/usr/share/ompl/demos/TriangulationDemo.cpp is in ompl-demos 1.0.0+ds2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | #include <ompl/control/SpaceInformation.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/control/spaces/RealVectorControlSpace.h>
#include <ompl/control/planners/kpiece/KPIECE1.h>
#include <ompl/control/planners/rrt/RRT.h>
#include <ompl/control/planners/est/EST.h>
#include <ompl/control/planners/syclop/SyclopRRT.h>
#include <ompl/control/planners/syclop/SyclopEST.h>
#include <ompl/control/SimpleSetup.h>
#include <ompl/config.h>
#include <ompl/extensions/triangle/TriangularDecomposition.h>
#include <iostream>
namespace ob = ompl::base;
namespace oc = ompl::control;
// a decomposition is only needed for SyclopRRT and SyclopEST
class MyTriangularDecomposition : public oc::TriangularDecomposition
{
public:
MyTriangularDecomposition(const ob::RealVectorBounds& bounds)
: oc::TriangularDecomposition(bounds, createObstacles())
{
setup();
}
virtual void project(const ob::State* s, std::vector<double>& coord) const
{
coord.resize(2);
coord[0] = s->as<ob::SE2StateSpace::StateType>()->getX();
coord[1] = s->as<ob::SE2StateSpace::StateType>()->getY();
}
virtual void sampleFullState(const ob::StateSamplerPtr& sampler, const std::vector<double>& coord, ob::State* s) const
{
sampler->sampleUniform(s);
s->as<ob::SE2StateSpace::StateType>()->setXY(coord[0], coord[1]);
}
std::vector<Polygon> createObstacles()
{
std::vector<Polygon> obst;
Triangle tri;
tri.pts[0].x = -0.5;
tri.pts[0].y = 0.75;
tri.pts[1].x = -0.75;
tri.pts[1].y = 0.68;
tri.pts[2].x = -0.5;
tri.pts[2].y = 0.5;
obst.push_back(tri);
Polygon rect(4);
rect.pts[0].x = 0.;
rect.pts[0].y = 0.5;
rect.pts[1].x = -0.3;
rect.pts[1].y = 0.;
rect.pts[2].x = 0.;
rect.pts[2].y = -0.5;
rect.pts[3].x = 0.6;
rect.pts[3].y = 0.6;
obst.push_back(rect);
return obst;
}
};
bool triContains(double x, double y, double ax, double ay, double bx, double by, double cx, double cy)
{
if ((x-ax)*(by-ay) - (bx-ax)*(y-ay) > 0.)
return false;
if ((x-bx)*(cy-by) - (cx-bx)*(y-by) > 0.)
return false;
if ((x-cx)*(ay-cy) - (ax-cx)*(y-cy) > 0.)
return false;
return true;
}
bool isStateValid(const oc::SpaceInformation *si, const ob::State *state)
{
// ob::ScopedState<ob::SE2StateSpace>
// cast the abstract state type to the type we expect
const ob::SE2StateSpace::StateType *se2state = state->as<ob::SE2StateSpace::StateType>();
// check validity of state defined by pos & rot
double x = se2state->getX();
double y = se2state->getY();
return si->satisfiesBounds(state) && !triContains(x,y, -0.5,0.75,-0.75,0.68,-0.5,0.5)
&& !triContains(x,y, 0,0.5,-0.3,0,0,-0.5)
&& !triContains(x,y,0,-0.5,0.6,0.6,0,0.5);
}
void propagate(const ob::State *start, const oc::Control *control, const double duration, ob::State *result)
{
const ob::SE2StateSpace::StateType *se2state = start->as<ob::SE2StateSpace::StateType>();
const ob::RealVectorStateSpace::StateType *pos = se2state->as<ob::RealVectorStateSpace::StateType>(0);
const ob::SO2StateSpace::StateType *rot = se2state->as<ob::SO2StateSpace::StateType>(1);
const oc::RealVectorControlSpace::ControlType *rctrl = control->as<oc::RealVectorControlSpace::ControlType>();
result->as<ob::SE2StateSpace::StateType>()->as<ob::RealVectorStateSpace::StateType>(0)->values[0] =
(*pos)[0] + (*rctrl)[0] * duration * cos(rot->value);
result->as<ob::SE2StateSpace::StateType>()->as<ob::RealVectorStateSpace::StateType>(0)->values[1] =
(*pos)[1] + (*rctrl)[0] * duration * sin(rot->value);
result->as<ob::SE2StateSpace::StateType>()->as<ob::SO2StateSpace::StateType>(1)->value =
rot->value + (*rctrl)[1];
}
void planWithSimpleSetup(void)
{
// construct the state space we are planning in
ob::StateSpacePtr space(new ob::SE2StateSpace());
// set the bounds for the R^2 part of SE(2)
ob::RealVectorBounds bounds(2);
bounds.setLow(-1);
bounds.setHigh(1);
space->as<ob::SE2StateSpace>()->setBounds(bounds);
// create a control space
oc::ControlSpacePtr cspace(new oc::RealVectorControlSpace(space, 2));
// set the bounds for the control space
ob::RealVectorBounds cbounds(2);
cbounds.setLow(-0.3);
cbounds.setHigh(0.3);
cspace->as<oc::RealVectorControlSpace>()->setBounds(cbounds);
// define a simple setup class
oc::SimpleSetup ss(cspace);
// set the state propagation routine
ss.setStatePropagator(boost::bind(&propagate, _1, _2, _3, _4));
// set state validity checking for this space
ss.setStateValidityChecker(boost::bind(&isStateValid, ss.getSpaceInformation().get(), _1));
// create a start state
ob::ScopedState<ob::SE2StateSpace> start(space);
start->setX(-0.5);
start->setY(0.0);
start->setYaw(0.0);
ob::ScopedState<ob::SE2StateSpace> goal(start);
goal->setX(0.5);
// set the start and goal states
ss.setStartAndGoalStates(start, goal, 0.05);
oc::TriangularDecomposition* td = new MyTriangularDecomposition(bounds);
// print the triangulation to stdout
td->print(std::cout);
// hand the triangulation to SyclopEST
ob::PlannerPtr planner(new oc::SyclopEST(ss.getSpaceInformation(), oc::DecompositionPtr(td)));
// hand the SyclopEST planner to SimpleSetup
ss.setPlanner(planner);
// attempt to solve the problem within ten seconds of planning time
ob::PlannerStatus solved = ss.solve(10.0);
if (solved)
{
std::cout << "Found solution:" << std::endl;
// print the path to screen
ss.getSolutionPath().asGeometric().print(std::cout);
}
else
std::cout << "No solution found" << std::endl;
}
int main(int, char **)
{
std::cout << "OMPL version: " << OMPL_VERSION << std::endl;
planWithSimpleSetup();
std::cout << std::endl;
return 0;
}
|