/usr/share/octave/4.0.0/etc/doc-cache is in octave-common 4.0.0-3ubuntu9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770 46771 46772 46773 46774 46775 46776 46777 46778 46779 46780 46781 46782 46783 46784 46785 46786 46787 46788 46789 46790 46791 46792 46793 46794 46795 46796 46797 46798 46799 46800 46801 46802 46803 46804 46805 46806 46807 46808 46809 46810 46811 46812 46813 46814 46815 46816 46817 46818 46819 46820 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860 46861 46862 46863 46864 46865 46866 46867 46868 46869 46870 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900 46901 46902 46903 46904 46905 46906 46907 46908 46909 46910 46911 46912 46913 46914 46915 46916 46917 46918 46919 46920 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 46964 46965 46966 46967 46968 46969 46970 46971 46972 46973 46974 46975 46976 46977 46978 46979 46980 46981 46982 46983 46984 46985 46986 46987 46988 46989 46990 46991 46992 46993 46994 46995 46996 46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020 47021 47022 47023 47024 47025 47026 47027 47028 47029 47030 47031 47032 47033 47034 47035 47036 47037 47038 47039 47040 47041 47042 47043 47044 47045 47046 47047 47048 47049 47050 47051 47052 47053 47054 47055 47056 47057 47058 47059 47060 47061 47062 47063 47064 47065 47066 47067 47068 47069 47070 47071 47072 47073 47074 47075 47076 47077 47078 47079 47080 47081 47082 47083 47084 47085 47086 47087 47088 47089 47090 47091 47092 47093 47094 47095 47096 47097 47098 47099 47100 47101 47102 47103 47104 47105 47106 47107 47108 47109 47110 47111 47112 47113 47114 47115 47116 47117 47118 47119 47120 47121 47122 47123 47124 47125 47126 47127 47128 47129 47130 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160 47161 47162 47163 47164 47165 47166 47167 47168 47169 47170 47171 47172 47173 47174 47175 47176 47177 47178 47179 47180 47181 47182 47183 47184 47185 47186 47187 47188 47189 47190 47191 47192 47193 47194 47195 47196 47197 47198 47199 47200 47201 47202 47203 47204 47205 47206 47207 47208 47209 47210 47211 47212 47213 47214 47215 47216 47217 47218 47219 47220 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230 47231 47232 47233 47234 47235 47236 47237 47238 47239 47240 47241 47242 47243 47244 47245 47246 47247 47248 47249 47250 47251 47252 47253 47254 47255 47256 47257 47258 47259 47260 47261 47262 47263 47264 47265 47266 47267 47268 47269 47270 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 47292 47293 47294 47295 47296 47297 47298 47299 47300 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310 47311 47312 47313 47314 47315 47316 47317 47318 47319 47320 47321 47322 47323 47324 47325 47326 47327 47328 47329 47330 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 47534 47535 47536 47537 47538 47539 47540 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550 47551 47552 47553 47554 47555 47556 47557 47558 47559 47560 47561 47562 47563 47564 47565 47566 47567 47568 47569 47570 47571 47572 47573 47574 47575 47576 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590 47591 47592 47593 47594 47595 47596 47597 47598 47599 47600 47601 47602 47603 47604 47605 47606 47607 47608 47609 47610 47611 47612 47613 47614 47615 47616 47617 47618 47619 47620 47621 47622 47623 47624 47625 47626 47627 47628 47629 47630 47631 47632 47633 47634 47635 47636 47637 47638 47639 47640 47641 47642 47643 47644 47645 47646 47647 47648 47649 47650 47651 47652 47653 47654 47655 47656 47657 47658 47659 47660 47661 47662 47663 47664 47665 47666 47667 47668 47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 47734 47735 47736 47737 47738 47739 47740 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930 47931 47932 47933 47934 47935 47936 47937 47938 47939 47940 47941 47942 47943 47944 47945 47946 47947 47948 47949 47950 47951 47952 47953 47954 47955 47956 47957 47958 47959 47960 47961 47962 47963 47964 47965 47966 47967 47968 47969 47970 47971 47972 47973 47974 47975 47976 47977 47978 47979 47980 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 48025 48026 48027 48028 48029 48030 48031 48032 48033 48034 48035 48036 48037 48038 48039 48040 48041 48042 48043 48044 48045 48046 48047 48048 48049 48050 48051 48052 48053 48054 48055 48056 48057 48058 48059 48060 48061 48062 48063 48064 48065 48066 48067 48068 48069 48070 48071 48072 48073 48074 48075 48076 48077 48078 48079 48080 48081 48082 48083 48084 48085 48086 48087 48088 48089 48090 48091 48092 48093 48094 48095 48096 48097 48098 48099 48100 48101 48102 48103 48104 48105 48106 48107 48108 48109 48110 48111 48112 48113 48114 48115 48116 48117 48118 48119 48120 48121 48122 48123 48124 48125 48126 48127 48128 48129 48130 48131 48132 48133 48134 48135 48136 48137 48138 48139 48140 48141 48142 48143 48144 48145 48146 48147 48148 48149 48150 48151 48152 48153 48154 48155 48156 48157 48158 48159 48160 48161 48162 48163 48164 48165 48166 48167 48168 48169 48170 48171 48172 48173 48174 48175 48176 48177 48178 48179 48180 48181 48182 48183 48184 48185 48186 48187 48188 48189 48190 48191 48192 48193 48194 48195 48196 48197 48198 48199 48200 48201 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 48238 48239 48240 48241 48242 48243 48244 48245 48246 48247 48248 48249 48250 48251 48252 48253 48254 48255 48256 48257 48258 48259 48260 48261 48262 48263 48264 48265 48266 48267 48268 48269 48270 48271 48272 48273 48274 48275 48276 48277 48278 48279 48280 48281 48282 48283 48284 48285 48286 48287 48288 48289 48290 48291 48292 48293 48294 48295 48296 48297 48298 48299 48300 48301 48302 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312 48313 48314 48315 48316 48317 48318 48319 48320 48321 48322 48323 48324 48325 48326 48327 48328 48329 48330 48331 48332 48333 48334 48335 48336 48337 48338 48339 48340 48341 48342 48343 48344 48345 48346 48347 48348 48349 48350 48351 48352 48353 48354 48355 48356 48357 48358 48359 48360 48361 48362 48363 48364 48365 48366 48367 48368 48369 48370 48371 48372 48373 48374 48375 48376 48377 48378 48379 48380 48381 48382 48383 48384 48385 48386 48387 48388 48389 48390 48391 48392 48393 48394 48395 48396 48397 48398 48399 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 48416 48417 48418 48419 48420 48421 48422 48423 48424 48425 48426 48427 48428 48429 48430 48431 48432 48433 48434 48435 48436 48437 48438 48439 48440 48441 48442 48443 48444 48445 48446 48447 48448 48449 48450 48451 48452 48453 48454 48455 48456 48457 48458 48459 48460 48461 48462 48463 48464 48465 48466 48467 48468 48469 48470 48471 48472 48473 48474 48475 48476 48477 48478 48479 48480 48481 48482 48483 48484 48485 48486 48487 48488 48489 48490 48491 48492 48493 48494 48495 48496 48497 48498 48499 48500 48501 48502 48503 48504 48505 48506 48507 48508 48509 48510 48511 48512 48513 48514 48515 48516 48517 48518 48519 48520 48521 48522 48523 48524 48525 48526 48527 48528 48529 48530 48531 48532 48533 48534 48535 48536 48537 48538 48539 48540 48541 48542 48543 48544 48545 48546 48547 48548 48549 48550 48551 48552 48553 48554 48555 48556 48557 48558 48559 48560 48561 48562 48563 48564 48565 48566 48567 48568 48569 48570 48571 48572 48573 48574 48575 48576 48577 48578 48579 48580 48581 48582 48583 48584 48585 48586 48587 48588 48589 48590 48591 48592 48593 48594 48595 48596 48597 48598 48599 48600 48601 48602 48603 48604 48605 48606 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 48622 48623 48624 48625 48626 48627 48628 48629 48630 48631 48632 48633 48634 48635 48636 48637 48638 48639 48640 48641 48642 48643 48644 48645 48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 48657 48658 48659 48660 48661 48662 48663 48664 48665 48666 48667 48668 48669 48670 48671 48672 48673 48674 48675 48676 48677 48678 48679 48680 48681 48682 48683 48684 48685 48686 48687 48688 48689 48690 48691 48692 48693 48694 48695 48696 48697 48698 48699 48700 48701 48702 48703 48704 48705 48706 48707 48708 48709 48710 48711 48712 48713 48714 48715 48716 48717 48718 48719 48720 48721 48722 48723 48724 48725 48726 48727 48728 48729 48730 48731 48732 48733 48734 48735 48736 48737 48738 48739 48740 48741 48742 48743 48744 48745 48746 48747 48748 48749 48750 48751 48752 48753 48754 48755 48756 48757 48758 48759 48760 48761 48762 48763 48764 48765 48766 48767 48768 48769 48770 48771 48772 48773 48774 48775 48776 48777 48778 48779 48780 48781 48782 48783 48784 48785 48786 48787 48788 48789 48790 48791 48792 48793 48794 48795 48796 48797 48798 48799 48800 48801 48802 48803 48804 48805 48806 48807 48808 48809 48810 48811 48812 48813 48814 48815 48816 48817 48818 48819 48820 48821 48822 48823 48824 48825 48826 48827 48828 48829 48830 48831 48832 48833 48834 48835 48836 48837 48838 48839 48840 48841 48842 48843 48844 48845 48846 48847 48848 48849 48850 48851 48852 48853 48854 48855 48856 48857 48858 48859 48860 48861 48862 48863 48864 48865 48866 48867 48868 48869 48870 48871 48872 48873 48874 48875 48876 48877 48878 48879 48880 48881 48882 48883 48884 48885 48886 48887 48888 48889 48890 48891 48892 48893 48894 48895 48896 48897 48898 48899 48900 48901 48902 48903 48904 48905 48906 48907 48908 48909 48910 48911 48912 48913 48914 48915 48916 48917 48918 48919 48920 48921 48922 48923 48924 48925 48926 48927 48928 48929 48930 48931 48932 48933 48934 48935 48936 48937 48938 48939 48940 48941 48942 48943 48944 48945 48946 48947 48948 48949 48950 48951 48952 48953 48954 48955 48956 48957 48958 48959 48960 48961 48962 48963 48964 48965 48966 48967 48968 48969 48970 48971 48972 48973 48974 48975 48976 48977 48978 48979 48980 48981 48982 48983 48984 48985 48986 48987 48988 48989 48990 48991 48992 48993 48994 48995 48996 48997 48998 48999 49000 49001 49002 49003 49004 49005 49006 49007 49008 49009 49010 49011 49012 49013 49014 49015 49016 49017 49018 49019 49020 49021 49022 49023 49024 49025 49026 49027 49028 49029 49030 49031 49032 49033 49034 49035 49036 49037 49038 49039 49040 49041 49042 49043 49044 49045 49046 49047 49048 49049 49050 49051 49052 49053 49054 49055 49056 49057 49058 49059 49060 49061 49062 49063 49064 49065 49066 49067 49068 49069 49070 49071 49072 49073 49074 49075 49076 49077 49078 49079 49080 49081 49082 49083 49084 49085 49086 49087 49088 49089 49090 49091 49092 49093 49094 49095 49096 49097 49098 49099 49100 49101 49102 49103 49104 49105 49106 49107 49108 49109 49110 49111 49112 49113 49114 49115 49116 49117 49118 49119 49120 49121 49122 49123 49124 49125 49126 49127 49128 49129 49130 49131 49132 49133 49134 49135 49136 49137 49138 49139 49140 49141 49142 49143 49144 49145 49146 49147 49148 49149 49150 49151 49152 49153 49154 49155 49156 49157 49158 49159 49160 49161 49162 49163 49164 49165 49166 49167 49168 49169 49170 49171 49172 49173 49174 49175 49176 49177 49178 49179 49180 49181 49182 49183 49184 49185 49186 49187 49188 49189 49190 49191 49192 49193 49194 49195 49196 49197 49198 49199 49200 49201 49202 49203 49204 49205 49206 49207 49208 49209 49210 49211 49212 49213 49214 49215 49216 49217 49218 49219 49220 49221 49222 49223 49224 49225 49226 49227 49228 49229 49230 49231 49232 49233 49234 49235 49236 49237 49238 49239 49240 49241 49242 49243 49244 49245 49246 49247 49248 49249 49250 49251 49252 49253 49254 49255 49256 49257 49258 49259 49260 49261 49262 49263 49264 49265 49266 49267 49268 49269 49270 49271 49272 49273 49274 49275 49276 49277 49278 49279 49280 49281 49282 49283 49284 49285 49286 49287 49288 49289 49290 49291 49292 49293 49294 49295 49296 49297 49298 49299 49300 49301 49302 49303 49304 49305 49306 49307 49308 49309 49310 49311 49312 49313 49314 49315 49316 49317 49318 49319 49320 49321 49322 49323 49324 49325 49326 49327 49328 49329 49330 49331 49332 49333 49334 49335 49336 49337 49338 49339 49340 49341 49342 49343 49344 49345 49346 49347 49348 49349 49350 49351 49352 49353 49354 49355 49356 49357 49358 49359 49360 49361 49362 49363 49364 49365 49366 49367 49368 49369 49370 49371 49372 49373 49374 49375 49376 49377 49378 49379 49380 49381 49382 49383 49384 49385 49386 49387 49388 49389 49390 49391 49392 49393 49394 49395 49396 49397 49398 49399 49400 49401 49402 49403 49404 49405 49406 49407 49408 49409 49410 49411 49412 49413 49414 49415 49416 49417 49418 49419 49420 49421 49422 49423 49424 49425 49426 49427 49428 49429 49430 49431 49432 49433 49434 49435 49436 49437 49438 49439 49440 49441 49442 49443 49444 49445 49446 49447 49448 49449 49450 49451 49452 49453 49454 49455 49456 49457 49458 49459 49460 49461 49462 49463 49464 49465 49466 49467 49468 49469 49470 49471 49472 49473 49474 49475 49476 49477 49478 49479 49480 49481 49482 49483 49484 49485 49486 49487 49488 49489 49490 49491 49492 49493 49494 49495 49496 49497 49498 49499 49500 49501 49502 49503 49504 49505 49506 49507 49508 49509 49510 49511 49512 49513 49514 49515 49516 49517 49518 49519 49520 49521 49522 49523 49524 49525 49526 49527 49528 49529 49530 49531 49532 49533 49534 49535 49536 49537 49538 49539 49540 49541 49542 49543 49544 49545 49546 49547 49548 49549 49550 49551 49552 49553 49554 49555 49556 49557 49558 49559 49560 49561 49562 49563 49564 49565 49566 49567 49568 49569 49570 49571 49572 49573 49574 49575 49576 49577 49578 49579 49580 49581 49582 49583 49584 49585 49586 49587 49588 49589 49590 49591 49592 49593 49594 49595 49596 49597 49598 49599 49600 49601 49602 49603 49604 49605 49606 49607 49608 49609 49610 49611 49612 49613 49614 49615 49616 49617 49618 49619 49620 49621 49622 49623 49624 49625 49626 49627 49628 49629 49630 49631 49632 49633 49634 49635 49636 49637 49638 49639 49640 49641 49642 49643 49644 49645 49646 49647 49648 49649 49650 49651 49652 49653 49654 49655 49656 49657 49658 49659 49660 49661 49662 49663 49664 49665 49666 49667 49668 49669 49670 49671 49672 49673 49674 49675 49676 49677 49678 49679 49680 49681 49682 49683 49684 49685 49686 49687 49688 49689 49690 49691 49692 49693 49694 49695 49696 49697 49698 49699 49700 49701 49702 49703 49704 49705 49706 49707 49708 49709 49710 49711 49712 49713 49714 49715 49716 49717 49718 49719 49720 49721 49722 49723 49724 49725 49726 49727 49728 49729 49730 49731 49732 49733 49734 49735 49736 49737 49738 49739 49740 49741 49742 49743 49744 49745 49746 49747 49748 49749 49750 49751 49752 49753 49754 49755 49756 49757 49758 49759 49760 49761 49762 49763 49764 49765 49766 49767 49768 49769 49770 49771 49772 49773 49774 49775 49776 49777 49778 49779 49780 49781 49782 49783 49784 49785 49786 49787 49788 49789 49790 49791 49792 49793 49794 49795 49796 49797 49798 49799 49800 49801 49802 49803 49804 49805 49806 49807 49808 49809 49810 49811 49812 49813 49814 49815 49816 49817 49818 49819 49820 49821 49822 49823 49824 49825 49826 49827 49828 49829 49830 49831 49832 49833 49834 49835 49836 49837 49838 49839 49840 49841 49842 49843 49844 49845 49846 49847 49848 49849 49850 49851 49852 49853 49854 49855 49856 49857 49858 49859 49860 49861 49862 49863 49864 49865 49866 49867 49868 49869 49870 49871 49872 49873 49874 49875 49876 49877 49878 49879 49880 49881 49882 49883 49884 49885 49886 49887 49888 49889 49890 49891 49892 49893 49894 49895 49896 49897 49898 49899 49900 49901 49902 49903 49904 49905 49906 49907 49908 49909 49910 49911 49912 49913 49914 49915 49916 49917 49918 49919 49920 49921 49922 49923 49924 49925 49926 49927 49928 49929 49930 49931 49932 49933 49934 49935 49936 49937 49938 49939 49940 49941 49942 49943 49944 49945 49946 49947 49948 49949 49950 49951 49952 49953 49954 49955 49956 49957 49958 49959 49960 49961 49962 49963 49964 49965 49966 49967 49968 49969 49970 49971 49972 49973 49974 49975 49976 49977 49978 49979 49980 49981 49982 49983 49984 49985 49986 49987 49988 49989 49990 49991 49992 49993 49994 49995 49996 49997 49998 49999 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009 50010 50011 50012 50013 50014 50015 50016 50017 50018 50019 50020 50021 50022 50023 50024 50025 50026 50027 50028 50029 50030 50031 50032 50033 50034 50035 50036 50037 50038 50039 50040 50041 50042 50043 50044 50045 50046 50047 50048 50049 50050 50051 50052 50053 50054 50055 50056 50057 50058 50059 50060 50061 50062 50063 50064 50065 50066 50067 50068 50069 50070 50071 50072 50073 50074 50075 50076 50077 50078 50079 50080 50081 50082 50083 50084 50085 50086 50087 50088 50089 50090 50091 50092 50093 50094 50095 50096 50097 50098 50099 50100 50101 50102 50103 50104 50105 50106 50107 50108 50109 50110 50111 50112 50113 50114 50115 50116 50117 50118 50119 50120 50121 50122 50123 50124 50125 50126 50127 50128 50129 50130 50131 50132 50133 50134 50135 50136 50137 50138 50139 50140 50141 50142 50143 50144 50145 50146 50147 50148 50149 50150 50151 50152 50153 50154 50155 50156 50157 50158 50159 50160 50161 50162 50163 50164 50165 50166 50167 50168 50169 50170 50171 50172 50173 50174 50175 50176 50177 50178 50179 50180 50181 50182 50183 50184 50185 50186 50187 50188 50189 50190 50191 50192 50193 50194 50195 50196 50197 50198 50199 50200 50201 50202 50203 50204 50205 50206 50207 50208 50209 50210 50211 50212 50213 50214 50215 50216 50217 50218 50219 50220 50221 50222 50223 50224 50225 50226 50227 50228 50229 50230 50231 50232 50233 50234 50235 50236 50237 50238 50239 50240 50241 50242 50243 50244 50245 50246 50247 50248 50249 50250 50251 50252 50253 50254 50255 50256 50257 50258 50259 50260 50261 50262 50263 50264 50265 50266 50267 50268 50269 50270 50271 50272 50273 50274 50275 50276 50277 50278 50279 50280 50281 50282 50283 50284 50285 50286 50287 50288 50289 50290 50291 50292 50293 50294 50295 50296 50297 50298 50299 50300 50301 50302 50303 50304 50305 50306 50307 50308 50309 50310 50311 50312 50313 50314 50315 50316 50317 50318 50319 50320 50321 50322 50323 50324 50325 50326 50327 50328 50329 50330 50331 50332 50333 50334 50335 50336 50337 50338 50339 50340 50341 50342 50343 50344 50345 50346 50347 50348 50349 50350 50351 50352 50353 50354 50355 50356 50357 50358 50359 50360 50361 50362 50363 50364 50365 50366 50367 50368 50369 50370 50371 50372 50373 50374 50375 50376 50377 50378 50379 50380 50381 50382 50383 50384 50385 50386 50387 50388 50389 50390 50391 50392 50393 50394 50395 50396 50397 50398 50399 50400 50401 50402 50403 50404 50405 50406 50407 50408 50409 50410 50411 50412 50413 50414 50415 50416 50417 50418 50419 50420 50421 50422 50423 50424 50425 50426 50427 50428 50429 50430 50431 50432 50433 50434 50435 50436 50437 50438 50439 50440 50441 50442 50443 50444 50445 50446 50447 50448 50449 50450 50451 50452 50453 50454 50455 50456 50457 50458 50459 50460 50461 50462 50463 50464 50465 50466 50467 50468 50469 50470 50471 50472 50473 50474 50475 50476 50477 50478 50479 50480 50481 50482 50483 50484 50485 50486 50487 50488 50489 50490 50491 50492 50493 50494 50495 50496 50497 50498 50499 50500 50501 50502 50503 50504 50505 50506 50507 50508 50509 50510 50511 50512 50513 50514 50515 50516 50517 50518 50519 50520 50521 50522 50523 50524 50525 50526 50527 50528 50529 50530 50531 50532 50533 50534 50535 50536 50537 50538 50539 50540 50541 50542 50543 50544 50545 50546 50547 50548 50549 50550 50551 50552 50553 50554 50555 50556 50557 50558 50559 50560 50561 50562 50563 50564 50565 50566 50567 50568 50569 50570 50571 50572 50573 50574 50575 50576 50577 50578 50579 50580 50581 50582 50583 50584 50585 50586 50587 50588 50589 50590 50591 50592 50593 50594 50595 50596 50597 50598 50599 50600 50601 50602 50603 50604 50605 50606 50607 50608 50609 50610 50611 50612 50613 50614 50615 50616 50617 50618 50619 50620 50621 50622 50623 50624 50625 50626 50627 50628 50629 50630 50631 50632 50633 50634 50635 50636 50637 50638 50639 50640 50641 50642 50643 50644 50645 50646 50647 50648 50649 50650 50651 50652 50653 50654 50655 50656 50657 50658 50659 50660 50661 50662 50663 50664 50665 50666 50667 50668 50669 50670 50671 50672 50673 50674 50675 50676 50677 50678 50679 50680 50681 50682 50683 50684 50685 50686 50687 50688 50689 50690 50691 50692 50693 50694 50695 50696 50697 50698 50699 50700 50701 50702 50703 50704 50705 50706 50707 50708 50709 50710 50711 50712 50713 50714 50715 50716 50717 50718 50719 50720 50721 50722 50723 50724 50725 50726 50727 50728 50729 50730 50731 50732 50733 50734 50735 50736 50737 50738 50739 50740 50741 50742 50743 50744 50745 50746 50747 50748 50749 50750 50751 50752 50753 50754 50755 50756 50757 50758 50759 50760 50761 50762 50763 50764 50765 50766 50767 50768 50769 50770 50771 50772 50773 50774 50775 50776 50777 50778 50779 50780 50781 50782 50783 50784 50785 50786 50787 50788 50789 50790 50791 50792 50793 50794 50795 50796 50797 50798 50799 50800 50801 50802 50803 50804 50805 50806 50807 50808 50809 50810 50811 50812 50813 50814 50815 50816 50817 50818 50819 50820 50821 50822 50823 50824 50825 50826 50827 50828 50829 50830 50831 50832 50833 50834 50835 50836 50837 50838 50839 50840 50841 50842 50843 50844 50845 50846 50847 50848 50849 50850 50851 50852 50853 50854 50855 50856 50857 50858 50859 50860 50861 50862 50863 50864 50865 50866 50867 50868 50869 50870 50871 50872 50873 50874 50875 50876 50877 50878 50879 50880 50881 50882 50883 50884 50885 50886 50887 50888 50889 50890 50891 50892 50893 50894 50895 50896 50897 50898 50899 50900 50901 50902 50903 50904 50905 50906 50907 50908 50909 50910 50911 50912 50913 50914 50915 50916 50917 50918 50919 50920 50921 50922 50923 50924 50925 50926 50927 50928 50929 50930 50931 50932 50933 50934 50935 50936 50937 50938 50939 50940 50941 50942 50943 50944 50945 50946 50947 50948 50949 50950 50951 50952 50953 50954 50955 50956 50957 50958 50959 50960 50961 50962 50963 50964 50965 50966 50967 50968 50969 50970 50971 50972 50973 50974 50975 50976 50977 50978 50979 50980 50981 50982 50983 50984 50985 50986 50987 50988 50989 50990 50991 50992 50993 50994 50995 50996 50997 50998 50999 51000 51001 51002 51003 51004 51005 51006 51007 51008 51009 51010 51011 51012 51013 51014 51015 51016 51017 51018 51019 51020 51021 51022 51023 51024 51025 51026 51027 51028 51029 51030 51031 51032 51033 51034 51035 51036 51037 51038 51039 51040 51041 51042 51043 51044 51045 51046 51047 51048 51049 51050 51051 51052 51053 51054 51055 51056 51057 51058 51059 51060 51061 51062 51063 51064 51065 51066 51067 51068 51069 51070 51071 51072 51073 51074 51075 51076 51077 51078 51079 51080 51081 51082 51083 51084 51085 51086 51087 51088 51089 51090 51091 51092 51093 51094 51095 51096 51097 51098 51099 51100 51101 51102 51103 51104 51105 51106 51107 51108 51109 51110 51111 51112 51113 51114 51115 51116 51117 51118 51119 51120 51121 51122 51123 51124 51125 51126 51127 51128 51129 51130 51131 51132 51133 51134 51135 51136 51137 51138 51139 51140 51141 51142 51143 51144 51145 51146 51147 51148 51149 51150 51151 51152 51153 51154 51155 51156 51157 51158 51159 51160 51161 51162 51163 51164 51165 51166 51167 51168 51169 51170 51171 51172 51173 51174 51175 51176 51177 51178 51179 51180 51181 51182 51183 51184 51185 51186 51187 51188 51189 51190 51191 51192 51193 51194 51195 51196 51197 51198 51199 51200 51201 51202 51203 51204 51205 51206 51207 51208 51209 51210 51211 51212 51213 51214 51215 51216 51217 51218 51219 51220 51221 51222 51223 51224 51225 51226 51227 51228 51229 51230 51231 51232 51233 51234 51235 51236 51237 51238 51239 51240 51241 51242 51243 51244 51245 51246 51247 51248 51249 51250 51251 51252 51253 51254 51255 51256 51257 51258 51259 51260 51261 51262 51263 51264 51265 51266 51267 51268 51269 51270 51271 51272 51273 51274 51275 51276 51277 51278 51279 51280 51281 51282 51283 51284 51285 51286 51287 51288 51289 51290 51291 51292 51293 51294 51295 51296 51297 51298 51299 51300 51301 51302 51303 51304 51305 51306 51307 51308 51309 51310 51311 51312 51313 51314 51315 51316 51317 51318 51319 51320 51321 51322 51323 51324 51325 51326 51327 51328 51329 51330 51331 51332 51333 51334 51335 51336 51337 51338 51339 51340 51341 51342 51343 51344 51345 51346 51347 51348 51349 51350 51351 51352 51353 51354 51355 51356 51357 51358 51359 51360 51361 51362 51363 51364 51365 51366 51367 51368 51369 51370 51371 51372 51373 51374 51375 51376 51377 51378 51379 51380 51381 51382 51383 51384 51385 51386 51387 51388 51389 51390 51391 51392 51393 51394 51395 51396 51397 51398 51399 51400 51401 