This file is indexed.

/usr/lib/open-axiom/input/cycles.input is in open-axiom-test 1.5.0~svn3056+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
--Copyright The Numerical Algorithms Group Limited 1994.
 
--Examples of Polya-Redfield enumeration methods.
--
--This file is based upon the paper
--J.H.Redfield 'The Theory of Group-Reduced Distributions'
--American J. Math.,49 (1927) 433-455,
--and is an application of group theory to enumeration problems.
--It is a development of the work by P.A.MacMahon on the
--application of symmetric functions and Hammond operators to
--combinatorial theory.
--
--The theory is based upon the symmetric functions s   which are the
--                                                   i
--sum of the i th powers of the variables.
--The cycle index of a permutation may be represented as a partition.
-- For example, the partition
--   2     2                                2      2
-- (3  2 1  )  will be used to represent  s   s  s   and
--                                          3  2  1
-- will indicate that the permutation has two cycles of length 3,
-- one of length 2 and two of length 1.
--The cycle index of a permutation group is the sum of the cycle indices
--of its permutations divided by the number of permutations.
--
--The cycle indices of certain groups are provided.
--complete n is the cycle index of the symmetric group of order n
)clear all
)expose EVALCYC
complete 1
--
--   (1)  (1)
--
complete 2
--
--        1       1   2
--   (2)  - (2) + - (1 )
--        2       2
--
complete 3
--
--        1       1         1   3
--   (3)  - (3) + - (2 1) + - (1 )
--        3       2         6
--
--
complete 7
--
--   (7)
--     1       1         1          1      2    1          1           1      3
--     - (7) + - (6 1) + -- (5 2) + -- (5 1 ) + -- (4 3) + - (4 2 1) + -- (4 1 )
--     7       6         10         10          12         8           24
--   +
--     1    2     1      2    1        2    1      4    1    3     1    2 3
--     -- (3 1) + -- (3 2 ) + -- (3 2 1 ) + -- (3 1 ) + -- (2 1) + -- (2 1 )
--     18         24          12            72          48         48
--   +
--      1      5     1     7
--     --- (2 1 ) + ---- (1 )
--     240          5040
--
--elementary n is the nth elementary symmetric function.
--
elementary 7
--
--   (8)
--     1       1         1          1      2    1          1           1      3
--     - (7) - - (6 1) - -- (5 2) + -- (5 1 ) - -- (4 3) + - (4 2 1) - -- (4 1 )
--     7       6         10         10          12         8           24
--   +
--     1    2     1      2    1        2    1      4    1    3     1    2 3
--     -- (3 1) + -- (3 2 ) - -- (3 2 1 ) + -- (3 1 ) - -- (2 1) + -- (2 1 )
--     18         24          12            72          48         48
--   +
--        1      5     1     7
--     - --- (2 1 ) + ---- (1 )
--       240          5040
--
--alternating n is the cycle index of the alternating group
--having an even number of even parts in each cycle partition.
--
alternating 7
--
--   (9)
--     2       1     2    1           1   2     1      2    1      4    1    2 3
--     - (7) + - (5 1 ) + - (4 2 1) + - (3 1) + -- (3 2 ) + -- (3 1 ) + -- (2 1 )
--     7       5          4           9         12          36          24
--   +
--      1     7
--     ---- (1 )
--     2520
--
--
--cyclic n is the cycle index of the cyclic group
cyclic 7
--
--         6       1   7
--   (10)  - (7) + - (1 )
--         7       7
--
--dihedral n is the cycle index of the dihedral group
--
dihedral 7
--
--         3       1   3     1    7
--   (11)  - (7) + - (2 1) + -- (1 )
--         7       2         14
--
--graphs n is the cycle index of the group of permutations on
--the edges of the complete graph with n nodes induced by
--applying the symmetric group to the nodes.
graphs 5
--
--   (12)
--   1           1   2    1   2     1   3     1   4 2    1    3 4     1    10
--   - (6 3 1) + - (5 ) + - (4 2) + - (3 1) + - (2 1 ) + -- (2 1 ) + --- (1  )
--   6           5        4         6         8          12          120
--
--The cycle index of a direct product of two groups is the product of the
--cycle indices of the groups.
