/usr/share/psi/databases/S22.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
"""
| Database (Hobza) of interaction energies for bimolecular complexes.
| Geometries from Jurecka et al. PCCP 8 1985 (2006).
| First revision to interaction energies (S22A) from Takatani et al. JCP 132 144104 (2010).
| Second revision to interaction energies (S22B) from Marshall et al. JCP 135 194102 (2011).
- **cp** ``'off'`` || ``'on'``
- **rlxd** ``'off'``
- **benchmark**
- ``'S220'`` Jurecka et al. PCCP 8 1985 (2006).
- ``'S22A'`` Takatani et al. JCP 132 144104 (2010).
- |dl| ``'S22B'`` |dr| Marshall et al. JCP 135 194102 (2011).
- **subset**
- ``'small'`` water dimer, methane dimer, ethene-ethine
- ``'large'`` adenine-thymine
- ``'HB'`` hydrogen-bonded systems
- ``'MX'`` mixed-influence systems
- ``'DD'`` dispersion-dominated systems
- ``'S11'`` smaller systems in S22
- ``'WATER'`` water dimer
"""
import qcdb
# <<< S22 Database Module >>>
dbse = 'S22'
# <<< Database Members >>>
HRXN = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
HRXN_SM = [2, 8, 16]
HRXN_LG = [15]
HB = [1, 2, 3, 4, 5, 6, 7]
MX = [13, 15, 16, 17, 18, 19, 21, 22]
DD = [8, 9, 10, 11, 12, 14, 20]
S11 = [1, 2, 3, 4, 8, 9, 10, 16, 17, 18, 19]
WATER = [2]
# <<< Chemical Systems Involved >>>
RXNM = {} # reaction matrix of reagent contributions per reaction
ACTV = {} # order of active reagents per reaction
ACTV_CP = {} # order of active reagents per counterpoise-corrected reaction
ACTV_SA = {} # order of active reagents for non-supramolecular calculations
for rxn in HRXN:
RXNM[ '%s-%s' % (dbse, rxn)] = {'%s-%s-dimer' % (dbse, rxn) : +1,
'%s-%s-monoA-CP' % (dbse, rxn) : -1,
'%s-%s-monoB-CP' % (dbse, rxn) : -1,
'%s-%s-monoA-unCP' % (dbse, rxn) : -1,
'%s-%s-monoB-unCP' % (dbse, rxn) : -1 }
ACTV_SA['%s-%s' % (dbse, rxn)] = ['%s-%s-dimer' % (dbse, rxn) ]
ACTV_CP['%s-%s' % (dbse, rxn)] = ['%s-%s-dimer' % (dbse, rxn),
'%s-%s-monoA-CP' % (dbse, rxn),
'%s-%s-monoB-CP' % (dbse, rxn) ]
ACTV[ '%s-%s' % (dbse, rxn)] = ['%s-%s-dimer' % (dbse, rxn),
'%s-%s-monoA-unCP' % (dbse, rxn),
'%s-%s-monoB-unCP' % (dbse, rxn) ]
# <<< Reference Values >>>
BIND = {}
# Original publication
BIND_S220 = {}
BIND_S220['%s-%s' % (dbse, 1)] = -3.17
BIND_S220['%s-%s' % (dbse, 2)] = -5.02
BIND_S220['%s-%s' % (dbse, 3)] = -18.61
BIND_S220['%s-%s' % (dbse, 4)] = -15.96
BIND_S220['%s-%s' % (dbse, 5)] = -20.65
BIND_S220['%s-%s' % (dbse, 6)] = -16.71
BIND_S220['%s-%s' % (dbse, 7)] = -16.37
BIND_S220['%s-%s' % (dbse, 8)] = -0.53
BIND_S220['%s-%s' % (dbse, 9)] = -1.51
BIND_S220['%s-%s' % (dbse, 10)] = -1.50
BIND_S220['%s-%s' % (dbse, 11)] = -2.73
BIND_S220['%s-%s' % (dbse, 12)] = -4.42
BIND_S220['%s-%s' % (dbse, 13)] = -10.12
BIND_S220['%s-%s' % (dbse, 14)] = -5.22
BIND_S220['%s-%s' % (dbse, 15)] = -12.23
BIND_S220['%s-%s' % (dbse, 16)] = -1.53
BIND_S220['%s-%s' % (dbse, 17)] = -3.28
BIND_S220['%s-%s' % (dbse, 18)] = -2.35
BIND_S220['%s-%s' % (dbse, 19)] = -4.46
BIND_S220['%s-%s' % (dbse, 20)] = -2.74
BIND_S220['%s-%s' % (dbse, 21)] = -5.73
BIND_S220['%s-%s' % (dbse, 22)] = -7.05
# Revision
BIND_S22A = {}
BIND_S22A['%s-%s' % (dbse, 1)] = -3.15
BIND_S22A['%s-%s' % (dbse, 2)] = -5.07
BIND_S22A['%s-%s' % (dbse, 3)] = -18.81
BIND_S22A['%s-%s' % (dbse, 4)] = -16.11
BIND_S22A['%s-%s' % (dbse, 5)] = -20.69
BIND_S22A['%s-%s' % (dbse, 6)] = -17.00
BIND_S22A['%s-%s' % (dbse, 7)] = -16.74
BIND_S22A['%s-%s' % (dbse, 8)] = -0.53
BIND_S22A['%s-%s' % (dbse, 9)] = -1.48
BIND_S22A['%s-%s' % (dbse, 10)] = -1.45
BIND_S22A['%s-%s' % (dbse, 11)] = -2.62
BIND_S22A['%s-%s' % (dbse, 12)] = -4.20
BIND_S22A['%s-%s' % (dbse, 13)] = -9.74
BIND_S22A['%s-%s' % (dbse, 14)] = -4.59
BIND_S22A['%s-%s' % (dbse, 15)] = -11.66
BIND_S22A['%s-%s' % (dbse, 16)] = -1.50
BIND_S22A['%s-%s' % (dbse, 17)] = -3.29
BIND_S22A['%s-%s' % (dbse, 18)] = -2.32
BIND_S22A['%s-%s' % (dbse, 19)] = -4.55
BIND_S22A['%s-%s' % (dbse, 20)] = -2.71
BIND_S22A['%s-%s' % (dbse, 21)] = -5.62
BIND_S22A['%s-%s' % (dbse, 22)] = -7.09
# Current revision
BIND_S22B = {}
BIND_S22B['%s-%s' % (dbse, 1)] = -3.133
BIND_S22B['%s-%s' % (dbse, 2)] = -4.989
BIND_S22B['%s-%s' % (dbse, 3)] = -18.753
BIND_S22B['%s-%s' % (dbse, 4)] = -16.062
BIND_S22B['%s-%s' % (dbse, 5)] = -20.641
BIND_S22B['%s-%s' % (dbse, 6)] = -16.934
BIND_S22B['%s-%s' % (dbse, 7)] = -16.660
BIND_S22B['%s-%s' % (dbse, 8)] = -0.527
BIND_S22B['%s-%s' % (dbse, 9)] = -1.472
BIND_S22B['%s-%s' % (dbse, 10)] = -1.448
BIND_S22B['%s-%s' % (dbse, 11)] = -2.654
BIND_S22B['%s-%s' % (dbse, 12)] = -4.255
BIND_S22B['%s-%s' % (dbse, 13)] = -9.805
BIND_S22B['%s-%s' % (dbse, 14)] = -4.524
BIND_S22B['%s-%s' % (dbse, 15)] = -11.730
BIND_S22B['%s-%s' % (dbse, 16)] = -1.496
BIND_S22B['%s-%s' % (dbse, 17)] = -3.275
BIND_S22B['%s-%s' % (dbse, 18)] = -2.312
BIND_S22B['%s-%s' % (dbse, 19)] = -4.541