51402 51403 51404 51405 51406 51407 51408 51409 51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425 51426 51427 51428 51429 51430 51431 51432 51433 51434 51435 51436 51437 51438 51439 51440 51441 51442 51443 51444 51445 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456 51457 51458 51459 51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51471 51472 51473 51474 51475 51476 51477 51478 51479 51480 51481 51482 51483 51484 51485 51486 51487 51488 51489 51490 51491 51492 51493 51494 51495 51496 51497 51498 51499 51500 51501 51502 51503 51504 51505 51506 51507 51508 51509 51510 51511 51512 51513 51514 51515 51516 51517 51518 51519 51520 51521 51522 51523 51524 51525 51526 51527 51528 51529 51530 51531 51532 51533 51534 51535 51536 51537 51538 51539 51540 51541 51542 51543 51544 51545 51546 51547 51548 51549 51550 51551 51552 51553 51554 51555 51556 51557 51558 51559 51560 51561 51562 51563 51564 51565 51566 51567 51568 51569 51570 51571 51572 51573 51574 51575 51576 51577 51578 51579 51580 51581 51582 51583 51584 51585 51586 51587 51588 51589 51590 51591 51592 51593 51594 51595 51596 51597 51598 51599 51600 51601 51602 51603 51604 51605 51606 51607 51608 51609 51610 51611 51612 51613 51614 51615 51616 51617 51618 51619 51620 51621 51622 51623 51624 51625 51626 51627 51628 51629 51630 51631 51632 51633 51634 51635 51636 51637 51638 51639 51640 51641 51642 51643 51644 51645 51646 51647 51648 51649 51650 51651 51652 51653 51654 51655 51656 51657 51658 51659 51660 51661 51662 51663 51664 51665 51666 51667 51668 51669 51670 51671 51672 51673 51674 51675 51676 51677 51678 51679 51680 51681 51682 51683 51684 51685 51686 51687 51688 51689 51690 51691 51692 51693 51694 51695 51696 51697 51698 51699 51700 51701 51702 51703 51704 51705 51706 51707 51708 51709 51710 51711 51712 51713 51714 51715 51716 51717 51718 51719 51720 51721 51722 51723 51724 51725 51726 51727 51728 51729 51730 51731 51732 51733 51734 51735 51736 51737 51738 51739 51740 51741 51742 51743 51744 51745 51746 51747 51748 51749 51750 51751 51752 51753 51754 51755 51756 51757 51758 51759 51760 51761 51762 51763 51764 51765 51766 51767 51768 51769 51770 51771 51772 51773 51774 51775 51776 51777 51778 51779 51780 51781 51782 51783 51784 51785 51786 51787 51788 51789 51790 51791 51792 51793 51794 51795 51796 51797 51798 51799 51800 51801 51802 51803 51804 51805 51806 51807 51808 51809 51810 51811 51812 51813 51814 51815 51816 51817 51818 51819 51820 51821 51822 51823 51824 51825 51826 51827 51828 51829 51830 51831 51832 51833 51834 51835 51836 51837 51838 51839 51840 51841 51842 51843 51844 51845 51846 51847 51848 51849 51850 51851 51852 51853 51854 51855 51856 51857 51858 51859 51860 51861 51862 51863 51864 51865 51866 51867 51868 51869 51870 51871 51872 51873 51874 51875 51876 51877 51878 51879 51880 51881 51882 51883 51884 51885 51886 51887 51888 51889 51890 51891 51892 51893 51894 51895 51896 51897 51898 51899 51900 51901 51902 51903 51904 51905 51906 51907 51908 51909 51910 51911 51912 51913 51914 51915 51916 51917 51918 51919 51920 51921 51922 51923 51924 51925 51926 51927 51928 51929 51930 51931 51932 51933 51934 51935 51936 51937 51938 51939 51940 51941 51942 51943 51944 51945 51946 51947 51948 51949 51950 51951 51952 51953 51954 51955 51956 51957 51958 51959 51960 51961 51962 51963 51964 51965 51966 51967 51968 51969 51970 51971 51972 51973 51974 51975 51976 51977 51978 51979 51980 51981 51982 51983 51984 51985 51986 51987 51988 51989 51990 51991 51992 51993 51994 51995 51996 51997 51998 51999 52000 52001 52002 52003 52004 52005 52006 52007 52008 52009 52010 52011 52012 52013 52014 52015 52016 52017 52018 52019 52020 52021 52022 52023 52024 52025 52026 52027 52028 52029 52030 52031 52032 52033 52034 52035 52036 52037 52038 52039 52040 52041 52042 52043 52044 52045 52046 52047 52048 52049 52050 52051 52052 52053 52054 52055 52056 52057 52058 52059 52060 52061 52062 52063 52064 52065 52066 52067 52068 52069 52070 52071 52072 52073 52074 52075 52076 52077 52078 52079 52080 52081 52082 52083 52084 52085 52086 52087 52088 52089 52090 52091 52092 52093 52094 52095 52096 52097 52098 52099 52100 52101 52102 52103 52104 52105 52106 52107 52108 52109 52110 52111 52112 52113 52114 52115 52116 52117 52118 52119 52120 52121 52122 52123 52124 52125 52126 52127 52128 52129 52130 52131 52132 52133 52134 52135 52136 52137 52138 52139 52140 52141 52142 52143 52144 52145 52146 52147 52148 52149 52150 52151 52152 52153 52154 52155 52156 52157 52158 52159 52160 52161 52162 52163 52164 52165 52166 52167 52168 52169 52170 52171 52172 52173 52174 52175 52176 52177 52178 52179 52180 52181 52182 52183 52184 52185 52186 52187 52188 52189 52190 52191 52192 52193 52194 52195 52196 52197 52198 52199 52200 52201 52202 52203 52204 52205 52206 52207 52208 52209 52210 52211 52212 52213 52214 52215 52216 52217 52218 52219 52220 52221 52222 52223 52224 52225 52226 52227 52228 52229 52230 52231 52232 52233 52234 52235 52236 52237 52238 52239 52240 52241 52242 52243 52244 52245 52246 52247 52248 52249 52250 52251 52252 52253 52254 52255 52256 52257 52258 52259 52260 52261 52262 52263 52264 52265 52266 52267 52268 52269 52270 52271 52272 52273 52274 52275 52276 52277 52278 52279 52280 52281 52282 52283 52284 52285 52286 52287 52288 52289 52290 52291 52292 52293 52294 52295 52296 52297 52298 52299 52300 52301 52302 52303 52304 52305 52306 52307 52308 52309 52310 52311 52312 52313 52314 52315 52316 52317 52318 52319 52320 52321 52322 52323 52324 52325 52326 52327 52328 52329 52330 52331 52332 52333 52334 52335 52336 52337 52338 52339 52340 52341 52342 52343 52344 52345 52346 52347 52348 52349 52350 52351 52352 52353 52354 52355 52356 52357 52358 52359 52360 52361 52362 52363 52364 52365 52366 52367 52368 52369 52370 52371 52372 52373 52374 52375 52376 52377 52378 52379 52380 52381 52382 52383 52384 52385 52386 52387 52388 52389 52390 52391 52392 52393 52394 52395 52396 52397 52398 52399 52400 52401 52402 52403 52404 52405 52406 52407 52408 52409 52410 52411 52412 52413 52414 52415 52416 52417 52418 52419 52420 52421 52422 52423 52424 52425 52426 52427 52428 52429 52430 52431 52432 52433 52434 52435 52436 52437 52438 52439 52440 52441 52442 52443 52444 52445 52446 52447 52448 52449 52450 52451 52452 52453 52454 52455 52456 52457 52458 52459 52460 52461 52462 52463 52464 52465 52466 52467 52468 52469 52470 52471 52472 52473 52474 52475 52476 52477 52478 52479 52480 52481 52482 52483 52484 52485 52486 52487 52488 52489 52490 52491 52492 52493 52494 52495 52496 52497 52498 52499 52500 52501 52502 52503 52504 52505 52506 52507 52508 52509 52510 52511 52512 52513 52514 52515 52516 52517 52518 52519 52520 52521 52522 52523 52524 52525 52526 52527 52528 52529 52530 52531 52532 52533 52534 52535 52536 52537 52538 52539 52540 52541 52542 52543 52544 52545 52546 52547 52548 52549 52550 52551 52552 52553 52554 52555 52556 52557 52558 52559 52560 52561 52562 52563 52564 52565 52566 52567 52568 52569 52570 52571 52572 52573 52574 52575 52576 52577 52578 52579 52580 52581 52582 52583 52584 52585 52586 52587 52588 52589 52590 52591 52592 52593 52594 52595 52596 52597 52598 52599 52600 52601 52602 52603 52604 52605 52606 52607 52608 52609 52610 52611 52612 52613 52614 52615 52616 52617 52618 52619 52620 52621 52622 52623 52624 52625 52626 52627 52628 52629 52630 52631 52632 52633 52634 52635 52636 52637 52638 52639 52640 52641 52642 52643 52644 52645 52646 52647 52648 52649 52650 52651 52652 52653 52654 52655 52656 52657 52658 52659 52660 52661 52662 52663 52664 52665 52666 52667 52668 52669 52670 52671 52672 52673 52674 52675 52676 52677 52678 52679 52680 52681 52682 52683 52684 52685 52686 52687 52688 52689 52690 52691 52692 52693 52694 52695 52696 52697 52698 52699 52700 52701 52702 52703 52704 52705 52706 52707 52708 52709 52710 52711 52712 52713 52714 52715 52716 52717 52718 52719 52720 52721 52722 52723 52724 52725 52726 52727 52728 52729 52730 52731 52732 52733 52734 52735 52736 52737 52738 52739 52740 52741 52742 52743 52744 52745 52746 52747 52748 52749 52750 52751 52752 52753 52754 52755 52756 52757 52758 52759 52760 52761 52762 52763 52764 52765 52766 52767 52768 52769 52770 52771 52772 52773 52774 52775 52776 52777 52778 52779 52780 52781 52782 52783 52784 52785 52786 52787 52788 52789 52790 52791 52792 52793 52794 52795 52796 52797 52798 52799 52800 52801 52802 52803 52804 52805 52806 52807 52808 52809 52810 52811 52812 52813 52814 52815 52816 52817 52818 52819 52820 52821 52822 52823 52824 52825 52826 52827 52828 52829 52830 52831 52832 52833 52834 52835 52836 52837 52838 52839 52840 52841 52842 52843 52844 52845 52846 52847 52848 52849 52850 52851 52852 52853 52854 52855 52856 52857 52858 52859 52860 52861 52862 52863 52864 52865 52866 52867 52868 52869 52870 52871 52872 52873 52874 52875 52876 52877 52878 52879 52880 52881 52882 52883 52884 52885 52886 52887 52888 52889 52890 52891 52892 52893 52894 52895 52896 52897 52898 52899 52900 52901 52902 52903 52904 52905 52906 52907 52908 52909 52910 52911 52912 52913 52914 52915 52916 52917 52918 52919 52920 52921 52922 52923 52924 52925 52926 52927 52928 52929 52930 52931 52932 52933 52934 52935 52936 52937 52938 52939 52940 52941 52942 52943 52944 52945 52946 52947 52948 52949 52950 52951 52952 52953 52954 52955 52956 52957 52958 52959 52960 52961 52962 52963 52964 52965 52966 52967 52968 52969 52970 52971 52972 52973 52974 52975 52976 52977 52978 52979 52980 52981 52982 52983 52984 52985 52986 52987 52988 52989 52990 52991 52992 52993 52994 52995 52996 52997 52998 52999 53000 53001 53002 53003 53004 53005 53006 53007 53008 53009 53010 53011 53012 53013 53014 53015 53016 53017 53018 53019 53020 53021 53022 53023 53024 53025 53026 53027 53028 53029 53030 53031 53032 53033 53034 53035 53036 53037 53038 53039 53040 53041 53042 53043 53044 53045 53046 53047 53048 53049 53050 53051 53052 53053 53054 53055 53056 53057 53058 53059 53060 53061 53062 53063 53064 53065 53066 53067 53068 53069 53070 53071 53072 53073 53074 53075 53076 53077 53078 53079 53080 53081 53082 53083 53084 53085 53086 53087 53088 53089 53090 53091 53092 53093 53094 53095 53096 53097 53098 53099 53100 53101 53102 53103 53104 53105 53106 53107 53108 53109 53110 53111 53112 53113 53114 53115 53116 53117 53118 53119 53120 53121 53122 53123 53124 53125 53126 53127 53128 53129 53130 53131 53132 53133 53134 53135 53136 53137 53138 53139 53140 53141 53142 53143 53144 53145 53146 53147 53148 53149 53150 53151 53152 53153 53154 53155 53156 53157 53158 53159 53160 53161 53162 53163 53164 53165 53166 53167 53168 53169 53170 53171 53172 53173 53174 53175 53176 53177 53178 53179 53180 53181 53182 53183 53184 53185 53186 53187 53188 53189 53190 53191 53192 53193 53194 53195 53196 53197 53198 53199 53200 53201 53202 53203 53204 53205 53206 53207 53208 53209 53210 53211 53212 53213 53214 53215 53216 53217 53218 53219 53220 53221 53222 53223 53224 53225 53226 53227 53228 53229 53230 53231 53232 53233 53234 53235 53236 53237 53238 53239 53240 53241 53242 53243 53244 53245 53246 53247 53248 53249 53250 53251 53252 53253 53254 53255 53256 53257 53258 53259 53260 53261 53262 53263 53264 53265 53266 53267 53268 53269 53270 53271 53272 53273 53274 53275 53276 53277 53278 53279 53280 53281 53282 53283 53284 53285 53286 53287 53288 53289 53290 53291 53292 53293 53294 53295 53296 53297 53298 53299 53300 53301 53302 53303 53304 53305 53306 53307 53308 53309 53310 53311 53312 53313 53314 53315 53316 53317 53318 53319 53320 53321 53322 53323 53324 53325 53326 53327 53328 53329 53330 53331 53332 53333 53334 53335 53336 53337 53338 53339 53340 53341 53342 53343 53344 53345 53346 53347 53348 53349 53350 53351 53352 53353 53354 53355 53356 53357 53358 53359 53360 53361 53362 53363 53364 53365 53366 53367 53368 53369 53370 53371 53372 53373 53374 53375 53376 53377 53378 53379 53380 53381 53382 53383 53384 53385 53386 53387 53388 53389 53390 53391 53392 53393 53394 53395 53396 53397 53398 53399 53400 53401 53402 53403 53404 53405 53406 53407 53408 53409 53410 53411 53412 53413 53414 53415 53416 53417 53418 53419 53420 53421 53422 53423 53424 53425 53426 53427 53428 53429 53430 53431 53432 53433 53434 53435 53436 53437 53438 53439 53440 53441 53442 53443 53444 53445 53446 53447 53448 53449 53450 53451 53452 53453 53454 53455 53456 53457 53458 53459 53460 53461 53462 53463 53464 53465 53466 53467 53468 53469 53470 53471 53472 53473 53474 53475 53476 53477 53478 53479 53480 53481 53482 53483 53484 53485 53486 53487 53488 53489 53490 53491 53492 53493 53494 53495 53496 53497 53498 53499 53500 53501 53502 53503 53504 53505 53506 53507 53508 53509 53510 53511 53512 53513 53514 53515 53516 53517 53518 53519 53520 53521 53522 53523 53524 53525 53526 53527 53528 53529 53530 53531 53532 53533 53534 53535 53536 53537 53538 53539 53540 53541 53542 53543 53544 53545 53546 53547 53548 53549 53550 53551 53552 53553 53554 53555 53556 53557 53558 53559 53560 53561 53562 53563 53564 53565 53566 53567 53568 53569 53570 53571 53572 53573 53574 53575 53576 53577 53578 53579 53580 53581 53582 53583 53584 53585 53586 53587 53588 53589 53590 53591 53592 53593 53594 53595 53596 53597 53598 53599 53600 53601 53602 53603 53604 53605 53606 53607 53608 53609 53610 53611 53612 53613 53614 53615 53616 53617 53618 53619 53620 53621 53622 53623 53624 53625 53626 53627 53628 53629 53630 53631 53632 53633 53634 53635 53636 53637 53638 53639 53640 53641 53642 53643 53644 53645 53646 53647 53648 53649 53650 53651 53652 53653 53654 53655 53656 53657 53658 53659 53660 53661 53662 53663 53664 53665 53666 53667 53668 53669 53670 53671 53672 53673 53674 53675 53676 53677 53678 53679 53680 53681 53682 53683 53684 53685 53686 53687 53688 53689 53690 53691 53692 53693 53694 53695 53696 53697 53698 53699 53700 53701 53702 53703 53704 53705 53706 53707 53708 53709 53710 53711 53712 53713 53714 53715 53716 53717 53718 53719 53720 53721 53722 53723 53724 53725 53726 53727 53728 53729 53730 53731 53732 53733 53734 53735 53736 53737 53738 53739 53740 53741 53742 53743 53744 53745 53746 53747 53748 53749 53750 53751 53752 53753 53754 53755 53756 53757 53758 53759 53760 53761 53762 53763 53764 53765 53766 53767 53768 53769 53770 53771 53772 53773 53774 53775 53776 53777 53778 53779 53780 53781 53782 53783 53784 53785 53786 53787 53788 53789 53790 53791 53792 53793 53794 53795 53796 53797 53798 53799 53800 53801 53802 53803 53804 53805 53806 53807 53808 53809 53810 53811 53812 53813 53814 53815 53816 53817 53818 53819 53820 53821 53822 53823 53824 53825 53826 53827 53828 53829 53830 53831 53832 53833 53834 53835 53836 53837 53838 53839 53840 53841 53842 53843 53844 53845 53846 53847 53848 53849 53850 53851 53852 53853 53854 53855 53856 53857 53858 53859 53860 53861 53862 53863 53864 53865 53866 53867 53868 53869 53870 53871 53872 53873 53874 53875 53876 53877 53878 53879 53880 53881 53882 53883 53884 53885 53886 53887 53888 53889 53890 53891 53892 53893 53894 53895 53896 53897 53898 53899 53900 53901 53902 53903 53904 53905 53906 53907 53908 53909 53910 53911 53912 53913 53914 53915 53916 53917 53918 53919 53920 53921 53922 53923 53924 53925 53926 53927 53928 53929 53930 53931 53932 53933 53934 53935 53936 53937 53938 53939 53940 53941 53942 53943 53944 53945 53946 53947 53948 53949 53950 53951 53952 53953 53954 53955 53956 53957 53958 53959 53960 53961 53962 53963 53964 53965 53966 53967 53968 53969 53970 53971 53972 53973 53974 53975 53976 53977 53978 53979 53980 53981 53982 53983 53984 53985 53986 53987 53988 53989 53990 53991 53992 53993 53994 53995 53996 53997 53998 53999 54000 54001 54002 54003 54004 54005 54006 54007 54008 54009 54010 54011 54012 54013 54014 54015 54016 54017 54018 54019 54020 54021 54022 54023 54024 54025 54026 54027 54028 54029 54030 54031 54032 54033 54034 54035 54036 54037 54038 54039 54040 54041 54042 54043 54044 54045 54046 54047 54048 54049 54050 54051 54052 54053 54054 54055 54056 54057 54058 54059 54060 54061 54062 54063 54064 54065 54066 54067 54068 54069 54070 54071 54072 54073 54074 54075 54076 54077 54078 54079 54080 54081 54082 54083 54084 54085 54086 54087 54088 54089 54090 54091 54092 54093 54094 54095 54096 54097 54098 54099 54100 54101 54102 54103 54104 54105 54106 54107 54108 54109 54110 54111 54112 54113 54114 54115 54116 54117 54118 54119 54120 54121 54122 54123 54124 54125 54126 54127 54128 54129 54130 54131 54132 54133 54134 54135 54136 54137 54138 54139 54140 54141 54142 54143 54144 54145 54146 54147 54148 54149 54150 54151 54152 54153 54154 54155 54156 54157 54158 54159 54160 54161 54162 54163 54164 54165 54166 54167 54168 54169 54170 54171 54172 54173 54174 54175 54176 54177 54178 54179 54180 54181 54182 54183 54184 54185 54186 54187 54188 54189 54190 54191 54192 54193 54194 54195 54196 54197 54198 54199 54200 54201 54202 54203 54204 54205 54206 54207 54208 54209 54210 54211 54212 54213 54214 54215 54216 54217 54218 54219 54220 54221 54222 54223 54224 54225 54226 54227 54228 54229 54230 54231 54232 54233 54234 54235 54236 54237 54238 54239 54240 54241 54242 54243 54244 54245 54246 54247 54248 54249 54250 54251 54252 54253 54254 54255 54256 54257 54258 54259 54260 54261 54262 54263 54264 54265 54266 54267 54268 54269 54270 54271 54272 54273 54274 54275 54276 54277 54278 54279 54280 54281 54282 54283 54284 54285 54286 54287 54288 54289 54290 54291 54292 54293 54294 54295 54296 54297 54298 54299 54300 54301 54302 54303 54304 54305 54306 54307 54308 54309 54310 54311 54312 54313 54314 54315 54316 54317 54318 54319 54320 54321 54322 54323 54324 54325 54326 54327 54328 54329 54330 54331 54332 54333 54334 54335 54336 54337 54338 54339 54340 54341 54342 54343 54344 54345 54346 54347 54348 54349 54350 54351 54352 54353 54354 54355 54356 54357 54358 54359 54360 54361 54362 54363 54364 54365 54366 54367 54368 54369 54370 54371 54372 54373 54374 54375 54376 54377 54378 54379 54380 54381 54382 54383 54384 54385 54386 54387 54388 54389 54390 54391 54392 54393 54394 54395 54396 54397 54398 54399 54400 54401 54402 54403 54404 54405 54406 54407 54408 54409 54410 54411 54412 54413 54414 54415 54416 54417 54418 54419 54420 54421 54422 54423 54424 54425 54426 54427 54428 54429 54430 54431 54432 54433 54434 54435 54436 54437 54438 54439 54440 54441 54442 54443 54444 54445 54446 54447 54448 54449 54450 54451 54452 54453 54454 54455 54456 54457 54458 54459 54460 54461 54462 54463 54464 54465 54466 54467 54468 54469 54470 54471 54472 54473 54474 54475 54476 54477 54478 54479 54480 54481 54482 54483 54484 54485 54486 54487 54488 54489 54490 54491 54492 54493 54494 54495 54496 54497 54498 54499 54500 54501 54502 54503 54504 54505 54506 54507 54508 54509 54510 54511 54512 54513 54514 54515 54516 54517 54518 54519 54520 54521 54522 54523 54524 54525 54526 54527 54528 54529 54530 54531 54532 54533 54534 54535 54536 54537 54538 54539 54540 54541 54542 54543 54544 54545 54546 54547 54548 54549 54550 54551 54552 54553 54554 54555 54556 54557 54558 54559 54560 54561 54562 54563 54564 54565 54566 54567 54568 54569 54570 54571 54572 54573 54574 54575 54576 54577 54578 54579 54580 54581 54582 54583 54584 54585 54586 54587 54588 54589 54590 54591 54592 54593 54594 54595 54596 54597 54598 54599 54600 54601 54602 54603 54604 54605 54606 54607 54608 54609 54610 54611 54612 54613 54614 54615 54616 54617 54618 54619 54620 54621 54622 54623 54624 54625 54626 54627 54628 54629 54630 54631 54632 54633 54634 54635 54636 54637 54638 54639 54640 54641 54642 54643 54644 54645 54646 54647 54648 54649 54650 54651 54652 54653 54654 54655 54656 54657 54658 54659 54660 54661 54662 54663 54664 54665 54666 54667 54668 54669 54670 54671 54672 54673 54674 54675 54676 54677 54678 54679 54680 54681 54682 54683 54684 54685 54686 54687 54688 54689 54690 54691 54692 54693 54694 54695 54696 54697 54698 54699 54700 54701 54702 54703 54704 54705 54706 54707 54708 54709 54710 54711 54712 54713 54714 54715 54716 54717 54718 54719 54720 54721 54722 54723 54724 54725 54726 54727 54728 54729 54730 54731 54732 54733 54734 54735 54736 54737 54738 54739 54740 54741 54742 54743 54744 54745 54746 54747 54748 54749 54750 54751 54752 54753 54754 54755 54756 54757 54758 54759 54760 54761 54762 54763 54764 54765 54766 54767 54768 54769 54770 54771 54772 54773 54774 54775 54776 54777 54778 54779 54780 54781 54782 54783 54784 54785 54786 54787 54788 54789 54790 54791 54792 54793 54794 54795 54796 54797 54798 54799 54800 54801 54802 54803 54804 54805 54806 54807 54808 54809 54810 54811 54812 54813 54814 54815 54816 54817 54818 54819 54820 54821 54822 54823 54824 54825 54826 54827 54828 54829 54830 54831 54832 54833 54834 54835 54836 54837 54838 54839 54840 54841 54842 54843 54844 54845 54846 54847 54848 54849 54850 54851 54852 54853 54854 54855 54856 54857 54858 54859 54860 54861 54862 54863 54864 54865 54866 54867 54868 54869 54870 54871 54872 54873 54874 54875 54876 54877 54878 54879 54880 54881 54882 54883 54884 54885 54886 54887 54888 54889 54890 54891 54892 54893 54894 54895 54896 54897 54898 54899 54900 54901 54902 54903 54904 54905 54906 54907 54908 54909 54910 54911 54912 54913 54914 54915 54916 54917 54918 54919 54920 54921 54922 54923 54924 54925 54926 54927 54928 54929 54930 54931 54932 54933 54934 54935 54936 54937 54938 54939 54940 54941 54942 54943 54944 54945 54946 54947 54948 54949 54950 54951 54952 54953 54954 54955 54956 54957 54958 54959 54960 54961 54962 54963 54964 54965 54966 54967 54968 54969 54970 54971 54972 54973 54974 54975 54976 54977 54978 54979 54980 54981 54982 54983 54984 54985 54986 54987 54988 54989 54990 54991 54992 54993 54994 54995 54996 54997 54998 54999 55000 55001 55002 55003 55004 55005 55006 55007 55008 55009 55010 55011 55012 55013 55014 55015 55016 55017 55018 55019 55020 55021 55022 55023 55024 55025 55026 55027 55028 55029 55030 55031 55032 55033 55034 55035 55036 55037 55038 55039 55040 55041 55042 55043 55044 55045 55046 55047 55048 55049 55050 55051 55052 55053 55054 55055 55056 55057 55058 55059 55060 55061 55062 55063 55064 55065 55066 55067 55068 55069 55070 55071 55072 55073 55074 55075 55076 55077 55078 55079 55080 55081 55082 55083 55084 55085 55086 55087 55088 55089 55090 55091 55092 55093 55094 55095 55096 55097 55098 55099 55100 55101 55102 55103 55104 55105 55106 55107 55108 55109 55110 55111 55112 55113 55114 55115 55116 55117 55118 55119 55120 55121 55122 55123 55124 55125 55126 55127 55128 55129 55130 55131 55132 55133 55134 55135 55136 55137 55138 55139 55140 55141 55142 55143 55144 55145 55146 55147 55148 55149 55150 55151 55152 55153 55154 55155 55156 55157 55158 55159 55160 55161 55162 55163 55164 55165 55166 55167 55168 55169 55170 55171 55172 55173 55174 55175 55176 55177 55178 55179 55180 55181 55182 55183 55184 55185 55186 55187 55188 55189 55190 55191 55192 55193 55194 55195 55196 55197 55198 55199 55200 55201 55202 55203 55204 55205 55206 55207 55208 55209 55210 55211 55212 55213 55214 55215 55216 55217 55218 55219 55220 55221 55222 55223 55224 55225 55226 55227 55228 55229 55230 55231 55232 55233 55234 55235 55236 55237 55238 55239 55240 55241 55242 55243 55244 55245 55246 55247 55248 55249 55250 55251 55252 55253 55254 55255 55256 55257 55258 55259 55260 55261 55262 55263 55264 55265 55266 55267 55268 55269 55270 55271 55272 55273 55274 55275 55276 55277 55278 55279 55280 55281 55282 55283 55284 55285 55286 55287 55288 55289 55290 55291 55292 55293 55294 55295 55296 55297 55298 55299 55300 55301 55302 55303 55304 55305 55306 55307 55308 55309 55310 55311 55312 55313 55314 55315 55316 55317 55318 55319 55320 55321 55322 55323 55324 55325 55326 55327 55328 55329 55330 55331 55332 55333 55334 55335 55336 55337 55338 55339 55340 55341 55342 55343 55344 55345 55346 55347 55348 55349 55350 55351 55352 55353 55354 55355 55356 55357 55358 55359 55360 55361 55362 55363 55364 55365 55366 55367 55368 55369 55370 55371 55372 55373 55374 55375 55376 55377 55378 55379 55380 55381 55382 55383 55384 55385 55386 55387 55388 55389 55390 55391 55392 55393 55394 55395 55396 55397 55398 55399 55400 55401 55402 55403 55404 55405 55406 55407 55408 55409 55410 55411 55412 55413 55414 55415 55416 55417 55418 