCSD(T) TOTAL ENERGY'] = mobj.group(4)
mobj = re.search(
r'^\s+' + r'(?:CCSD energy)' + r'\s+' + NUMBER + r'\s*' +
r'^\s*(?:-+)\s*' +
r'^\s+' + r'(?:CCSD\(T\) energy)' + r'\s+' + NUMBER + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj:
print('matched ccsd(t) lamb')
psivar['CCSD TOTAL ENERGY'] = mobj.group(1)
psivar['(T) CORRECTION ENERGY'] = Decimal(mobj.group(2)) - Decimal(mobj.group(1))
psivar['CCSD(T) CORRELATION ENERGY'] = Decimal(mobj.group(2)) - psivar['SCF TOTAL ENERGY']
psivar['CCSD(T) TOTAL ENERGY'] = mobj.group(2)
# Process SCS-CC
mobj = re.search(
r'^\s+' + r'(?P<fullCC>(?P<iterCC>CC(?:\w+))(?:\(T\))?)' + r'\s+(?:energy will be calculated.)\s*' +
r'(?:.*?)' +
r'^\s*' + r'(?:@CCENRG-I, Correlation energies.)' + r'\s+(?:ECCAA)\s+' + NUMBER + r'\s*' +
r'^\s+(?:ECCBB)\s+' + NUMBER + '\s*' +
r'^\s+(?:ECCAB)\s+' + NUMBER + '\s*' +
r'^\s+(?:Total)\s+' + NUMBER + '\s*',
outtext, re.MULTILINE | re.DOTALL)
if mobj: # PRINT=2 to get SCS-CC components
print('matched scscc')
psivar['%s SAME-SPIN CORRELATION ENERGY' % (mobj.group('iterCC'))] = Decimal(mobj.group(3)) + Decimal(mobj.group(4))
psivar['%s OPPOSITE-SPIN CORRELATION ENERGY' % (mobj.group('iterCC'))] = mobj.group(5)
psivar['%s CORRELATION ENERGY' % (mobj.group('iterCC'))] = mobj.group(6)
mobj = re.search(
r'^\s+' + r'(?P<fullCC>(?P<iterCC>CC(?:\w+))(?:\(T\))?)' + r'\s+(?:energy will be calculated.)\s*' +
r'(?:.*?)' +
r'^\s+' + r'Amplitude equations converged in' + r'\s*\d+\s*' + r'iterations.\s*' +
r'^\s+' + r'The AA contribution to the correlation energy is:\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'The BB contribution to the correlation energy is:\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'The AB contribution to the correlation energy is:\s+' + NUMBER + r'\s+a.u.\s*' +
r'^\s+' + r'The total correlation energy is\s+' + NUMBER + r'\s+a.u.\s*' +
r'(?:.*?)' +
#r'^\s+' + r'The CC iterations have converged.' + r'\s*$',
r'^\s+' + r'(?:A miracle come to pass. )?' + r'The CC iterations have converged.' + r'\s*$',
outtext, re.MULTILINE | re.DOTALL)
if mobj: # PRINT=2 to get SCS components
print('matched scscc2')
psivar['%s SAME-SPIN CORRELATION ENERGY' % (mobj.group('iterCC'))] = Decimal(mobj.group(3)) + Decimal(mobj.group(4))
psivar['%s OPPOSITE-SPIN CORRELATION ENERGY' % (mobj.group('iterCC'))] = mobj.group(5)
psivar['%s CORRELATION ENERGY' % (mobj.group('iterCC'))] = mobj.group(6)
# Process gradient
mobj = re.search(
r'\s+' + r'Molecular gradient' + r'\s*' +
r'\s+' + r'------------------' + r'\s*' +
r'\s+' + r'\n' +
r'(?:(?:\s+[A-Z]+\s*#\d+\s+[xyz]\s+[-+]?\d+\.\d+\s*\n)+)' + # optional, it seems
r'\n\n' + # optional, it seems
r'((?:\s+[A-Z]+\s*#\d+\s+\d?\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s*\n)+)' +
r'\n\n' +
r'\s+' + 'Molecular gradient norm',
outtext, re.MULTILINE)
if mobj:
print('matched molgrad')
atoms = []
psivar_grad = []
for line in mobj.group(1).splitlines():
lline = line.split()
atoms.append(lline[0])
#psivar_gradient.append([Decimal(lline[-3]), Decimal(lline[-2]), Decimal(lline[-1])])
psivar_grad.append([float(lline[-3]), float(lline[-2]), float(lline[-1])])
# Process geometry
mobj = re.search(
# r'\s+(?:-+)\s*' +
# r'^\s+' + r'Z-matrix Atomic Coordinates (in bohr)' + r'\s*' +
r'^\s+' + r'Symbol Number X Y Z' + r'\s*' +
r'^\s+(?:-+)\s*' +
r'((?:\s+[A-Z]+\s+[0-9]+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s*\n)+)' +
r'^\s+(?:-+)\s*',
outtext, re.MULTILINE)