BIND_S22B['%s-%s' % (dbse, 20)] = -2.717
BIND_S22B['%s-%s' % (dbse, 21)] = -5.627
BIND_S22B['%s-%s' % (dbse, 22)] = -7.097
# Set default
BIND = BIND_S22B
# <<< Comment Lines >>>
TAGL = {}
TAGL['%s-%s' % (dbse, 1)] = 'HB-1 Ammonia Dimer, C2H'
TAGL['%s-%s-dimer' % (dbse, 1)] = 'Ammonia Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 1)] = 'Ammonia from Ammonia Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 1)] = 'Ammonia from Ammonia Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 1)] = 'Ammonia from Ammonia Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 1)] = 'Ammonia from Ammonia Dimer'
TAGL['%s-%s' % (dbse, 2)] = 'HB-2 Water Dimer, CS'
TAGL['%s-%s-dimer' % (dbse, 2)] = 'Water Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 2)] = 'Water from Water Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 2)] = 'Water from Water Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 2)] = 'Water from Water Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 2)] = 'Water from Water Dimer'
TAGL['%s-%s' % (dbse, 3)] = 'HB-3 Formic Acid Dimer, C2H'
TAGL['%s-%s-dimer' % (dbse, 3)] = 'Formic Acid Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 3)] = 'Formic Acid from Formic Acid Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 3)] = 'Formic Acid from Formic Acid Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 3)] = 'Formic Acid from Formic Acid Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 3)] = 'Formic Acid from Formic Acid Dimer'
TAGL['%s-%s' % (dbse, 4)] = 'HB-4 Formamide Dimer, C2H'
TAGL['%s-%s-dimer' % (dbse, 4)] = 'Formamide Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 4)] = 'Formamide from Formamide Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 4)] = 'Formamide from Formamide Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 4)] = 'Formamide from Formamide Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 4)] = 'Formamide from Formamide Dimer'
TAGL['%s-%s' % (dbse, 5)] = 'HB-5 Uracil Dimer HB, C2H'
TAGL['%s-%s-dimer' % (dbse, 5)] = 'Uracil Dimer HB'
TAGL['%s-%s-monoA-CP' % (dbse, 5)] = 'Uracil from Uracil Dimer HB'
TAGL['%s-%s-monoB-CP' % (dbse, 5)] = 'Uracil from Uracil Dimer HB'
TAGL['%s-%s-monoA-unCP' % (dbse, 5)] = 'Uracil from Uracil Dimer HB'
TAGL['%s-%s-monoB-unCP' % (dbse, 5)] = 'Uracil from Uracil Dimer HB'
TAGL['%s-%s' % (dbse, 6)] = 'HB-6 2-Pyridone-2-Aminopyridine Complex, C1'
TAGL['%s-%s-dimer' % (dbse, 6)] = '2-Pyridone-2-Aminopyridine Complex'
TAGL['%s-%s-monoA-CP' % (dbse, 6)] = '2-Pyridone from 2-Pyridone-2-Aminopyridine Complex'
TAGL['%s-%s-monoB-CP' % (dbse, 6)] = '2-Aminopyridine from 2-Pyridone-2-Aminopyridine Complex'
TAGL['%s-%s-monoA-unCP' % (dbse, 6)] = '2-Pyridone from 2-Pyridone-2-Aminopyridine Complex'
TAGL['%s-%s-monoB-unCP' % (dbse, 6)] = '2-Aminopyridine from 2-Pyridone-2-Aminopyridine Complex'
TAGL['%s-%s' % (dbse, 7)] = 'HB-7 Adenine-Thymine Complex WC, C1'
TAGL['%s-%s-dimer' % (dbse, 7)] = 'Adenine-Thymine Complex WC'
TAGL['%s-%s-monoA-CP' % (dbse, 7)] = 'Adenine from Adenine-Thymine Complex WC'
TAGL['%s-%s-monoB-CP' % (dbse, 7)] = 'Thymine from Adenine-Thymine Complex WC'
TAGL['%s-%s-monoA-unCP' % (dbse, 7)] = 'Adenine from Adenine-Thymine Complex WC'
TAGL['%s-%s-monoB-unCP' % (dbse, 7)] = 'Thymine from Adenine-Thymine Complex WC'
TAGL['%s-%s' % (dbse, 8)] = 'DD-1 Methane Dimer, D3D'
TAGL['%s-%s-dimer' % (dbse, 8)] = 'Methane Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 8)] = 'Methane from Methane Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 8)] = 'Methane from Methane Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 8)] = 'Methane from Methane Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 8)] = 'Methane from Methane Dimer'
TAGL['%s-%s' % (dbse, 9)] = 'DD-2 Ethene Dimer, D2D'
TAGL['%s-%s-dimer' % (dbse, 9)] = 'Ethene Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 9)] = 'Ethene from Ethene Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 9)] = 'Ethene from Ethene Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 9)] = 'Ethene from Ethene Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 9)] = 'Ethene from Ethene Dimer'
TAGL['%s-%s' % (dbse, 10)] = 'DD-3 Benzene-Methane Complex, C3'
TAGL['%s-%s-dimer' % (dbse, 10)] = 'Benzene-Methane Complex'
TAGL['%s-%s-monoA-CP' % (dbse, 10)] = 'Benzene from Benzene-Methane Complex'
TAGL['%s-%s-monoB-CP' % (dbse, 10)] = 'Methane from Benzene-Methane Complex'
TAGL['%s-%s-monoA-unCP' % (dbse, 10)] = 'Benzene from Benzene-Methane Complex'
TAGL['%s-%s-monoB-unCP' % (dbse, 10)] = 'Methane from Benzene-Methane Complex'
TAGL['%s-%s' % (dbse, 11)] = 'DD-4 Benzene Dimer Parallel-Disp, C2H'
TAGL['%s-%s-dimer' % (dbse, 11)] = 'Benzene Dimer PD'
TAGL['%s-%s-monoA-CP' % (dbse, 11)] = 'Benzene from Benzene Dimer PD'