55419 55420 55421 55422 55423 55424 55425 55426 55427 55428 55429 55430 55431 55432 55433 55434 55435 55436 55437 55438 55439 55440 55441 55442 55443 55444 55445 55446 55447 55448 55449 55450 55451 55452 55453 55454 55455 55456 55457 55458 55459 55460 55461 55462 55463 55464 55465 55466 55467 55468 55469 55470 55471 55472 55473 55474 55475 55476 55477 55478 55479 55480 55481 55482 55483 55484 55485 55486 55487 55488 55489 55490 55491 55492 55493 55494 55495 55496 55497 55498 55499 55500 55501 55502 55503 55504 55505 55506 55507 55508 55509 55510 55511 55512 55513 55514 55515 55516 55517 55518 55519 55520 55521 55522 55523 55524 55525 55526 55527 55528 55529 55530 55531 55532 55533 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 55549 55550 55551 55552 55553 55554 55555 55556 55557 55558 55559 55560 55561 55562 55563 55564 55565 55566 55567 55568 55569 55570 55571 55572 55573 55574 55575 55576 55577 55578 55579 55580 55581 55582 55583 55584 55585 55586 55587 55588 55589 55590 55591 55592 55593 55594 55595 55596 55597 55598 55599 55600 55601 55602 55603 55604 55605 55606 55607 55608 55609 55610 55611 55612 55613 55614 55615 55616 55617 55618 55619 55620 55621 55622 55623 55624 55625 55626 55627 55628 55629 55630 55631 55632 55633 55634 55635 55636 55637 55638 55639 55640 55641 55642 55643 55644 55645 55646 55647 55648 55649 55650 55651 55652 55653 55654 55655 55656 55657 55658 55659 55660 55661 55662 55663 55664 55665 55666 55667 55668 55669 55670 55671 55672 55673 55674 55675 55676 55677 55678 55679 55680 55681 55682 55683 55684 55685 55686 55687 55688 55689 55690 55691 55692 55693 55694 55695 55696 55697 55698 55699 55700 55701 55702 55703 55704 55705 55706 55707 55708 55709 55710 55711 55712 55713 55714 55715 55716 55717 55718 55719 55720 55721 55722 55723 55724 55725 55726 55727 55728 55729 55730 55731 55732 55733 55734 55735 55736 55737 55738 55739 55740 55741 55742 55743 55744 55745 55746 55747 55748 55749 55750 55751 55752 55753 55754 55755 55756 55757 55758 55759 55760 55761 55762 55763 55764 55765 55766 55767 55768 55769 55770 55771 55772 55773 55774 55775 55776 55777 55778 55779 55780 55781 55782 55783 55784 55785 55786 55787 55788 55789 55790 55791 55792 55793 55794 55795 55796 55797 55798 55799 55800 55801 55802 55803 55804 55805 55806 55807 55808 55809 55810 55811 55812 55813 55814 55815 55816 55817 55818 55819 55820 55821 55822 55823 55824 55825 55826 55827 55828 55829 55830 55831 55832 55833 55834 55835 55836 55837 55838 55839 55840 55841 55842 55843 55844 55845 55846 55847 55848 55849 55850 55851 55852 55853 55854 55855 55856 55857 55858 55859 55860 55861 55862 55863 55864 55865 55866 55867 55868 55869 55870 55871 55872 55873 55874 55875 55876 55877 55878 55879 55880 55881 55882 55883 55884 55885 55886 55887 55888 55889 55890 55891 55892 55893 55894 55895 55896 55897 55898 55899 55900 55901 55902 55903 55904 55905 55906 55907 55908 55909 55910 55911 55912 55913 55914 55915 55916 55917 55918 55919 55920 55921 55922 55923 55924 55925 55926 55927 55928 55929 55930 55931 55932 55933 55934 55935 55936 55937 55938 55939 55940 55941 55942 55943 55944 55945 55946 55947 55948 55949 55950 55951 55952 55953 55954 55955 55956 55957 55958 55959 55960 55961 55962 55963 55964 55965 55966 55967 55968 55969 55970 55971 55972 55973 55974 55975 55976 55977 55978 55979 55980 55981 55982 55983 55984 55985 55986 55987 55988 55989 55990 55991 55992 55993 55994 55995 55996 55997 55998 55999 56000 56001 56002 56003 56004 56005 56006 56007 56008 56009 56010 56011 56012 56013 56014 56015 56016 56017 56018 56019 56020 56021 56022 56023 56024 56025 56026 56027 56028 56029 56030 56031 56032 56033 56034 56035 56036 56037 56038 56039 56040 56041 56042 56043 56044 56045 56046 56047 56048 56049 56050 56051 56052 56053 56054 56055 56056 56057 56058 56059 56060 56061 56062 56063 56064 56065 56066 56067 56068 56069 56070 56071 56072 56073 56074 56075 56076 56077 56078 56079 56080 56081 56082 56083 56084 56085 56086 56087 56088 56089 56090 56091 56092 56093 56094 56095 56096 56097 56098 56099 56100 56101 56102 56103 56104 56105 56106 56107 56108 56109 56110 56111 56112 56113 56114 56115 56116 56117 56118 56119 56120 56121 56122 56123 56124 56125 56126 56127 56128 56129 56130 56131 56132 56133 56134 56135 56136 56137 56138 56139 56140 56141 56142 56143 56144 56145 56146 56147 56148 56149 56150 56151 56152 56153 56154 56155 56156 56157 56158 56159 56160 56161 56162 56163 56164 56165 56166 56167 56168 56169 56170 56171 56172 56173 56174 56175 56176 56177 56178 56179 56180 56181 56182 56183 56184 56185 56186 56187 56188 56189 56190 56191 56192 56193 56194 56195 56196 56197 56198 56199 56200 56201 56202 56203 56204 56205 56206 56207 56208 56209 56210 56211 56212 56213 56214 56215 56216 56217 56218 56219 56220 56221 56222 56223 56224 56225 56226 56227 56228 56229 56230 56231 56232 56233 56234 56235 56236 56237 56238 56239 56240 56241 56242 56243 56244 56245 56246 56247 56248 56249 56250 56251 56252 56253 56254 56255 56256 56257 56258 56259 56260 56261 56262 56263 56264 56265 56266 56267 56268 56269 56270 56271 56272 56273 56274 56275 56276 56277 56278 56279 56280 56281 56282 56283 56284 56285 56286 56287 56288 56289 56290 56291 56292 56293 56294 56295 56296 56297 56298 56299 56300 56301 56302 56303 56304 56305 56306 56307 56308 56309 56310 56311 56312 56313 56314 56315 56316 56317 56318 56319 56320 56321 56322 56323 56324 56325 56326 56327 56328 56329 56330 56331 56332 56333 56334 56335 56336 56337 56338 56339 56340 56341 56342 56343 56344 56345 56346 56347 56348 56349 56350 56351 56352 56353 56354 56355 56356 56357 56358 56359 56360 56361 56362 56363 56364 56365 56366 56367 56368 56369 56370 56371 56372 56373 56374 56375 56376 56377 56378 56379 56380 56381 56382 56383 56384 56385 56386 56387 56388 56389 56390 56391 56392 56393 56394 56395 56396 56397 56398 56399 56400 56401 56402 56403 56404 56405 56406 56407 56408 56409 56410 56411 56412 56413 56414 56415 56416 56417 56418 56419 56420 56421 56422 56423 56424 56425 56426 56427 56428 56429 56430 56431 56432 56433 56434 56435 56436 56437 56438 56439 56440 56441 56442 56443 56444 56445 56446 56447 56448 56449 56450 56451 56452 56453 56454 56455 56456 56457 56458 56459 56460 56461 56462 56463 56464 56465 56466 56467 56468 56469 56470 56471 56472 56473 56474 56475 56476 56477 56478 56479 56480 56481 56482 56483 56484 56485 56486 56487 56488 56489 56490 56491 56492 56493 56494 56495 56496 56497 56498 56499 56500 56501 56502 56503 56504 56505 56506 56507 56508 56509 56510 56511 56512 56513 56514 56515 56516 56517 56518 56519 56520 56521 56522 56523 56524 56525 56526 56527 56528 56529 56530 56531 56532 56533 56534 56535 56536 56537 56538 56539 56540 56541 56542 56543 56544 56545 56546 56547 56548 56549 56550 56551 56552 56553 56554 56555 56556 56557 56558 56559 56560 56561 56562 56563 56564 56565 56566 56567 56568 56569 56570 56571 56572 56573 56574 56575 56576 56577 56578 56579 56580 56581 56582 56583 56584 56585 56586 56587 56588 56589 56590 56591 56592 56593 56594 56595 56596 56597 56598 56599 56600 56601 56602 56603 56604 56605 56606 56607 56608 56609 56610 56611 56612 56613 56614 56615 56616 56617 56618 56619 56620 56621 56622 56623 56624 56625 56626 56627 56628 56629 56630 56631 56632 56633 56634 56635 56636 56637 56638 56639 56640 56641 56642 56643 56644 56645 56646 56647 56648 56649 56650 56651 56652 56653 56654 56655 56656 56657 56658 56659 56660 56661 56662 56663 56664 56665 56666 56667 56668 56669 56670 56671 56672 56673 56674 56675 56676 56677 56678 56679 56680 56681 56682 56683 56684 56685 56686 56687 56688 56689 56690 56691 56692 56693 56694 56695 56696 56697 56698 56699 56700 56701 56702 56703 56704 56705 56706 56707 56708 56709 56710 56711 56712 56713 56714 56715 56716 56717 56718 56719 56720 56721 56722 56723 56724 56725 56726 56727 56728 56729 56730 56731 56732 56733 56734 56735 56736 56737 56738 56739 56740 56741 56742 56743 56744 56745 56746 56747 56748 56749 56750 56751 56752 56753 56754 56755 56756 56757 56758 56759 56760 56761 56762 56763 56764 56765 56766 56767 56768 56769 56770 56771 56772 56773 56774 56775 56776 56777 56778 56779 56780 56781 56782 56783 56784 56785 56786 56787 56788 56789 56790 56791 56792 56793 56794 56795 56796 56797 56798 56799 56800 56801 56802 56803 56804 56805 56806 56807 56808 56809 56810 56811 56812 56813 56814 56815 56816 56817 56818 56819 56820 56821 56822 56823 56824 56825 56826 56827 56828 56829 56830 56831 56832 56833 56834 56835 56836 56837 56838 56839 56840 56841 56842 56843 56844 56845 56846 56847 56848 56849 56850 56851 56852 56853 56854 56855 56856 56857 56858 56859 56860 56861 56862 56863 56864 56865 56866 56867 56868 56869 56870 56871 56872 56873 56874 56875 56876 56877 56878 56879 56880 56881 56882 56883 56884 56885 56886 56887 56888 56889 56890 56891 56892 56893 56894 56895 56896 56897 56898 56899 56900 56901 56902 56903 56904 56905 56906 56907 56908 56909 56910 56911 56912 56913 56914 56915 56916 56917 56918 56919 56920 56921 56922 56923 56924 56925 56926 56927 56928 56929 56930 56931 56932 56933 56934 56935 56936 56937 56938 56939 56940 56941 56942 56943 56944 56945 56946 56947 56948 56949 56950 56951 56952 56953 56954 56955 56956 56957 56958 56959 56960 56961 56962 56963 56964 56965 56966 56967 56968 56969 56970 56971 56972 56973 56974 56975 56976 56977 56978 56979 56980 56981 56982 56983 56984 56985 56986 56987 56988 56989 56990 56991 56992 56993 56994 56995 56996 56997 56998 56999 57000 57001 57002 57003 57004 57005 57006 57007 57008 57009 57010 57011 57012 57013 57014 57015 57016 57017 57018 57019 57020 57021 57022 57023 57024 57025 57026 57027 57028 57029 57030 57031 57032 57033 57034 57035 57036 57037 57038 57039 57040 57041 57042 57043 57044 57045 57046 57047 57048 57049 57050 57051 57052 57053 57054 57055 57056 57057 57058 57059 57060 57061 57062 57063 57064 57065 57066 57067 57068 57069 57070 57071 57072 57073 57074 57075 57076 57077 57078 57079 57080 57081 57082 57083 57084 57085 57086 57087 57088 57089 57090 57091 57092 57093 57094 57095 57096 57097 57098 57099 57100 57101 57102 57103 57104 57105 57106 57107 57108 57109 57110 57111 57112 57113 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57129 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57153 57154 57155 57156 57157 57158 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57169 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57186 57187 57188 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57230 57231 57232 57233 57234 57235 57236 57237 57238 57239 57240 57241 57242 57243 57244 57245 57246 57247 57248 57249 57250 57251 57252 57253 57254 57255 57256 57257 57258 57259 57260 57261 57262 57263 57264 57265 57266 57267 57268 57269 57270 57271 57272 57273 57274 57275 57276 57277 57278 57279 57280 57281 57282 57283 57284 57285 57286 57287 57288 57289 57290 57291 57292 57293 57294 57295 57296 57297 57298 57299 57300 57301 57302 57303 57304 57305 57306 57307 57308 57309 57310 57311 57312 57313 57314 57315 57316 57317 57318 57319 57320 57321 57322 57323 57324 57325 57326 57327 57328 57329 57330 57331 57332 57333 57334 57335 57336 57337 57338 57339 57340 57341 57342 57343 57344 57345 57346 57347 57348 57349 57350 57351 57352 57353 57354 57355 57356 57357 57358 57359 57360 57361 57362 57363 57364 57365 57366 57367 57368 57369 57370 57371 57372 57373 57374 57375 57376 57377 57378 57379 57380 57381 57382 57383 57384 57385 57386 57387 57388 57389 57390 57391 57392 57393 57394 57395 57396 57397 57398 57399 57400 57401 57402 57403 57404 57405 57406 57407 57408 57409 57410 57411 57412 57413 57414 57415 57416 57417 57418 57419 57420 57421 57422 57423 57424 57425 57426 57427 57428 57429 57430 57431 57432 57433 57434 57435 57436 57437 57438 57439 57440 57441 57442 57443 57444 57445 57446 57447 57448 57449 57450 57451 57452 57453 57454 57455 57456 57457 57458 57459 57460 57461 57462 57463 57464 57465 57466 57467 57468 57469 57470 57471 57472 57473 57474 57475 57476 57477 57478 57479 57480 57481 57482 57483 57484 57485 57486 57487 57488 57489 57490 57491 57492 57493 57494 57495 57496 57497 57498 57499 57500 57501 57502 57503 57504 57505 57506 57507 57508 57509 57510 57511 57512 57513 57514 57515 57516 57517 57518 57519 57520 57521 57522 57523 57524 57525 57526 57527 57528 57529 57530 57531 57532 57533 57534 57535 57536 57537 57538 57539 57540 57541 57542 57543 57544 57545 57546 57547 57548 57549 57550 57551 57552 57553 57554 57555 57556 57557 57558 57559 57560 57561 57562 57563 57564 57565 57566 57567 57568 57569 57570 57571 57572 57573 57574 57575 57576 57577 57578 57579 57580 57581 57582 57583 57584 57585 57586 57587 57588 57589 57590 57591 57592 57593 57594 57595 57596 57597 57598 57599 57600 57601 57602 57603 57604 57605 57606 57607 57608 57609 57610 57611 57612 57613 57614 57615 57616 57617 57618 57619 57620 57621 57622 57623 57624 57625 57626 57627 57628 57629 57630 57631 57632 57633 57634 57635 57636 57637 57638 57639 57640 57641 57642 57643 57644 57645 57646 57647 57648 57649 57650 57651 57652 57653 57654 57655 57656 57657 57658 57659 57660 57661 57662 57663 57664 57665 57666 57667 57668 57669 57670 57671 57672 57673 57674 57675 57676 57677 57678 57679 57680 57681 57682 57683 57684 57685 57686 57687 57688 57689 57690 57691 57692 57693 57694 57695 57696 57697 57698 57699 57700 57701 57702 57703 57704 57705 57706 57707 57708 57709 57710 57711 57712 57713 57714 57715 57716 57717 57718 57719 57720 57721 57722 57723 57724 57725 57726 57727 57728 57729 57730 57731 57732 57733 57734 57735 57736 57737 57738 57739 57740 57741 57742 57743 57744 57745 57746 57747 57748 57749 57750 57751 57752 57753 57754 57755 57756 57757 57758 57759 57760 57761 57762 57763 57764 57765 57766 57767 57768 57769 57770 57771 57772 57773 57774 57775 57776 57777 57778 57779 57780 57781 57782 57783 57784 57785 57786 57787 57788 57789 57790 57791 57792 57793 57794 57795 57796 57797 57798 57799 57800 57801 57802 57803 57804 57805 57806 57807 57808 57809 57810 57811 57812 57813 57814 57815 57816 57817 57818 57819 57820 57821 57822 57823 57824 57825 57826 57827 57828 57829 57830 57831 57832 57833 57834 57835 57836 57837 57838 57839 57840 57841 57842 57843 57844 57845 57846 57847 57848 57849 57850 57851 57852 57853 57854 57855 57856 57857 57858 57859 57860 57861 57862 57863 57864 57865 57866 57867 57868 57869 57870 57871 57872 57873 57874 57875 57876 57877 57878 57879 57880 57881 57882 57883 57884 57885 57886 57887 57888 57889 57890 57891 57892 57893 57894 57895 57896 57897 57898 57899 57900 57901 57902 57903 57904 57905 57906 57907 57908 57909 57910 57911 57912 57913 57914 57915 57916 57917 57918 57919 57920 57921 57922 57923 57924 57925 57926 57927 57928 57929 57930 57931 57932 57933 57934 57935 57936 57937 57938 57939 57940 57941 57942 57943 57944 57945 57946 57947 57948 57949 57950 57951 57952 57953 57954 57955 57956 57957 57958 57959 57960 57961 57962 57963 57964 57965 57966 57967 57968 57969 57970 57971 57972 57973 57974 57975 57976 57977 57978 57979 57980 57981 57982 57983 57984 57985 57986 57987 57988 57989 57990 57991 57992 57993 57994 57995 57996 57997 57998 57999 58000 58001 58002 58003 58004 58005 58006 58007 58008 58009 58010 58011 58012 58013 58014 58015 58016 58017 58018 58019 58020 58021 58022 58023 58024 58025 58026 58027 58028 58029 58030 58031 58032 58033 58034 58035 58036 58037 58038 58039 58040 58041 58042 58043 58044 58045 58046 58047 58048 58049 58050 58051 58052 58053 58054 58055 58056 58057 58058 58059 58060 58061 58062 58063 58064 58065 58066 58067 58068 58069 58070 58071 58072 58073 58074 58075 58076 58077 58078 58079 58080 58081 58082 58083 58084 58085 58086 58087 58088 58089 58090 58091 58092 58093 58094 58095 58096 58097 58098 58099 58100 58101 58102 58103 58104 58105 58106 58107 58108 58109 58110 58111 58112 58113 58114 58115 58116 58117 58118 58119 58120 58121 58122 58123 58124 58125 58126 58127 58128 58129 58130 58131 58132 58133 58134 58135 58136 58137 58138 58139 58140 58141 58142 58143 58144 58145 58146 58147 58148 58149 58150 58151 58152 58153 58154 58155 58156 58157 58158 58159 58160 58161 58162 58163 58164 58165 58166 58167 58168 58169 58170 58171 58172 58173 58174 58175 58176 58177 58178 58179 58180 58181 58182 58183 58184 58185 58186 58187 58188 58189 58190 58191 58192 58193 58194 58195 58196 58197 58198 58199 58200 58201 58202 58203 58204 58205 58206 58207 58208 58209 58210 58211 58212 58213 58214 58215 58216 58217 58218 58219 58220 58221 58222 58223 58224 58225 58226 58227 58228 58229 58230 58231 58232 58233 58234 58235 58236 58237 58238 58239 58240 58241 58242 58243 58244 58245 58246 58247 58248 58249 58250 58251 58252 58253 58254 58255 58256 58257 58258 58259 58260 58261 58262 58263 58264 58265 58266 58267 58268 58269 58270 58271 58272 58273 58274 58275 58276 58277 58278 58279 58280 58281 58282 58283 58284 58285 58286 58287 58288 58289 58290 58291 58292 58293 58294 58295 58296 58297 58298 58299 58300 58301 58302 58303 58304 58305 58306 58307 58308 58309 58310 58311 58312 58313 58314 58315 58316 58317 58318 58319 58320 58321 58322 58323 58324 58325 58326 58327 58328 58329 58330 58331 58332 58333 58334 58335 58336 58337 58338 58339 58340 58341 58342 58343 58344 58345 58346 58347 58348 58349 58350 58351 58352 58353 58354 58355 58356 58357 58358 58359 58360 58361 58362 58363 58364 58365 58366 58367 58368 58369 58370 58371 58372 58373 58374 58375 58376 58377 58378 58379 58380 58381 58382 58383 58384 58385 58386 58387 58388 58389 58390 58391 58392 58393 58394 58395 58396 58397 58398 58399 58400 58401 58402 58403 58404 58405 58406 58407 58408 58409 58410 58411 58412 58413 58414 58415 58416 58417 58418 58419 58420 58421 58422 58423 58424 58425 58426 58427 58428 58429 58430 58431 58432 58433 58434 58435 58436 58437 58438 58439 58440 58441 58442 58443 58444 58445 58446 58447 58448 58449 58450 58451 58452 58453 58454 58455 58456 58457 58458 58459 58460 58461 58462 58463 58464 58465 58466 58467 58468 58469 58470 58471 58472 58473 58474 58475 58476 58477 58478 58479 58480 58481 58482 58483 58484 58485 58486 58487 58488 58489 58490 58491 58492 58493 58494 58495 58496 58497 58498 58499 58500 58501 58502 58503 58504 58505 58506 58507 58508 58509 58510 58511 58512 58513 58514 58515 58516 58517 58518 58519 58520 58521 58522 58523 58524 58525 58526 58527 58528 58529 58530 58531 58532 58533 58534 58535 58536 58537 58538 58539 58540 58541 58542 58543 58544 58545 58546 58547 58548 58549 58550 58551 58552 58553 58554 58555 58556 58557 58558 58559 58560 58561 58562 58563 58564 58565 58566 58567 58568 58569 58570 58571 58572 58573 58574 58575 58576 58577 58578 58579 58580 58581 58582 58583 58584 58585 58586 58587 58588 58589 58590 58591 58592 58593 58594 58595 58596 58597 58598 58599 58600 58601 58602 58603 58604 58605 58606 58607 58608 58609 58610 58611 58612 58613 58614 58615 58616 58617 58618 58619 58620 58621 58622 58623 58624 58625 58626 58627 58628 58629 58630 58631 58632 58633 58634 58635 58636 58637 58638 58639 58640 58641 58642 58643 58644 58645 58646 58647 58648 58649 58650 58651 58652 58653 58654 58655 58656 58657 58658 58659 58660 58661 58662 58663 58664 58665 58666 58667 58668 58669 58670 58671 58672 58673 58674 58675 58676 58677 58678 58679 58680 58681 58682 58683 58684 58685 58686 58687 58688 58689 58690 58691 58692 58693 58694 58695 58696 58697 58698 58699 58700 58701 58702 58703 58704 58705 58706 58707 58708 58709 58710 58711 58712 58713 58714 58715 58716 58717 58718 58719 58720 58721 58722 58723 58724 58725 58726 58727 58728 58729 58730 58731 58732 58733 58734 58735 58736 58737 58738 58739 58740 58741 58742 58743 58744 58745 58746 58747 58748 58749 58750 58751 58752 58753 58754 58755 58756 58757 58758 58759 58760 58761 58762 58763 58764 58765 58766 58767 58768 58769 58770 58771 58772 58773 58774 58775 58776 58777 58778 58779 58780 58781 58782 58783 58784 58785 58786 58787 58788 58789 58790 58791 58792 58793 58794 58795 58796 58797 58798 58799 58800 58801 58802 58803 58804 58805 58806 58807 58808 58809 58810 58811 58812 58813 58814 58815 58816 58817 58818 58819 58820 58821 58822 58823 58824 58825 58826 58827 58828 58829 58830 58831 58832 58833 58834 58835 58836 58837 58838 58839 58840 58841 58842 58843 58844 58845 58846 58847 58848 58849 58850 58851 58852 58853 58854 58855 58856 58857 58858 58859 58860 58861 58862 58863 58864 58865 58866 58867 58868 58869 58870 58871 58872 58873 58874 58875 58876 58877 58878 58879 58880 58881 58882 58883 58884 58885 58886 58887 58888 58889 58890 58891 58892 58893 58894 58895 58896 58897 58898 58899 58900 58901 58902 58903 58904 58905 58906 58907 58908 58909 58910 58911 58912 58913 58914 58915 58916 58917 58918 58919 58920 58921 58922 58923 58924 58925 58926 58927 58928 58929 58930 58931 58932 58933 58934 58935 58936 58937 58938 58939 58940 58941 58942 58943 58944 58945 58946 58947 58948 58949 58950 58951 58952 58953 58954 58955 58956 58957 58958 58959 58960 58961 58962 58963 58964 58965 58966 58967 58968 58969 58970 58971 58972 58973 58974 58975 58976 58977 58978 58979 58980 58981 58982 58983 58984 58985 58986 58987 58988 58989 58990 58991 58992 58993 58994 58995 58996 58997 58998 58999 59000 59001 59002 59003 59004 59005 59006 59007 59008 59009 59010 59011 59012 59013 59014 59015 59016 59017 59018 59019 59020 59021 59022 59023 59024 59025 59026 59027 59028 59029 59030 59031 59032 59033 59034 59035 59036 59037 59038 59039 59040 59041 59042 59043 59044 59045 59046 59047 59048 59049 59050 59051 59052 59053 59054 59055 59056 59057 59058 59059 59060 59061 59062 59063 59064 59065 59066 59067 59068 59069 59070 59071 59072 59073 59074 59075 59076 59077 59078 59079 59080 59081 59082 59083 59084 59085 59086 59087 59088 59089 59090 59091 59092 59093 59094 59095 59096 59097 59098 59099 59100 59101 59102 59103 59104 59105 59106 59107 59108 59109 59110 59111 59112 59113 59114 59115 59116 59117 59118 59119 59120 59121 59122 59123 59124 59125 59126 59127 59128 59129 59130 59131 59132 59133 59134 59135 59136 59137 59138 59139 59140 59141 59142 59143 59144 59145 59146 59147 59148 59149 59150 59151 59152 59153 59154 59155 59156 59157 59158 59159 59160 59161 59162 59163 59164 59165 59166 59167 59168 59169 59170 59171 59172 59173 59174 59175 59176 59177 59178 59179 59180 59181 59182 59183 59184 59185 59186 59187 59188 59189 59190 59191 59192 59193 59194 59195 59196 59197 59198 59199 59200 59201 59202 59203 59204 59205 59206 59207 59208 59209 59210 59211 59212 59213 59214 59215 59216 59217 59218 59219 59220 59221 59222 59223 59224 59225 59226 59227 59228 59229 59230 59231 59232 59233 59234 59235 59236 59237 59238 59239 59240 59241 59242 59243 59244 59245 59246 59247 59248 59249 59250 59251 59252 59253 59254 59255 59256 59257 59258 59259 59260 59261 59262 59263 59264 59265 59266 59267 59268 59269 59270 59271 59272 59273 59274 59275 59276 59277 59278 59279 59280 59281 59282 59283 59284 59285 59286 59287 59288 59289 59290 59291 59292 59293 59294 59295 59296 59297 59298 59299 59300 59301 59302 59303 59304 59305 59306 59307 59308 59309 59310 59311 59312 59313 59314 59315 59316 59317 59318 59319 59320 59321 59322 59323 59324 59325 59326 59327 59328 59329 59330 59331 59332 59333 59334 59335 59336 59337 59338 59339 59340 59341 59342 59343 59344 59345 59346 59347 59348 59349 59350 59351 59352 59353 59354 59355 59356 59357 59358 59359 59360 59361 59362 59363 59364 59365 59366 59367 59368 59369 59370 59371 59372 59373 59374 59375 59376 59377 59378 59379 59380 59381 59382 59383 59384 59385 59386 59387 59388 59389 59390 59391 59392 59393 59394 59395 59396 59397 59398 59399 59400 59401 59402 59403 59404 59405 59406 59407 59408 59409 59410 59411 59412 59413 59414 59415 59416 59417 59418 59419 59420 59421 59422 59423 59424 59425 59426 59427 59428 59429 59430 59431 59432 59433 59434 59435 59436 59437 59438 59439 59440 59441 59442 59443 59444 59445 59446 59447 59448 59449 59450 59451 59452 59453 59454 59455 59456 59457 59458 59459 59460 59461 59462 59463 59464 59465 59466 59467 59468 59469 59470 59471 59472 59473 59474 59475 59476 59477 59478 59479 59480 59481 59482 59483 59484 59485 59486 59487 59488 59489 59490 59491 59492 