/usr/share/psi/python/p4util/text.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
from __future__ import print_function
"""Module with utility classes and functions related
to data tables and text.
"""
#CUimport psi4
import sys
import re
import p4const
from p4xcpt import *
class Table(object):
"""Class defining a flexible Table object for storing data."""
def __init__(self, rows=(),
row_label_width=10,
row_label_precision=4,
cols=(),
width=16, precision=10):
self.row_label_width = row_label_width
self.row_label_precision = row_label_precision
self.width = width
self.precision = precision
self.rows = rows
if isinstance(cols, str):
self.cols = (cols,)
else:
self.cols = cols
self.labels = []
self.data = []
def format_label(self):
"""Function to pad the width of Table object labels."""
#str = lambda x: (('%%%d.%df' % (self.row_label_width, self.row_label_precision)) % x)
str = lambda x: (('%%%ds' % (self.row_label_width)) % x)
return " ".join(map(str, self.labels))
def format_values(self, values):
"""Function to pad the width of Table object data cells."""
str = lambda x: (('%%%d.%df' % (self.width, self.precision)) % x)
return " ".join(map(str, values))
def __getitem__(self, value):
self.labels.append(value)
return self
def __setitem__(self, name, value):
self.labels.append(name)
label = self.format_label()
self.labels = []
if isinstance(value, list):
self.data.append((label, value))
else:
self.data.append((label, [value]))
def save(self, file):
"""Function to save string of the Table object to *file*."""
import pickle
pickle_str = pickle.dumps(self)
fileobj = open(file, "w")
fileobj.write(str(self))
fileobj.close()
def __str__(self):
rowstr = lambda x: '%%%ds' % self.row_label_width % x
colstr = lambda x: '%%%ds' % self.width % x
lines = []
table_header = ""
if isinstance(self.rows, str):
table_header += "%%%ds" % self.row_label_width % self.rows
else:
table_header += " ".join(map(rowstr, self.rows))
table_header += " ".join(map(colstr, self.cols))
lines.append(table_header)
for datarow in self.data:
#print datarow
row_data = datarow[0]
row_data += self.format_values(datarow[1])
lines.append(row_data)
return "\n".join(lines) + "\n"
def copy(self):
"""Function to return a copy of the Table object."""
import copy
return copy.deepcopy(self)
def absolute_to_relative(self, Factor=p4const.psi_hartree2kcalmol):
"""Function to shift the data of each column of the Table object
such that the lowest value is zero. A scaling factor of *Factor* is applied.
"""
import copy
if len(self.data) == 0:
return
current_min = list(copy.deepcopy(self.data[0][1]))
for datarow in self.data:
for col in range(0, len(datarow[1])):
if current_min[col] > datarow[1][col]:
current_min[col] = datarow[1][col]
for datarow in self.data:
for col in range(0, len(datarow[1])):
#print datarow[1][col]
datarow[1][col] = (datarow[1][col] - current_min[col]) * Factor
def scale(self, Factor=p4const.psi_hartree2kcalmol):
"""Function to apply a scaling factor *Factor* to the
data of the Table object.
"""
if len(self.data) == 0:
return
for datarow in self.data:
for col in range(0, len(datarow[1])):
#print datarow[1][col]
datarow[1][col] = datarow[1][col] * Factor
def banner(text, type=1, width=35, strNotOutfile=False):
"""Function to print *text* to output file in a banner of
minimum width *width* and minimum three-line height for
*type* = 1 or one-line height for *type* = 2. If *strNotOutfile*
is True, function returns string rather than printing it
to output file.
"""
lines = text.split('\n')
max_length = 0
for line in lines:
if (len(line) > max_length):
max_length = len(line)
max_length = max([width, max_length])
null = ''
if type == 1:
banner = ' //' + null.center(max_length, '>') + '//\n'
for line in lines:
banner += ' //' + line.center(max_length) + '//\n'
banner += ' //' + null.center(max_length, '<') + '//\n'
if type == 2:
banner = ''
for line in lines:
banner += (' ' + line + ' ').center(max_length, '=')
if strNotOutfile:
return banner
else:
psi4.print_out(banner)
def print_stdout(stuff):
"""Function to print *stuff* to standard output stream."""
print(stuff, file=sys.stdout)
def print_stderr(stuff):
"""Function to print *stuff* to standard error stream."""
print(stuff, file=sys.stderr)
def levenshtein(seq1, seq2):
"""Function to compute the Levenshtein distance between two strings."""
oneago = None
thisrow = range(1, len(seq2) + 1) + [0]
for x in xrange(len(seq1)):
twoago, oneago, thisrow = oneago, thisrow, [0] * len(seq2) + [x + 1]
for y in xrange(len(seq2)):
delcost = oneago[y] + 1
addcost = thisrow[y - 1] + 1
subcost = oneago[y - 1] + (seq1[x] != seq2[y])
thisrow[y] = min(delcost, addcost, subcost)
return thisrow[len(seq2) - 1]
def find_approximate_string_matches(seq1,options,max_distance):
"""Function to compute approximate string matches from a list of options."""
matches = []
for seq2 in options:
distance = levenshtein(seq1,seq2)
if distance <= max_distance:
matches.append(seq2)
return matches
|