This file is indexed.

/usr/share/psi/python/molutil.py is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#

"""Module with utility functions that act on molecule objects."""
import math
import psi4
import p4const
# CUimport p4util
from p4regex import *
# CUfrom dashparam import *


def extract_clusters(mol, ghost=True, cluster_size=0):
    """Function to return all subclusters of the molecule *mol* of
    real size *cluster_size* and all other atoms ghosted if *ghost*
    equals true, all other atoms discarded if *ghost* is false. If
    *cluster_size* = 0, returns all possible combinations of cluster size.

    """
    # How many levels of clusters are possible?
    nfrag = mol.nfragments()

    # Initialize the cluster array
    clusters = []

    # scope the arrays
    reals = []
    ghosts = []

    # counter
    counter = 0

    # loop over all possible cluster sizes
    for nreal in range(nfrag, 0, -1):

        # if a specific cluster size size is requested, only do that
        if (nreal != cluster_size and cluster_size > 0):
            continue

        # initialize the reals list
        reals = []

        # setup first combination [3,2,1] lexical ordering
        # fragments indexing is 1's based, bloody hell
        for index in range(nreal, 0, -1):
            reals.append(index)

        # start loop through lexical promotion
        while True:

            counter = counter + 1

            # Generate cluster from last iteration
            if (ghost):
                ghosts = []
                for g in range(nfrag, 0, -1):
                    if (g not in reals):
                        ghosts.append(g)
                clusters.append(mol.extract_subsets(reals, ghosts))
            else:
                clusters.append(mol.extract_subsets(reals))

            # reset rank
            rank = 0

            # look for lexical promotion opportunity
            # i.e.: [4 2 1] has a promotion opportunity at
            #   index 1 to produce [4 3 1]
            for k in range(nreal - 2, -1, -1):
                if (reals[k] != reals[k + 1] + 1):
                    rank = k + 1
                    break

            # do the promotion
            reals[rank] = reals[rank] + 1

            # demote the right portion of the register
            val = 1
            for k in range(nreal - 1, rank, -1):
                reals[k] = val
                val = val + 1

            # boundary condition is promotion into
            # [nfrag+1 nfrag-1 ...]
            if (reals[0] > nfrag):
                break

    return clusters


def extract_cluster_indexing(mol, cluster_size=0):
    """Function to returns a LIST of all subclusters of the molecule *mol* of
    real size *cluster_size*. If *cluster_size* = 0, returns all possible
    combinations of cluster size.

    """
    import copy

    # How many levels of clusters are possible?
    nfrag = mol.nfragments()

    # Initialize the cluster array
    clusters = []

    # scope the arrays
    reals = []

    # counter
    counter = 0

    # loop over all possible cluster sizes
    for nreal in range(nfrag, 0, -1):

        # if a specific cluster size size is requested, only do that
        if (nreal != cluster_size and cluster_size > 0):
            continue

        # initialize the reals list
        reals = []

        # setup first combination [3,2,1] lexical ordering
        # fragments indexing is 1's based, bloody hell
        for index in range(nreal, 0, -1):
            reals.append(index)

        # start loop through lexical promotion
        while True:

            counter = counter + 1

            # Generate cluster from last iteration
            clusters.append(copy.deepcopy(reals))

            # reset rank
            rank = 0

            # look for lexical promotion opportunity
            # i.e.: [4 2 1] has a promotion opportunity at
            #   index 1 to produce [4 3 1]
            for k in range(nreal - 2, -1, -1):
                if (reals[k] != reals[k + 1] + 1):
                    rank = k + 1
                    break

            # do the promotion
            reals[rank] = reals[rank] + 1

            # demote the right portion of the register
            val = 1
            for k in range(nreal - 1, rank, -1):
                reals[k] = val
                val = val + 1