59493 59494 59495 59496 59497 59498 59499 59500 59501 59502 59503 59504 59505 59506 59507 59508 59509 59510 59511 59512 59513 59514 59515 59516 59517 59518 59519 59520 59521 59522 59523 59524 59525 59526 59527 59528 59529 59530 59531 59532 59533 59534 59535 59536 59537 59538 59539 59540 59541 59542 59543 59544 59545 59546 59547 59548 59549 59550 59551 59552 59553 59554 59555 59556 59557 59558 59559 59560 59561 59562 59563 59564 59565 59566 59567 59568 59569 59570 59571 59572 59573 59574 59575 59576 59577 59578 59579 59580 59581 59582 59583 59584 59585 59586 59587 59588 59589 59590 59591 59592 59593 59594 59595 59596 59597 59598 59599 59600 59601 59602 59603 59604 59605 59606 59607 59608 59609 59610 59611 59612 59613 59614 59615 59616 59617 59618 59619 59620 59621 59622 59623 59624 59625 59626 59627 59628 59629 59630 59631 59632 59633 59634 59635 59636 59637 59638 59639 59640 59641 59642 59643 59644 59645 59646 59647 59648 59649 59650 59651 59652 59653 59654 59655 59656 59657 59658 59659 59660 59661 59662 59663 59664 59665 59666 59667 59668 59669 59670 59671 59672 59673 59674 59675 59676 59677 59678 59679 59680 59681 59682 59683 59684 59685 59686 59687 59688 59689 59690 59691 59692 59693 59694 59695 59696 59697 59698 59699 59700 59701 59702 59703 59704 59705 59706 59707 59708 59709 59710 59711 59712 59713 59714 59715 59716 59717 59718 59719 59720 59721 59722 59723 59724 59725 59726 59727 59728 59729 59730 59731 59732 59733 59734 59735 59736 59737 59738 59739 59740 59741 59742 59743 59744 59745 59746 59747 59748 59749 59750 59751 59752 59753 59754 59755 59756 59757 59758 59759 59760 59761 59762 59763 59764 59765 59766 59767 59768 59769 59770 59771 59772 59773 59774 59775 59776 59777 59778 59779 59780 59781 59782 59783 59784 59785 59786 59787 59788 59789 59790 59791 59792 59793 59794 59795 59796 59797 59798 59799 59800 59801 59802 59803 59804 59805 59806 59807 59808 59809 59810 59811 59812 59813 59814 59815 59816 59817 59818 59819 59820 59821 59822 59823 59824 59825 59826 59827 59828 59829 59830 59831 59832 59833 59834 59835 59836 59837 59838 59839 59840 59841 59842 59843 59844 59845 59846 59847 59848 59849 59850 59851 59852 59853 59854 59855 59856 59857 59858 59859 59860 59861 59862 59863 59864 59865 59866 59867 59868 59869 59870 59871 59872 59873 59874 59875 59876 59877 59878 59879 59880 59881 59882 59883 59884 59885 59886 59887 59888 59889 59890 59891 59892 59893 59894 59895 59896 59897 59898 59899 59900 59901 59902 59903 59904 59905 59906 59907 59908 59909 59910 59911 59912 59913 59914 59915 59916 59917 59918 59919 59920 59921 59922 59923 59924 59925 59926 59927 59928 59929 59930 59931 59932 59933 59934 59935 59936 59937 59938 59939 59940 59941 59942 59943 59944 59945 59946 59947 59948 59949 59950 59951 59952 59953 59954 59955 59956 59957 59958 59959 59960 59961 59962 59963 59964 59965 59966 59967 59968 59969 59970 59971 59972 59973 59974 59975 59976 59977 59978 59979 59980 59981 59982 59983 59984 59985 59986 59987 59988 59989 59990 59991 59992 59993 59994 59995 59996 59997 59998 59999 60000 60001 60002 60003 60004 60005 60006 60007 60008 60009 60010 60011 60012 60013 60014 60015 60016 60017 60018 60019 60020 60021 60022 60023 60024 60025 60026 60027 60028 60029 60030 60031 60032 60033 60034 60035 60036 60037 60038 60039 60040 60041 60042 60043 60044 60045 60046 60047 60048 60049 60050 60051 60052 60053 60054 60055 60056 60057 60058 60059 60060 60061 60062 60063 60064 60065 60066 60067 60068 60069 60070 60071 60072 60073 60074 60075 60076 60077 60078 60079 60080 60081 60082 60083 60084 60085 60086 60087 60088 60089 60090 60091 60092 60093 60094 60095 60096 60097 60098 60099 60100 60101 60102 60103 60104 60105 60106 60107 60108 60109 60110 60111 60112 60113 60114 60115 60116 60117 60118 60119 60120 60121 60122 60123 60124 60125 60126 60127 60128 60129 60130 60131 60132 60133 60134 60135 60136 60137 60138 60139 60140 60141 60142 60143 60144 60145 60146 60147 60148 60149 60150 60151 60152 60153 60154 60155 60156 60157 60158 60159 60160 60161 60162 60163 60164 60165 60166 60167 60168 60169 60170 60171 60172 60173 60174 60175 60176 60177 60178 60179 60180 60181 60182 60183 60184 60185 60186 60187 60188 60189 60190 60191 60192 60193 60194 60195 60196 60197 60198 60199 60200 60201 60202 60203 60204 60205 60206 60207 60208 60209 60210 60211 60212 60213 60214 60215 60216 60217 60218 60219 60220 60221 60222 60223 60224 60225 60226 60227 60228 60229 60230 60231 60232 60233 60234 60235 60236 60237 60238 60239 60240 60241 60242 60243 60244 60245 60246 60247 60248 60249 60250 60251 60252 60253 60254 60255 60256 60257 | # doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 1622
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/ascii
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 308
-- Function File: ascii (F)
Set the FTP connection F to use ASCII mode for transfers.
ASCII mode is only appropriate for text files as it will convert the remote host's newline representation to the local host's newline representation.
F is an FTP object returned by the 'ftp' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Set the FTP connection F to use ASCII mode for transfers.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
@ftp/binary
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
-- Function File: binary (F)
Set the FTP connection F to use binary mode for transfers.
In binary mode there is no conversion of newlines from the remote representation to the local representation.
F is an FTP object returned by the 'ftp' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Set the FTP connection F to use binary mode for transfers.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
@ftp/cd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 456
-- Function File: cd (F)
-- Function File: cd (F, PATH)
Get or set the remote directory on the FTP connection F.
F is an FTP object returned by the 'ftp' function.
If PATH is not specified, return the remote current working directory. Otherwise, set the remote directory to PATH and return the new remote working directory.
If the directory does not exist, an error message is printed and the working directory is not changed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Get or set the remote directory on the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/close
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
-- Function File: close (F)
Close the FTP connection represented by the FTP object F.
F is an FTP object returned by the 'ftp' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Close the FTP connection represented by the FTP object F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
@ftp/delete
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
-- Function File: delete (F, FILE)
Delete the remote file FILE over the FTP connection F.
F is an FTP object returned by the 'ftp' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Delete the remote file FILE over the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
@ftp/dir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
-- Function File: LST = dir (F)
List the current directory in verbose form for the FTP connection F.
F is an FTP object returned by the 'ftp' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
List the current directory in verbose form for the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
@ftp/ftp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3633
-- Function File: F = ftp (HOST)
-- Function File: F = ftp (HOST, USERNAME, PASSWORD)
Connect to the FTP server HOST with USERNAME and PASSWORD.
If USERNAME and PASSWORD are not specified, user "anonymous" with no password is used. The returned FTP object F represents the established FTP connection.
The list of actions for an FTP object are shown below. All functions require an FTP object as the first argument.
Method Description
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
ascii Set transfer type to ascii
binary Set transfer type to binary
cd Change remote working directory
close Close FTP connection
delete Delete remote file
dir List remote directory contents
mget Download remote files
mkdir Create remote directory
mput Upload local files
rename Rename remote file or directory
rmdir Remove remote directory
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Connect to the FTP server HOST with USERNAME and PASSWORD.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
@ftp/mget
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 573
-- Function File: mget (F, FILE)
-- Function File: mget (F, DIR)
-- Function File: mget (F, REMOTE_NAME, TARGET)
Download a remote file FILE or directory DIR to the local directory on the FTP connection F.
F is an FTP object returned by the 'ftp' function.
The arguments FILE and DIR can include wildcards and any files or directories on the remote server that match will be downloaded.
If a third argument TARGET is given, then a single file or directory will be downloaded to the local directory and the local name will be changed to TARGET.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Download a remote file FILE or directory DIR to the local directory on the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/mkdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
-- Function File: mkdir (F, PATH)
Create the remote directory PATH, over the FTP connection F.
F is an FTP object returned by the 'ftp' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Create the remote directory PATH, over the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
@ftp/mput
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 310
-- Function File: mput (F, FILE)
Upload the local file FILE into the current remote directory on the FTP connection F.
F is an FTP object returned by the ftp function.
The argument FILE is passed through the 'glob' function and any files that match the wildcards in FILE will be uploaded.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Upload the local file FILE into the current remote directory on the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
@ftp/rename
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 202
-- Function File: rename (F, OLDNAME, NEWNAME)
Rename or move the remote file or directory OLDNAME to NEWNAME, over the FTP connection F.
F is an FTP object returned by the ftp function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Rename or move the remote file or directory OLDNAME to NEWNAME, over the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/rmdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
-- Function File: rmdir (F, PATH)
Remove the remote directory PATH, over the FTP connection F.
F is an FTP object returned by the 'ftp' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Remove the remote directory PATH, over the FTP connection F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lin2mu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
-- Function File: lin2mu (X, N)
Convert audio data from linear to mu-law.
Mu-law values use 8-bit unsigned integers. Linear values use N-bit signed integers or floating point values in the range -1 <= X <= 1 if N is 0.
If N is not specified it defaults to 0, 8, or 16 depending on the range of values in X.
See also: mu2lin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Convert audio data from linear to mu-law.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mu2lin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 301
-- Function File: mu2lin (X, N)
Convert audio data from mu-law to linear.
Mu-law values are 8-bit unsigned integers. Linear values use N-bit signed integers or floating point values in the range -1<=y<=1 if N is 0.
If N is not specified it defaults to 0.
See also: lin2mu.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Convert audio data from mu-law to linear.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
record
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
-- Function File: record (SEC)
-- Function File: record (SEC, FS)
Record SEC seconds of audio from the system's default audio input at a sampling rate of 8000 samples per second.
If the optional argument FS is given, it specifies the sampling rate for recording.
For more control over audio recording, use the 'audiorecorder' class.
See also: sound, soundsc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Record SEC seconds of audio from the system's default audio input at a sampling rate of 8000 samples per second.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sound
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 588
-- Function File: sound (Y)
-- Function File: sound (Y, FS)
-- Function File: sound (Y, FS, NBITS)
Play audio data Y at sample rate FS to the default audio device.
The audio signal Y can be a vector or a two-column array, representing mono or stereo audio, respectively.
If FS is not given, a default sample rate of 8000 samples per second is used.
The optional argument NBITS specifies the bit depth to play to the audio device and defaults to 8 bits.
For more control over audio playback, use the 'audioplayer' class.
See also: soundsc, record.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Play audio data Y at sample rate FS to the default audio device.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
soundsc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 868
-- Function File: soundsc (Y)
-- Function File: soundsc (Y, FS)
-- Function File: soundsc (Y, FS, NBITS)
-- Function File: soundsc (..., [YMIN, YMAX])
Scale the audio data Y and play it at sample rate FS to the default audio device.
The audio signal Y can be a vector or a two-column array, representing mono or stereo audio, respectively.
If FS is not given, a default sample rate of 8000 samples per second is used.
The optional argument NBITS specifies the bit depth to play to the audio device and defaults to 8 bits.
By default, Y is automatically normalized to the range [-1, 1]. If the range [YMIN, YMAX] is given, then elements of Y that fall within the range YMIN <= Y <= YMAX are scaled to the range [-1, 1] instead.
For more control over audio playback, use the 'audioplayer' class.
See also: sound, record.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Scale the audio data Y and play it at sample rate FS to the default audio device.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
wavread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1315
-- Function File: Y = wavread (FILENAME)
-- Function File: [Y, FS, NBITS] = wavread (FILENAME)
-- Function File: [...] = wavread (FILENAME, N)
-- Function File: [...] = wavread (FILENAME, [N1 N2])
-- Function File: [...] = wavread (..., DATATYPE)
-- Function File: SZ = wavread (FILENAME, "size")
-- Function File: [N_SAMP, N_CHAN] = wavread (FILENAME, "size")
Read the audio signal Y from the RIFF/WAVE sound file FILENAME.
If the file contains multichannel data, then Y is a matrix with the channels represented as columns.
If N is specified, only the first N samples of the file are returned. If [N1 N2] is specified, only the range of samples from N1 to N2 is returned. A value of 'Inf' can be used to represent the total number of samples in the file.
If the option "size" is given, then the size of the audio signal is returned instead of the data. The size is returned in a row vector of the form [SAMPLES CHANNELS]. If there are two output arguments, the number of samples is assigned to the first and the number of channels is assigned to the second.
The optional return value FS is the sample rate of the audio file in Hz. The optional return value NBITS is the number of bits per sample as encoded in the file.
See also: audioread, audiowrite, wavwrite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Read the audio signal Y from the RIFF/WAVE sound file FILENAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
wavwrite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 601
-- Function File: wavwrite (Y, FILENAME)
-- Function File: wavwrite (Y, FS, FILENAME)
-- Function File: wavwrite (Y, FS, NBITS, FILENAME)
Write the audio signal Y to the RIFF/WAVE sound file FILENAME.
If Y is a matrix, the columns represent multiple audio channels.
The optional argument FS specifies the sample rate of the audio signal in Hz.
The optional argument NBITS specifies the number of bits per sample to write to FILENAME.
The default sample rate is 8000 Hz and the default bit depth is 16 bits per sample.
See also: audiowrite, audioread, wavread.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Write the audio signal Y to the RIFF/WAVE sound file FILENAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
@audioplayer/__get_properties__
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
-- Function File: PROPERTIES = __get_properties__ (PLAYER)
Return a struct containing all named properties of the audioplayer object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Return a struct containing all named properties of the audioplayer object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
@audioplayer/audioplayer
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 922
-- Function File: PLAYER = audioplayer (Y, FS)
-- Function File: PLAYER = audioplayer (Y, FS, NBITS)
-- Function File: PLAYER = audioplayer (Y, FS, NBITS, ID)
-- Function File: PLAYER = audioplayer (RECORDER)
-- Function File: PLAYER = audioplayer (RECORDER, ID)
Create an audioplayer object that will play back data Y at sample rate FS.
The optional arguments NBITS, and ID specify the bit depth and player device id, respectively. Device IDs may be found using the audiodevinfo function. Given an audioplayer object, use the data from the object to initialize the player.
The signal Y can be a vector or a two-dimensional array.
The following example will create an audioplayer object that will play back one second of white noise at 44100 sample rate using 8 bits per sample.
y = randn (2, 44100) - 0.5;
player = audioplayer (y, 44100, 8);
play (player);
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Create an audioplayer object that will play back data Y at sample rate FS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
@audioplayer/display
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
-- Function File: display (PLAYER)
Display the properties of the audioplayer object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Display the properties of the audioplayer object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
@audioplayer/get
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 422
-- Function File: VALUE = get (PLAYER, NAME)
-- Function File: VALUES = get (PLAYER)
Return the VALUE of the property identified by NAME.
If NAME is a cell array return the values of the properties identified by the elements of the cell array. Given only the player object, return a scalar structure with values of all properties of PLAYER. The field names of the structure correspond to property names.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the VALUE of the property identified by NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
@audioplayer/isplaying
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
-- Function File: isplaying (PLAYER)
Return true if the audioplayer object PLAYER is currently playing back audio and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return true if the audioplayer object PLAYER is currently playing back audio and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
@audioplayer/pause
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
-- Function File: pause (PLAYER)
Pause the audioplayer PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Pause the audioplayer PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
@audioplayer/play
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 401
-- Function File: play (PLAYER)
-- Function File: play (PLAYER, START)
-- Function File: play (PLAYER, LIMITS)
Play audio stored in the audioplayer object PLAYER without blocking.
Given optional argument start, begin playing at START seconds in the recording. Given a two-element vector LIMITS, begin and end playing at the number of seconds specified by the elements of the vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Play audio stored in the audioplayer object PLAYER without blocking.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
@audioplayer/playblocking
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 422
-- Function File: playblocking (PLAYER)
-- Function File: playblocking (PLAYER, START)
-- Function File: playblocking (PLAYER, LIMITS)
Play audio stored in the audioplayer object PLAYER with blocking.
Given optional argument start, begin playing at START seconds in the recording. Given a two-element vector LIMITS, begin and end playing at the number of seconds specified by the elements of the vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Play audio stored in the audioplayer object PLAYER with blocking.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
@audioplayer/resume
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
-- Function File: resume (PLAYER)
Resume playback for the paused audioplayer object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Resume playback for the paused audioplayer object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
@audioplayer/set
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 503
-- Function File: set (PLAYER, NAME, VALUE)
-- Function File: set (PLAYER, PROPERTIES)
-- Function File: PROPERTIES = set (PLAYER)
Set the value of property specified by NAME to a given VALUE.
If NAME and VALUE are cell arrays, set each property to the corresponding value. Given a structure of PROPERTIES with fields corresponding to property names, set the value of those properties to the field values. Given only the audioplayer object, return a structure of settable properties.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Set the value of property specified by NAME to a given VALUE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
@audioplayer/stop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
-- Function File: stop (PLAYER)
Stop the playback for the audioplayer PLAYER and reset the relevant variables to their starting values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Stop the playback for the audioplayer PLAYER and reset the relevant variables to their starting values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
@audioplayer/subsasgn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
-- Function File: VALUE = subsasgn (PLAYER, IDX, RHS)
Perform subscripted assignment on the audio player object PLAYER.
Assign the value of RHS to the player property named by IDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Perform subscripted assignment on the audio player object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
@audioplayer/subsref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 175
-- Function File: VALUE = subsref (PLAYER, IDX)
Perform subscripted selection on the audio player object PLAYER.
Return the player property value named by IDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Perform subscripted selection on the audio player object PLAYER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
@audiorecorder/__get_properties__
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Function File: PROPERTIES = __get_properties__ (RECORDER)
Return a struct containing all named properties of the recorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return a struct containing all named properties of the recorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
@audiorecorder/audiorecorder
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 482
-- Function File: RECORDER = audiorecorder ()
-- Function File: RECORDER = audiorecorder (FS, NBITS, CHANNELS)
-- Function File: RECORDER = audiorecorder (FS, NBITS, CHANNELS, ID)
Create an audiorecorder object recording 8 bit mono audio at 8000 Hz sample rate.