if mobj:
print('matched geom')
molxyz = '%d bohr\n\n' % len(mobj.group(1).splitlines())
for line in mobj.group(1).splitlines():
lline = line.split()
molxyz += '%s %16s %16s %16s\n' % (lline[0], lline[-3], lline[-2], lline[-1])
# Rather a dinky Molecule as no ghost, charge, or multiplicity
psivar_coord = Molecule.init_with_xyz(molxyz, no_com=True, no_reorient=True, contentsNotFilename=True)
# Process atom geometry
mobj = re.search(
r'^\s+' + r'@GETXYZ-I, 1 atoms read from ZMAT.' + r'\s*' +
r'^\s+' + r'[0-9]+\s+([A-Z]+)\s+[0-9]+\s+' + NUMBER + r'\s*',
outtext, re.MULTILINE)
if mobj:
print('matched atom')
# Dinky Molecule
molxyz = '1 bohr\n\n%s 0.0 0.0 0.0\n' % (mobj.group(1))
psivar_coord = Molecule.init_with_xyz(molxyz, no_com=True, no_reorient=True, contentsNotFilename=True)
# Process error codes
mobj = re.search(
r'^\s*' + r'--executable ' + r'(\w+)' + r' finished with status' + r'\s+' + r'([1-9][0-9]*)',
outtext, re.MULTILINE)
if mobj:
print('matched error')
psivar['CFOUR ERROR CODE'] = mobj.group(2)
# Process CURRENT energies (TODO: needs better way)
if 'SCF TOTAL ENERGY' in psivar:
psivar['CURRENT REFERENCE ENERGY'] = psivar['SCF TOTAL ENERGY']
psivar['CURRENT ENERGY'] = psivar['SCF TOTAL ENERGY']
if 'MP2 TOTAL ENERGY' in psivar and 'MP2 CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['MP2 CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['MP2 TOTAL ENERGY']
if 'MP3 TOTAL ENERGY' in psivar and 'MP3 CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['MP3 CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['MP3 TOTAL ENERGY']
if 'MP4 TOTAL ENERGY' in psivar and 'MP4 CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['MP4 CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['MP4 TOTAL ENERGY']
# if ('%s TOTAL ENERGY' % (mobj.group('fullCC')) in psivar) and \
# ('%s CORRELATION ENERGY' % (mobj.group('fullCC')) in psivar):
# psivar['CURRENT CORRELATION ENERGY'] = psivar['%s CORRELATION ENERGY' % (mobj.group('fullCC')]
# psivar['CURRENT ENERGY'] = psivar['%s TOTAL ENERGY' % (mobj.group('fullCC')]
if 'CC2 TOTAL ENERGY' in psivar and 'CC2 CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['CC2 CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['CC2 TOTAL ENERGY']
if 'CCSD TOTAL ENERGY' in psivar and 'CCSD CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['CCSD CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['CCSD TOTAL ENERGY']
if 'CCSD(T) TOTAL ENERGY' in psivar and 'CCSD(T) CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['CCSD(T) CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['CCSD(T) TOTAL ENERGY']
if 'CC3 TOTAL ENERGY' in psivar and 'CC3 CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['CC3 CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['CC3 TOTAL ENERGY']
if 'CCSDT TOTAL ENERGY' in psivar and 'CCSDT CORRELATION ENERGY' in psivar:
psivar['CURRENT CORRELATION ENERGY'] = psivar['CCSDT CORRELATION ENERGY']
psivar['CURRENT ENERGY'] = psivar['CCSDT TOTAL ENERGY']
return psivar, psivar_coord, psivar_grad
def harvest(p4Mol, c4out, **largs):
"""Parses all the pieces of output from Cfour: the stdout in
*c4out* and the contents of various scratch files like GRD stored
in their namesake keys in *largs*. Since all Cfour output uses
its own orientation and atom ordering for the given molecule,
a qcdb.Molecule *p4Mol*, if supplied, is used to transform the
Cfour output back into consistency with *p4Mol*.