            # boundary condition is promotion into
            # [nfrag+1 nfrag-1 ...]
            if (reals[0] > nfrag):
                break

    return clusters


def new_set_attr(self, name, value):
    """Function to redefine __setattr__ method of molecule class."""
    fxn = object.__getattribute__(self, "is_variable")
    isvar = fxn(name)
    if isvar:
        fxn = object.__getattribute__(self, "set_variable")
        fxn(name, value)
        return

    object.__setattr__(self, name, value)


def new_get_attr(self, name):
    """Function to redefine __getattr__ method of molecule class."""
    fxn = object.__getattribute__(self, "is_variable")
    isvar = fxn(name)

    if isvar:
        fxn = object.__getattribute__(self, "get_variable")
        return fxn(name)

    return object.__getattribute__(self, name)


def BFS(self):
    """Perform a breadth-first search (BFS) on the real atoms
    in molecule, returning an array of atom indices of fragments.
    Relies upon van der Waals radii and so faulty for close
    (esp. hydrogen-bonded) fragments. Original code from
    Michael S. Marshall.

    """
    vdW_diameter = {
        'H':  1.001 / 1.5,
        'HE': 1.012 / 1.5,
        'LI': 0.825 / 1.5,
        'BE': 1.408 / 1.5,
        'B':  1.485 / 1.5,
        'C':  1.452 / 1.5,
        'N':  1.397 / 1.5,
        'O':  1.342 / 1.5,
        'F':  1.287 / 1.5,
        'NE': 1.243 / 1.5,
        'NA': 1.144 / 1.5,
        'MG': 1.364 / 1.5,
        'AL': 1.639 / 1.5,
        'SI': 1.716 / 1.5,
        'P':  1.705 / 1.5,
        'S':  1.683 / 1.5,
        'CL': 1.639 / 1.5,
        'AR': 1.595 / 1.5}

    Queue = []
    White = range(self.natom())  # untouched
    Black = []  # touched and all edges discovered
    Fragment = []  # stores fragments

    start = 0  # starts with the first atom in the list
    Queue.append(start)
    White.remove(start)

    # Simply start with the first atom, do a BFS when done, go to any
    #   untouched atom and start again iterate until all atoms belong
    #   to a fragment group
    while White or Queue:                # Iterates to the next fragment
        Fragment.append([])

        while Queue:                     # BFS within a fragment
            for u in Queue:              # find all white neighbors to vertex u
                for i in White:
                    dist = p4const.psi_bohr2angstroms * math.sqrt(
                           (self.x(i) - self.x(u)) ** 2 +
                           (self.y(i) - self.y(u)) ** 2 +
                           (self.z(i) - self.z(u)) ** 2)
                    if dist < vdW_diameter[self.symbol(u)] + \
                       vdW_diameter[self.symbol(i)]:
                        Queue.append(i)  # if you find you, put in the queue
                        White.remove(i)  # & remove it from the untouched list
            Queue.remove(u)              # remove focus from Queue
            Black.append(u)
            Fragment[-1].append(int(u))  # add to group (0-indexed)
            Fragment[-1].sort()          # preserve original atom ordering

        if White:                        # can't move White -> Queue if empty
            Queue.append(White[0])
            White.remove(White[0])

    return Fragment


def dynamic_variable_bind(cls):
    """Function to dynamically add extra members to
    the psi4.Molecule class.

    """
    cls.__setattr__ = new_set_attr
    cls.__getattr__ = new_get_attr
    cls.BFS = BFS


dynamic_variable_bind(psi4.Molecule)  # pass class type, not class instance


#
# Define geometry to be used by PSI4.
# The molecule created by this will be set in options.
#
# geometry("
#   O  1.0 0.0 0.0
#   H  0.0 1.0 0.0
#   H  0.0 0.0 0.0
#
def geometry(geom, name="default"):
    """Function to create a molecule object of name *name*
    from the geometry in string *geom*.

    """
    molecule = psi4.Molecule.create_molecule_from_string(geom)
    molecule.set_name(name)

    activate(molecule)

    return molecule


def activate(mol):
    """Function to set molecule object *mol* as the current active molecule."""
    psi4.set_active_molecule(mol)