The optional arguments FS, NBITS, CHANNELS, and ID specify the sample rate, bit depth, number of channels and recording device id, respectively. Device IDs may be found using the audiodevinfo function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Create an audiorecorder object recording 8 bit mono audio at 8000 Hz sample rate.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
@audiorecorder/display
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
-- Function File: display (RECORDER)
Display the properties of the audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Display the properties of the audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
@audiorecorder/get
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 434
-- Function File: VALUE = get (RECORDER, NAME)
-- Function File: VALUES = get (RECORDER)
Return the VALUE of the property identified by NAME.
If NAME is a cell array, return the values of the properties corresponding to the elements of the cell array. Given only the recorder object, return a scalar structure with values of all properties of RECORDER. The field names of the structure correspond to property names.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the VALUE of the property identified by NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
@audiorecorder/getaudiodata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 415
-- Function File: DATA = getaudiodata (RECORDER)
-- Function File: DATA = getaudiodata (RECORDER, DATATYPE)
Return recorder audio data as a matrix with values between -1.0 and 1.0 and with as many columns as there are channels in the recorder.
Given the optional argument DATATYPE, convert the recorded data to the specified type, which may be one of "double", "single", "int16", "int8" or "uint8".
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return recorder audio data as a matrix with values between -1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
@audiorecorder/getplayer
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
-- Function File: PLAYER = getplayer (RECORDER)
Return an audioplayer object with data recorded by the audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return an audioplayer object with data recorded by the audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
@audiorecorder/isrecording
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
-- Function File: isrecording (RECORDER)
Return true if the audiorecorder object RECORDER is currently recording audio and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return true if the audiorecorder object RECORDER is currently recording audio and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
@audiorecorder/pause
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
-- Function File: pause (RECORDER)
Pause recording with audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Pause recording with audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
@audiorecorder/play
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 437
-- Function File: PLAYER = play (RECORDER)
-- Function File: PLAYER = play (RECORDER, START)
-- Function File: PLAYER = play (RECORDER, [START, END])
Play the audio recorded in RECORDER and return a corresponding audioplayer object.
If the optional argument START is provided, begin playing START seconds in to the recording.
If the optional argument END is provided, stop playing at END seconds in the recording.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Play the audio recorded in RECORDER and return a corresponding audioplayer object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
@audiorecorder/record
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Function File: record (RECORDER)
-- Function File: record (RECORDER, LENGTH)
Record audio without blocking using the audiorecorder object RECORDER until stopped or paused by the STOP or PAUSE method.
Given the optional argument LENGTH, record for LENGTH seconds.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
Record audio without blocking using the audiorecorder object RECORDER until stopped or paused by the STOP or PAUSE method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
@audiorecorder/recordblocking
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
-- Function File: recordblocking (RECORDER, LENGTH)
Record audio with blocking (synchronous I/O).
The length of the recording in seconds (LENGTH) must be specified.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Record audio with blocking (synchronous I/O).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
@audiorecorder/resume
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
-- Function File: resume (RECORDER)
Resume recording with the paused audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Resume recording with the paused audiorecorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
@audiorecorder/set
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 521
-- Function File: set (RECORDER, NAME, VALUE)
-- Function File: set (RECORDER, PROPERTIES)
-- Function File: PROPERTIES = set (RECORDER)
Set the value of property specified by NAME to a given VALUE.
If NAME and VALUE are cell arrays of the same size, set each property to a corresponding value. Given a structure with fields corresponding to property names, set the value of those properties to the corresponding field values. Given only the recorder object, return a structure of settable properties.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Set the value of property specified by NAME to a given VALUE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
@audiorecorder/stop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
-- Function File: stop (RECORDER)
Stop the audiorecorder object RECORDER and clean up any audio streams.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Stop the audiorecorder object RECORDER and clean up any audio streams.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
@audiorecorder/subsasgn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 204
-- Function File: VALUE = subsasgn (RECORDER, IDX, RHS)
Perform subscripted assignment on the audio recorder object RECORDER.
Assign the value of RHS to the recorder property named by IDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Perform subscripted assignment on the audio recorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
@audiorecorder/subsref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
-- Function File: VALUE = subsref (RECORDER, IDX)
Perform subscripted selection on the audio recorder object RECORDER.
Return the recorder property value named by IDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Perform subscripted selection on the audio recorder object RECORDER.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bicubic
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 479
-- Function File: ZI = bicubic (X, Y, Z, XI, YI, EXTRAPVAL)
'bicubic' is deprecated and will be removed in Octave version 4.4. Use 'interp2 (..., "spline")' for the equivalent functionality.
Return a matrix ZI corresponding to the bicubic interpolations at XI and YI of the data supplied as X, Y and Z. Points outside the grid are set to EXTRAPVAL.
See <http://wiki.woodpecker.org.cn/moin/Octave/Bicubic> for further information.
See also: interp2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
'bicubic' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
default_save_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 298
-- Built-in Function: VAL = default_save_options ()
-- Built-in Function: OLD_VAL = default_save_options (NEW_VAL)
-- Built-in Function: default_save_options (NEW_VAL, "local")
This function has been deprecated. Use 'save_default_options' instead.
See also: save_default_options.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
delaunay3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1403
-- Function File: TETR = delaunay3 (X, Y, Z)
-- Function File: TETR = delaunay3 (X, Y, Z, OPTIONS)
'delaunay3' is deprecated and will be removed in Octave version 4.4. Please use 'delaunay' in all new code.
Compute the Delaunay triangulation for a 3-D set of points. The return value TETR is a set of tetrahedrons which satisfies the Delaunay circum-circle criterion, i.e., only a single data point from [X, Y, Z] is within the circum-circle of the defining tetrahedron.
The set of tetrahedrons TETR is a matrix of size [n, 4]. Each row defines a tetrahedron and the four columns are the four vertices of the tetrahedron. The value of 'TETR(i,j)' is an index into X, Y, Z for the location of the j-th vertex of the i-th tetrahedron.
An optional fourth argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command. See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>. The default options are '{"Qt", "Qbb", "Qc", "Qz"}'.
If OPTIONS is not present or '[]' then the default arguments are used. Otherwise, OPTIONS replaces the default argument list. To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS. Use a null string to pass no arguments.
See also: delaunay, delaunayn, convhull, voronoi, tetramesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'delaunay3' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
dump_prefs
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 485
-- Function File: dump_prefs ()
-- Function File: dump_prefs (FID)
'dump_prefs' is deprecated and will be removed in Octave version 4.4. Please use individual preference get/set routines in all new code.
Dump the current settings of all user preferences to stdout in a format that can be parsed by Octave later.
If the optional argument FID is given then the results are written to the file specified by file descriptor FID.
See also: octave_config_info.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
'dump_prefs' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
find_dir_in_path
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 207
-- Built-in Function: find_dir_in_path (DIR)
-- Built-in Function: find_dir_in_path (DIR, "all")
This function has been deprecated. Use 'dir_in_loadpath' instead.
See also: dir_in_loadpath.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
finite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
-- Mapping Function: finite (X)
'finite' is deprecated and will be removed in Octave version 4.4. Please use 'isfinite' in all new code.
Return a logical array which is true where the elements of X are finite values and false where they are not. For example:
finite ([13, Inf, NA, NaN])
=> [ 1, 0, 0, 0 ]
See also: isfinite, isinf, isnan, isna.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
'finite' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fmod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
-- Mapping Function: fmod (X, Y)
'fmod' is deprecated and will be removed in Octave version 4.4. Please use 'rem' in all new code.
Return the remainder of the division 'X / Y', computed using the expression
x - y .* fix (x ./ y)
An error message is printed if the dimensions of the arguments do not agree, or if either of the arguments is complex.
See also: rem, mod.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
'fmod' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fnmatch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 470
-- Built-in Function: fnmatch (PATTERN, STRING)
'fnmatch' is deprecated and will be removed in Octave version 4.4. Please use 'glob' or 'regexp' in all new code.
Return true or false for each element of STRING that matches any of the elements of the string array PATTERN, using the rules of filename pattern matching. For example:
fnmatch (\"a*b\", {\"ab\"; \"axyzb\"; \"xyzab\"})
=> [ 1; 1; 0 ]
See also: glob, regexp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
'fnmatch' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
gen_doc_cache
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
-- Function File: gen_doc_cache (OUT_FILE, DIRECTORY)
This function has been deprecated. Use 'doc_cache_create' instead.
See also: doc_cache_create.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gmap40
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 550
-- Function File: MAP = gmap40 ()
-- Function File: MAP = gmap40 (N)
'gmap40' is deprecated and will be removed in Octave version 4.4.
Create color colormap. The colormap consists of red, green, blue, yellow, magenta and cyan.
This colormap is specifically designed for users of gnuplot 4.0 where these 6 colors are the allowable ones for patch objects.
The argument N must be a scalar. If unspecified, a length of 6 is assumed. Larger values of N result in a repetition of the above colors.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
'gmap40' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
interp1q
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 762
-- Function File: YI = interp1q (X, Y, XI)
One-dimensional linear interpolation without error checking. Interpolates Y, defined at the points X, at the points XI. The sample points X must be a strictly monotonically increasing column vector. If Y is a matrix or an N-dimensional array, the interpolation is performed on each column of Y. If Y is a vector, it must be a column vector of the same length as X.
Values of XI beyond the endpoints of the interpolation result in NA being returned.
Note that the error checking is only a significant portion of the execution time of this 'interp1' if the size of the input arguments is relatively small. Therefore, the benefit of using 'interp1q' is relatively small.
See also: interp1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
One-dimensional linear interpolation without error checking.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
isequalwithequalnans
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
-- Function File: isequalwithequalnans (X1, X2, ...)
This function has been deprecated. Use 'isequaln' instead.
See also: isequaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isstr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
-- Function File: isstr (A)
This function has been deprecated. Use ischar instead.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
java_convert_matrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 626
-- Built-in Function: VAL = java_convert_matrix ()
-- Built-in Function: OLD_VAL = java_convert_matrix (NEW_VAL)
-- Built-in Function: java_convert_matrix (NEW_VAL, "local")
Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices. The default value is false.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: java_matrix_autoconversion, java_unsigned_conversion, java_debug.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
java_debug
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 609
-- Built-in Function: VAL = java_debug ()
-- Built-in Function: OLD_VAL = java_debug (NEW_VAL)
-- Built-in Function: java_debug (NEW_VAL, "local")
Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: debug_java, java_convert_matrix, java_unsigned_conversion.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 162
Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
java_invoke
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 690
-- Built-in Function: RET = java_invoke (OBJ, METHODNAME)
-- Built-in Function: RET = java_invoke (OBJ, METHODNAME, ARG1, ...)
Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, ... For static methods, OBJ can be a string representing the fully qualified name of the corresponding class. The function returns the result of the method invocation.
When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax. For instance, the two following statements are equivalent
ret = java_invoke (x, "method1", 1.0, "a string")
ret = x.method1 (1.0, "a string")
See also: javaMethod, javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java_new
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 370
-- Loadable Function: OBJ = java_new (NAME)
-- Loadable Function: OBJ = java_new (NAME, ARG1, ...)
Create a Java object of class NAME, by calling the class constructor with the arguments ARG1, ...
x = java_new ("java.lang.StringBuffer")
x = java_new ("java.lang.StringBuffer", "Initial string")
See also: javaObject, javaMethod.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Create a Java object of class NAME, by calling the class constructor with the arguments ARG1, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
java_unsigned_conversion
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 736
-- Built-in Function: VAL = java_unsigned_conversion ()
-- Built-in Function: OLD_VAL = java_unsigned_conversion (NEW_VAL)
-- Built-in Function: java_unsigned_conversion (NEW_VAL, "local")
Query or set the internal variable that controls how integer classes are converted when Java matrix autoconversion is enabled. When enabled, Java arrays of class Byte or Integer are converted to matrices of class uint8 or uint32 respectively.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: java_unsigned_autoconversion, java_convert_matrix, debug_java.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
Query or set the internal variable that controls how integer classes are converted when Java matrix autoconversion is enabled.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javafields
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
-- Function File: javafields (JAVAOBJ)
-- Function File: javafields ("CLASSNAME")
-- Function File: FLD_NAMES = javafields (...)
Return the fields of a Java object or Java class in the form of a cell array of strings. If no output is requested, print the result to the standard output.
See also: fieldnames, methods, javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Return the fields of a Java object or Java class in the form of a cell array of strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
javamethods
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 363
-- Function File: javamethods (JAVAOBJ)
-- Function File: javamethods ("CLASSNAME")
-- Function File: MTD_NAMES = javamethods (...)
Return the methods of a Java object or Java class in the form of a cell array of strings. If no output is requested, print the result to the standard output.
See also: methods, fieldnames, javaMethod, javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the methods of a Java object or Java class in the form of a cell array of strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
loadaudio
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 628
-- Function File: loadaudio (NAME, EXT, BPS)
'loadaudio' is deprecated and will be removed in Octave version 4.4. Please use 'audioread' in all new code.
Load audio data from the file 'NAME.EXT' into the vector X.
The extension EXT determines how the data in the audio file is interpreted; the extensions 'lin' (default) and 'raw' correspond to linear, the extensions 'au', 'mu', or 'snd' to mu-law encoding.
The argument BPS can be either 8 (default) or 16, and specifies the number of bits per sample used in the audio file.
See also: lin2mu, mu2lin, saveaudio, playaudio, setaudio, record.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'loadaudio' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
luinc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2405
-- Built-in Function: [L, U, P, Q] = luinc (A, '0')
-- Built-in Function: [L, U, P, Q] = luinc (A, DROPTOL)
-- Built-in Function: [L, U, P, Q] = luinc (A, OPTS)
'luinc' is deprecated and will be removed in Octave version 4.4. Please use 'ilu' or 'ichol' in all new code.
Produce the incomplete LU factorization of the sparse matrix A. Two types of incomplete factorization are possible, and the type is determined by the second argument to 'luinc'.
Called with a second argument of '0', the zero-level incomplete LU factorization is produced. This creates a factorization of A where the position of the nonzero arguments correspond to the same positions as in the matrix A.
Alternatively, the fill-in of the incomplete LU factorization can be controlled through the variable DROPTOL or the structure OPTS. The UMFPACK multifrontal factorization code by Tim A. Davis is used for the incomplete LU factorization, (availability <http://www.cise.ufl.edu/research/sparse/umfpack/>)
DROPTOL determines the values below which the values in the LU factorization are dropped and replaced by zero. It must be a positive scalar, and any values in the factorization whose absolute value are less than this value are dropped, expect if leaving them increase the sparsity of the matrix. Setting DROPTOL to zero results in a complete LU factorization which is the default.
OPTS is a structure containing one or more of the fields
'droptol'
The drop tolerance as above. If OPTS only contains 'droptol' then this is equivalent to using the variable DROPTOL.
'milu'
A logical variable flagging whether to use the modified incomplete LU factorization. In the case that 'milu' is true, the dropped values are subtracted from the diagonal of the matrix U of the factorization. The default is 'false'.
'udiag'
A logical variable that flags whether zero elements on the diagonal of U should be replaced with DROPTOL to attempt to avoid singular factors. The default is 'false'.
'thresh'
Defines the pivot threshold in the interval [0,1]. Values outside that range are ignored.
All other fields in OPTS are ignored. The outputs from 'luinc' are the same as for 'lu'.
Given the string argument \"vector\", 'luinc' returns the values of P Q as vector values.
See also: ilu, ichol, lu, sparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
'luinc' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
mouse_wheel_zoom
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 390
-- Loadable Function: OLD_VAL = mouse_wheel_zoom (NEW_VAL)
Query or set the mouse wheel zoom factor.
The zoom factor is a number in the range (0,1) which is the percentage of the current axis limits that will be used when zooming. For example, if the current x-axis limits are [0, 50] and 'mouse_wheel_zoom' is 0.4 (40%), then a zoom operation will change the limits by 20.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Query or set the mouse wheel zoom factor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nfields
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
-- Function File: nfields (S)
Return the number of fields of the structure S.
*Warning:* 'nfields' is scheduled for removal in version 4.4. Use 'numfields' instead.
See also: numfields, fieldnames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the number of fields of the structure S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
octave_tmp_file_name
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 680
-- Built-in Function: FNAME = octave_tmp_file_name ()
-- Built-in Function: FNAME = octave_tmp_file_name (DIR)
-- Built-in Function: FNAME = octave_tmp_file_name (DIR, PREFIX)
'octave_tmp_file_name' is deprecated and will be removed in Octave version 4.4. Use 'tempname' for equivalent functionality.
Return a unique temporary file name as a string.
If PREFIX is omitted, a value of "oct-" is used. If DIR is also omitted, the default directory for temporary files ('P_tmpdir' is used. If DIR is provided, it must exist, otherwise the default directory for temporary files is used.
See also: tempname, tmpnam, mkstemp, tempdir, P_tmpdir, tmpfile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
'octave_tmp_file_name' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
playaudio
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 346
-- Function File: playaudio (NAME, EXT)
-- Function File: playaudio (X)
'playaudio' is deprecated and will be removed in Octave version 4.4. Please use 'audioplayer' in all new code.
Play the audio file 'NAME.EXT' or the audio data stored in the vector X.
See also: lin2mu, mu2lin, loadaudio, saveaudio, setaudio, record.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'playaudio' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
re_read_readline_init_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
-- Built-in Function: re_read_readline_init_file (FILE)
This function has been deprecated. Use 'readline_re_read_init_file' instead.
See also: readline_read_init_file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
read_readline_init_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
-- Built-in Function: read_readline_init_file (FILE)
This function has been deprecated. Use 'readline_read_init_file' instead.
See also: readline_read_init_file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
saveaudio
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 477
-- Function File: saveaudio (NAME, X, EXT, BPS)
'saveaudio' is deprecated and will be removed in Octave version 4.4. Please use 'audiowrite' in all new code.
Save a vector X of audio data to the file 'NAME.EXT'. The optional parameters EXT and BPS determine the encoding and the number of bits per sample used in the audio file (see 'loadaudio'); defaults are 'lin' and 8, respectively.
See also: lin2mu, mu2lin, loadaudio, playaudio, setaudio, record.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'saveaudio' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
saving_history
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 264
-- Built-in Function: VAL = saving_history ()
-- Built-in Function: OLD_VAL = saving_history (NEW_VAL)
-- Built-in Function: saving_history (NEW_VAL, "local")
This function has been deprecated. Use 'history_save' instead.
See also: history_save.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setaudio
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 412
-- Function File: setaudio ()
-- Function File: setaudio (W_TYPE)
-- Function File: setaudio (W_TYPE, VALUE)
'setaudio' is deprecated and will be removed in Octave version 4.4. Please scale the audio signal in all new code or use the operating system's native tools to adjust audio input and output levels.
Execute the shell command 'mixer', possibly with optional arguments W_TYPE and VALUE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
'setaudio' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
syl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 403
-- Built-in Function: X = syl (A, B, C)
'syl' is deprecated and will be removed in Octave version 4.4. Use 'sylvester' for the equivalent functionality.
Solve the Sylvester equation
A X + X B + C = 0
using standard LAPACK subroutines. For example:
syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
=> [ -0.50000, -0.66667; -0.66667, -0.50000 ]
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
'syl' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
usage
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 959
-- Built-in Function: usage (MSG)
'usage' is deprecated and will be removed in Octave version 4.4. Please use 'print_usage' in all new code.
Print the message MSG, prefixed by the string 'usage: ', and set Octave's internal error state such that control will return to the top level without evaluating any more commands. This is useful for aborting from functions.
After 'usage' is evaluated, Octave will print a traceback of all the function calls leading to the usage message.
You should use this function for reporting problems errors that result from an improper call to a function, such as calling a function with an incorrect number of arguments, or with arguments of the wrong type. For example, most functions distributed with Octave begin with code like this
if (nargin != 2)
usage (\"foo (a, b)\");
endif
to check for the proper number of arguments.
See also: print_usage.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
'usage' is deprecated and will be removed in Octave version 4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acosd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
-- Function File: acosd (X)
Compute the inverse cosine in degrees for each element of X.
See also: cosd, acos.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse cosine in degrees for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
acot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
-- Mapping Function: acot (X)
Compute the inverse cotangent in radians for each element of X.
See also: cot, acotd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the inverse cotangent in radians for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acotd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
-- Function File: acotd (X)
Compute the inverse cotangent in degrees for each element of X.
See also: cotd, acot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the inverse cotangent in degrees for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acoth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
-- Mapping Function: acoth (X)
Compute the inverse hyperbolic cotangent of each element of X.
See also: coth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compute the inverse hyperbolic cotangent of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
acsc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
-- Mapping Function: acsc (X)
Compute the inverse cosecant in radians for each element of X.
See also: csc, acscd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compute the inverse cosecant in radians for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acscd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
-- Function File: acscd (X)
Compute the inverse cosecant in degrees for each element of X.
See also: cscd, acsc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compute the inverse cosecant in degrees for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acsch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
-- Mapping Function: acsch (X)
Compute the inverse hyperbolic cosecant of each element of X.
See also: csch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse hyperbolic cosecant of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
asec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
-- Mapping Function: asec (X)
Compute the inverse secant in radians for each element of X.
See also: sec, asecd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse secant in radians for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asecd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
-- Function File: asecd (X)
Compute the inverse secant in degrees for each element of X.
See also: secd, asec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse secant in degrees for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asech
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
-- Mapping Function: asech (X)
Compute the inverse hyperbolic secant of each element of X.
See also: sech.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the inverse hyperbolic secant of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asind
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
-- Function File: asind (X)
Compute the inverse sine in degrees for each element of X.
See also: sind, asin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the inverse sine in degrees for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
atan2d
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
-- Function File: atan2d (Y, X)
Compute atan2 (Y / X) in degrees for corresponding elements from Y and X.
See also: tand, atan2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Compute atan2 (Y / X) in degrees for corresponding elements from Y and X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
atand
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
-- Function File: atand (X)
Compute the inverse tangent in degrees for each element of X.
See also: tand, atan.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse tangent in degrees for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cosd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
-- Function File: cosd (X)
Compute the cosine for each element of X in degrees.
Returns zero for elements where '(X-90)/180' is an integer.
See also: acosd, cos.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the cosine for each element of X in degrees.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
-- Mapping Function: cot (X)
Compute the cotangent for each element of X in radians.
See also: acot, cotd, coth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Compute the cotangent for each element of X in radians.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cotd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
-- Function File: cotd (X)
Compute the cotangent for each element of X in degrees.
See also: acotd, cot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Compute the cotangent for each element of X in degrees.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
coth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
-- Mapping Function: coth (X)
Compute the hyperbolic cotangent of each element of X.
See also: acoth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the hyperbolic cotangent of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
csc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
-- Mapping Function: csc (X)
Compute the cosecant for each element of X in radians.
See also: acsc, cscd, csch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the cosecant for each element of X in radians.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cscd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 119
-- Function File: cscd (X)
Compute the cosecant for each element of X in degrees.
See also: acscd, csc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the cosecant for each element of X in degrees.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
csch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
-- Mapping Function: csch (X)
Compute the hyperbolic cosecant of each element of X.
See also: acsch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the hyperbolic cosecant of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
-- Mapping Function: sec (X)
Compute the secant for each element of X in radians.
See also: asec, secd, sech.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the secant for each element of X in radians.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
secd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
-- Function File: secd (X)
Compute the secant for each element of X in degrees.
See also: asecd, sec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the secant for each element of X in degrees.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sech
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
-- Mapping Function: sech (X)
Compute the hyperbolic secant of each element of X.
See also: asech.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Compute the hyperbolic secant of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sind
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
-- Function File: sind (X)
Compute the sine for each element of X in degrees.
Returns zero for elements where 'X/180' is an integer.
See also: asind, sin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the sine for each element of X in degrees.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tand
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
-- Function File: tand (X)
Compute the tangent for each element of X in degrees.
Returns zero for elements where 'X/180' is an integer and 'Inf' for elements where '(X-90)/180' is an integer.
See also: atand, tan.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the tangent for each element of X in degrees.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
accumarray
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3911
-- Function File: accumarray (SUBS, VALS, SZ, FUNC, FILLVAL, ISSPARSE)
-- Function File: accumarray (SUBS, VALS, ...)
Create an array by accumulating the elements of a vector into the positions defined by their subscripts.
The subscripts are defined by the rows of the matrix SUBS and the values by VALS. Each row of SUBS corresponds to one of the values in VALS. If VALS is a scalar, it will be used for each of the row of SUBS. If SUBS is a cell array of vectors, all vectors must be of the same length, and the subscripts in the Kth vector must correspond to the Kth dimension of the result.
The size of the matrix will be determined by the subscripts themselves. However, if SZ is defined it determines the matrix size. The length of SZ must correspond to the number of columns in SUBS. An exception is if SUBS has only one column, in which case SZ may be the dimensions of a vector and the subscripts of SUBS are taken as the indices into it.
The default action of 'accumarray' is to sum the elements with the same subscripts. This behavior can be modified by defining the FUNC function. This should be a function or function handle that accepts a column vector and returns a scalar. The result of the function should not depend on the order of the subscripts.
The elements of the returned array that have no subscripts associated with them are set to zero. Defining FILLVAL to some other value allows these values to be defined. This behavior changes, however, for certain values of FUNC. If FUNC is 'min' (respectively, 'max') then the result will be filled with the minimum (respectively, maximum) integer if VALS is of integral type, logical false (respectively, logical true) if VALS is of logical type, zero if FILLVAL is zero and all values are non-positive (respectively, non-negative), and NaN otherwise.
By default 'accumarray' returns a full matrix. If ISSPARSE is logically true, then a sparse matrix is returned instead.
The following 'accumarray' example constructs a frequency table that in the first column counts how many occurrences each number in the second column has, taken from the vector X. Note the usage of 'unique' for assigning to all repeated elements of X the same index (*note unique: XREFunique.).