--Redfield provided two operations on two cycle indices which
--will be called cup and cap here.
--The cup of two cycle indices is a kind of scalar product that
--combines monomials for permutations with the same cycles.
--
--The cap operation provides the sum of the coefficients of the result
--of the cup operation which will be an integer that enumerates
--group-reduced distributions.
--
--We can for example represent  complete 2 * complete 2
--as the set of objects a a b b and
--complete 2 * complete 1 * complete 1 as c c d e.
--
--The integer cap(complete 2**2,complete 2*complete 1**2)
--is the number of different sets of four pairs.
--
--a a b b     a a b b    a a b b   a a b b
--c c d e     c d c e    c e c d   d e c c
--
cap(complete 2**2,complete 2*complete 1**2)
--
--   (13)  4
--
--The integer cap(elementary 2**2,complete 2*complete 1**2)
--is the number of different sets of four pairs no two pairs being equal.
--
--    a a b b    a a b b
--    c d c e    c e c d
--
cap(elementary 2**2,complete 2*complete 1**2)
--
--   (14)  2
--
--In this case the configurations enumerated are easily constructed,
--however the theory merely enumerates them providing little help in
--actually constructing them. Similarly
--
--The number of 6-pairs, first from a a a b b c, second from d d e e f g.
--
cap(complete 3*complete 2*complete 1,complete 2**2*complete 1**2)
--
--   (15)  24
--
--Same again, but with no equal pairs
--
cap(elementary 3*elementary 2*elementary 1,complete 2**2*complete 1**2)
--
--   (16)  8
--
cap(complete 3*complete 2*complete 1,elementary 2**2*elementary 1**2)
--
--   (17)  8
--
--The number of 6-triples, first from a a a b b c, second from
--d d e e f g, third from h h i i j j
--
eval(cup(complete 3*complete 2*complete 1, cup(complete 2**2*complete 1**2,complete 2**3)))
--
--   (18)  1500
--
--The cycle index of vertices of a square is dihedral 4
--
square:=dihedral 4
--
--         1       3   2    1     2    1   4
--   (19)  - (4) + - (2 ) + - (2 1 ) + - (1 )
--         4       8        4          8
--
--The number of different squares with 2 red vertices and 2 blue vertices
--
cap(complete 2**2,square)
--
--   (20)  2
--
--The number of necklaces with 3 red beads,2 blue beads and 2 green beads
--
cap(complete 3*complete 2**2,dihedral 7)
--
--   (21)  18
--
--The number of graphs with 5 nodes and 7 edges
--
cap(graphs 5,complete 7*complete 3)
--
--   (22)  4
--The cycle index of rotations of vertices of a cube
--
macro s == powerSum
cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)
--
--         1   2    1   2 2    3   4    1    8
--   (23)  - (4 ) + - (3 1 ) + - (2 ) + -- (1 )
--         4        3          8        24
--
--The number of cubes with 4 red vertices and 4 blue vertices
cap(complete 4**2,cube)
--
--   (24)  7
--
--The number of labeled graphs with degree sequence 2 2 2 1 1
--with no loops or multiple edges
cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary 2))
--with loops allowed but not multiple edges
cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))
-- with multiple edges allowed, but not loops
cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2))
-- with both multiple edges and loops allowed
cap(complete 2**3*complete 1**2,wreath(complete 4,complete 2))
--Having constructed a cycle index for a configuration
--we are at liberty to evaluate the s i components any way we please.
--For example we can produce enumerating generating functions.
--This is done by providing a function f from an integer i to the
--value required of s  , and then evaluating eval(f,cycleindex)
--                   i
x:ULS(FRAC INT,'x,0):=x
ZeroOrOne:INT->ULS(FRAC INT,'x,0)
Integers:INT->ULS(FRAC INT,'x,0)
--For the integers 0 1 , or two colors
ZeroOrOne n == 1+x**n
ZeroOrOne 5
--For the integers 0,1,2,...
