/usr/lib/open-axiom/input/r21bugsbig.input is in open-axiom-test 1.5.0~svn3056+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | -- takes a long time
)clear completely
)set expose add constructor CyclotomicPolynomialPackage
)set message type off
)set message time off
n : PositiveInteger := 5
UZn : List(PositiveInteger) := [i for i in 1 .. n-1 | gcd(i,n) = 1]
-- K = Q(t), corps des fractions rationnelles a Phi(n) indeterminees sur Q
vars : List(Symbol) := [concat("t", string i)::Symbol for i in 0 ..#UZn-1] ;
Zt := DistributedMultivariatePolynomial(vars, Integer) ; K :=Fraction(Zt) ;
t : List(K) := [v::K for v in vars]
-- ATTENTION : on specialise certains des indeterminees
t(#t) := 0 ; t
Zn := IntegerMod(n) ;
rapport(i : Integer, j : Integer) : Integer == -- returns <i/j> modulo n
k : Zn := i * recip(j::Zn)::Zn
return convert(k)
Phi : UP('xi, K) := map(coerce, cyclotomic(n))
-- E est l'extension cyclotomique de K par les racines n-iemes de l'unite
E := SimpleAlgebraicExtension(K, UP('xi, K), Phi) ;
xi : E := generator()$E ;
bList : List(E) := [reduce(+, [t(i+1) * xi**(i*j) for i in 0 .. #UZn-1]) for j in UZn]
-- delta(j) = delta(j, 1) avec les nouvelles notations
delta : List(E) :=
[reduce(*, [b**((j*rapport(1,k)) quo n) for b in bList for k in UZn]) for j in UZn] ;
-- verification en introduisant la liste B des Bj
B : List(E) := [reduce(*, [b**rapport(j,i) for b in bList for i in UZn]) for j in UZn] ;
[B(1)**j - b * d**n for b in B for d in delta for j in UZn]
L := SimpleAlgebraicExtension(E, UP('C1, E), C1**n - B(1)) ; C1 : L := generator()$L ;
-- retracter de L sur Zt : Zt < K < E < L
retraction(z : L) : Zt ==
zE : E := retract(z)
zK : K := retract(zE)
zt : Zt := retract(zK)
return zt
)set message time on
C : List(L) := [C1**j / d for j in UZn for d in delta] ;
-- en principe [c**n for c in C] = B
r : List(L) := [reduce(+, [c * xi**(k*j) for j in UZn for c in C]) for k in 0 .. n-1] ;
LX := UP('X, L) ; X : LX := monomial(1, 1) ;
g : LX := reduce(*, [X - rho for rho in r]) ;
f : UP('X, Zt) := map(retraction, g)
|