X = [91, 92, 90, 92, 90, 89, 91, 89, 90, 100, 100, 100];
[U, ~, J] = unique (X);
[accumarray(J', 1), U']
=> 2 89
3 90
2 91
2 92
3 100
Another example, where the result is a multi-dimensional 3-D array and the default value (zero) appears in the output:
accumarray ([1, 1, 1;
2, 1, 2;
2, 3, 2;
2, 1, 2;
2, 3, 2], 101:105)
=> ans(:,:,1) = [101, 0, 0; 0, 0, 0]
=> ans(:,:,2) = [0, 0, 0; 206, 0, 208]
The sparse option can be used as an alternative to the 'sparse' constructor (*note sparse: XREFsparse.). Thus
sparse (I, J, SV)
can be written with 'accumarray' as
accumarray ([I, J], SV', [], [], 0, true)
For repeated indices, 'sparse' adds the corresponding value. To take the minimum instead, use 'min' as an accumulator function:
accumarray ([I, J], SV', [], @min, 0, true)
The complexity of accumarray in general for the non-sparse case is generally O(M+N), where N is the number of subscripts and M is the maximum subscript (linearized in multi-dimensional case). If FUNC is one of '@sum' (default), '@max', '@min' or '@(x) {x}', an optimized code path is used. Note that for general reduction function the interpreter overhead can play a major part and it may be more efficient to do multiple accumarray calls and compute the results in a vectorized manner.
See also: accumdim, unique, sparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Create an array by accumulating the elements of a vector into the positions defined by their subscripts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
accumdim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1581
-- Function File: accumdim (SUBS, VALS, DIM, N, FUNC, FILLVAL)
Create an array by accumulating the slices of an array into the positions defined by their subscripts along a specified dimension.
The subscripts are defined by the index vector SUBS. The dimension is specified by DIM. If not given, it defaults to the first non-singleton dimension. The length of SUBS must be equal to 'size (VALS, DIM)'.
The extent of the result matrix in the working dimension will be determined by the subscripts themselves. However, if N is defined it determines this extent.
The default action of 'accumdim' is to sum the subarrays with the same subscripts. This behavior can be modified by defining the FUNC function. This should be a function or function handle that accepts an array and a dimension, and reduces the array along this dimension. As a special exception, the built-in 'min' and 'max' functions can be used directly, and 'accumdim' accounts for the middle empty argument that is used in their calling.
The slices of the returned array that have no subscripts associated with them are set to zero. Defining FILLVAL to some other value allows these values to be defined.
An example of the use of 'accumdim' is:
accumdim ([1, 2, 1, 2, 1], [ 7, -10, 4;
-5, -12, 8;
-12, 2, 8;
-10, 9, -3;
-5, -3, -13])
=> [-10,-11,-1;-15,-3,5]
See also: accumarray.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
Create an array by accumulating the slices of an array into the positions defined by their subscripts along a specified dimension.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bincoeff
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 502
-- Mapping Function: bincoeff (N, K)
Return the binomial coefficient of N and K, defined as
/ \
| n | n (n-1) (n-2) ... (n-k+1)
| | = -------------------------
| k | k!
\ /
For example:
bincoeff (5, 2)
=> 10
In most cases, the 'nchoosek' function is faster for small scalar integer arguments. It also warns about loss of precision for big arguments.
See also: nchoosek.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return the binomial coefficient of N and K, defined as
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitcmp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 367
-- Function File: bitcmp (A, K)
Return the K-bit complement of integers in A.
If K is omitted 'k = log2 (bitmax) + 1' is assumed.
bitcmp (7,4)
=> 8
dec2bin (11)
=> 1011
dec2bin (bitcmp (11, 6))
=> 110100
See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the K-bit complement of integers in A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitget
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 289
-- Function File: C = bitget (A, N)
Return the status of bit(s) N of the unsigned integers in A.
The least significant bit is N = 1.
bitget (100, 8:-1:1)
=> 0 1 1 0 0 1 0 0
See also: bitand, bitor, bitxor, bitset, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return the status of bit(s) N of the unsigned integers in A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitset
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 403
-- Function File: C = bitset (A, N)
-- Function File: C = bitset (A, N, VAL)
Set or reset bit(s) N of the unsigned integers in A.
VAL = 0 resets and VAL = 1 sets the bits. The least significant bit is N = 1. All variables must be the same size or scalars.
dec2bin (bitset (10, 1))
=> 1011
See also: bitand, bitor, bitxor, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Set or reset bit(s) N of the unsigned integers in A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
blkdiag
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 298
-- Function File: blkdiag (A, B, C, ...)
Build a block diagonal matrix from A, B, C, ...
All arguments must be numeric and either two-dimensional matrices or scalars. If any argument is of type sparse, the output will also be sparse.
See also: diag, horzcat, vertcat, sparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Build a block diagonal matrix from A, B, C, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cart2pol
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 804
-- Function File: [THETA, R] = cart2pol (X, Y)
-- Function File: [THETA, R, Z] = cart2pol (X, Y, Z)
-- Function File: [THETA, R] = cart2pol (C)
-- Function File: [THETA, R, Z] = cart2pol (C)
-- Function File: P = cart2pol (...)
Transform Cartesian coordinates to polar or cylindrical coordinates.
The inputs X, Y (, and Z) must be the same shape, or scalar. If called with a single matrix argument then each row of C represents the Cartesian coordinate (X, Y (, Z)).
THETA describes the angle relative to the positive x-axis.
R is the distance to the z-axis (0, 0, z).
If only a single return argument is requested then return a matrix P where each row represents one polar/(cylindrical) coordinate (THETA, PHI (, Z)).
See also: pol2cart, cart2sph, sph2cart.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Transform Cartesian coordinates to polar or cylindrical coordinates.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cart2sph
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 733
-- Function File: [THETA, PHI, R] = cart2sph (X, Y, Z)
-- Function File: [THETA, PHI, R] = cart2sph (C)
-- Function File: S = cart2sph (...)
Transform Cartesian coordinates to spherical coordinates.
The inputs X, Y, and Z must be the same shape, or scalar. If called with a single matrix argument then each row of C represents the Cartesian coordinate (X, Y, Z).
THETA describes the angle relative to the positive x-axis.
PHI is the angle relative to the xy-plane.
R is the distance to the origin (0, 0, 0).
If only a single return argument is requested then return a matrix S where each row represents one spherical coordinate (THETA, PHI, R).
See also: sph2cart, cart2pol, pol2cart.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Transform Cartesian coordinates to spherical coordinates.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cell2mat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 322
-- Function File: M = cell2mat (C)
Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle.
Elements of C must be numeric, logical, or char matrices; or cell arrays; or structs; and 'cat' must be able to concatenate them together.
See also: mat2cell, num2cell.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
celldisp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 552
-- Function File: celldisp (C)
-- Function File: celldisp (C, NAME)
Recursively display the contents of a cell array.
By default the values are displayed with the name of the variable C. However, this name can be replaced with the variable NAME. For example:
c = {1, 2, {31, 32}};
celldisp (c, "b")
=>
b{1} =
1
b{2} =
2
b{3}{1} =
31
b{3}{2} =
32
See also: disp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Recursively display the contents of a cell array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
chop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 334
-- Function File: chop (X, NDIGITS, BASE)
Truncate elements of X to a length of NDIGITS such that the resulting numbers are exactly divisible by BASE.
If BASE is not specified it defaults to 10.
chop (-pi, 5, 10)
=> -3.14200000000000
chop (-pi, 5, 5)
=> -3.14150000000000
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Truncate elements of X to a length of NDIGITS such that the resulting numbers are exactly divisible by BASE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
circshift
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 772
-- Function File: Y = circshift (X, N)
Circularly shift the values of the array X.
N must be a vector of integers no longer than the number of dimensions in X. The values of N can be either positive or negative, which determines the direction in which the values or X are shifted. If an element of N is zero, then the corresponding dimension of X will not be shifted. For example:
x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
circshift (x, 1)
=> 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, -2)
=> 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, [0,1])
=> 3, 1, 2
6, 4, 5
9, 7, 8
See also: permute, ipermute, shiftdim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Circularly shift the values of the array X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
common_size
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 627
-- Function File: [ERR, Y1, ...] = common_size (X1, ...)
Determine if all input arguments are either scalar or of common size.
If true, ERR is zero, and YI is a matrix of the common size with all entries equal to XI if this is a scalar or XI otherwise. If the inputs cannot be brought to a common size, ERR is 1, and YI is XI. For example:
[errorcode, a, b] = common_size ([1 2; 3 4], 5)
=> errorcode = 0
=> a = [ 1, 2; 3, 4 ]
=> b = [ 5, 5; 5, 5 ]
This is useful for implementing functions where arguments can either be scalars or of common size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Determine if all input arguments are either scalar or of common size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cplxpair
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 931
-- Function File: cplxpair (Z)
-- Function File: cplxpair (Z, TOL)
-- Function File: cplxpair (Z, TOL, DIM)
Sort the numbers Z into complex conjugate pairs ordered by increasing real part.
The negative imaginary complex numbers are placed first within each pair. All real numbers (those with 'abs (imag (Z) / Z) < TOL') are placed after the complex pairs.
If TOL is unspecified the default value is 100*'eps'.
By default the complex pairs are sorted along the first non-singleton dimension of Z. If DIM is specified, then the complex pairs are sorted along this dimension.
Signal an error if some complex numbers could not be paired. Signal an error if all complex numbers are not exact conjugates (to within TOL). Note that there is no defined order for pairs with identical real parts but differing imaginary parts.
cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Sort the numbers Z into complex conjugate pairs ordered by increasing real part.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cumtrapz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 965
-- Function File: Q = cumtrapz (Y)
-- Function File: Q = cumtrapz (X, Y)
-- Function File: Q = cumtrapz (..., DIM)
Cumulative numerical integration of points Y using the trapezoidal method.
'cumtrapz (Y)' computes the cumulative integral of Y along the first non-singleton dimension. Where 'trapz' reports only the overall integral sum, 'cumtrapz' reports the current partial sum value at each point of Y.
When the argument X is omitted an equally spaced X vector with unit spacing (1) is assumed. 'cumtrapz (X, Y)' evaluates the integral with respect to the spacing in X and the values in Y. This is useful if the points in Y have been sampled unevenly.
If the optional DIM argument is given, operate along this dimension.
Application Note: If X is not specified then unit spacing will be used. To scale the integral to the correct value you must multiply by the actual spacing value (deltaX).
See also: trapz, cumsum.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Cumulative numerical integration of points Y using the trapezoidal method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
curl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 987
-- Function File: [CX, CY, CZ, V] = curl (X, Y, Z, FX, FY, FZ)
-- Function File: [CZ, V] = curl (X, Y, FX, FY)
-- Function File: [...] = curl (FX, FY, FZ)
-- Function File: [...] = curl (FX, FY)
-- Function File: V = curl (...)
Calculate curl of vector field given by the arrays FX, FY, and FZ or FX, FY respectively.
/ d d d d d d \
curl F(x,y,z) = | -- Fz - -- Fy, -- Fx - -- Fz, -- Fy - -- Fx |
\ dy dz dz dx dx dy /
The coordinates of the vector field can be given by the arguments X, Y, Z or X, Y respectively. V calculates the scalar component of the angular velocity vector in direction of the z-axis for two-dimensional input. For three-dimensional input the scalar rotation is calculated at each grid point in direction of the vector field at that point.
See also: divergence, gradient, del2, cross.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Calculate curl of vector field given by the arrays FX, FY, and FZ or FX, FY respectively.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dblquad
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1203
-- Function File: dblquad (F, XA, XB, YA, YB)
-- Function File: dblquad (F, XA, XB, YA, YB, TOL)
-- Function File: dblquad (F, XA, XB, YA, YB, TOL, QUADF)
-- Function File: dblquad (F, XA, XB, YA, YB, TOL, QUADF, ...)
Numerically evaluate the double integral of F.
F is a function handle, inline function, or string containing the name of the function to evaluate. The function F must have the form z = f(x,y) where X is a vector and Y is a scalar. It should return a vector of the same length and orientation as X.
XA, YA and XB, YB are the lower and upper limits of integration for x and y respectively. The underlying integrator determines whether infinite bounds are accepted.
The optional argument TOL defines the absolute tolerance used to integrate each sub-integral. The default value is 1e^{-6}.
The optional argument QUADF specifies which underlying integrator function to use. Any choice but 'quad' is available and the default is 'quadcc'.
Additional arguments, are passed directly to F. To use the default value for TOL or QUADF one may pass ':' or an empty matrix ([]).
See also: triplequad, quad, quadv, quadl, quadgk, quadcc, trapz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Numerically evaluate the double integral of F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
deal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 954
-- Function File: [R1, R2, ..., RN] = deal (A)
-- Function File: [R1, R2, ..., RN] = deal (A1, A2, ..., AN)
Copy the input parameters into the corresponding output parameters.
If only a single input parameter is supplied, its value is copied to each of the outputs.
For example,
[a, b, c] = deal (x, y, z);
is equivalent to
a = x;
b = y;
c = z;
and
[a, b, c] = deal (x);
is equivalent to
a = b = c = x;
Programming Note: 'deal' is often used with comma separated lists derived from cell arrays or structures. This is unnecessary as the interpreter can perform the same action without the overhead of a function call. For example:
c = {[1 2], "Three", 4};
[x, y, z ] = c{:}
=>
x =
1 2
y = Three
z = 4
See also: cell2struct, struct2cell, repmat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Copy the input parameters into the corresponding output parameters.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
del2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
-- Function File: D = del2 (M)
-- Function File: D = del2 (M, H)
-- Function File: D = del2 (M, DX, DY, ...)
Calculate the discrete Laplace operator.
For a 2-dimensional matrix M this is defined as
1 / d^2 d^2 \
D = --- * | --- M(x,y) + --- M(x,y) |
4 \ dx^2 dy^2 /
For N-dimensional arrays the sum in parentheses is expanded to include second derivatives over the additional higher dimensions.
The spacing between evaluation points may be defined by H, which is a scalar defining the equidistant spacing in all dimensions. Alternatively, the spacing in each dimension may be defined separately by DX, DY, etc. A scalar spacing argument defines equidistant spacing, whereas a vector argument can be used to specify variable spacing. The length of the spacing vectors must match the respective dimension of M. The default spacing value is 1.
At least 3 data points are needed for each dimension. Boundary points are calculated from the linear extrapolation of interior points.
See also: gradient, diff.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Calculate the discrete Laplace operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
display
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 321
-- Function File: display (A)
Display the contents of an object.
If A is an object of the class "myclass", then 'display' is called in a case like
myclass (...)
where Octave is required to display the contents of a variable of the type "myclass".
See also: class, subsref, subsasgn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Display the contents of an object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
divergence
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 652
-- Function File: DIV = divergence (X, Y, Z, FX, FY, FZ)
-- Function File: DIV = divergence (FX, FY, FZ)
-- Function File: DIV = divergence (X, Y, FX, FY)
-- Function File: DIV = divergence (FX, FY)
Calculate divergence of a vector field given by the arrays FX, FY, and FZ or FX, FY respectively.
d d d
div F(x,y,z) = -- F(x,y,z) + -- F(x,y,z) + -- F(x,y,z)
dx dy dz
The coordinates of the vector field can be given by the arguments X, Y, Z or X, Y respectively.
See also: curl, gradient, del2, dot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Calculate divergence of a vector field given by the arrays FX, FY, and FZ or FX, FY respectively.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
fieldnames
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 673
-- Function File: NAMES = fieldnames (STRUCT)
-- Function File: NAMES = fieldnames (OBJ)
-- Function File: NAMES = fieldnames (JAVAOBJ)
-- Function File: NAMES = fieldnames ("JCLASSNAME")
Return a cell array of strings with the names of the fields in the specified input.
When the input is a structure STRUCT, the names are the elements of the structure.
When the input is an Octave object OBJ, the names are the public properties of the object.
When the input is a Java object JAVAOBJ or Java classname JCLASSNAME the name are the public data elements of the object or class.
See also: numfields, isfield, orderfields, struct, methods.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return a cell array of strings with the names of the fields in the specified input.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
flip
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 635
-- Function File: flip (X)
-- Function File: flip (X, DIM)
Flip array across dimension DIM.
Return a copy of X flipped about the dimension DIM. DIM defaults to the first non-singleton dimension. For example:
flip ([1 2 3 4])
=> 4 3 2 1
flip ([1; 2; 3; 4])
=> 4
3
2
1
flip ([1 2; 3 4])
=> 3 4
1 2
flip ([1 2; 3 4], 2)
=> 2 1
4 3
See also: fliplr, flipud, rot90, rotdim, permute, transpose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Flip array across dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
flipdim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 299
-- Function File: flipdim (X)
-- Function File: flipdim (X, DIM)
Flip array across dimension DIM.
This function is an alias for 'flip' and exists for backwards and MATLAB compatibility. See 'flip' for complete usage information.
See also: flip, fliplr, flipud, rot90, rotdim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Flip array across dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fliplr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
-- Function File: fliplr (X)
Flip array left to right.
Return a copy of X with the order of the columns reversed. In other words, X is flipped left-to-right about a vertical axis. For example:
fliplr ([1, 2; 3, 4])
=> 2 1
4 3
See also: flipud, flip, rot90, rotdim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Flip array left to right.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
flipud
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 331
-- Function File: flipud (X)
Flip array upside down.
Return a copy of X with the order of the rows reversed. In other words, X is flipped upside-down about a horizontal axis. For example:
flipud ([1, 2; 3, 4])
=> 3 4
1 2
See also: fliplr, flip, rot90, rotdim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Flip array upside down.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gradient
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1794
-- Function File: DX = gradient (M)
-- Function File: [DX, DY, DZ, ...] = gradient (M)
-- Function File: [...] = gradient (M, S)
-- Function File: [...] = gradient (M, X, Y, Z, ...)
-- Function File: [...] = gradient (F, X0)
-- Function File: [...] = gradient (F, X0, S)
-- Function File: [...] = gradient (F, X0, X, Y, ...)
Calculate the gradient of sampled data or a function.
If M is a vector, calculate the one-dimensional gradient of M. If M is a matrix the gradient is calculated for each dimension.
'[DX, DY] = gradient (M)' calculates the one-dimensional gradient for X and Y direction if M is a matrix. Additional return arguments can be use for multi-dimensional matrices.
A constant spacing between two points can be provided by the S parameter. If S is a scalar, it is assumed to be the spacing for all dimensions. Otherwise, separate values of the spacing can be supplied by the X, ... arguments. Scalar values specify an equidistant spacing. Vector values for the X, ... arguments specify the coordinate for that dimension. The length must match their respective dimension of M.
At boundary points a linear extrapolation is applied. Interior points are calculated with the first approximation of the numerical gradient
y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
If the first argument F is a function handle, the gradient of the function at the points in X0 is approximated using central difference. For example, 'gradient (@cos, 0)' approximates the gradient of the cosine function in the point x0 = 0. As with sampled data, the spacing values between the points from which the gradient is estimated can be set via the S or DX, DY, ... arguments. By default a spacing of 1 is used.
See also: diff, del2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Calculate the gradient of sampled data or a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
idivide
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1317
-- Function File: idivide (X, Y, OP)
Integer division with different rounding rules.
The standard behavior of integer division such as 'A ./ B' is to round the result to the nearest integer. This is not always the desired behavior and 'idivide' permits integer element-by-element division to be performed with different treatment for the fractional part of the division as determined by the OP flag. OP is a string with one of the values:
"fix"
Calculate 'A ./ B' with the fractional part rounded towards zero.
"round"
Calculate 'A ./ B' with the fractional part rounded towards the nearest integer.
"floor"
Calculate 'A ./ B' with the fractional part rounded towards negative infinity.
"ceil"
Calculate 'A ./ B' with the fractional part rounded towards positive infinity.
If OP is not given it defaults to "fix". An example demonstrating these rounding rules is
idivide (int8 ([-3, 3]), int8 (4), "fix")
=> int8 ([0, 0])
idivide (int8 ([-3, 3]), int8 (4), "round")
=> int8 ([-1, 1])
idivide (int8 ([-3, 3]), int8 (4), "floor")
=> int8 ([-1, 0])
idivide (int8 ([-3, 3]), int8 (4), "ceil")
=> int8 ([0, 1])
See also: ldivide, rdivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Integer division with different rounding rules.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
inputParser
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4761
-- Function File: P = inputParser ()
Create object P of the inputParser class.
This class is designed to allow easy parsing of function arguments. The class supports four types of arguments:
1. mandatory (see 'addRequired');
2. optional (see 'addOptional');
3. named (see 'addParamValue');
4. switch (see 'addSwitch').
After defining the function API with these methods, the supplied arguments can be parsed with the 'parse' method and the parsing results accessed with the 'Results' accessor.
-- Accessor method: inputParser.Parameters
Return list of parameter names already defined.
-- Accessor method: inputParser.Results
Return structure with argument names as fieldnames and corresponding values.
-- Accessor method: inputParser.Unmatched
Return structure similar to 'Results', but for unmatched parameters. See the 'KeepUnmatched' property.
-- Accessor method: inputParser.UsingDefaults
Return cell array with the names of arguments that are using default values.
-- Class property: inputParser.CaseSensitive = BOOLEAN
Set whether matching of argument names should be case sensitive. Defaults to false.
-- Class property: inputParser.FunctionName = NAME
Set function name to be used in error messages; Defaults to empty string.
-- Class property: inputParser.KeepUnmatched = BOOLEAN
Set whether an error should be given for non-defined arguments. Defaults to false. If set to true, the extra arguments can be accessed through 'Unmatched' after the 'parse' method. Note that since 'Switch' and 'ParamValue' arguments can be mixed, it is not possible to know the unmatched type. If argument is found unmatched it is assumed to be of the 'ParamValue' type and it is expected to be followed by a value.
-- Class property: inputParser.StructExpand = BOOLEAN
Set whether a structure can be passed to the function instead of parameter/value pairs. Defaults to true. Not implemented yet.
The following example shows how to use this class:
function check (varargin)
p = inputParser (); # create object
p.FunctionName = "check"; # set function name
p.addRequired ("pack", @ischar); # mandatory argument
p.addOptional ("path", pwd(), @ischar); # optional argument
## create a function handle to anonymous functions for validators
val_mat = @(x) isvector (x) && all (x <= 1) && all (x >= 0);
p.addOptional ("mat", [0 0], val_mat);
## create two arguments of type "ParamValue"
val_type = @(x) any (strcmp (x, {"linear", "quadratic"}));
p.addParamValue ("type", "linear", val_type);
val_verb = @(x) any (strcmp (x, {"low", "medium", "high"}));
p.addParamValue ("tolerance", "low", val_verb);
## create a switch type of argument
p.addSwitch ("verbose");
p.parse (varargin{:}); # Run created parser on inputs
## the rest of the function can access inputs by using p.Results.
## for example, get the tolerance input with p.Results.tolerance
endfunction
check ("mech"); # valid, use defaults for other arguments
check (); # error, one argument is mandatory
check (1); # error, since ! ischar
check ("mech", "~/dev"); # valid, use defaults for other arguments
check ("mech", "~/dev", [0 1 0 0], "type", "linear"); # valid
## following is also valid. Note how the Switch argument type can
## be mixed into or before the ParamValue argument type (but it
## must still appear after any Optional argument).
check ("mech", "~/dev", [0 1 0 0], "verbose", "tolerance", "high");
## following returns an error since not all optional arguments,
## `path' and `mat', were given before the named argument `type'.
check ("mech", "~/dev", "type", "linear");
_Note 1_: A function can have any mixture of the four API types but they must appear in a specific order. 'Required' arguments must be first and can be followed by any 'Optional' arguments. Only the 'ParamValue' and 'Switch' arguments may be mixed together and they must appear at the end.
_Note 2_: If both 'Optional' and 'ParamValue' arguments are mixed in a function API then once a string Optional argument fails to validate it will be considered the end of the 'Optional' arguments. The remaining arguments will be compared against any 'ParamValue' or 'Switch' arguments.
See also: nargin, validateattributes, validatestring, varargin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Create object P of the inputParser class.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
int2str
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 697
-- Function File: int2str (N)
Convert an integer (or array of integers) to a string (or a character array).
int2str (123)
=> "123"
s = int2str ([1, 2, 3; 4, 5, 6])
=> s =
1 2 3
4 5 6
whos s
=>
Attr Name Size Bytes Class
==== ==== ==== ===== =====
s 2x7 14 char
This function is not very flexible. For better control over the results, use 'sprintf' (*note Formatted Output::).
See also: sprintf, num2str, mat2str.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Convert an integer (or array of integers) to a string (or a character array).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interp1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3161
-- Function File: YI = interp1 (X, Y, XI)
-- Function File: YI = interp1 (Y, XI)
-- Function File: YI = interp1 (..., METHOD)
-- Function File: YI = interp1 (..., EXTRAP)
-- Function File: YI = interp1 (..., "left")
-- Function File: YI = interp1 (..., "right")
-- Function File: PP = interp1 (..., "pp")
One-dimensional interpolation.
Interpolate input data to determine the value of YI at the points XI. If not specified, X is taken to be the indices of Y ('1:length (Y)'). If Y is a matrix or an N-dimensional array, the interpolation is performed on each column of Y.
The interpolation METHOD is one of:
"nearest"
Return the nearest neighbor.
"previous"
Return the previous neighbor.
"next"
Return the next neighbor.
"linear" (default)
Linear interpolation from nearest neighbors.
"pchip"
Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative.
"cubic"
Cubic interpolation (same as "pchip").
"spline"
Cubic spline interpolation--smooth first and second derivatives throughout the curve.
Adding '*' to the start of any method above forces 'interp1' to assume that X is uniformly spaced, and only 'X(1)' and 'X(2)' are referenced. This is usually faster, and is never slower. The default method is "linear".
If EXTRAP is the string "extrap", then extrapolate values beyond the endpoints using the current METHOD. If EXTRAP is a number, then replace values beyond the endpoints with that number. When unspecified, EXTRAP defaults to 'NA'.
If the string argument "pp" is specified, then XI should not be supplied and 'interp1' returns a piecewise polynomial object. This object can later be used with 'ppval' to evaluate the interpolation. There is an equivalence, such that 'ppval (interp1 (X, Y, METHOD, "pp"), XI) == interp1 (X, Y, XI, METHOD, "extrap")'.