TAGL['%s-%s-monoB-CP' % (dbse, 11)] = 'Benzene from Benzene Dimer PD'
TAGL['%s-%s-monoA-unCP' % (dbse, 11)] = 'Benzene from Benzene Dimer PD'
TAGL['%s-%s-monoB-unCP' % (dbse, 11)] = 'Benzene from Benzene Dimer PD'
TAGL['%s-%s' % (dbse, 12)] = 'DD-6 Pyrazine Dimer, CS'
TAGL['%s-%s-dimer' % (dbse, 12)] = 'Pyrazine Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 12)] = 'Pyrazine from Pyrazine Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 12)] = 'Pyrazine from Pyrazine Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 12)] = 'Pyrazine from Pyrazine Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 12)] = 'Pyrazine from Pyrazine Dimer'
TAGL['%s-%s' % (dbse, 13)] = 'MX-5 Uracil Dimer Stack, C2'
TAGL['%s-%s-dimer' % (dbse, 13)] = 'Uracil Dimer Stack'
TAGL['%s-%s-monoA-CP' % (dbse, 13)] = 'Uracil from Uracil Dimer Stack'
TAGL['%s-%s-monoB-CP' % (dbse, 13)] = 'Uracil from Uracil Dimer Stack'
TAGL['%s-%s-monoA-unCP' % (dbse, 13)] = 'Uracil from Uracil Dimer Stack'
TAGL['%s-%s-monoB-unCP' % (dbse, 13)] = 'Uracil from Uracil Dimer Stack'
TAGL['%s-%s' % (dbse, 14)] = 'DD-7 Indole-Benzene Complex Stack, C1'
TAGL['%s-%s-dimer' % (dbse, 14)] = 'Indole-Benzene Complex Stack'
TAGL['%s-%s-monoA-CP' % (dbse, 14)] = 'Benzene from Indole-Benzene Complex Stack'
TAGL['%s-%s-monoB-CP' % (dbse, 14)] = 'Indole from Indole-Benzene Complex Stack'
TAGL['%s-%s-monoA-unCP' % (dbse, 14)] = 'Benzene from Indole-Benzene Complex Stack'
TAGL['%s-%s-monoB-unCP' % (dbse, 14)] = 'Indole from Indole-Benzene Complex Stack'
TAGL['%s-%s' % (dbse, 15)] = 'MX-8 Adenine-Thymine Complex Stack, C1'
TAGL['%s-%s-dimer' % (dbse, 15)] = 'Adenine-Thymine Complex Stack'
TAGL['%s-%s-monoA-CP' % (dbse, 15)] = 'Adenine from Adenine-Thymine Complex Stack'
TAGL['%s-%s-monoB-CP' % (dbse, 15)] = 'Thymine from Adenine-Thymine Complex Stack'
TAGL['%s-%s-monoA-unCP' % (dbse, 15)] = 'Adenine from Adenine-Thymine Complex Stack'
TAGL['%s-%s-monoB-unCP' % (dbse, 15)] = 'Thymine from Adenine-Thymine Complex Stack'
TAGL['%s-%s' % (dbse, 16)] = 'MX-1 Ethene-Ethine Complex, C2V'
TAGL['%s-%s-dimer' % (dbse, 16)] = 'Ethene-Ethine Complex'
TAGL['%s-%s-monoA-CP' % (dbse, 16)] = 'Ethene from Ethene-Ethine Complex'
TAGL['%s-%s-monoB-CP' % (dbse, 16)] = 'Ethine from Ethene-Ethine Complex'
TAGL['%s-%s-monoA-unCP' % (dbse, 16)] = 'Ethene from Ethene-Ethine Complex'
TAGL['%s-%s-monoB-unCP' % (dbse, 16)] = 'Ethine from Ethene-Ethine Complex'
TAGL['%s-%s' % (dbse, 17)] = 'MX-2 Benzene-Water Complex, CS'
TAGL['%s-%s-dimer' % (dbse, 17)] = 'Benzene-Water Complex'
TAGL['%s-%s-monoA-CP' % (dbse, 17)] = 'Benzene from Benzene-Water Complex'
TAGL['%s-%s-monoB-CP' % (dbse, 17)] = 'Water from Benzene-Water Complex'
TAGL['%s-%s-monoA-unCP' % (dbse, 17)] = 'Benzene from Benzene-Water Complex'
TAGL['%s-%s-monoB-unCP' % (dbse, 17)] = 'Water from Benzene-Water Complex'
TAGL['%s-%s' % (dbse, 18)] = 'MX-3 Benzene-Ammonia Complex, CS'
TAGL['%s-%s-dimer' % (dbse, 18)] = 'Benzene-Ammonia Complex'
TAGL['%s-%s-monoA-CP' % (dbse, 18)] = 'Benzene from Benzene-Ammonia Complex'
TAGL['%s-%s-monoB-CP' % (dbse, 18)] = 'Ammonia from Benzene-Ammonia Complex'
TAGL['%s-%s-monoA-unCP' % (dbse, 18)] = 'Benzene from Benzene-Ammonia Complex'
TAGL['%s-%s-monoB-unCP' % (dbse, 18)] = 'Ammonia from Benzene-Ammonia Complex'
TAGL['%s-%s' % (dbse, 19)] = 'MX-4 Benzene-HCN Complex, CS'
TAGL['%s-%s-dimer' % (dbse, 19)] = 'Benzene-HCN Complex'
TAGL['%s-%s-monoA-CP' % (dbse, 19)] = 'Benzene from Benzene-HCN Complex'
TAGL['%s-%s-monoB-CP' % (dbse, 19)] = 'HCN from Benzene-HCN Complex'
TAGL['%s-%s-monoA-unCP' % (dbse, 19)] = 'Benzene from Benzene-HCN Complex'
TAGL['%s-%s-monoB-unCP' % (dbse, 19)] = 'HCN from Benzene-HCN Complex'
TAGL['%s-%s' % (dbse, 20)] = 'DD-5 Benzene Dimer T-Shape, C2V'
TAGL['%s-%s-dimer' % (dbse, 20)] = 'Benzene Dimer T-Shape'
TAGL['%s-%s-monoA-CP' % (dbse, 20)] = 'Benzene from Benzene Dimer T-Shape'
TAGL['%s-%s-monoB-CP' % (dbse, 20)] = 'Benzene from Benzene Dimer T-Shape'
TAGL['%s-%s-monoA-unCP' % (dbse, 20)] = 'Benzene from Benzene Dimer T-Shape'
TAGL['%s-%s-monoB-unCP' % (dbse, 20)] = 'Benzene from Benzene Dimer T-Shape'
TAGL['%s-%s' % (dbse, 21)] = 'MX-6 Indole-Benzene Complex T-Shape, C1'
TAGL['%s-%s-dimer' % (dbse, 21)] = 'Indole-Benzene Complex T-Shape'
TAGL['%s-%s-monoA-CP' % (dbse, 21)] = 'Benzene from Indole-Benzene Complex T-Shape'
TAGL['%s-%s-monoB-CP' % (dbse, 21)] = 'Indole from Indole-Benzene Complex T-Shape'
TAGL['%s-%s-monoA-unCP' % (dbse, 21)] = 'Benzene from Indole-Benzene Complex T-Shape'
TAGL['%s-%s-monoB-unCP' % (dbse, 21)] = 'Indole from Indole-Benzene Complex T-Shape'
TAGL['%s-%s' % (dbse, 22)] = 'MX-7 Phenol Dimer, C1'
TAGL['%s-%s-dimer' % (dbse, 22)] = 'Phenol Dimer'
TAGL['%s-%s-monoA-CP' % (dbse, 22)] = 'Phenol from Phenol Dimer'
