/usr/share/psi/python/molutil.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
"""Module with utility functions that act on molecule objects."""
import math
import psi4
import p4const
# CUimport p4util
from p4regex import *
# CUfrom dashparam import *
def extract_clusters(mol, ghost=True, cluster_size=0):
"""Function to return all subclusters of the molecule *mol* of
real size *cluster_size* and all other atoms ghosted if *ghost*
equals true, all other atoms discarded if *ghost* is false. If
*cluster_size* = 0, returns all possible combinations of cluster size.
"""
# How many levels of clusters are possible?
nfrag = mol.nfragments()
# Initialize the cluster array
clusters = []
# scope the arrays
reals = []
ghosts = []
# counter
counter = 0
# loop over all possible cluster sizes
for nreal in range(nfrag, 0, -1):
# if a specific cluster size size is requested, only do that
if (nreal != cluster_size and cluster_size > 0):
continue
# initialize the reals list
reals = []
# setup first combination [3,2,1] lexical ordering
# fragments indexing is 1's based, bloody hell
for index in range(nreal, 0, -1):
reals.append(index)
# start loop through lexical promotion
while True:
counter = counter + 1
# Generate cluster from last iteration
if (ghost):
ghosts = []
for g in range(nfrag, 0, -1):
if (g not in reals):
ghosts.append(g)
clusters.append(mol.extract_subsets(reals, ghosts))
else:
clusters.append(mol.extract_subsets(reals))
# reset rank
rank = 0
# look for lexical promotion opportunity
# i.e.: [4 2 1] has a promotion opportunity at
# index 1 to produce [4 3 1]
for k in range(nreal - 2, -1, -1):
if (reals[k] != reals[k + 1] + 1):
rank = k + 1
break
# do the promotion
reals[rank] = reals[rank] + 1
# demote the right portion of the register
val = 1
for k in range(nreal - 1, rank, -1):
reals[k] = val
val = val + 1
# boundary condition is promotion into
# [nfrag+1 nfrag-1 ...]
if (reals[0] > nfrag):
break
return clusters
def extract_cluster_indexing(mol, cluster_size=0):
"""Function to returns a LIST of all subclusters of the molecule *mol* of
real size *cluster_size*. If *cluster_size* = 0, returns all possible
combinations of cluster size.
"""
import copy
# How many levels of clusters are possible?
nfrag = mol.nfragments()
# Initialize the cluster array
clusters = []
# scope the arrays
reals = []
# counter
counter = 0
# loop over all possible cluster sizes
for nreal in range(nfrag, 0, -1):
# if a specific cluster size size is requested, only do that
if (nreal != cluster_size and cluster_size > 0):
continue
# initialize the reals list
reals = []
# setup first combination [3,2,1] lexical ordering
# fragments indexing is 1's based, bloody hell
for index in range(nreal, 0, -1):
reals.append(index)
# start loop through lexical promotion
while True:
counter = counter + 1
# Generate cluster from last iteration
clusters.append(copy.deepcopy(reals))
# reset rank
rank = 0
# look for lexical promotion opportunity
# i.e.: [4 2 1] has a promotion opportunity at
# index 1 to produce [4 3 1]
for k in range(nreal - 2, -1, -1):
if (reals[k] != reals[k + 1] + 1):
rank = k + 1
break
# do the promotion
reals[rank] = reals[rank] + 1
# demote the right portion of the register
val = 1
for k in range(nreal - 1, rank, -1):
reals[k] = val
val = val + 1
# boundary condition is promotion into
# [nfrag+1 nfrag-1 ...]
if (reals[0] > nfrag):
break
return clusters
def new_set_attr(self, name, value):
"""Function to redefine __setattr__ method of molecule class."""
fxn = object.__getattribute__(self, "is_variable")
isvar = fxn(name)
if isvar:
fxn = object.__getattribute__(self, "set_variable")
fxn(name, value)
return
object.__setattr__(self, name, value)
def new_get_attr(self, name):
"""Function to redefine __getattr__ method of molecule class."""
fxn = object.__getattribute__(self, "is_variable")
isvar = fxn(name)
if isvar:
fxn = object.__getattribute__(self, "get_variable")
return fxn(name)
return object.__getattribute__(self, name)
def BFS(self):
"""Perform a breadth-first search (BFS) on the real atoms
in molecule, returning an array of atom indices of fragments.
Relies upon van der Waals radii and so faulty for close
(esp. hydrogen-bonded) fragments. Original code from
Michael S. Marshall.
"""
vdW_diameter = {
'H': 1.001 / 1.5,
'HE': 1.012 / 1.5,
'LI': 0.825 / 1.5,
'BE': 1.408 / 1.5,
'B': 1.485 / 1.5,
'C': 1.452 / 1.5,
'N': 1.397 / 1.5,
'O': 1.342 / 1.5,
'F': 1.287 / 1.5,
'NE': 1.243 / 1.5,
'NA': 1.144 / 1.5,
'MG': 1.364 / 1.5,
'AL': 1.639 / 1.5,
'SI': 1.716 / 1.5,
'P': 1.705 / 1.5,
'S': 1.683 / 1.5,
'CL': 1.639 / 1.5,
'AR': 1.595 / 1.5}
Queue = []
White = range(self.natom()) # untouched
Black = [] # touched and all edges discovered
Fragment = [] # stores fragments
start = 0 # starts with the first atom in the list
Queue.append(start)
White.remove(start)
# Simply start with the first atom, do a BFS when done, go to any
# untouched atom and start again iterate until all atoms belong
# to a fragment group
while White or Queue: # Iterates to the next fragment
Fragment.append([])
while Queue: # BFS within a fragment
for u in Queue: # find all white neighbors to vertex u
for i in White:
dist = p4const.psi_bohr2angstroms * math.sqrt(
(self.x(i) - self.x(u)) ** 2 +
(self.y(i) - self.y(u)) ** 2 +
(self.z(i) - self.z(u)) ** 2)
if dist < vdW_diameter[self.symbol(u)] + \
vdW_diameter[self.symbol(i)]:
Queue.append(i) # if you find you, put in the queue
White.remove(i) # & remove it from the untouched list
Queue.remove(u) # remove focus from Queue
Black.append(u)
Fragment[-1].append(int(u)) # add to group (0-indexed)
Fragment[-1].sort() # preserve original atom ordering
if White: # can't move White -> Queue if empty
Queue.append(White[0])
White.remove(White[0])
return Fragment
def dynamic_variable_bind(cls):
"""Function to dynamically add extra members to
the psi4.Molecule class.
"""
cls.__setattr__ = new_set_attr
cls.__getattr__ = new_get_attr
cls.BFS = BFS
dynamic_variable_bind(psi4.Molecule) # pass class type, not class instance
#
# Define geometry to be used by PSI4.
# The molecule created by this will be set in options.
#
# geometry("
# O 1.0 0.0 0.0
# H 0.0 1.0 0.0
# H 0.0 0.0 0.0
#
def geometry(geom, name="default"):
"""Function to create a molecule object of name *name*
from the geometry in string *geom*.
"""
molecule = psi4.Molecule.create_molecule_from_string(geom)
molecule.set_name(name)
activate(molecule)
return molecule
def activate(mol):
"""Function to set molecule object *mol* as the current active molecule."""
psi4.set_active_molecule(mol)
|