/usr/share/psi/databases/BASIC.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
"""
| Database of simple molecules, mostly for testing.
| Geometries from nowhere special, and no reference energies defined.
- **cp** ``'off'``
- **rlxd** ``'off'``
- **subset** [``'h2o'``, ``'nh3'``, ``'ch4'``]
"""
import re
import qcdb
# <<< BASIC Database Module >>>
# Geometries and Reference energies from nowhere special.
# Feel free to add to this database.
dbse = 'BASIC'
# <<< Database Members >>>
HRXN = ['ch4', 'h2o', 'nh3', ]
HRXN_SM = []
HRXN_LG = []
# <<< Chemical Systems Involved >>>
RXNM = {} # reaction matrix of reagent contributions per reaction
ACTV = {} # order of active reagents per reaction
ACTV['%s-%s' % (dbse, 'ch4' )] = ['%s-%s-reagent' % (dbse, 'ch4')]
RXNM['%s-%s' % (dbse, 'ch4' )] = dict(zip(ACTV['%s-%s' % (dbse, 'ch4')], [+1]))
ACTV['%s-%s' % (dbse, 'h2o' )] = ['%s-%s-reagent' % (dbse, 'h2o')]
RXNM['%s-%s' % (dbse, 'h2o' )] = dict(zip(ACTV['%s-%s' % (dbse, 'h2o')], [+1]))
ACTV['%s-%s' % (dbse, 'nh3' )] = ['%s-%s-reagent' % (dbse, 'nh3')]
RXNM['%s-%s' % (dbse, 'nh3' )] = dict(zip(ACTV['%s-%s' % (dbse, 'nh3')], [+1]))
# <<< Reference Values [kcal/mol] >>>
BIND = {}
BIND['%s-%s' % (dbse, 'ch4' )] = 0.000
BIND['%s-%s' % (dbse, 'h2o' )] = 0.000
BIND['%s-%s' % (dbse, 'nh3' )] = 0.000
# <<< Comment Lines >>>
TAGL = {}
TAGL['%s-%s' % (dbse, 'ch4' )] = 'methane'
TAGL['%s-%s-reagent' % (dbse, 'ch4' )] = 'methane'
TAGL['%s-%s' % (dbse, 'h2o' )] = 'water'
TAGL['%s-%s-reagent' % (dbse, 'h2o' )] = 'water'
TAGL['%s-%s' % (dbse, 'nh3' )] = 'ammonia'
TAGL['%s-%s-reagent' % (dbse, 'nh3' )] = 'ammonia'
# <<< Geometry Specification Strings >>>
GEOS = {}
GEOS['%s-%s-reagent' % (dbse, 'ch4')] = qcdb.Molecule("""
0 1
C 0.00000000 -0.00014000 1.85916100
H -0.88855100 0.51306000 1.49468500
H 0.88855100 0.51306000 1.49468500
H 0.00000000 -1.02633900 1.49486800
H 0.00000000 0.00008900 2.94828400
units angstrom
""")
GEOS['%s-%s-reagent' % (dbse, 'h2o')] = qcdb.Molecule("""
0 1
O -1.55100700 -0.11452000 0.00000000
H -1.93425900 0.76250300 0.00000000
H -0.59967700 0.04071200 0.00000000
units angstrom
""")
GEOS['%s-%s-reagent' % (dbse, 'nh3')] = qcdb.Molecule("""
0 1
N -1.57871800 -0.04661100 0.00000000
H -2.15862100 0.13639600 -0.80956500
H -2.15862100 0.13639600 0.80956500
H -0.84947100 0.65819300 0.00000000
units angstrom
""")
#########################################################################
# <<< Supplementary Quantum Chemical Results >>>
DATA = {}
DATA['NUCLEAR REPULSION ENERGY'] = {}
DATA['NUCLEAR REPULSION ENERGY']['BASIC-ch4-reagent'] = 13.4480422656
DATA['NUCLEAR REPULSION ENERGY']['BASIC-h2o-reagent'] = 9.16383014597
DATA['NUCLEAR REPULSION ENERGY']['BASIC-nh3-reagent'] = 11.9474317239
|