TAGL['%s-%s-monoB-CP' % (dbse, 22)] = 'Phenol from Phenol Dimer'
TAGL['%s-%s-monoA-unCP' % (dbse, 22)] = 'Phenol from Phenol Dimer'
TAGL['%s-%s-monoB-unCP' % (dbse, 22)] = 'Phenol from Phenol Dimer'
# <<< Geometry Specification Strings >>>
GEOS = {}
GEOS['%s-%s-dimer' % (dbse, '1')] = qcdb.Molecule("""
0 1
N -1.578718 -0.046611 0.000000
H -2.158621 0.136396 -0.809565
H -2.158621 0.136396 0.809565
H -0.849471 0.658193 0.000000
--
0 1
N 1.578718 0.046611 0.000000
H 2.158621 -0.136396 -0.809565
H 0.849471 -0.658193 0.000000
H 2.158621 -0.136396 0.809565
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '2')] = qcdb.Molecule("""
0 1
O -1.551007 -0.114520 0.000000
H -1.934259 0.762503 0.000000
H -0.599677 0.040712 0.000000
--
0 1
O 1.350625 0.111469 0.000000
H 1.680398 -0.373741 -0.758561
H 1.680398 -0.373741 0.758561
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '3')] = qcdb.Molecule("""
0 1
C -1.888896 -0.179692 0.000000
O -1.493280 1.073689 0.000000
O -1.170435 -1.166590 0.000000
H -2.979488 -0.258829 0.000000
H -0.498833 1.107195 0.000000
--
0 1
C 1.888896 0.179692 0.000000
O 1.493280 -1.073689 0.000000
O 1.170435 1.166590 0.000000
H 2.979488 0.258829 0.000000
H 0.498833 -1.107195 0.000000
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '4')] = qcdb.Molecule("""
0 1
C -2.018649 0.052883 0.000000
O -1.452200 1.143634 0.000000
N -1.407770 -1.142484 0.000000
H -1.964596 -1.977036 0.000000
H -0.387244 -1.207782 0.000000
H -3.117061 -0.013701 0.000000
--
0 1
C 2.018649 -0.052883 0.000000
O 1.452200 -1.143634 0.000000
N 1.407770 1.142484 0.000000
H 1.964596 1.977036 0.000000
H 0.387244 1.207782 0.000000
H 3.117061 0.013701 0.000000
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '5')] = qcdb.Molecule("""
0 1
O -1.4663316 1.0121693 0.0000000
C -0.6281464 1.9142678 0.0000000
N 0.7205093 1.6882688 0.0000000
C 1.6367290 2.7052764 0.0000000
C 1.2769036 4.0061763 0.0000000
C -0.1286005 4.3621549 0.0000000
N -0.9777230 3.2396433 0.0000000
O -0.5972229 5.4864066 0.0000000
H 2.0103504 4.7938642 0.0000000
H 1.0232515 0.7061820 0.0000000
H -1.9700268 3.4323850 0.0000000
H 2.6690620 2.3883417 0.0000000
--
0 1
O 1.4663316 -1.0121693 0.0000000
C 0.6281464 -1.9142678 0.0000000
N -0.7205093 -1.6882688 0.0000000
C -1.6367290 -2.7052764 0.0000000
C -1.2769036 -4.0061763 0.0000000
C 0.1286005 -4.3621549 0.0000000
N 0.9777230 -3.2396433 0.0000000
O 0.5972229 -5.4864066 0.0000000
H -2.0103504 -4.7938642 0.0000000
H -1.0232515 -0.7061820 0.0000000
H 1.9700268 -3.4323850 0.0000000
H -2.6690620 -2.3883417 0.0000000
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '6')] = qcdb.Molecule("""
0 1
O -1.3976213 -1.8858368 -0.3673061
N -1.4642550 0.3641828 0.0192301
C -4.1857398 0.3696669 0.0360960
C -3.4832598 1.5783111 0.2500752
C -2.1179502 1.5307048 0.2338383
C -2.0773833 -0.8637492 -0.1899414
C -3.5156032 -0.8051950 -0.1757585
H -5.2678045 0.3707428 0.0411419
H -3.9920334 2.5127560 0.4214414
H -1.4929196 2.3984096 0.3885018
H -4.0401226 -1.7348452 -0.3379269
H -0.4265266 0.3612127 0.0073538
--
0 1
N 1.4327616 0.3639703 -0.0159508
C 2.1154200 -0.7803450 0.1681099
C 3.5237586 -0.8016096 0.1545027
C 4.2185897 0.3735783 -0.0525929
C 3.5099708 1.5615014 -0.2449763
C 2.1280138 1.4953324 -0.2175374
H 4.0459206 -1.7361356 0.3076883
H 5.2999426 0.3666009 -0.0663349
H 4.0110923 2.5024313 -0.4130052
H 1.5339878 2.3893837 -0.3670565
N 1.3883123 -1.9083038 0.4198149
H 1.8694714 -2.7812773 0.2940385
H 0.4089067 -1.9079942 0.1300860
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '7')] = qcdb.Molecule("""
0 1
N 0.9350155 -0.0279801 -0.3788916
C 1.6739638 -0.0357766 0.7424316
C 3.0747955 -0.0094480 0.5994562
C 3.5646109 0.0195446 -0.7059872
N 2.8531510 0.0258031 -1.8409596
C 1.5490760 0.0012569 -1.5808009
N 4.0885824 -0.0054429 1.5289786
C 5.1829921 0.0253971 0.7872176
N 4.9294871 0.0412404 -0.5567274
N 1.0716177 -0.0765366 1.9391390
H 0.8794435 0.0050260 -2.4315709
H 6.1882591 0.0375542 1.1738824
H 5.6035368 0.0648755 -1.3036811
H 0.0586915 -0.0423765 2.0039181
H 1.6443796 -0.0347395 2.7619159
--
0 1
N -3.9211729 -0.0009646 -1.5163659
C -4.6136833 0.0169051 -0.3336520
C -3.9917387 0.0219348 0.8663338
C -2.5361367 0.0074651 0.8766724
N -1.9256484 -0.0110593 -0.3638948
C -2.5395897 -0.0149474 -1.5962357
C -4.7106131 0.0413373 2.1738637
O -1.8674730 0.0112093 1.9120833
O -1.9416783 -0.0291878 -2.6573783
H -4.4017172 -0.0036078 -2.4004924
H -0.8838255 -0.0216168 -0.3784269
H -5.6909220 0.0269347 -0.4227183
H -4.4439282 -0.8302573 2.7695655
H -4.4267056 0.9186178 2.7530256
H -5.7883971 0.0505530 2.0247280
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '8')] = qcdb.Molecule("""
0 1
C 0.000000 -0.000140 1.859161
H -0.888551 0.513060 1.494685
H 0.888551 0.513060 1.494685
H 0.000000 -1.026339 1.494868