"""
# Collect results from output file and subsidiary files
outPsivar, outMol, outGrad = harvest_output(c4out)
if 'GRD' in largs:
grdMol, grdGrad = harvest_GRD(largs['GRD'])
else:
grdMol, grdGrad = None, None
if 'FCMFINAL' in largs:
fcmHess = harvest_FCM(largs['FCMFINAL'])
else:
fcmHess = None
if 'DIPOL' in largs:
dipolDip = harvest_DIPOL(largs['DIPOL'])
else:
dipolDip = None
# Reconcile the coordinate information: several cases
# Case p4Mol GRD Check consistency Apply orientation? ReturnMol (1-19-2014)
# sp with mol thru cfour {} None None outMol N.C. outMol
# opt with mol thru cfour {} None grdMol outMol && grdMol N.C. grdMol
# sp with mol thru molecule {} p4Mol None p4Mol && outMol p4Mol <-- outMol p4Mol (same as input arg)
# opt with mol thru molecule {} p4Mol grdMol p4Mol && outMol && grdMol p4Mol <-- grdMol p4Mol (same as input arg)
if outMol:
if grdMol:
if abs(outMol.nuclear_repulsion_energy() - grdMol.nuclear_repulsion_energy()) > 1.0e-3:
raise ValidationError("""Cfour outfile (NRE: %f) inconsistent with Cfour GRD (NRE: %f).""" % \
(outMol.nuclear_repulsion_energy(), grdMol.nuclear_repulsion_energy()))
if p4Mol:
if abs(outMol.nuclear_repulsion_energy() - p4Mol.nuclear_repulsion_energy()) > 1.0e-3:
raise ValidationError("""Cfour outfile (NRE: %f) inconsistent with Psi4 input (NRE: %f).""" % \
(outMol.nuclear_repulsion_energy(), p4Mol.nuclear_repulsion_energy()))
else:
raise ValidationError("""No coordinate information extracted from Cfour output.""")