Integers n == 1/(1-x**n)
Integers 5
--
--The coefficient of x**n below is the number of graphs with 5 nodes
--and n edges.
--
eval(ZeroOrOne,graphs 5)
--
--                   2     3     4     5     6     7     8    9    10      11
--   (30)  1 + x + 2x  + 4x  + 6x  + 6x  + 6x  + 4x  + 2x  + x  + x   + O(x  )
--
--The coefficient of x**n is the number of necklaces with
-- n red beads and n-8 green beads.
eval(ZeroOrOne,dihedral 8)
--The coefficient of x**n is the number of partitions of n
--into 4 or fewer parts
eval(Integers,complete 4)
--
--   (32)
--             2     3     4     5     6      7      8      9      10      11
--   1 + x + 2x  + 3x  + 5x  + 6x  + 9x  + 11x  + 15x  + 18x  + 23x   + O(x  )
--
--The coefficient of x**n is the number of partitions of n into 4
-- boxes containing ordered distinct parts.
eval(Integers,elementary 4)
--
--          6    7     8     9     10      11
--   (33)  x  + x  + 2x  + 3x  + 5x   + O(x  )
--
--the coefficient of x**n is the number of partitions of n
--into exactly 4 parts
--
--The coefficient of x**n is the number of different cubes with n
-- red vertices and 8-n green ones.
--
eval(ZeroOrOne,cube)
--
--                   2     3     4     5     6    7    8
--   (36)  1 + x + 3x  + 3x  + 7x  + 3x  + 3x  + x  + x
--
--The  coefficient of x**n is the number of different cubes with integers
-- on the vertices whose sum is n.
--
eval(Integers,cube)
--
--   (37)
--               2     3      4      5      6       7       8       9       10
--     1 + x + 4x  + 7x  + 21x  + 37x  + 85x  + 151x  + 292x  + 490x  + 848x
--   +
--        11
--     O(x  )
--
-- the coefficient of x**n is the number of graphs with 5 nodes and
-- with integers on the edges whose sum is n.
-- In other words the enumeration is of multigraphs with 5 nodes and n
-- edges.
eval(Integers,graphs 5)
--
--   (38)
--               2     3      4      5      6       7       8       9       10
--     1 + x + 3x  + 7x  + 17x  + 35x  + 76x  + 149x  + 291x  + 539x  + 974x
--   +
--        11
--     O(x  )
--
--Graphs with 15 nodes enumerated with respect to number of edges
--
eval(ZeroOrOne ,graphs 15)
--
--   (39)
--               2     3      4      5      6       7       8        9        10
--     1 + x + 2x  + 5x  + 11x  + 26x  + 68x  + 177x  + 496x  + 1471x  + 4583x
--   +
--           11         12          13          14           15            16
--     15036x   + 51814x   + 185987x   + 691001x   + 2632420x   + 10176660x
--   +
--              17             18             19              20      21
--     39500169x   + 152374465x   + 578891716x   + 2149523582x   + O(x  )
--
--
--Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10
--red beads.
--
cap(dihedral 30,complete 7*complete 8*complete 5*complete 10)
--
--   (40)  49958972383320
-- The function SFunction is the S-function of a partition written
-- as a descending list of integers expressed in terms of power sum
-- symmetric functions.
sf3221:= SFunction [3,2,2,1]
-- It counts the number of different tableaux of shape 3,2,2,1 filled
-- with objects with an ascending order in the columns and a
-- non-descending order in the rows.
-- cap(sf3221,complete 4**2) is the number filled
-- with a a b b c c d d.
cap(sf3221,complete 2**4)
-- the configurations enumerated are
--  a a b    a a c    a a d
--  b c      b b      b b
--  c d      c d      c c
--  d        d        d
-- cap(sf3221,powerSum 1**8) is the number of tableaux filled with 1..8.
cap(sf3221,powerSum 1**8)
--The coefficient of x**n below is the number of column strict
-- reverse plane partitions of n of shape 3 2 2 1.
-- The smallest is
--  0 0 0
--  1 1
--  2 2
--  3
eval(Integers,sf3221)