H 0.000000 0.000089 2.948284
--
0 1
C 0.000000 0.000140 -1.859161
H 0.000000 -0.000089 -2.948284
H -0.888551 -0.513060 -1.494685
H 0.888551 -0.513060 -1.494685
H 0.000000 1.026339 -1.494868
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '9')] = qcdb.Molecule("""
0 1
C -0.471925 -0.471925 -1.859111
C 0.471925 0.471925 -1.859111
H -0.872422 -0.872422 -0.936125
H 0.872422 0.872422 -0.936125
H -0.870464 -0.870464 -2.783308
H 0.870464 0.870464 -2.783308
--
0 1
C -0.471925 0.471925 1.859111
C 0.471925 -0.471925 1.859111
H -0.872422 0.872422 0.936125
H 0.872422 -0.872422 0.936125
H -0.870464 0.870464 2.783308
H 0.870464 -0.870464 2.783308
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '10')] = qcdb.Molecule("""
0 1
C 1.3932178 0.0362913 -0.6332803
C 0.7280364 -1.1884015 -0.6333017
C -0.6651797 -1.2247077 -0.6332803
C -1.3932041 -0.0362972 -0.6333017
C -0.7280381 1.1884163 -0.6332803
C 0.6651677 1.2246987 -0.6333017
H 2.4742737 0.0644484 -0.6317240
H 1.2929588 -2.1105409 -0.6317401
H -1.1813229 -2.1750081 -0.6317240
H -2.4742614 -0.0644647 -0.6317401
H -1.2929508 2.1105596 -0.6317240
H 1.1813026 2.1750056 -0.6317401
--
0 1
C 0.0000000 0.0000000 3.0826195
H 0.5868776 0.8381742 3.4463772
H -1.0193189 0.0891638 3.4463772
H 0.0000000 0.0000000 1.9966697
H 0.4324413 -0.9273380 3.4463772
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '11')] = qcdb.Molecule("""
0 1
C -1.0478252 -1.4216736 0.0000000
C -1.4545034 -0.8554459 1.2062048
C -1.4545034 -0.8554459 -1.2062048
C -2.2667970 0.2771610 1.2069539
C -2.6714781 0.8450211 0.0000000
C -2.2667970 0.2771610 -1.2069539
H -1.1338534 -1.2920593 -2.1423150
H -2.5824943 0.7163066 -2.1437977
H -3.3030422 1.7232700 0.0000000
H -2.5824943 0.7163066 2.1437977
H -1.1338534 -1.2920593 2.1423150
H -0.4060253 -2.2919049 0.0000000
--
0 1
C 1.0478252 1.4216736 0.0000000
C 1.4545034 0.8554459 -1.2062048
C 1.4545034 0.8554459 1.2062048
C 2.2667970 -0.2771610 -1.2069539
C 2.6714781 -0.8450211 0.0000000
C 2.2667970 -0.2771610 1.2069539
H 0.4060253 2.2919049 0.0000000
H 1.1338534 1.2920593 2.1423150
H 2.5824943 -0.7163066 2.1437977
H 3.3030422 -1.7232700 0.0000000
H 2.5824943 -0.7163066 -2.1437977
H 1.1338534 1.2920593 -2.1423150
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '12')] = qcdb.Molecule("""
0 1
C -1.2471894 -1.1718212 -0.6961388
C -1.2471894 -1.1718212 0.6961388
N -0.2589510 -1.7235771 1.4144796
C 0.7315327 -2.2652221 0.6967288
C 0.7315327 -2.2652221 -0.6967288
N -0.2589510 -1.7235771 -1.4144796
H -2.0634363 -0.7223199 -1.2472797
H -2.0634363 -0.7223199 1.2472797
H 1.5488004 -2.7128282 1.2475604
H 1.5488004 -2.7128282 -1.2475604
--
0 1
C -0.3380031 2.0800608 1.1300452
C 0.8540254 1.3593471 1.1306308
N 1.4701787 0.9907598 0.0000000
C 0.8540254 1.3593471 -1.1306308
C -0.3380031 2.0800608 -1.1300452
N -0.9523059 2.4528836 0.0000000
H -0.8103758 2.3643033 2.0618643
H 1.3208583 1.0670610 2.0623986
H 1.3208583 1.0670610 -2.0623986
H -0.8103758 2.3643033 -2.0618643
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '13')] = qcdb.Molecule("""
0 1
N 2.0113587 -1.2132073 -0.0980673
C 2.0257076 -0.6971797 -1.3644029
H 2.2975208 -1.3910592 -2.1456459
C 1.7145226 0.5919651 -1.6124892
H 1.7272873 0.9908466 -2.6120050
C 1.3089605 1.4575340 -0.5205890
O 0.9205926 2.6110864 -0.6260457
N 1.3768885 0.8397454 0.7346356
H 1.0518040 1.3862229 1.5233710
C 1.6459909 -0.4852113 1.0187267
O 1.5611090 -0.9718061 2.1298059
H 2.1294635 -2.2015046 0.0568134
--
0 1
N -2.0113587 1.2132073 -0.0980673
C -2.0257076 0.6971797 -1.3644029
H -2.2975208 1.3910592 -2.1456459
C -1.7145226 -0.5919651 -1.6124892
H -1.7272873 -0.9908466 -2.6120050
C -1.3089605 -1.4575340 -0.5205890
O -0.9205926 -2.6110864 -0.6260457
N -1.3768885 -0.8397454 0.7346356
H -1.0518040 -1.3862229 1.5233710
C -1.6459909 0.4852113 1.0187267
O -1.5611090 0.9718061 2.1298059
H -2.1294635 2.2015046 0.0568134
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '14')] = qcdb.Molecule("""
0 1
C -0.0210742 1.5318615 -1.3639345
C -1.2746794 0.9741030 -1.6074097
C -1.3783055 -0.2256981 -2.3084154
C -0.2289426 -0.8664053 -2.7687944
C 1.0247882 -0.3035171 -2.5312410
C 1.1289996 0.8966787 -1.8299830
H 0.0600740 2.4565627 -0.8093957
H -2.1651002 1.4654521 -1.2405676
H -2.3509735 -0.6616122 -2.4926698
H -0.3103419 -1.7955762 -3.3172704
H 1.9165847 -0.7940845 -2.8993942
H 2.1000347 1.3326757 -1.6400420
--
0 1
H -2.9417647 0.8953834 2.2239054
C -2.0220674 0.4258540 1.9013549
C -0.8149418 1.0740453 2.1066982
H -0.7851529 2.0443812 2.5856086
C 0.3704286 0.4492852 1.6847458
C 1.7508619 0.8038935 1.7194004
H 2.1870108 1.6998281 2.1275903
C 2.4451359 -0.2310742 1.1353313
N 1.5646462 -1.2137812 0.7555384
C 0.2861214 -0.8269486 1.0618752
C -0.9284667 -1.4853121 0.8606937
H -0.9729200 -2.4554847 0.3834013
C -2.0792848 -0.8417668 1.2876443