# print ' <<< [1] P4-MOL >>>'
# if p4Mol:
# p4Mol.print_out_in_bohr()
# print ' <<< [2] C4-OUT-MOL >>>'
# if outMol:
# outMol.print_out_in_bohr()
# print ' <<< [3] C4-GRD-MOL >>>'
# if grdMol:
# grdMol.print_out_in_bohr()
# Set up array reorientation object
if p4Mol and grdMol:
p4c4 = OrientMols(p4Mol, grdMol)
oriCoord = p4c4.transform_coordinates2(grdMol)
oriGrad = p4c4.transform_gradient(grdGrad)
oriDip = None if dipolDip is None else p4c4.transform_vector(dipolDip)
elif p4Mol and outMol:
p4c4 = OrientMols(p4Mol, outMol)
oriCoord = p4c4.transform_coordinates2(outMol)
oriGrad = None
oriDip = None if dipolDip is None else p4c4.transform_vector(dipolDip)
elif outMol:
oriCoord = None
oriGrad = None
oriDip = None if dipolDip is None else dipolDip
# print p4c4
# print ' <<< [4] C4-ORI-MOL >>>'
# if oriCoord is not None:
# for item in oriCoord:
# print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
#
# print ' <<< [1] C4-GRD-GRAD >>>'
# if grdGrad is not None:
# for item in grdGrad:
# print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
# print ' <<< [2] C4-ORI-GRAD >>>'
# if oriGrad is not None:
# for item in oriGrad:
# print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
retMol = None if p4Mol else grdMol
if oriDip:
outPsivar['CURRENT DIPOLE X'] = str(oriDip[0] * psi_dipmom_au2debye)
outPsivar['CURRENT DIPOLE Y'] = str(oriDip[1] * psi_dipmom_au2debye)
outPsivar['CURRENT DIPOLE Z'] = str(oriDip[2] * psi_dipmom_au2debye)
if oriGrad:
retGrad = oriGrad
elif grdGrad:
retGrad = grdGrad
else:
retGrad = None
return outPsivar, retGrad, retMol
def harvest_GRD(grd):
"""Parses the contents *grd* of the Cfour GRD file into the gradient
array and coordinate information. The coordinate info is converted
into a rather dinky Molecule (no charge, multiplicity, or fragment),
but this is these coordinates that govern the reading of molecule
orientation by Cfour. Return qcdb.Molecule and gradient array.
"""
grd = grd.splitlines()
Nat = int(grd[0].split()[0])
molxyz = '%d bohr\n\n' % (Nat)
grad = []
for at in range(Nat):
mline = grd[at + 1].split()
el = 'GH' if int(float(mline[0])) == 0 else z2el[int(float(mline[0]))]
molxyz += '%s %16s %16s %16s\n' % (el, mline[-3], mline[-2], mline[-1])
lline = grd[at + 1 + Nat].split()
grad.append([float(lline[-3]), float(lline[-2]), float(lline[-1])])
mol = Molecule.init_with_xyz(molxyz, no_com=True, no_reorient=True, contentsNotFilename=True)
return mol, grad
def harvest_zmat(zmat):
"""Parses the contents of the Cfour ZMAT file into array and
coordinate information. The coordinate info is converted into a
rather dinky Molecule (no fragment, but does read charge, mult,
unit). Return qcdb.Molecule. Written for findif zmat* where
geometry always Cartesian and Bohr.
"""
zmat = zmat.splitlines()[1:] # skip comment line
Nat = 0
readCoord = True
isBohr = ''
charge = 0
mult = 1
molxyz = ''
cgeom = []
for line in zmat:
if line.strip() == '':
readCoord = False
elif readCoord:
lline = line.split()
molxyz += line + '\n'
Nat += 1
else:
if line.find('CHARGE') > -1:
idx = line.find('CHARGE')
charge = line[idx + 7:]
idxc = charge.find(',')
if idxc > -1:
charge = charge[:idxc]
charge = int(charge)
if line.find('MULTIPLICITY') > -1:
idx = line.find('MULTIPLICITY')
mult = line[idx + 13:]
idxc = mult.find(',')
if idxc > -1:
mult = mult[:idxc]
mult = int(mult)
if line.find('UNITS=BOHR') > -1:
isBohr = ' bohr'
molxyz = '%d%s\n%d %d\n' % (Nat, isBohr, charge, mult) + molxyz
mol = Molecule.init_with_xyz(molxyz, no_com=True, no_reorient=True, contentsNotFilename=True)
return mol
def harvest_FCM(fcm):
"""Parses the contents *fcm* of the Cfour FCMFINAL file into a hessian array.
"""
fcm = fcm.splitlines()
Nat = int(fcm[0].split()[0])
Ndof = int(fcm[0].split()[1])
empty = True
hess = []
for df in range(Ndof):
for at in range(Nat):
lline = fcm[Ndof * at + at + 1].split()
if empty:
if (abs(float(lline[0])) > 1.0e-8) or \
(abs(float(lline[1])) > 1.0e-8) or \
(abs(float(lline[2])) > 1.0e-8):
empty = False
fcm.append([float(lline[0]), float(lline[1]), float(lline[2])])
return None if empty else hess
def harvest_DIPOL(dipol):
"""Parses the contents *dipol* of the Cfour DIPOL file into a dipol vector.
