/usr/share/octave/packages/financial-0.5.0/binprice.m is in octave-financial 0.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | ## Copyright (C) 2013 Parsiad Azimzadeh <parsiad.azimzadeh@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU Lesser General Public License as published by the Free
## Software Foundation; either version 3 of the License, or (at your option) any
## later version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
## for more details.
##
## You should have received a copy of the GNU Lesser General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{AssetPrice}, @var{OptionValue}] =} binprice (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Increment}, @var{Volatility}, @var{OptType})
## @deftypefnx {Function File} {[@var{AssetPrice}, @var{OptionValue}] =} binprice (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Increment}, @var{Volatility}, @var{OptType}, @var{DividendRate})
## @deftypefnx {Function File} {[@var{AssetPrice}, @var{OptionValue}] =} binprice (@var{Price}, @var{Strike}, @var{Rate}, @var{Time}, @var{Increment}, @var{Volatility}, @var{OptType}, @var{DividendRate}, @var{Dividend}, @var{ExDiv})
## Compute American call and put option prices using a binomial tree.
##
## @itemize @minus{}@minus{}
## @item
## Variable: @var{Price} The current price of the underlying asset.
## @item
## Variable: @var{Strike} The strike price the option is written on.
## @item
## Variable: @var{Rate} The risk-free interest rate.
## @item
## Variable: @var{Time} The time-to-expiry.
## @item
## Variable: @var{Increment} Time increment. @var{Increment} is rounded to
## ensure that @var{Time}/@var{Increment} is an integer.
## @item
## Variable: @var{Volatility} The volatility of the underlying asset.
## @item
## Variable: @var{OptType} Option type. 1 = call option, 0 = put option.
## @item
## Variable: @var{DividendRate} (Optional, default = 0) Annualized, continuously
## compounded rate of dividends of the underlying asset.
## @item
## Variable: @var{Dividend} (Optional, default = 0) The dividend payment at an
## ex-dividend date as specified by @var{ExDiv}.
## @item
## Variable: @var{ExDiv} (Optional, default = 0) A vector used to determine the
## ex-dividend dates. For each j, @var{ExDiv}(j) * @var{Increment} is the
## corresponding dividend date.
## @end itemize
##
## Computes the American call and put option prices using the
## Cox-Ross-Rubinstein binomial tree.
##
## Discrete dividends (i.e. @var{Dividend} and @var{ExDiv}) have not yet been
## implemented.
##
## Binomial trees are a particular explicit finite difference method for solving
## the Black-Scholes equation (see
## @cite{M. Rubinstein. On the relation between binomial and trinomial option
## pricing models. Journal of Derivatives, 8(2):47-50, 2000}),
## and exhibit linear convergence along with the usual strict stability
## requirements of an explicit method.
## The serious practitioner should consider using a more
## sophisticated method, and use binomial trees only for explanatory or
## heuristic purposes.
##
## @seealso{blkprice, blsprice}
## @end deftypefn
function [AssetPrice, OptionValue] = binprice (Price, Strike, Rate, Time, ...
Increment, Volatility, ...
OptType, DividendRate = 0, ...
Dividend = 0, ExDiv = 0 )
## Input checking
if (nargin < 7 || nargin > 10)
print_usage ();
elseif (! isbool (OptType) && ! isequal (OptType, 0) && ...
! isequal (OptType, 1))
error ("binprice: OPTTYPE must be logical, 0 (call) or 1 (put)");
elseif (! isscalar (Price) || ! isscalar (Strike) || ! isscalar (Rate) || ...
! isscalar (Increment) || !isscalar (Volatility) || ...
!isscalar (DividendRate))
error ("binprice: all inputs except DIVIDEND and EXDIV must be scalars");
elseif (! isreal (Price) || Price < 0)
error ("binprice: PRICE must be a nonnegative number");
elseif (! isreal (Strike) || Strike < 0)
error ("binprice: STRIKE must be a nonnegative number");
elseif (! isreal (Rate))
error ("binprice: RATE must be a number");
elseif (! isreal (Time) || Time <= 0)
error ("binprice: TIME must be a positive number");
elseif (! isreal (Increment) || Increment <= 0)
error ("binprice: INCREMENT must be a positive number");
elseif (! isreal (Volatility) || Volatility < 0)
error ("binprice: VOLATILITY must be a nonnegative number");
elseif (! isreal (DividendRate))
error ("binprice: DIVIDENDRATE must be a number");
elseif (! isequal (Dividend, 0) || ! isequal (ExDiv, 0))
error ("binprice: DIVIDEND and EXDIV not yet implemented");
endif
## Storage
N = round ( Time / Increment ) + 1;
AssetPrice = OptionValue = zeros (N);
Increment = Time / (N - 1);
## Return from up and down moves
u = exp (Volatility * sqrt (Increment));
d = 1 / u;
## Martingale measure
a = exp (Rate * Increment);
p = (a * exp (-DividendRate * Increment) - d) / (u - d);
q = 1 - p;
## Build tree
AssetPrice(1, 1) = Price;
for n = 2:N
AssetPrice(1:(n - 1), n) = u * AssetPrice(1:(n - 1), n - 1);
AssetPrice(n, n) = d * AssetPrice(n - 1, n - 1);
endfor
## Initial condition
opt = 2 * OptType - 1;
OptionValue(:, N) = max (opt * (AssetPrice(:, N) - Strike), 0);
## Time-stepping loop
for n = (N - 1):-1:1
HoldValue = (q * OptionValue(2:(n + 1), n + 1) + ...
p * OptionValue(1:n, n + 1)) / a;
OptionValue(1:n, n) = max (HoldValue, opt * (AssetPrice(1:n, n) - Strike));
endfor
endfunction
## Tests
%!test
%! [AssetPrice, OptionValue] = binprice (100, 100, 0.04, 1, 0.25, 0.2, 0, 0.01);
%! assert (OptionValue(1:2,1:2), [6.4701 2.2159; 0 11.0776], 1e-4)
## Test input validation
%!error binprice ()
%!error binprice (1)
%!error binprice (1, 2)
%!error binprice (1, 2, 3)
%!error binprice (1, 2, 3, 4)
%!error binprice (1, 2, 3, 4, 5)
%!error binprice (1, 2, 3, 4, 5, 6)
|