H -3.0389974 -1.3203846 1.1468400
H 1.8075741 -2.0366963 0.2333038
H 3.5028794 -0.3485344 0.9695233
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '15')] = qcdb.Molecule("""
0 1
N 0.2793014 2.4068393 -0.6057517
C -1.0848570 2.4457461 -0.5511608
H -1.6594403 3.0230294 -1.2560905
N -1.5977117 1.7179877 0.4287543
C -0.4897255 1.1714358 1.0301910
C -0.3461366 0.2914710 2.1172343
N -1.4187090 -0.1677767 2.8101441
H -1.2388750 -0.9594802 3.4047578
H -2.2918734 -0.1788223 2.3073619
N 0.8857630 -0.0700763 2.4919494
C 1.9352348 0.4072878 1.7968022
H 2.9060330 0.0788414 2.1458181
N 1.9409775 1.2242019 0.7402202
C 0.6952186 1.5779858 0.4063984
H 0.8610073 2.8298045 -1.3104502
--
0 1
N 1.2754606 -0.6478993 -1.9779104
C 1.4130533 -1.5536850 -0.9550667
H 2.4258769 -1.8670780 -0.7468778
C 0.3575976 -2.0239499 -0.2530575
C 0.4821292 -3.0179494 0.8521221
H 0.1757705 -2.5756065 1.7986281
H -0.1601691 -3.8770412 0.6639498
H 1.5112443 -3.3572767 0.9513659
C -0.9684711 -1.5298112 -0.5939792
O -2.0029280 -1.8396957 -0.0199453
N -0.9956916 -0.6383870 -1.6720420
H -1.9014057 -0.2501720 -1.8985760
C 0.0684702 -0.1191762 -2.3763759
O -0.0397875 0.7227006 -3.2531083
H 2.0853289 -0.2760176 -2.4454577
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '16')] = qcdb.Molecule("""
0 1
C 0.000000 -0.667578 -2.124659
C 0.000000 0.667578 -2.124659
H 0.923621 -1.232253 -2.126185
H -0.923621 -1.232253 -2.126185
H -0.923621 1.232253 -2.126185
H 0.923621 1.232253 -2.126185
--
0 1
C 0.000000 0.000000 2.900503
C 0.000000 0.000000 1.693240
H 0.000000 0.000000 0.627352
H 0.000000 0.000000 3.963929
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '17')] = qcdb.Molecule("""
0 1
C 0.7806117 -0.6098875 -1.2075426
C 0.4784039 0.7510406 -1.2079040
C 0.3276592 1.4318573 0.0000000
C 0.4784039 0.7510406 1.2079040
C 0.7806117 -0.6098875 1.2075426
C 0.9321510 -1.2899614 0.0000000
H 0.8966688 -1.1376051 -2.1441482
H 0.3573895 1.2782091 -2.1440546
H 0.0918593 2.4871407 0.0000000
H 0.3573895 1.2782091 2.1440546
H 0.8966688 -1.1376051 2.1441482
H 1.1690064 -2.3451668 0.0000000
--
0 1
O -2.7885270 -0.2744854 0.0000000
H -2.6229114 -1.2190831 0.0000000
H -1.9015103 0.0979110 0.0000000
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '18')] = qcdb.Molecule("""
0 1
C -0.7392810 0.5158785 -1.2071079
C -1.4261442 0.3965455 0.0000000
C -0.7392810 0.5158785 1.2071079
C 0.6342269 0.7546398 1.2070735
C 1.3210434 0.8737566 0.0000000
C 0.6342269 0.7546398 -1.2070735
H -1.2719495 0.4206316 -2.1432894
H -2.4902205 0.2052381 0.0000000
H -1.2719495 0.4206316 2.1432894
H 1.1668005 0.8474885 2.1436950
H 2.3863585 1.0596312 0.0000000
H 1.1668005 0.8474885 -2.1436950
--
0 1
N 0.1803930 -2.9491231 0.0000000
H 0.7595495 -3.1459477 -0.8060729
H 0.7595495 -3.1459477 0.8060729
H 0.0444167 -1.9449399 0.0000000
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '19')] = qcdb.Molecule("""
0 1
C -0.7097741 -0.9904230 1.2077018
C -1.4065340 -0.9653529 0.0000000
C -0.7097741 -0.9904230 -1.2077018
C 0.6839651 -1.0405105 -1.2078652
C 1.3809779 -1.0655522 0.0000000
C 0.6839651 -1.0405105 1.2078652
H -1.2499482 -0.9686280 2.1440507
H -2.4869197 -0.9237060 0.0000000
H -1.2499482 -0.9686280 -2.1440507
H 1.2242882 -1.0580753 -2.1442563
H 2.4615886 -1.1029818 0.0000000
H 1.2242882 -1.0580753 2.1442563
--
0 1
N -0.0034118 3.5353926 0.0000000
C 0.0751963 2.3707040 0.0000000
H 0.1476295 1.3052847 0.0000000
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '20')] = qcdb.Molecule("""
0 1
C 0.0000000 0.0000000 1.0590353
C 0.0000000 -1.2060084 1.7576742
C 0.0000000 -1.2071767 3.1515905
C 0.0000000 0.0000000 3.8485751
C 0.0000000 1.2071767 3.1515905
C 0.0000000 1.2060084 1.7576742
H 0.0000000 0.0000000 -0.0215805
H 0.0000000 -2.1416387 1.2144217
H 0.0000000 -2.1435657 3.6929953
H 0.0000000 0.0000000 4.9301499
H 0.0000000 2.1435657 3.6929953
H 0.0000000 2.1416387 1.2144217
--
0 1
C -1.3940633 0.0000000 -2.4541524
C -0.6970468 1.2072378 -2.4546277
C 0.6970468 1.2072378 -2.4546277
C 1.3940633 0.0000000 -2.4541524
C 0.6970468 -1.2072378 -2.4546277
C -0.6970468 -1.2072378 -2.4546277
H -2.4753995 0.0000000 -2.4503221
H -1.2382321 2.1435655 -2.4536764
H 1.2382321 2.1435655 -2.4536764
H 2.4753995 0.0000000 -2.4503221
H 1.2382321 -2.1435655 -2.4536764
H -1.2382321 -2.1435655 -2.4536764
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '21')] = qcdb.Molecule("""
0 1
C 2.5118997 1.6250148 0.0000000
C 2.7130094 0.9578537 -1.2082918
C 3.1177821 -0.3767436 -1.2083647
C 3.3213848 -1.0437307 0.0000000
C 3.1177821 -0.3767436 1.2083647
C 2.7130094 0.9578537 1.2082918
H 2.2024038 2.6611358 0.0000000
H 2.5511760 1.4736908 -2.1445900
H 3.2702999 -0.8951406 -2.1448379
H 3.6368139 -2.0781521 0.0000000
H 3.2702999 -0.8951406 2.1448379
H 2.5511760 1.4736908 2.1445900
