/usr/share/octave/packages/financial-0.5.0/blsimpv.m is in octave-financial 0.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | ## Copyright (C) 2013 Parsiad Azimzadeh <parsiad.azimzadeh@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU Lesser General Public License as published by the Free
## Software Foundation; either version 3 of the License, or (at your option) any
## later version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
## for more details.
##
## You should have received a copy of the GNU Lesser General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{Volatility} =} blsimpv (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Value})
## @deftypefnx {Function File} {@var{Volatility} =} blsimpv (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Value}, @var{Limit})
## @deftypefnx {Function File} {@var{Volatility} =} blsimpv (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Value}, @var{Limit}, @var{Yield})
## @deftypefnx {Function File} {@var{Volatility} =} blsimpv (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Value}, @var{Limit}, @var{Yield}, @var{Tolerance})
## @deftypefnx {Function File} {@var{Volatility} =} blsimpv (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Value}, @var{Limit}, @var{Yield}, @var{Tolerance}, @var{Class})
## Computes implied volatility under the Black-Scholes model.
##
## @itemize @minus{}@minus{}
## @item
## Variable: @var{Price} The current price of the underlying asset.
## @item
## Variable: @var{Strike} The strike price the option is written on.
## @item
## Variable: @var{Rate} The risk-free interest rate.
## @item
## Variable: @var{Time} The time-to-expiry.
## @item
## Variable: @var{Value} Price of the European option from which the
## underlying's volatility is derived.
## @item
## Variable: @var{Limit} (Optional, default = 10) Upper bound of the implied
## volatility.
## @item
## Variable: @var{Yield} (Optional, default = 0) Annualized, continuously
## compounded rate of dividends of the underlying asset.
## @item
## Variable: @var{Tolerance} (Optional, default = 1e-6) Tolerance with which the
## root-finding method terminates.
## @item
## Variable: @var{Class} (Optional, default = @{'call'@}) Option class (call or
## put). To specify a call option, use a value of true or @{'call'@}. To specify
## put options, use a value of false or @{'put'@}.
## @end itemize
##
## Computes the implied volatility under the Black-Scholes model from a given
## market option price.
##
## @seealso{blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta}
## @end deftypefn
function Volatility = blsimpv (Price, Strike, Rate, Time, Value, ...
Limit = 10, Yield = 0, Tolerance = 1e-6, ...
Class = true)
if (nargin < 5 || nargin > 9)
print_usage ();
endif
## Get maximum sizes of matrices
res_size_row = max ([rows(Price) rows(Strike) rows(Rate) rows(Time) ...
rows(Value) rows(Limit) rows(Yield) rows(Tolerance) ...
rows(Class)]);
res_size_col = max ([columns(Price) columns(Strike) columns(Rate) ...
columns(Time) columns(Value) columns(Limit) ...
columns(Yield) columns(Tolerance) columns(Class)]);
res_size = [res_size_row res_size_col];
## Resize scalars
Price = resize_scalar (res_size, Price, "PRICE");
Strike = resize_scalar (res_size, Strike, "STRIKE");
Rate = resize_scalar (res_size, Rate, "RATE");
Time = resize_scalar (res_size, Time, "TIME");
Value = resize_scalar (res_size, Value, "VALUE");
Limit = resize_scalar (res_size, Limit, "LIMIT");
Yield = resize_scalar (res_size, Yield, "YIELD");
Tolerance = resize_scalar (res_size, Tolerance, "TOLERANCE");
if (isscalar (Class))
Class = repmat ({Class}, res_size);
elseif (! isequal (size (Class), res_size))
error ("blsimpv: CLASS must be a scalar or cell array of conforming size with other inputs",
arg_name);
endif
## Check that all values in the cell array option are either boolean
## or the string call, and put. Replace the strings call and put by their
## respective boolean and then convert it into a boolean matrix.
if (iscell (Class))
bool_idx = cellfun ("islogical", Class);
call_idx = strcmpi (Class, "call");
put_idx = strcmpi (Class, "put");
if (! all (bool_idx | put_idx | call_idx))
error ("blsimpv: all values in OPTION must be logical, \"call\", or \"put\"");
endif
Class(call_idx) = true;
Class(put_idx) = false;
Class = cell2mat (Class);
endif
Volatility = zeros (res_size); # output matrix
for j = 1:res_size_row
for k = 1:res_size_col
## Make option set
## At the time of writing, fzero did not recognize the
## GradObj option.
opts = optimset ("fzero");
opts = optimset (opts, "TolX", Tolerance(j, k), "GradObj", "on");
## Construct function
if (Class(j, k)) # call
fun = @(x) blscall (Price(j, k), Strike(j, k), Rate(j, k), Time(j, k), x,
Yield(j, k)) - Value(j, k);
else # put
fun = @(x) blsput (Price(j, k), Strike(j, k), Rate(j, k), Time(j, k), x,
Yield(j, k)) - Value(j, k);
endif
## Solve
try
[x, fval, exitflag, output] = fzero (fun, [Tolerance(j, k) Limit(j, k)], opts);
if (exitflag != 1)
x = NaN;
endif
catch
x = NaN;
end_try_catch
Volatility(j, k) = x;
endfor
endfor
endfunction
function sc = resize_scalar (res_size, sc, arg_name);
if (isscalar (sc))
sc = repmat (sc, res_size);
elseif (! isequal (size(sc), res_size))
error ("blsimpv: %s must be a scalar or matrix of conforming size with other inputs",
arg_name);
endif
endfunction
function [C, v] = blscall (Price, Strike, Rate, Time, x, Yield)
C = blsprice (Price, Strike, Rate, Time, x, Yield);
v = blsvega (Price, Strike, Rate, Time, x, Yield);
endfunction
function [P, v] = blsput (Price, Strike, Rate, Time, x, Yield)
[~, P] = blsprice (Price, Strike, Rate, Time, x, Yield);
v = blsvega (Price, Strike, Rate, Time, x, Yield);
endfunction
## Tests
%!assert (blsimpv (100, 100, 0.04, 1, [9.9251 6.0040], 1, 0, 1e-6, [1 0]), [0.2 0.2], 1e-4)
## Test input validation
%!error blsimpv ()
%!error blsimpv (1)
%!error blsimpv (1, 2)
%!error blsimpv (1, 2, 3)
%!error blsimpv (1, 2, 3, 4)
%!error blsimpv (1, 2, 3, 4, 5, 6, 7, 8, 2)
|