"""
dipol = dipol.splitlines()
lline = dipol[0].split()
dip = [float(lline[0]), float(lline[1]), float(lline[2])]
#return None if empty else dip
return dip
def muster_memory(mem):
"""Transform input *mem* in MB into psi4-type options for cfour.
"""
text = ''
# prepare memory keywords to be set as c-side keywords
options = defaultdict(lambda: defaultdict(dict))
options['CFOUR']['CFOUR_MEMORY_SIZE']['value'] = int(mem)
options['CFOUR']['CFOUR_MEM_UNIT']['value'] = 'MB'
for item in options['CFOUR']:
options['CFOUR'][item]['clobber'] = True
return text, options
# Ways of modifying a computation
# global: set global c-side option
# local: set local c-side option
# kwarg: set kwarg
# i-local: set global=local c-side option to an interface module
# ro-def: code uses default entirely specified by read_options
# module-def: code uses default that is complex mixture of read_options settings
# i-def: interfaced code uses defaults not entirely expressed in read_options
# driver-def: driver code sets complex defaults
#
# Pure psi4 operation
# kwarg ~= local > global > driver-def > module-def > ro-def
#
# Interfaced psi4 operation
# kwarg ~= i-local > local > global > driver-def > i-def
# P4 infrastructure replacing interfaced infrastructure (mol, basis, mem) where unavoidable overlap in how things are specified (mult in mol{} vs keyword) is treated as a clobber & complain if conflict VS P4 infrastructure as an aliased/convenient leak into interfaced infrastructure (psi) and is strictly no clobber or complain.
def muster_psi4options(opt):
"""Translate psi4 keywords *opt* that have been explicitly set into
their Cfour counterparts. Since explicitly set Cfour module keyword
values will always be used preferentially to these inferred from
psi4, the 'clobber' property is set to False.
"""
text = ''
options = defaultdict(lambda: defaultdict(dict))
if 'GLOBALS' in opt:
if 'PUREAM' in opt['GLOBALS']:
options['CFOUR']['CFOUR_SPHERICAL']['value'] = \
opt['MINTS']['PUREAM']['value']
if 'SCF' in opt:
if 'REFERENCE' in opt['SCF']:
options['CFOUR']['CFOUR_REFERENCE']['value'] = \
{'RHF': 'RHF',
'UHF': 'UHF',
'ROHF': 'ROHF'}[opt['SCF']['REFERENCE']['value']]
if 'D_CONVERGENCE' in opt['SCF']:
options['CFOUR']['CFOUR_SCF_CONV']['value'] = \
conv_float2negexp(opt['SCF']['D_CONVERGENCE']['value'])
if 'MAXITER' in opt['SCF']:
options['CFOUR']['CFOUR_SCF_MAXCYC']['value'] = \
opt['SCF']['MAXITER']['value']
if 'DAMPING_PERCENTAGE' in opt['SCF']:
options['CFOUR']['CFOUR_SCF_DAMPING']['value'] = \
int(10 * opt['SCF']['DAMPING_PERCENTAGE']['value'])
for item in options['CFOUR']:
options['CFOUR'][item]['clobber'] = False
return text, options
# Philosophy break:
# Specification options
# Massaging options
# * No program's defaults should be tampered with w/o provokation
# want all defaults applied to all programs, so p4 scf_conv is 5 and c4 scf_conv is 5
# want separate regimes, so conv 6 covers all the p4 parts and cfour_conv = 8 covers the c4 parts
# want mixture, so basis gets applied to c4 but others don't
# first case, when options specified explicitly
# [scf][d_convergence] [cfour][cfour_scf_conv] what happens?
# 8 from opt() 7 by default
# 6 from set {...} 7 by default 6 (guideline that psi4 format converts when clear)
# 8 from opt() 5 from set {...} 5 (local trumps)
# 6 from set {...} 5 from set {...} 5 (local trumps)
#
# energy(name) [cfour][cfour_calc_level]
# c4-scf SCF by default
# c4-scf CCSD from set {...}
def muster_modelchem(name, dertype):
"""Transform calculation method *name* and derivative level *dertype*
into options for cfour. While deliberately requested pieces,
generally |cfour__cfour_deriv_level| and |cfour__cfour_calc_level|,
are set to complain if contradicted ('clobber' set to True), other
'recommended' settings, like |cfour__cfour_cc_program|, can be
countermanded by keywords in input file ('clobber' set to False).
Occasionally, want these pieces to actually overcome keywords in
input file ('superclobber' set to True).
"""
text = ''
lowername = name.lower()
options = defaultdict(lambda: defaultdict(dict))
if dertype == 0:
if lowername == 'cfour':
pass # permit clean operation of sandwich mode
else:
options['CFOUR']['CFOUR_DERIV_LEVEL']['value'] = 'ZERO'
elif dertype == 1:
options['CFOUR']['CFOUR_DERIV_LEVEL']['value'] = 'FIRST'
elif dertype == 2:
options['CFOUR']['CFOUR_DERIV_LEVEL']['value'] = 'SECOND'
else:
raise ValidationError("""Requested Cfour dertype %d is not available.""" % (dertype))
if lowername == 'cfour':
pass
elif lowername == 'c4-scf':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'SCF'
elif lowername == 'c4-mp2':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'MP2'
elif lowername == 'c4-mp3':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'MP3'
elif lowername == 'c4-mp4(sdq)':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'SDQ-MP4'
elif lowername == 'c4-mp4':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'MP4'
elif lowername == 'c4-cc2':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'CC2'
elif lowername == 'c4-ccsd':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'CCSD'
options['CFOUR']['CFOUR_CC_PROGRAM']['value'] = 'ECC'
elif lowername == 'c4-cc3':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'CC3'
elif lowername == 'c4-ccsd(t)':
# Can't use (T) b/c bug in xsymcor lops it off
#options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'CCSD(T)'
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'CCSD[T]'
options['CFOUR']['CFOUR_CC_PROGRAM']['value'] = 'ECC'
elif lowername == 'c4-ccsdt':
options['CFOUR']['CFOUR_CALC_LEVEL']['value'] = 'CCSDT'
options['CFOUR']['CFOUR_CC_PROGRAM']['value'] = 'ECC'
else:
raise ValidationError("""Requested Cfour computational methods %d is not available.""" % (lowername))
# Set clobbering
if 'CFOUR_DERIV_LEVEL' in options['CFOUR']:
options['CFOUR']['CFOUR_DERIV_LEVEL']['clobber'] = True
options['CFOUR']['CFOUR_DERIV_LEVEL']['superclobber'] = True
if 'CFOUR_CALC_LEVEL' in options['CFOUR']:
options['CFOUR']['CFOUR_CALC_LEVEL']['clobber'] = True
options['CFOUR']['CFOUR_CALC_LEVEL']['superclobber'] = True
if 'CFOUR_CC_PROGRAM' in options['CFOUR']:
options['CFOUR']['CFOUR_CC_PROGRAM']['clobber'] = False
return text, options
def cfour_list():
"""Return an array of Cfour methods with energies. Appended
to procedures['energy'].
"""
val = []
val.append('cfour')
val.append('c4-scf')
val.append('c4-mp2')
val.append('c4-mp3')
val.append('c4-mp4(sdq)')
val.append('c4-mp4')
val.append('c4-cc2')
val.append('c4-ccsd')
val.append('c4-cc3')
val.append('c4-ccsd(t)')
val.append('c4-ccsdt')
return val
def cfour_gradient_list():
"""Return an array of Cfour methods with analytical gradients.