--
0 1
H 0.8065245 -0.4358866 0.0000000
N -0.1442408 -0.7686927 0.0000000
C -0.5161122 -2.0893220 0.0000000
C -1.8898755 -2.1814495 0.0000000
C -2.3932317 -0.8470830 0.0000000
C -1.2640653 0.0195887 0.0000000
C -1.3896004 1.4117668 0.0000000
C -2.6726501 1.9366450 0.0000000
C -3.8054511 1.0974790 0.0000000
C -3.6798167 -0.2817209 0.0000000
H 0.2310024 -2.8653173 0.0000000
H -2.4585759 -3.0956052 0.0000000
H -0.5188733 2.0539520 0.0000000
H -2.8077570 3.0097859 0.0000000
H -4.7905991 1.5439372 0.0000000
H -4.5580187 -0.9142916 0.0000000
units angstrom
""")
GEOS['%s-%s-dimer' % (dbse, '22')] = qcdb.Molecule("""
0 1
C -2.0071056 0.7638459 -0.1083509
O -1.3885044 1.9298523 -0.4431206
H -0.5238121 1.9646519 -0.0064609
C -1.4630807 -0.1519120 0.7949930
C -2.1475789 -1.3295094 1.0883677
C -3.3743208 -1.6031427 0.4895864
C -3.9143727 -0.6838545 -0.4091028
C -3.2370496 0.4929609 -0.7096126
H -0.5106510 0.0566569 1.2642563
H -1.7151135 -2.0321452 1.7878417
H -3.9024664 -2.5173865 0.7197947
H -4.8670730 -0.8822939 -0.8811319
H -3.6431662 1.2134345 -1.4057590
--
0 1
O 1.3531168 1.9382724 0.4723133
C 2.0369747 0.7865043 0.1495491
H 1.7842846 2.3487495 1.2297110
C 1.5904026 0.0696860 -0.9574153
C 2.2417367 -1.1069765 -1.3128110
C 3.3315674 -1.5665603 -0.5748636
C 3.7696838 -0.8396901 0.5286439
C 3.1224836 0.3383498 0.8960491
H 0.7445512 0.4367983 -1.5218583
H 1.8921463 -1.6649726 -2.1701843
H 3.8330227 -2.4811537 -0.8566666
H 4.6137632 -1.1850101 1.1092635
H 3.4598854 0.9030376 1.7569489
units angstrom
""")
# <<< Derived Geometry Strings >>>
for rxn in HRXN:
GEOS['%s-%s-monoA-unCP' % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(1)
GEOS['%s-%s-monoB-unCP' % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(2)
GEOS['%s-%s-monoA-CP' % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(1, 2)
GEOS['%s-%s-monoB-CP' % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(2, 1)
#########################################################################
# <<< Supplementary Quantum Chemical Results >>>
DATA = {}
DATA['NUCLEAR REPULSION ENERGY'] = {}
DATA['NUCLEAR REPULSION ENERGY']['S22-1-dimer'] = 40.3142398391
DATA['NUCLEAR REPULSION ENERGY']['S22-2-dimer'] = 36.6628478528
DATA['NUCLEAR REPULSION ENERGY']['S22-3-dimer'] = 235.946620315
DATA['NUCLEAR REPULSION ENERGY']['S22-4-dimer'] = 230.794855209
DATA['NUCLEAR REPULSION ENERGY']['S22-5-dimer'] = 1032.28191174
DATA['NUCLEAR REPULSION ENERGY']['S22-6-dimer'] = 812.288526081
DATA['NUCLEAR REPULSION ENERGY']['S22-7-dimer'] = 1365.23227533
DATA['NUCLEAR REPULSION ENERGY']['S22-8-dimer'] = 41.0002637953
DATA['NUCLEAR REPULSION ENERGY']['S22-9-dimer'] = 102.165309277
DATA['NUCLEAR REPULSION ENERGY']['S22-10-dimer'] = 272.461820278
DATA['NUCLEAR REPULSION ENERGY']['S22-11-dimer'] = 628.972056837
DATA['NUCLEAR REPULSION ENERGY']['S22-12-dimer'] = 654.132022225
DATA['NUCLEAR REPULSION ENERGY']['S22-13-dimer'] = 1161.47069828
DATA['NUCLEAR REPULSION ENERGY']['S22-14-dimer'] = 935.530103761
DATA['NUCLEAR REPULSION ENERGY']['S22-15-dimer'] = 1542.1430487
DATA['NUCLEAR REPULSION ENERGY']['S22-16-dimer'] = 85.1890641964
DATA['NUCLEAR REPULSION ENERGY']['S22-17-dimer'] = 273.329424698
DATA['NUCLEAR REPULSION ENERGY']['S22-18-dimer'] = 273.279614381
DATA['NUCLEAR REPULSION ENERGY']['S22-19-dimer'] = 303.281397519
DATA['NUCLEAR REPULSION ENERGY']['S22-20-dimer'] = 592.416645285
DATA['NUCLEAR REPULSION ENERGY']['S22-21-dimer'] = 876.919230124
DATA['NUCLEAR REPULSION ENERGY']['S22-22-dimer'] = 805.117733746
DATA['NUCLEAR REPULSION ENERGY']['S22-1-monoA-unCP'] = 11.9474317239
DATA['NUCLEAR REPULSION ENERGY']['S22-1-monoB-unCP'] = 11.9474317239
DATA['NUCLEAR REPULSION ENERGY']['S22-2-monoA-unCP'] = 9.16383014597
DATA['NUCLEAR REPULSION ENERGY']['S22-2-monoB-unCP'] = 9.1780389049
DATA['NUCLEAR REPULSION ENERGY']['S22-3-monoA-unCP'] = 70.1157833033
DATA['NUCLEAR REPULSION ENERGY']['S22-3-monoB-unCP'] = 70.1157833033
DATA['NUCLEAR REPULSION ENERGY']['S22-4-monoA-unCP'] = 71.0728637475
DATA['NUCLEAR REPULSION ENERGY']['S22-4-monoB-unCP'] = 71.0728637475
DATA['NUCLEAR REPULSION ENERGY']['S22-5-monoA-unCP'] = 357.226773232
DATA['NUCLEAR REPULSION ENERGY']['S22-5-monoB-unCP'] = 357.226773232
DATA['NUCLEAR REPULSION ENERGY']['S22-6-monoA-unCP'] = 275.701873893
DATA['NUCLEAR REPULSION ENERGY']['S22-6-monoB-unCP'] = 275.671980226
DATA['NUCLEAR REPULSION ENERGY']['S22-7-monoA-unCP'] = 503.396306786
DATA['NUCLEAR REPULSION ENERGY']['S22-7-monoB-unCP'] = 440.301569251
DATA['NUCLEAR REPULSION ENERGY']['S22-8-monoA-unCP'] = 13.4480422656
DATA['NUCLEAR REPULSION ENERGY']['S22-8-monoB-unCP'] = 13.4480422656
DATA['NUCLEAR REPULSION ENERGY']['S22-9-monoA-unCP'] = 33.3602695815
DATA['NUCLEAR REPULSION ENERGY']['S22-9-monoB-unCP'] = 33.3602695815