Duplicate points in X specify a discontinuous interpolant. There may be at most 2 consecutive points with the same value. If X is increasing, the default discontinuous interpolant is right-continuous. If X is decreasing, the default discontinuous interpolant is left-continuous. The continuity condition of the interpolant may be specified by using the options "left" or "right" to select a left-continuous or right-continuous interpolant, respectively. Discontinuous interpolation is only allowed for "nearest" and "linear" methods; in all other cases, the X-values must be unique.
An example of the use of 'interp1' is
xf = [0:0.05:10];
yf = sin (2*pi*xf/5);
xp = [0:10];
yp = sin (2*pi*xp/5);
lin = interp1 (xp, yp, xf);
near = interp1 (xp, yp, xf, "nearest");
pch = interp1 (xp, yp, xf, "pchip");
spl = interp1 (xp, yp, xf, "spline");
plot (xf,yf,"r", xf,near,"g", xf,lin,"b", xf,pch,"c", xf,spl,"m",
xp,yp,"r*");
legend ("original", "nearest", "linear", "pchip", "spline");
See also: pchip, spline, interpft, interp2, interp3, interpn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
One-dimensional interpolation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interp2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2196
-- Function File: ZI = interp2 (X, Y, Z, XI, YI)
-- Function File: ZI = interp2 (Z, XI, YI)
-- Function File: ZI = interp2 (Z, N)
-- Function File: ZI = interp2 (Z)
-- Function File: ZI = interp2 (..., METHOD)
-- Function File: ZI = interp2 (..., METHOD, EXTRAP)
Two-dimensional interpolation.
Interpolate reference data X, Y, Z to determine ZI at the coordinates XI, YI. The reference data X, Y can be matrices, as returned by 'meshgrid', in which case the sizes of X, Y, and Z must be equal. If X, Y are vectors describing a grid then 'length (X) == columns (Z)' and 'length (Y) == rows (Z)'. In either case the input data must be strictly monotonic.
If called without X, Y, and just a single reference data matrix Z, the 2-D region 'X = 1:columns (Z), Y = 1:rows (Z)' is assumed. This saves memory if the grid is regular and the distance between points is not important.
If called with a single reference data matrix Z and a refinement value N, then perform interpolation over a grid where each original interval has been recursively subdivided N times. This results in '2^N-1' additional points for every interval in the original grid. If N is omitted a value of 1 is used. As an example, the interval [0,1] with 'N==2' results in a refined interval with points at [0, 1/4, 1/2, 3/4, 1].
The interpolation METHOD is one of:
"nearest"
Return the nearest neighbor.
"linear" (default)
Linear interpolation from nearest neighbors.
"pchip"
Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative.
"cubic"
Cubic interpolation (same as "pchip").
"spline"
Cubic spline interpolation--smooth first and second derivatives throughout the curve.
EXTRAP is a scalar number. It replaces values beyond the endpoints with EXTRAP. Note that if EXTRAPVAL is used, METHOD must be specified as well. If EXTRAP is omitted and the METHOD is "spline", then the extrapolated values of the "spline" are used. Otherwise the default EXTRAP value for any other METHOD is "NA".
See also: interp1, interp3, interpn, meshgrid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Two-dimensional interpolation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interp3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2261
-- Function File: VI = interp3 (X, Y, Z, V, XI, YI, ZI)
-- Function File: VI = interp3 (V, XI, YI, ZI)
-- Function File: VI = interp3 (V, N)
-- Function File: VI = interp3 (V)
-- Function File: VI = interp3 (..., METHOD)
-- Function File: VI = interp3 (..., METHOD, EXTRAPVAL)
Three-dimensional interpolation.
Interpolate reference data X, Y, Z, V to determine VI at the coordinates XI, YI, ZI. The reference data X, Y, Z can be matrices, as returned by 'meshgrid', in which case the sizes of X, Y, Z, and V must be equal. If X, Y, Z are vectors describing a cubic grid then 'length (X) == columns (V)', 'length (Y) == rows (V)', and 'length (Z) == size (V, 3)'. In either case the input data must be strictly monotonic.
If called without X, Y, Z, and just a single reference data matrix V, the 3-D region 'X = 1:columns (V), Y = 1:rows (V), Z = 1:size (V, 3)' is assumed. This saves memory if the grid is regular and the distance between points is not important.
If called with a single reference data matrix V and a refinement value N, then perform interpolation over a 3-D grid where each original interval has been recursively subdivided N times. This results in '2^N-1' additional points for every interval in the original grid. If N is omitted a value of 1 is used. As an example, the interval [0,1] with 'N==2' results in a refined interval with points at [0, 1/4, 1/2, 3/4, 1].
The interpolation METHOD is one of:
"nearest"
Return the nearest neighbor.
"linear" (default)
Linear interpolation from nearest neighbors.
"cubic"
Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative (not implemented yet).
"spline"
Cubic spline interpolation--smooth first and second derivatives throughout the curve.
EXTRAPVAL is a scalar number. It replaces values beyond the endpoints with EXTRAPVAL. Note that if EXTRAPVAL is used, METHOD must be specified as well. If EXTRAPVAL is omitted and the METHOD is "spline", then the extrapolated values of the "spline" are used. Otherwise the default EXTRAPVAL value for any other METHOD is "NA".
See also: interp1, interp2, interpn, meshgrid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Three-dimensional interpolation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
interpft
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 539
-- Function File: interpft (X, N)
-- Function File: interpft (X, N, DIM)
Fourier interpolation.
If X is a vector then X is resampled with N points. The data in X is assumed to be equispaced. If X is a matrix or an N-dimensional array, the interpolation is performed on each column of X.
If DIM is specified, then interpolate along the dimension DIM.
'interpft' assumes that the interpolated function is periodic, and so assumptions are made about the endpoints of the interpolation.
See also: interp1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Fourier interpolation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interpn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1993
-- Function File: VI = interpn (X1, X2, ..., V, Y1, Y2, ...)
-- Function File: VI = interpn (V, Y1, Y2, ...)
-- Function File: VI = interpn (V, M)
-- Function File: VI = interpn (V)
-- Function File: VI = interpn (..., METHOD)
-- Function File: VI = interpn (..., METHOD, EXTRAPVAL)
Perform N-dimensional interpolation, where N is at least two.
Each element of the N-dimensional array V represents a value at a location given by the parameters X1, X2, ..., XN. The parameters X1, X2, ..., XN are either N-dimensional arrays of the same size as the array V in the "ndgrid" format or vectors. The parameters Y1, etc. respect a similar format to X1, etc., and they represent the points at which the array VI is interpolated.
If X1, ..., XN are omitted, they are assumed to be 'x1 = 1 : size (V, 1)', etc. If M is specified, then the interpolation adds a point half way between each of the interpolation points. This process is performed M times. If only V is specified, then M is assumed to be '1'.
The interpolation METHOD is one of:
"nearest"
Return the nearest neighbor.
"linear" (default)
Linear interpolation from nearest neighbors.
"pchip"
Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative (not implemented yet).
"cubic"
Cubic interpolation (same as "pchip" [not implemented yet]).
"spline"
Cubic spline interpolation--smooth first and second derivatives throughout the curve.
The default method is "linear".
EXTRAPVAL is a scalar number. It replaces values beyond the endpoints with EXTRAPVAL. Note that if EXTRAPVAL is used, METHOD must be specified as well. If EXTRAPVAL is omitted and the METHOD is "spline", then the extrapolated values of the "spline" are used. Otherwise the default EXTRAPVAL value for any other METHOD is "NA".
See also: interp1, interp2, interp3, spline, ndgrid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Perform N-dimensional interpolation, where N is at least two.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
-- Function File: isdir (F)
Return true if F is a directory.
See also: exist, stat, is_absolute_filename, is_rooted_relative_filename.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return true if F is a directory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isequal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
-- Function File: isequal (X1, X2, ...)
Return true if all of X1, X2, ... are equal.
See also: isequaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Return true if all of X1, X2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isequaln
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
-- Function File: isequaln (X1, X2, ...)
Return true if all of X1, X2, ... are equal under the additional assumption that NaN == NaN (no comparison of NaN placeholders in dataset).
See also: isequal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Return true if all of X1, X2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
loadobj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 485
-- Function File: B = loadobj (A)
Method of a class to manipulate an object after loading it from a file.
The function 'loadobj' is called when the object A is loaded using the 'load' function. An example of the use of 'saveobj' might be to add fields to an object that don't make sense to be saved. For example:
function b = loadobj (a)
b = a;
b.addmissingfield = addfield (b);
endfunction
See also: saveobj, class.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Method of a class to manipulate an object after loading it from a file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
logspace
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 531
-- Function File: logspace (A, B)
-- Function File: logspace (A, B, N)
-- Function File: logspace (A, pi, N)
Return a row vector with N elements logarithmically spaced from 10^A to 10^B.
If N is unspecified it defaults to 50.
If B is equal to pi, the points are between 10^A and pi, _not_ 10^A and 10^pi, in order to be compatible with the corresponding MATLAB function.
Also for compatibility with MATLAB, return the second argument B if fewer than two values are requested.
See also: linspace.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return a row vector with N elements logarithmically spaced from 10^A to 10^B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
methods
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 314
-- Function File: methods (OBJ)
-- Function File: methods ("CLASSNAME")
-- Function File: MTDS = methods (...)
Return a cell array containing the names of the methods for the object OBJ or the named class CLASSNAME.
OBJ may be an Octave class object or a Java object.
See also: fieldnames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Return a cell array containing the names of the methods for the object OBJ or the named class CLASSNAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nargchk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 605
-- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS)
-- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS, "string")
-- Function File: MSGSTRUCT = nargchk (MINARGS, MAXARGS, NARGS, "struct")
Return an appropriate error message string (or structure) if the number of inputs requested is invalid.
This is useful for checking to see that the number of input arguments supplied to a function is within an acceptable range.
*Caution*: 'nargchk' is scheduled for deprecation. Use 'narginchk' in all new code.
See also: narginchk, nargoutchk, error, nargin, nargout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Return an appropriate error message string (or structure) if the number of inputs requested is invalid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
narginchk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
-- Function File: narginchk (MINARGS, MAXARGS)
Check for correct number of input arguments.
Generate an error message if the number of arguments in the calling function is outside the range MINARGS and MAXARGS. Otherwise, do nothing.
Both MINARGS and MAXARGS must be scalar numeric values. Zero, Inf, and negative values are all allowed, and MINARGS and MAXARGS may be equal.
Note that this function evaluates 'nargin' on the caller.
See also: nargoutchk, error, nargout, nargin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Check for correct number of input arguments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nargoutchk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1032
-- Function File: nargoutchk (MINARGS, MAXARGS)
-- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS)
-- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS, "string")
-- Function File: MSGSTRUCT = nargoutchk (MINARGS, MAXARGS, NARGS, "struct")
Check for correct number of output arguments.
In the first form, return an error if the number of arguments is not between MINARGS and MAXARGS. Otherwise, do nothing. Note that this function evaluates the value of 'nargout' on the caller so its value must have not been tampered with.
Both MINARGS and MAXARGS must be numeric scalars. Zero, Inf, and negative are all valid, and they can have the same value.
For backwards compatibility, the other forms return an appropriate error message string (or structure) if the number of outputs requested is invalid.
This is useful for checking to that the number of output arguments supplied to a function is within an acceptable range.
See also: narginchk, error, nargout, nargin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Check for correct number of output arguments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nextpow2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 240
-- Function File: nextpow2 (X)
Compute the exponent for the smallest power of two larger than the input.
For each element in the input array X, return the first integer N such that 2^n >= abs (x).
See also: pow2, log2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Compute the exponent for the smallest power of two larger than the input.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nthargout
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1255
-- Function File: nthargout (N, FUNC, ...)
-- Function File: nthargout (N, NTOT, FUNC, ...)
Return the Nth output argument of the function specified by the function handle or string FUNC.
Any additional arguments are passed directly to FUNC. The total number of arguments to call FUNC with can be passed in NTOT; by default NTOT is N. The input N can also be a vector of indices of the output, in which case the output will be a cell array of the requested output arguments.
The intended use 'nthargout' is to avoid intermediate variables. For example, when finding the indices of the maximum entry of a matrix, the following two compositions of nthargout
M = magic (5);
cell2mat (nthargout ([1, 2], @ind2sub, size (M),
nthargout (2, @max, M(:))))
=> 5 3
are completely equivalent to the following lines:
M = magic (5);
[~, idx] = max (M(:));
[i, j] = ind2sub (size (M), idx);
[i, j]
=> 5 3
It can also be helpful to have all output arguments in a single cell in the following manner:
USV = nthargout ([1:3], @svd, hilb (5));
See also: nargin, nargout, varargin, varargout, isargout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return the Nth output argument of the function specified by the function handle or string FUNC.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
num2str
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1433
-- Function File: num2str (X)
-- Function File: num2str (X, PRECISION)
-- Function File: num2str (X, FORMAT)
Convert a number (or array) to a string (or a character array).
The optional second argument may either give the number of significant digits (PRECISION) to be used in the output or a format template string (FORMAT) as in 'sprintf' (*note Formatted Output::). 'num2str' can also process complex numbers.
Examples:
num2str (123.456)
=> "123.46"
num2str (123.456, 4)
=> "123.5"
s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
=> s =
1.0 1.3
3.0 3.6
whos s
=>
Attr Name Size Bytes Class
==== ==== ==== ===== =====
s 2x8 16 char
num2str (1.234 + 27.3i)
=> "1.234+27.3i"
Notes:
For MATLAB compatibility, leading spaces are stripped before returning the string.
The 'num2str' function is not very flexible. For better control over the results, use 'sprintf' (*note Formatted Output::).
For complex X, the format string may only contain one output conversion specification and nothing else. Otherwise, results will be unpredictable.
See also: sprintf, int2str, mat2str.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Convert a number (or array) to a string (or a character array).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
pol2cart
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 796
-- Function File: [X, Y] = pol2cart (THETA, R)
-- Function File: [X, Y, Z] = pol2cart (THETA, R, Z)
-- Function File: [X, Y] = pol2cart (P)
-- Function File: [X, Y, Z] = pol2cart (P)
-- Function File: C = pol2cart (...)
Transform polar or cylindrical coordinates to Cartesian coordinates.
The inputs THETA, R, (and Z) must be the same shape, or scalar. If called with a single matrix argument then each row of P represents the polar/(cylindrical) coordinate (THETA, R (, Z)).
THETA describes the angle relative to the positive x-axis.
R is the distance to the z-axis (0, 0, z).
If only a single return argument is requested then return a matrix C where each row represents one Cartesian coordinate (X, Y (, Z)).
See also: cart2pol, sph2cart, cart2sph.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Transform polar or cylindrical coordinates to Cartesian coordinates.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
polyarea
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 478
-- Function File: polyarea (X, Y)
-- Function File: polyarea (X, Y, DIM)
Determine area of a polygon by triangle method.
The variables X and Y define the vertex pairs, and must therefore have the same shape. They can be either vectors or arrays. If they are arrays then the columns of X and Y are treated separately and an area returned for each.
If the optional DIM argument is given, then 'polyarea' works along this dimension of the arrays X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Determine area of a polygon by triangle method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
postpad
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 606
-- Function File: postpad (X, L)
-- Function File: postpad (X, L, C)
-- Function File: postpad (X, L, C, DIM)
Append the scalar value C to the vector X until it is of length L. If C is not given, a value of 0 is used.
If 'length (X) > L', elements from the end of X are removed until a vector of length L is obtained.
If X is a matrix, elements are appended or removed from each row.
If the optional argument DIM is given, operate along this dimension.
If DIM is larger than the dimensions of X, the result will have DIM dimensions.
See also: prepad, cat, resize.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Append the scalar value C to the vector X until it is of length L.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
prepad
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 612
-- Function File: prepad (X, L)
-- Function File: prepad (X, L, C)
-- Function File: prepad (X, L, C, DIM)
Prepend the scalar value C to the vector X until it is of length L. If C is not given, a value of 0 is used.
If 'length (X) > L', elements from the beginning of X are removed until a vector of length L is obtained.
If X is a matrix, elements are prepended or removed from each row.
If the optional argument DIM is given, operate along this dimension.
If DIM is larger than the dimensions of X, the result will have DIM dimensions.
See also: postpad, cat, resize.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Prepend the scalar value C to the vector X until it is of length L.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
profexplore
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 460
-- Function File: profexplore ()
-- Function File: profexplore (DATA)
Interactively explore hierarchical profiler output.
Assuming DATA is the structure with profile data returned by 'profile ("info")', this command opens an interactive prompt that can be used to explore the call-tree. Type 'help' to get a list of possible commands. If DATA is omitted, 'profile ("info")' is called and used in its place.
See also: profile, profshow.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Interactively explore hierarchical profiler output.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
profile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1474
-- Command: profile on
-- Command: profile off
-- Command: profile resume
-- Command: profile clear
-- Function File: S = profile ("status")
-- Function File: T = profile ("info")
Control the built-in profiler.
'profile on'
Start the profiler, clearing all previously collected data if there is any.
'profile off'
Stop profiling. The collected data can later be retrieved and examined with 'T = profile ("info")'.
'profile clear'
Clear all collected profiler data.
'profile resume'
Restart profiling without clearing the old data. All newly collected statistics are added to the existing ones.
'S = profile ("status")'
Return a structure with information about the current status of the profiler. At the moment, the only field is 'ProfilerStatus' which is either "on" or "off".
'T = profile ("info")'
Return the collected profiling statistics in the structure T. The flat profile is returned in the field 'FunctionTable' which is an array of structures, each entry corresponding to a function which was called and for which profiling statistics are present. In addition, the field 'Hierarchical' contains the hierarchical call tree. Each node has an index into the 'FunctionTable' identifying the function it corresponds to as well as data fields for number of calls and time spent at this level in the call tree.
See also: profshow, profexplore.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Control the built-in profiler.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
profshow
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 695
-- Function File: profshow (DATA)
-- Function File: profshow (DATA, N)
-- Function File: profshow ()
-- Function File: profshow (N)
Display flat per-function profiler results.
Print out profiler data (execution time, number of calls) for the most critical N functions. The results are sorted in descending order by the total time spent in each function. If N is unspecified it defaults to 20.
The input DATA is the structure returned by 'profile ("info")'. If unspecified, 'profshow' will use the current profile dataset.
The attribute column displays 'R' for recursive functions, and is blank for all other function types.
See also: profexplore, profile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Display flat per-function profiler results.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
quadgk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3764
-- Function File: Q = quadgk (F, A, B)
-- Function File: Q = quadgk (F, A, B, ABSTOL)
-- Function File: Q = quadgk (F, A, B, ABSTOL, TRACE)
-- Function File: Q = quadgk (F, A, B, PROP, VAL, ...)
-- Function File: [Q, ERR] = quadgk (...)
Numerically evaluate the integral of F from A to B using adaptive Gauss-Konrod quadrature.
F is a function handle, inline function, or string containing the name of the function to evaluate. The function F must be vectorized and return a vector of output values when given a vector of input values.
A and B are the lower and upper limits of integration. Either or both limits may be infinite or contain weak end singularities. Variable transformation will be used to treat any infinite intervals and weaken the singularities. For example:
quadgk (@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)
Note that the formulation of the integrand uses the element-by-element operator './' and all user functions to 'quadgk' should do the same.
The optional argument TOL defines the absolute tolerance used to stop the integration procedure. The default value is 1e-10.
The algorithm used by 'quadgk' involves subdividing the integration interval and evaluating each subinterval. If TRACE is true then after computing each of these partial integrals display: (1) the number of subintervals at this step, (2) the current estimate of the error ERR, (3) the current estimate for the integral Q.
Alternatively, properties of 'quadgk' can be passed to the function as pairs "PROP", VAL. Valid properties are
'AbsTol'
Define the absolute error tolerance for the quadrature. The default absolute tolerance is 1e-10.
'RelTol'
Define the relative error tolerance for the quadrature. The default relative tolerance is 1e-5.
'MaxIntervalCount'
'quadgk' initially subdivides the interval on which to perform the quadrature into 10 intervals. Subintervals that have an unacceptable error are subdivided and re-evaluated. If the number of subintervals exceeds 650 subintervals at any point then a poor convergence is signaled and the current estimate of the integral is returned. The property "MaxIntervalCount" can be used to alter the number of subintervals that can exist before exiting.
'WayPoints'
Discontinuities in the first derivative of the function to integrate can be flagged with the "WayPoints" property. This forces the ends of a subinterval to fall on the breakpoints of the function and can result in significantly improved estimation of the error in the integral, faster computation, or both. For example,
quadgk (@(x) abs (1 - x.^2), 0, 2, "Waypoints", 1)
signals the breakpoint in the integrand at 'X = 1'.
'Trace'
If logically true 'quadgk' prints information on the convergence of the quadrature at each iteration.
If any of A, B, or WAYPOINTS is complex then the quadrature is treated as a contour integral along a piecewise continuous path defined by the above. In this case the integral is assumed to have no edge singularities. For example,
quadgk (@(z) log (z), 1+1i, 1+1i, "WayPoints",
[1-1i, -1,-1i, -1+1i])
integrates 'log (z)' along the square defined by '[1+1i, 1-1i, -1-1i, -1+1i]'.
The result of the integration is returned in Q.
ERR is an approximate bound on the error in the integral 'abs (Q - I)', where I is the exact value of the integral.
Reference: L.F. Shampine, '"Vectorized adaptive quadrature in MATLAB"', Journal of Computational and Applied Mathematics, pp. 131-140, Vol 211, Issue 2, Feb 2008.
See also: quad, quadv, quadl, quadcc, trapz, dblquad, triplequad.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Numerically evaluate the integral of F from A to B using adaptive Gauss-Konrod quadrature.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
quadl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1403
-- Function File: Q = quadl (F, A, B)
-- Function File: Q = quadl (F, A, B, TOL)
-- Function File: Q = quadl (F, A, B, TOL, TRACE)
-- Function File: Q = quadl (F, A, B, TOL, TRACE, P1, P2, ...)
Numerically evaluate the integral of F from A to B using an adaptive Lobatto rule.
F is a function handle, inline function, or string containing the name of the function to evaluate. The function F must be vectorized and return a vector of output values when given a vector of input values.
A and B are the lower and upper limits of integration. Both limits must be finite.
The optional argument TOL defines the relative tolerance with which to perform the integration. The default value is 'eps'.
The algorithm used by 'quadl' involves recursively subdividing the integration interval. If TRACE is defined then for each subinterval display: (1) the left end of the subinterval, (2) the length of the subinterval, (3) the approximation of the integral over the subinterval.
Additional arguments P1, etc., are passed directly to the function F. To use default values for TOL and TRACE, one may pass empty matrices ([]).
Reference: W. Gander and W. Gautschi, 'Adaptive Quadrature - Revisited', BIT Vol. 40, No. 1, March 2000, pp. 84-101. <http://www.inf.ethz.ch/personal/gander/>
See also: quad, quadv, quadgk, quadcc, trapz, dblquad, triplequad.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Numerically evaluate the integral of F from A to B using an adaptive Lobatto rule.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
quadv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1714
-- Function File: Q = quadv (F, A, B)
-- Function File: Q = quadv (F, A, B, TOL)
-- Function File: Q = quadv (F, A, B, TOL, TRACE)
-- Function File: Q = quadv (F, A, B, TOL, TRACE, P1, P2, ...)
-- Function File: [Q, NFUN] = quadv (...)
Numerically evaluate the integral of F from A to B using an adaptive Simpson's rule.
F is a function handle, inline function, or string containing the name of the function to evaluate. 'quadv' is a vectorized version of 'quad' and the function defined by F must accept a scalar or vector as input and return a scalar, vector, or array as output.
A and B are the lower and upper limits of integration. Both limits must be finite.
The optional argument TOL defines the tolerance used to stop the adaptation procedure. The default value is 1e-6.
The algorithm used by 'quadv' involves recursively subdividing the integration interval and applying Simpson's rule on each subinterval. If TRACE is true then after computing each of these partial integrals display: (1) the total number of function evaluations, (2) the left end of the subinterval, (3) the length of the subinterval, (4) the approximation of the integral over the subinterval.
Additional arguments P1, etc., are passed directly to the function F. To use default values for TOL and TRACE, one may pass empty matrices ([]).
The result of the integration is returned in Q
NFUN indicates the number of function evaluations that were made.
Note: 'quadv' is written in Octave's scripting language and can be used recursively in 'dblquad' and 'triplequad', unlike the 'quad' function.
See also: quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Numerically evaluate the integral of F from A to B using an adaptive Simpson's rule.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1226
-- Function File: randi (IMAX)
-- Function File: randi (IMAX, N)
-- Function File: randi (IMAX, M, N, ...)
-- Function File: randi ([IMIN IMAX], ...)
-- Function File: randi (..., "CLASS")
Return random integers in the range 1:IMAX.
Additional arguments determine the shape of the return matrix. When no arguments are specified a single random integer is returned. If one argument N is specified then a square matrix (N x N) is returned. Two or more arguments will return a multi-dimensional matrix (M x N x ...).
The integer range may optionally be described by a two element matrix with a lower and upper bound in which case the returned integers will be on the interval [IMIN, IMAX].
The optional argument CLASS will return a matrix of the requested type. The default is "double".
The following example returns 150 integers in the range 1-10.
ri = randi (10, 150, 1)
Implementation Note: 'randi' relies internally on 'rand' which uses class "double" to represent numbers. This limits the maximum integer (IMAX) and range (IMAX - IMIN) to the value returned by the 'bitmax' function. For IEEE floating point numbers this value is 2^{53} - 1.
See also: rand.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return random integers in the range 1:IMAX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
rat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 488
-- Function File: S = rat (X, TOL)
-- Function File: [N, D] = rat (X, TOL)
Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion.
For example:
rat (pi) = 3 + 1/(7 + 1/16) = 355/113
rat (e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))
= 1457/536
When called with two output arguments return the numerator and denominator separately as two matrices.
See also: rats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
repmat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 514
-- Function File: repmat (A, M)
-- Function File: repmat (A, M, N)
-- Function File: repmat (A, M, N, P ...)
-- Function File: repmat (A, [M N])
-- Function File: repmat (A, [M N P ...])