Appended to procedures['gradient'].
"""
val = []
val.append('cfour')
val.append('c4-scf')
val.append('c4-mp2')
val.append('c4-mp3')
val.append('c4-mp4(sdq)')
val.append('c4-mp4')
val.append('c4-cc2')
val.append('c4-ccsd')
val.append('c4-cc3')
val.append('c4-ccsd(t)')
val.append('c4-ccsdt')
return val
def cfour_psivar_list():
"""Return a dict with keys of most Cfour methods and values of dicts
with the PSI Variables returned by those methods. Used by cbs()
wrapper to avoid unnecessary computations in compound methods.
Result is appended to ``VARH``.
"""
VARH = {}
VARH['c4-scf'] = {
'c4-scftot': 'SCF TOTAL ENERGY'}
VARH['c4-mp2'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY'}
VARH['c4-mp3'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'c4-mp3corl': 'MP3 CORRELATION ENERGY'}
VARH['c4-mp4(sdq)'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'c4-mp3corl': 'MP3 CORRELATION ENERGY',
'c4-mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY'}
VARH['c4-mp4'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'c4-mp3corl': 'MP3 CORRELATION ENERGY',
'c4-mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY',
'c4-mp4corl': 'MP4(SDTQ) CORRELATION ENERGY'}
VARH['c4-cc2'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-cc2corl': 'CC2 CORRELATION ENERGY'}
VARH['c4-ccsd'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-ccsdcorl': 'CCSD CORRELATION ENERGY'}
VARH['c4-cc3'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-cc3corl': 'CC3 CORRELATION ENERGY'}
VARH['c4-ccsd(t)'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-ccsdcorl': 'CCSD CORRELATION ENERGY',
'c4-ccsd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
VARH['c4-ccsdt'] = {
'c4-scftot': 'SCF TOTAL ENERGY',
'c4-mp2corl': 'MP2 CORRELATION ENERGY',
'c4-ccsdcorl': 'CCSD CORRELATION ENERGY',
'c4-ccsdtcorl': 'CCSDT CORRELATION ENERGY'}
return VARH
#def backtransform(chgeMol, permMol, chgeGrad=None, chgeDip=None):
#def format_fjobarc(fje, fjelem, fjcoord, fjgrd, map, fjdip):
def format_fjobarc(energy, map, elem, coordinates, gradient, dipole):
"""Takes the key results from a gradient computation (*energy*,
element Z list *elem*, *coordinates*, *gradient*,
*dipole*, and atom ordering *map*) and writes a string *fja*
that exactly mimics the contents of a Cfour FJOBARC file.
"""
fja = 'TOTENERG\n'
fja += '%15d%15d\n' % (struct.unpack("ii", struct.pack("d", energy)))
fja += 'COORD\n'
Nat = len(coordinates)
flatcoord = []
for at in range(Nat):
for xyz in range(3):
flatcoord.append(coordinates[map[at]][xyz])
for idx in range(len(flatcoord)):
if abs(flatcoord[idx]) < 1.0E-14: # TODO
flatcoord[idx] = 0.0
fja += '%15d%15d' % (struct.unpack("ii", struct.pack("d", flatcoord[idx])))
if idx % 2 == 1:
fja += '\n'
if len(flatcoord) % 2 == 1:
fja += '\n'
fja += 'MAP2ZMAT\n'
for idx in range(Nat):
fja += '%15d%15d' % (struct.unpack("ii", struct.pack("l", map[idx] + 1)))
if idx % 2 == 1:
fja += '\n'
if Nat % 2 == 1:
fja += '\n'
fja += 'GRD FILE\n'
fja += '%5d%20.10f\n' % (Nat, 0.0)
for at in range(Nat):
fja += '%20.10f%20.10f%20.10f%20.10f\n' % (elem[at], coordinates[at][0], coordinates[at][1], coordinates[at][2])
for at in range(Nat):
fja += '%20.10f%20.10f%20.10f%20.10f\n' % (elem[at], gradient[at][0], gradient[at][1], gradient[at][2])
fja += 'DIPOL FILE\n'
fja += '%20.10f%20.10f%20.10f\n' % (dipole[0], dipole[1], dipole[2])
return fja
def backtransform(chgeMol, permMol, chgeGrad=None, chgeDip=None):
"""Here, *chgeMol* and *chgeGrd* need to be turned into the native Cfour
orientation embodied by *permMol*. Currently for vpt2.