DATA['NUCLEAR REPULSION ENERGY']['S22-10-monoA-unCP'] = 203.707991166
DATA['NUCLEAR REPULSION ENERGY']['S22-10-monoB-unCP'] = 13.4855266506
DATA['NUCLEAR REPULSION ENERGY']['S22-11-monoA-unCP'] = 203.71093056
DATA['NUCLEAR REPULSION ENERGY']['S22-11-monoB-unCP'] = 203.71093056
DATA['NUCLEAR REPULSION ENERGY']['S22-12-monoA-unCP'] = 208.639691163
DATA['NUCLEAR REPULSION ENERGY']['S22-12-monoB-unCP'] = 208.626286711
DATA['NUCLEAR REPULSION ENERGY']['S22-13-monoA-unCP'] = 357.160450068
DATA['NUCLEAR REPULSION ENERGY']['S22-13-monoB-unCP'] = 357.160450068
DATA['NUCLEAR REPULSION ENERGY']['S22-14-monoA-unCP'] = 203.669533561
DATA['NUCLEAR REPULSION ENERGY']['S22-14-monoB-unCP'] = 401.143592213
DATA['NUCLEAR REPULSION ENERGY']['S22-15-monoA-unCP'] = 503.365644851
DATA['NUCLEAR REPULSION ENERGY']['S22-15-monoB-unCP'] = 440.147006891
DATA['NUCLEAR REPULSION ENERGY']['S22-16-monoA-unCP'] = 33.3580720823
DATA['NUCLEAR REPULSION ENERGY']['S22-16-monoB-unCP'] = 24.6979461028
DATA['NUCLEAR REPULSION ENERGY']['S22-17-monoA-unCP'] = 203.633716029
DATA['NUCLEAR REPULSION ENERGY']['S22-17-monoB-unCP'] = 9.16734256253
DATA['NUCLEAR REPULSION ENERGY']['S22-18-monoA-unCP'] = 203.672752811
DATA['NUCLEAR REPULSION ENERGY']['S22-18-monoB-unCP'] = 11.9610533611
DATA['NUCLEAR REPULSION ENERGY']['S22-19-monoA-unCP'] = 203.595134421
DATA['NUCLEAR REPULSION ENERGY']['S22-19-monoB-unCP'] = 23.6698792311
DATA['NUCLEAR REPULSION ENERGY']['S22-20-monoA-unCP'] = 203.681438992
DATA['NUCLEAR REPULSION ENERGY']['S22-20-monoB-unCP'] = 203.664080154
DATA['NUCLEAR REPULSION ENERGY']['S22-21-monoA-unCP'] = 203.56582964
DATA['NUCLEAR REPULSION ENERGY']['S22-21-monoB-unCP'] = 401.056606452
DATA['NUCLEAR REPULSION ENERGY']['S22-22-monoA-unCP'] = 271.438700576
DATA['NUCLEAR REPULSION ENERGY']['S22-22-monoB-unCP'] = 271.346177694
DATA['NUCLEAR REPULSION ENERGY']['S22-1-monoA-CP'] = 11.9474317239
DATA['NUCLEAR REPULSION ENERGY']['S22-1-monoB-CP'] = 11.9474317239
DATA['NUCLEAR REPULSION ENERGY']['S22-2-monoA-CP'] = 9.16383014597
DATA['NUCLEAR REPULSION ENERGY']['S22-2-monoB-CP'] = 9.1780389049
DATA['NUCLEAR REPULSION ENERGY']['S22-3-monoA-CP'] = 70.1157833033
DATA['NUCLEAR REPULSION ENERGY']['S22-3-monoB-CP'] = 70.1157833033
DATA['NUCLEAR REPULSION ENERGY']['S22-4-monoA-CP'] = 71.0728637475
DATA['NUCLEAR REPULSION ENERGY']['S22-4-monoB-CP'] = 71.0728637475
DATA['NUCLEAR REPULSION ENERGY']['S22-5-monoA-CP'] = 357.226773232
DATA['NUCLEAR REPULSION ENERGY']['S22-5-monoB-CP'] = 357.226773232
DATA['NUCLEAR REPULSION ENERGY']['S22-6-monoA-CP'] = 275.701873893
DATA['NUCLEAR REPULSION ENERGY']['S22-6-monoB-CP'] = 275.671980226
DATA['NUCLEAR REPULSION ENERGY']['S22-7-monoA-CP'] = 503.396306786
DATA['NUCLEAR REPULSION ENERGY']['S22-7-monoB-CP'] = 440.301569251
DATA['NUCLEAR REPULSION ENERGY']['S22-8-monoA-CP'] = 13.4480422656
DATA['NUCLEAR REPULSION ENERGY']['S22-8-monoB-CP'] = 13.4480422656
DATA['NUCLEAR REPULSION ENERGY']['S22-9-monoA-CP'] = 33.3602695815
DATA['NUCLEAR REPULSION ENERGY']['S22-9-monoB-CP'] = 33.3602695815
DATA['NUCLEAR REPULSION ENERGY']['S22-10-monoA-CP'] = 203.707991166
DATA['NUCLEAR REPULSION ENERGY']['S22-10-monoB-CP'] = 13.4855266506
DATA['NUCLEAR REPULSION ENERGY']['S22-11-monoA-CP'] = 203.71093056
DATA['NUCLEAR REPULSION ENERGY']['S22-11-monoB-CP'] = 203.71093056
DATA['NUCLEAR REPULSION ENERGY']['S22-12-monoA-CP'] = 208.639691163
DATA['NUCLEAR REPULSION ENERGY']['S22-12-monoB-CP'] = 208.626286711
DATA['NUCLEAR REPULSION ENERGY']['S22-13-monoA-CP'] = 357.160450068
DATA['NUCLEAR REPULSION ENERGY']['S22-13-monoB-CP'] = 357.160450068
DATA['NUCLEAR REPULSION ENERGY']['S22-14-monoA-CP'] = 203.669533561
DATA['NUCLEAR REPULSION ENERGY']['S22-14-monoB-CP'] = 401.143592213
DATA['NUCLEAR REPULSION ENERGY']['S22-15-monoA-CP'] = 503.365644851
DATA['NUCLEAR REPULSION ENERGY']['S22-15-monoB-CP'] = 440.147006891
DATA['NUCLEAR REPULSION ENERGY']['S22-16-monoA-CP'] = 33.3580720823
DATA['NUCLEAR REPULSION ENERGY']['S22-16-monoB-CP'] = 24.6979461028
DATA['NUCLEAR REPULSION ENERGY']['S22-17-monoA-CP'] = 203.633716029
DATA['NUCLEAR REPULSION ENERGY']['S22-17-monoB-CP'] = 9.16734256253
DATA['NUCLEAR REPULSION ENERGY']['S22-18-monoA-CP'] = 203.672752811
DATA['NUCLEAR REPULSION ENERGY']['S22-18-monoB-CP'] = 11.9610533611
DATA['NUCLEAR REPULSION ENERGY']['S22-19-monoA-CP'] = 203.595134421
DATA['NUCLEAR REPULSION ENERGY']['S22-19-monoB-CP'] = 23.6698792311
DATA['NUCLEAR REPULSION ENERGY']['S22-20-monoA-CP'] = 203.681438992
DATA['NUCLEAR REPULSION ENERGY']['S22-20-monoB-CP'] = 203.664080154
DATA['NUCLEAR REPULSION ENERGY']['S22-21-monoA-CP'] = 203.56582964
DATA['NUCLEAR REPULSION ENERGY']['S22-21-monoB-CP'] = 401.056606452
DATA['NUCLEAR REPULSION ENERGY']['S22-22-monoA-CP'] = 271.438700576
DATA['NUCLEAR REPULSION ENERGY']['S22-22-monoB-CP'] = 271.346177694
|