This file is indexed.

/usr/share/ompl/demos/RigidBodyPlanning.py is in ompl-demos 1.0.0+ds2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python

######################################################################
# Software License Agreement (BSD License)
#
#  Copyright (c) 2010, Rice University
#  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions
#  are met:
#
#   * Redistributions of source code must retain the above copyright
#     notice, this list of conditions and the following disclaimer.
#   * Redistributions in binary form must reproduce the above
#     copyright notice, this list of conditions and the following
#     disclaimer in the documentation and/or other materials provided
#     with the distribution.
#   * Neither the name of the Rice University nor the names of its
#     contributors may be used to endorse or promote products derived
#     from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
#  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
#  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
#  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
#  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
#  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
#  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
#  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
######################################################################

# Author: Mark Moll

try:
    from ompl import base as ob
    from ompl import geometric as og
except:
    # if the ompl module is not in the PYTHONPATH assume it is installed in a
    # subdirectory of the parent directory called "py-bindings."
    from os.path import abspath, dirname, join
    import sys
    sys.path.insert(0, join(dirname(dirname(abspath(__file__))),'py-bindings'))
    from ompl import util as ou
    from ompl import base as ob
    from ompl import geometric as og

def isStateValid(state):
    # Some arbitrary condition on the state (note that thanks to
    # dynamic type checking we can just call getX() and do not need
    # to convert state to an SE2State.)
    return state.getX() < .6

def planWithSimpleSetup():
    # create an SE2 state space
    space = ob.SE2StateSpace()

    # set lower and upper bounds
    bounds = ob.RealVectorBounds(2)
    bounds.setLow(-1)
    bounds.setHigh(1)
    space.setBounds(bounds)

    # create a simple setup object
    ss = og.SimpleSetup(space)
    ss.setStateValidityChecker(ob.StateValidityCheckerFn(isStateValid))

    start = ob.State(space)
    # we can pick a random start state...
    start.random()
    # ... or set specific values
    start().setX(.5)

    goal = ob.State(space)
    # we can pick a random goal state...
    goal.random()
    # ... or set specific values
    goal().setX(-.5)

    ss.setStartAndGoalStates(start, goal)

    # this will automatically choose a default planner with
    # default parameters
    solved = ss.solve(1.0)

    if solved:
        # try to shorten the path
        ss.simplifySolution()
        # print the simplified path
        print(ss.getSolutionPath())


def planTheHardWay():
    # create an SE2 state space
    space = ob.SE2StateSpace()
    # set lower and upper bounds
    bounds = ob.RealVectorBounds(2)
    bounds.setLow(-1)
    bounds.setHigh(1)
    space.setBounds(bounds)
    # construct an instance of space information from this state space
    si = ob.SpaceInformation(space)
    # set state validity checking for this space
    si.setStateValidityChecker(ob.StateValidityCheckerFn(isStateValid))
    # create a random start state
    start = ob.State(space)
    start.random()
    # create a random goal state
    goal = ob.State(space)
    goal.random()
    # create a problem instance
    pdef = ob.ProblemDefinition(si)
    # set the start and goal states
    pdef.setStartAndGoalStates(start, goal)
    # create a planner for the defined space
    planner = og.RRTConnect(si)
    # set the problem we are trying to solve for the planner
    planner.setProblemDefinition(pdef)
    # perform setup steps for the planner
    planner.setup()
    # print the settings for this space
    print(si.settings())
    # print the problem settings
    print(pdef)
    # attempt to solve the problem within one second of planning time
    solved = planner.solve(1.0)

    if solved:
        # get the goal representation from the problem definition (not the same as the goal state)
        # and inquire about the found path
        path = pdef.getSolutionPath()
        print("Found solution:\n%s" % path)
    else:
        print("No solution found")


if __name__ == "__main__":
    planWithSimpleSetup()
    print("")
    planTheHardWay()