"""
# Set up array reorientation object
p4c4 = OrientMols(permMol, chgeMol) # opposite than usual
oriCoord = p4c4.transform_coordinates2(chgeMol)
p4Elem = []
for at in range(chgeMol.natom()):
p4Elem.append(chgeMol.Z(at))
oriElem = p4c4.transform_elementlist(p4Elem)
oriElemMap = p4c4.Catommap
oriGrad = None if chgeGrad is None else p4c4.transform_gradient(chgeGrad)
oriDip = None if chgeDip is None else p4c4.transform_vector(chgeDip)
if chgeGrad and chgeDip:
return oriElemMap, oriElem, oriCoord, oriGrad, oriDip
else:
return oriElemMap, oriElem, oriCoord
#def backtransform_grad(p4Mol, c4Mol, p4Grd, p4Dip):
# """Here, p4Mol and p4Grd need to be turned into the native Cfour
# orientation embodied by c4Mol. Currently for vpt2.
#
# """
# # Set up array reorientation object
# p4c4 = OrientMols(c4Mol, p4Mol) # opposite than usual
# oriCoord = p4c4.transform_coordinates2(p4Mol)
# oriGrad = p4c4.transform_gradient(p4Grd)
# p4Elem = []
# for at in range(p4Mol.natom()):
# p4Elem.append(p4Mol.Z(at))
# oriElem = p4c4.transform_elementlist(p4Elem)
# oriElemMap = p4c4.Catommap
# oriDip = p4c4.transform_vector(p4Dip)
#
# #print p4c4
# #print ' <<< Input C4 Mol >>>'
# #c4Mol.print_out()
# #print ' <<< Input P4 Mol >>>'
# #p4Mol.print_out()
# #print ' <<< Input P4 Grad >>>'
# #if p4Grd is not None:
# # for item in p4Grd:
# # print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
# #print ' <<< Rotated P4 Coord >>>'
# #if oriCoord is not None:
# # for item in oriCoord:
# # print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
# #print ' <<< Rotated P4 Elem >>>'
# #if oriElem is not None:
# # for item in oriElem :
# # print(' %16.8f' % (item))
# #print ' <<< Rotated P4 Dip >>>'
# #if oriDip is not None:
# # print(' %16.8f %16.8f %16.8f' % (oriDip[0], oriDip[1], oriDip[2]))
# #print ' <<< Rotated P4 Grad >>>'
# #if oriGrad is not None:
# # for item in oriGrad:
# # print(' %16.8f %16.8f %16.8f' % (item[0], item[1], item[2]))
#
# return oriElemMap, oriElem, oriCoord, oriGrad, oriDip
# #return oriElem, oriCoord, oriGrad, oriElemMap, oriDip
def jajo2mol(jajodic):
"""Returns a Molecule from entries in dictionary *jajodic* extracted
from JAINDX and JOBARC.
"""
map = jajodic['MAP2ZMAT']
elem = jajodic['ATOMCHRG']
coord = jajodic['COORD ']
Nat = len(elem)
molxyz = '%d bohr\n\n' % (Nat)
# TODO chgmult, though not really necessary for reorientation
for at in range(Nat):
posn = map[at] - 1
el = 'GH' if elem[posn] == 0 else z2el[elem[posn]]
posn *= 3
molxyz += '%s %21.15f %21.15f %21.15f\n' % (el, coord[posn], coord[posn + 1], coord[posn + 2])
mol = Molecule.init_with_xyz(molxyz, no_com=True, no_reorient=True, contentsNotFilename=True)
return mol
|