Form a block matrix of size M by N, with a copy of matrix A as each element.
If N is not specified, form an M by M block matrix. For copying along more than two dimensions, specify the number of times to copy across each dimension M, N, P, ..., in a vector in the second argument.
See also: repelems.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Form a block matrix of size M by N, with a copy of matrix A as each element.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rot90
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 902
-- Function File: rot90 (A)
-- Function File: rot90 (A, K)
Rotate array by 90 degree increments.
Return a copy of A with the elements rotated counterclockwise in 90-degree increments.
The second argument is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1). Negative values of K rotate the matrix in a clockwise direction. For example,
rot90 ([1, 2; 3, 4], -1)
=> 3 1
4 2
rotates the given matrix clockwise by 90 degrees. The following are all equivalent statements:
rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 4], 7)
The rotation is always performed on the plane of the first two dimensions, i.e., rows and columns. To perform a rotation on any other plane, use 'rotdim'.
See also: rotdim, fliplr, flipud, flip.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Rotate array by 90 degree increments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rotdim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1037
-- Function File: rotdim (X)
-- Function File: rotdim (X, N)
-- Function File: rotdim (X, N, PLANE)
Return a copy of X with the elements rotated counterclockwise in 90-degree increments.
The second argument N is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1). Negative values of N rotate the matrix in a clockwise direction.
The third argument is also optional and defines the plane of the rotation. If present, PLANE is a two element vector containing two different valid dimensions of the matrix. When PLANE is not given the first two non-singleton dimensions are used.
For example,
rotdim ([1, 2; 3, 4], -1, [1, 2])
=> 3 1
4 2
rotates the given matrix clockwise by 90 degrees. The following are all equivalent statements:
rotdim ([1, 2; 3, 4], -1, [1, 2])
rotdim ([1, 2; 3, 4], 3, [1, 2])
rotdim ([1, 2; 3, 4], 7, [1, 2])
See also: rot90, fliplr, flipud, flip.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return a copy of X with the elements rotated counterclockwise in 90-degree increments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
saveobj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 642
-- Function File: B = saveobj (A)
Method of a class to manipulate an object prior to saving it to a file.
The function 'saveobj' is called when the object A is saved using the 'save' function. An example of the use of 'saveobj' might be to remove fields of the object that don't make sense to be saved or it might be used to ensure that certain fields of the object are initialized before the object is saved. For example:
function b = saveobj (a)
b = a;
if (isempty (b.field))
b.field = initfield (b);
endif
endfunction
See also: loadobj, class.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Method of a class to manipulate an object prior to saving it to a file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
shift
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 287
-- Function File: shift (X, B)
-- Function File: shift (X, B, DIM)
If X is a vector, perform a circular shift of length B of the elements of X.
If X is a matrix, do the same for each column of X.
If the optional DIM argument is given, operate along this dimension.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
If X is a vector, perform a circular shift of length B of the elements of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
shiftdim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 887
-- Function File: Y = shiftdim (X, N)
-- Function File: [Y, NS] = shiftdim (X)
Shift the dimensions of X by N, where N must be an integer scalar.
When N is positive, the dimensions of X are shifted to the left, with the leading dimensions circulated to the end. If N is negative, then the dimensions of X are shifted to the right, with N leading singleton dimensions added.
Called with a single argument, 'shiftdim', removes the leading singleton dimensions, returning the number of dimensions removed in the second output argument NS.
For example:
x = ones (1, 2, 3);
size (shiftdim (x, -1))
=> [1, 1, 2, 3]
size (shiftdim (x, 1))
=> [2, 3]
[b, ns] = shiftdim (x)
=> b = [1, 1, 1; 1, 1, 1]
=> ns = 1
See also: reshape, permute, ipermute, circshift, squeeze.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Shift the dimensions of X by N, where N must be an integer scalar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sortrows
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 389
-- Function File: [S, I] = sortrows (A)
-- Function File: [S, I] = sortrows (A, C)
Sort the rows of the matrix A according to the order of the columns specified in C.
If C is omitted, a lexicographical sort is used. By default ascending order is used however if elements of C are negative then the corresponding column is sorted in descending order.
See also: sort.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Sort the rows of the matrix A according to the order of the columns specified in C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sph2cart
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 733
-- Function File: [X, Y, Z] = sph2cart (THETA, PHI, R)
-- Function File: [X, Y, Z] = sph2cart (S)
-- Function File: C = sph2cart (...)
Transform spherical coordinates to Cartesian coordinates.
The inputs THETA, PHI, and R must be the same shape, or scalar. If called with a single matrix argument then each row of S represents the spherical coordinate (THETA, PHI, R).
THETA describes the angle relative to the positive x-axis.
PHI is the angle relative to the xy-plane.
R is the distance to the origin (0, 0, 0).
If only a single return argument is requested then return a matrix C where each row represents one Cartesian coordinate (X, Y, Z).
See also: cart2sph, pol2cart, cart2pol.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Transform spherical coordinates to Cartesian coordinates.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
structfun
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1900
-- Function File: structfun (FUNC, S)
-- Function File: [A, ...] = structfun (...)
-- Function File: structfun (..., "ErrorHandler", ERRFUNC)
-- Function File: structfun (..., "UniformOutput", VAL)
Evaluate the function named NAME on the fields of the structure S. The fields of S are passed to the function FUNC individually.
'structfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string). In the case of a character string argument, the function must accept a single argument named X, and it must return a string value. If the function returns more than one argument, they are returned as separate output variables.
If the parameter "UniformOutput" is set to true (the default), then the function must return a single element which will be concatenated into the return value. If "UniformOutput" is false, the outputs are placed into a structure with the same fieldnames as the input structure.
s.name1 = "John Smith";
s.name2 = "Jill Jones";
structfun (@(x) regexp (x, '(\w+)$', "matches"){1}, s,
"UniformOutput", false)
=>
{
name1 = Smith
name2 = Jones
}
Given the parameter "ErrorHandler", ERRFUNC defines a function to call in case FUNC generates an error. The form of the function is
function [...] = errfunc (SE, ...)
where there is an additional input argument to ERRFUNC relative to FUNC, given by SE. This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error. For an example on how to use an error handler, *note cellfun: XREFcellfun.
See also: cellfun, arrayfun, spfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Evaluate the function named NAME on the fields of the structure S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
subsindex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 829
-- Function File: IDX = subsindex (A)
Convert an object to an index vector.
When A is a class object defined with a class constructor, then 'subsindex' is the overloading method that allows the conversion of this class object to a valid indexing vector. It is important to note that 'subsindex' must return a zero-based real integer vector of the class "double". For example, if the class constructor
function b = myclass (a)
b = class (struct ("a", a), "myclass");
endfunction
then the 'subsindex' function
function idx = subsindex (a)
idx = double (a.a) - 1.0;
endfunction
can then be used as follows
a = myclass (1:4);
b = 1:10;
b(a)
=> 1 2 3 4
See also: class, subsref, subsasgn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert an object to an index vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
trapz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1239
-- Function File: Q = trapz (Y)
-- Function File: Q = trapz (X, Y)
-- Function File: Q = trapz (..., DIM)
Numerically evaluate the integral of points Y using the trapezoidal method.
'trapz (Y)' computes the integral of Y along the first non-singleton dimension. When the argument X is omitted an equally spaced X vector with unit spacing (1) is assumed. 'trapz (X, Y)' evaluates the integral with respect to the spacing in X and the values in Y. This is useful if the points in Y have been sampled unevenly.
If the optional DIM argument is given, operate along this dimension.
Application Note: If X is not specified then unit spacing will be used. To scale the integral to the correct value you must multiply by the actual spacing value (deltaX). As an example, the integral of x^3 over the range [0, 1] is x^4/4 or 0.25. The following code uses 'trapz' to calculate the integral in three different ways.
x = 0:0.1:1;
y = x.^3;
q = trapz (y)
=> q = 2.525 # No scaling
q * 0.1
=> q = 0.2525 # Approximation to integral by scaling
trapz (x, y)
=> q = 0.2525 # Same result by specifying X
See also: cumtrapz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Numerically evaluate the integral of points Y using the trapezoidal method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
triplequad
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1291
-- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB)
-- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL)
-- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL, QUADF)
-- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL, QUADF, ...)
Numerically evaluate the triple integral of F.
F is a function handle, inline function, or string containing the name of the function to evaluate. The function F must have the form w = f(x,y,z) where either X or Y is a vector and the remaining inputs are scalars. It should return a vector of the same length and orientation as X or Y.
XA, YA, ZA and XB, YB, ZB are the lower and upper limits of integration for x, y, and z respectively. The underlying integrator determines whether infinite bounds are accepted.
The optional argument TOL defines the absolute tolerance used to integrate each sub-integral. The default value is 1e-6.
The optional argument QUADF specifies which underlying integrator function to use. Any choice but 'quad' is available and the default is 'quadcc'.
Additional arguments, are passed directly to F. To use the default value for TOL or QUADF one may pass ':' or an empty matrix ([]).
See also: dblquad, quad, quadv, quadl, quadgk, quadcc, trapz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Numerically evaluate the triple integral of F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
validateattributes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4153
-- Function File: validateattributes (A, CLASSES, ATTRIBUTES)
-- Function File: validateattributes (A, CLASSES, ATTRIBUTES, ARG_IDX)
-- Function File: validateattributes (A, CLASSES, ATTRIBUTES, FUNC_NAME)
-- Function File: validateattributes (A, CLASSES, ATTRIBUTES, FUNC_NAME, ARG_NAME)
-- Function File: validateattributes (A, CLASSES, ATTRIBUTES, FUNC_NAME, ARG_NAME, ARG_IDX)
Check validity of input argument.
Confirms that the argument A is valid by belonging to one of CLASSES, and holding all of the ATTRIBUTES. If it does not, an error is thrown, with a message formatted accordingly. The error message can be made further complete by the function name FUN_NAME, the argument name ARG_NAME, and its position in the input ARG_IDX.
CLASSES must be a cell array of strings (an empty cell array is allowed) with the name of classes (remember that a class name is case sensitive). In addition to the class name, the following categories names are also valid:
"float"
Floating point value comprising classes "double" and "single".
"integer"
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.
"numeric"
Numeric value comprising either a floating point or integer value.
ATTRIBUTES must be a cell array with names of checks for A. Some of them require an additional value to be supplied right after the name (see details for each below).
"<="
All values are less than or equal to the following value in ATTRIBUTES.
"<"
All values are less than the following value in ATTRIBUTES.
">="
All values are greater than or equal to the following value in ATTRIBUTES.
">"
All values are greater than the following value in ATTRIBUTES.
"2d"
A 2-dimensional matrix. Note that vectors and empty matrices have 2 dimensions, one of them being of length 1, or both length 0.
"3d"
Has no more than 3 dimensions. A 2-dimensional matrix is a 3-D matrix whose 3rd dimension is of length 1.
"binary"
All values are either 1 or 0.
"column"
Values are arranged in a single column.
"decreasing"
No value is NAN, and each is less than the preceding one.
"even"
All values are even numbers.
"finite"
All values are finite.
"increasing"
No value is NAN, and each is greater than the preceding one.
"integer"
All values are integer. This is different than using 'isinteger' which only checks its an integer type. This checks that each value in A is an integer value, i.e., it has no decimal part.
"ncols"
Has exactly as many columns as the next value in ATTRIBUTES.
"ndims"
Has exactly as many dimensions as the next value in ATTRIBUTES.
"nondecreasing"
No value is NAN, and each is greater than or equal to the preceding one.
"nonempty"
It is not empty.
"nonincreasing"
No value is NAN, and each is less than or equal to the preceding one.
"nonnan"
No value is a 'NaN'.
"non-negative"
All values are non negative.
"nonsparse"
It is not a sparse matrix.
"nonzero"
No value is zero.
"nrows"
Has exactly as many rows as the next value in ATTRIBUTES.
"numel"
Has exactly as many elements as the next value in ATTRIBUTES.
"odd"
All values are odd numbers.
"positive"
All values are positive.
"real"
It is a non-complex matrix.
"row"
Values are arranged in a single row.
"scalar"
It is a scalar.
"size"
Its size has length equal to the values of the next in ATTRIBUTES. The next value must is an array with the length for each dimension. To ignore the check for a certain dimension, the value of 'NaN' can be used.
"square"
Is a square matrix.
"vector"
Values are arranged in a single vector (column or vector).
See also: isa, validatestring, inputParser.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Check validity of input argument.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
convhull
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 877
-- Function File: H = convhull (X, Y)
-- Function File: H = convhull (X, Y, OPTIONS)
Compute the convex hull of the set of points defined by the arrays X and Y. The hull H is an index vector into the set of points and specifies which points form the enclosing hull.
An optional third argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command. See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>. The default option is '{"Qt"}'.
If OPTIONS is not present or '[]' then the default arguments are used. Otherwise, OPTIONS replaces the default argument list. To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS. Use a null string to pass no arguments.
See also: convhulln, delaunay, voronoi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute the convex hull of the set of points defined by the arrays X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
delaunayn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1454
-- Function File: T = delaunayn (PTS)
-- Function File: T = delaunayn (PTS, OPTIONS)
Compute the Delaunay triangulation for an N-dimensional set of points.
The Delaunay triangulation is a tessellation of the convex hull of a set of points such that no N-sphere defined by the N-triangles contains any other points from the set.
The input matrix PTS of size [n, dim] contains n points in a space of dimension dim. The return matrix T has size [m, dim+1]. Each row of T contains a set of indices back into the original set of points PTS which describes a simplex of dimension dim. For example, a 2-D simplex is a triangle and 3-D simplex is a tetrahedron.
An optional second argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command. See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>. The default options depend on the dimension of the input:
* 2-D and 3-D: OPTIONS = '{"Qt", "Qbb", "Qc", "Qz"}'
* 4-D and higher: OPTIONS = '{"Qt", "Qbb", "Qc", "Qx"}'
If OPTIONS is not present or '[]' then the default arguments are used. Otherwise, OPTIONS replaces the default argument list. To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS. Use a null string to pass no arguments.
See also: delaunay, convhulln, voronoin, trimesh, tetramesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Compute the Delaunay triangulation for an N-dimensional set of points.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
delaunay
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2226
-- Function File: TRI = delaunay (X, Y)
-- Function File: TETR = delaunay (X, Y, Z)
-- Function File: TRI = delaunay (X)
-- Function File: TRI = delaunay (..., OPTIONS)
Compute the Delaunay triangulation for a 2-D or 3-D set of points.
For 2-D sets, the return value TRI is a set of triangles which satisfies the Delaunay circum-circle criterion, i.e., only a single data point from [X, Y] is within the circum-circle of the defining triangle. The set of triangles TRI is a matrix of size [n, 3]. Each row defines a triangle and the three columns are the three vertices of the triangle. The value of 'TRI(i,j)' is an index into X and Y for the location of the j-th vertex of the i-th triangle.
For 3-D sets, the return value TETR is a set of tetrahedrons which satisfies the Delaunay circum-circle criterion, i.e., only a single data point from [X, Y, Z] is within the circum-circle of the defining tetrahedron. The set of tetrahedrons is a matrix of size [n, 4]. Each row defines a tetrahedron and the four columns are the four vertices of the tetrahedron. The value of 'TETR(i,j)' is an index into X, Y, Z for the location of the j-th vertex of the i-th tetrahedron.
The input X may also be a matrix with two or three columns where the first column contains x-data, the second y-data, and the optional third column contains z-data.
The optional last argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command. See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>. The default options are '{"Qt", "Qbb", "Qc", "Qz"}'.
If OPTIONS is not present or '[]' then the default arguments are used. Otherwise, OPTIONS replaces the default argument list. To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS. Use a null string to pass no arguments.
x = rand (1, 10);
y = rand (1, 10);
tri = delaunay (x, y);
triplot (tri, x, y);
hold on;
plot (x, y, "r*");
axis ([0,1,0,1]);
See also: delaunayn, convhull, voronoi, triplot, trimesh, tetramesh, trisurf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Compute the Delaunay triangulation for a 2-D or 3-D set of points.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dsearch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 305
-- Function File: IDX = dsearch (X, Y, TRI, XI, YI)
-- Function File: IDX = dsearch (X, Y, TRI, XI, YI, S)
Return the index IDX of the closest point in 'X, Y' to the elements '[XI(:), YI(:)]'.
The variable S is accepted for compatibility but is ignored.
See also: dsearchn, tsearch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return the index IDX of the closest point in 'X, Y' to the elements '[XI(:), YI(:)]'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dsearchn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
-- Function File: IDX = dsearchn (X, TRI, XI)
-- Function File: IDX = dsearchn (X, TRI, XI, OUTVAL)
-- Function File: IDX = dsearchn (X, XI)
-- Function File: [IDX, D] = dsearchn (...)
Return the index IDX of the closest point in X to the elements XI.
If OUTVAL is supplied, then the values of XI that are not contained within one of the simplices TRI are set to OUTVAL. Generally, TRI is returned from 'delaunayn (X)'.
See also: dsearch, tsearch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Return the index IDX of the closest point in X to the elements XI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
griddata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 647
-- Function File: ZI = griddata (X, Y, Z, XI, YI)
-- Function File: ZI = griddata (X, Y, Z, XI, YI, METHOD)
-- Function File: [XI, YI, ZI] = griddata (...)
Generate a regular mesh from irregular data using interpolation.
The function is defined by 'Z = f (X, Y)'. Inputs 'X, Y, Z' are vectors of the same length or 'X, Y' are vectors and 'Z' is matrix.
The interpolation points are all '(XI, YI)'. If XI, YI are vectors then they are made into a 2-D mesh.
The interpolation method can be "nearest", "cubic" or "linear". If method is omitted it defaults to "linear".
See also: griddata3, griddatan, delaunay.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
griddata3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 752
-- Function File: VI = griddata3 (X, Y, Z, V, XI, YI, ZI)
-- Function File: VI = griddata3 (X, Y, Z, V, XI, YI, ZI, METHOD)
-- Function File: VI = griddata3 (X, Y, Z, V, XI, YI, ZI, METHOD, OPTIONS)
Generate a regular mesh from irregular data using interpolation.
The function is defined by 'V = f (X, Y, Z)'. The interpolation points are specified by XI, YI, ZI.
The interpolation method can be "nearest" or "linear". If method is omitted it defaults to "linear".
The optional argument OPTIONS is passed directly to Qhull when computing the Delaunay triangulation used for interpolation. See 'delaunayn' for information on the defaults and how to pass different values.
See also: griddata, griddatan, delaunayn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
griddatan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 687
-- Function File: YI = griddatan (X, Y, XI)
-- Function File: YI = griddatan (X, Y, XI, METHOD)
-- Function File: YI = griddatan (X, Y, XI, METHOD, OPTIONS)
Generate a regular mesh from irregular data using interpolation.
The function is defined by 'Y = f (X)'. The interpolation points are all XI.
The interpolation method can be "nearest" or "linear". If method is omitted it defaults to "linear".
The optional argument OPTIONS is passed directly to Qhull when computing the Delaunay triangulation used for interpolation. See 'delaunayn' for information on the defaults and how to pass different values.
See also: griddata, griddata3, delaunayn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
inpolygon
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
-- Function File: IN = inpolygon (X, Y, XV, YV)
-- Function File: [IN, ON] = inpolygon (X, Y, XV, YV)
For a polygon defined by vertex points '(XV, YV)', return true if the points '(X, Y)' are inside (or on the boundary) of the polygon; Otherwise, return false.
The input variables X and Y, must have the same dimension.
The optional output ON returns true if the points are exactly on the polygon edge, and false otherwise.
See also: delaunay.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 158
For a polygon defined by vertex points '(XV, YV)', return true if the points '(X, Y)' are inside (or on the boundary) of the polygon; Otherwise, return false.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rectint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 922
-- Function File: AREA = rectint (A, B)
Compute area or volume of intersection of rectangles or N-D boxes.
Compute the area of intersection of rectangles in A and rectangles in B. N-dimensional boxes are supported in which case the volume, or hypervolume is computed according to the number of dimensions.
2-dimensional rectangles are defined as '[xpos ypos width height]' where xpos and ypos are the position of the bottom left corner. Higher dimensions are supported where the coordinates for the minimum value of each dimension follow the length of the box in that dimension, e.g., '[xpos ypos zpos kpos ... width height depth k_length ...]'.
Each row of A and B define a rectangle, and if both define multiple rectangles, then the output, AREA, is a matrix where the i-th row corresponds to the i-th row of a and the j-th column corresponds to the j-th row of b.
See also: polyarea.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Compute area or volume of intersection of rectangles or N-D boxes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
tsearchn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 415
-- Function File: IDX = tsearchn (X, T, XI)
-- Function File: [IDX, P] = tsearchn (X, T, XI)
Search for the enclosing Delaunay convex hull.
For 'T = delaunayn (X)', finds the index in T containing the points XI. For points outside the convex hull, IDX is NaN.
If requested 'tsearchn' also returns the Barycentric coordinates P of the enclosing triangles.
See also: delaunay, delaunayn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Search for the enclosing Delaunay convex hull.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
voronoi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1323
-- Function File: voronoi (X, Y)
-- Function File: voronoi (X, Y, OPTIONS)
-- Function File: voronoi (..., "linespec")
-- Function File: voronoi (HAX, ...)
-- Function File: H = voronoi (...)
-- Function File: [VX, VY] = voronoi (...)
Plot the Voronoi diagram of points '(X, Y)'.
The Voronoi facets with points at infinity are not drawn.
The OPTIONS argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command. See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.
If "linespec" is given it is used to set the color and line style of the plot.
If an axis graphics handle HAX is supplied then the Voronoi diagram is drawn on the specified axis rather than in a new figure.
If a single output argument is requested then the Voronoi diagram will be plotted and a graphics handle H to the plot is returned.
[VX, VY] = voronoi (...) returns the Voronoi vertices instead of plotting the diagram.
x = rand (10, 1);
y = rand (size (x));
h = convhull (x, y);
[vx, vy] = voronoi (x, y);
plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");
legend ("", "points", "hull");
See also: voronoin, delaunay, convhull.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Plot the Voronoi diagram of points '(X, Y)'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
voronoin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1086
-- Function File: [C, F] = voronoin (PTS)
-- Function File: [C, F] = voronoin (PTS, OPTIONS)
Compute N-dimensional Voronoi facets.
The input matrix PTS of size [n, dim] contains n points in a space of dimension dim.
C contains the points of the Voronoi facets. The list F contains, for each facet, the indices of the Voronoi points.
An optional second argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command. See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.
The default options depend on the dimension of the input:
* 2-D and 3-D: OPTIONS = '{"Qbb"}'
* 4-D and higher: OPTIONS = '{"Qbb", "Qx"}'
If OPTIONS is not present or '[]' then the default arguments are used. Otherwise, OPTIONS replaces the default argument list. To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS. Use a null string to pass no arguments.
See also: voronoi, convhulln, delaunayn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute N-dimensional Voronoi facets.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
errordlg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 685
-- Function File: H = errordlg (MSG)
-- Function File: H = errordlg (MSG, TITLE)
-- Function File: H = errordlg (MSG, TITLE, CREATEMODE)
Display MSG using an error dialog box.
The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.
The optional input TITLE (character string) can be used to set the dialog caption. The default title is "Error Dialog".
The return value is always 1.
Compatibility Note: The optional argument CREATEMODE is accepted for MATLAB compatibility, but is not implemented.
See also: helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Display MSG using an error dialog box.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
guidata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 502
-- Function File: DATA = guidata (H)
-- Function File: guidata (H, DATA)
Query or set user-custom GUI data.
The GUI data is stored in the figure handle H. If H is not a figure handle then it's parent figure will be used for storage.
DATA must be a single object which means it is usually preferable for it to be a data container such as a cell array or struct so that additional data items can be added easily.
See also: getappdata, setappdata, get, set, getpref, setpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Query or set user-custom GUI data.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
guihandles
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 661
-- Function File: HDATA = guihandles (H)
-- Function File: HDATA = guihandles
Return a structure of object handles for the figure associated with handle H.
If no handle is specified the current figure returned by 'gcf' is used.
The fieldname for each entry of HDATA is taken from the "tag" property of the graphic object. If the tag is empty then the handle is not returned. If there are multiple graphic objects with the same tag then the entry in HDATA will be a vector of handles. 'guihandles' includes all possible handles, including those for which "HandleVisibility" is "off".
See also: guidata, findobj, findall, allchild.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return a structure of object handles for the figure associated with handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
helpdlg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 500
-- Function File: H = helpdlg (MSG)
-- Function File: H = helpdlg (MSG, TITLE)
Display MSG in a help dialog box.
The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.
The optional input TITLE (character string) can be used to set the dialog caption. The default title is "Help Dialog".
The return value is always 1.
See also: errordlg, inputdlg, listdlg, msgbox, questdlg, warndlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Display MSG in a help dialog box.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
inputdlg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1364
-- Function File: CSTR = inputdlg (PROMPT)
-- Function File: CSTR = inputdlg (PROMPT, TITLE)
-- Function File: CSTR = inputdlg (PROMPT, TITLE, ROWSCOLS)
-- Function File: CSTR = inputdlg (PROMPT, TITLE, ROWSCOLS, DEFAULTS)
Return user input from a multi-textfield dialog box in a cell array of strings, or an empty cell array if the dialog is closed by the Cancel button.
Inputs:
PROMPT
A cell array with strings labeling each text field. This input is required.
TITLE
String to use for the caption of the dialog. The default is "Input Dialog".
ROWSCOLS
Specifies the size of the text fields and can take three forms:
1. a scalar value which defines the number of rows used for each text field.
2. a vector which defines the individual number of rows used for each text field.
3. a matrix which defines the individual number of rows and columns used for each text field. In the matrix each row describes a single text field. The first column specifies the number of input rows to use and the second column specifies the text field width.
DEFAULTS
A list of default values to place in each text fields. It must be a cell array of strings with the same size as PROMPT.
See also: errordlg, helpdlg, listdlg, msgbox, questdlg, warndlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
Return user input from a multi-textfield dialog box in a cell array of strings, or an empty cell array if the dialog is closed by the Cancel button.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
listdlg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1663
-- Function File: [SEL, OK] = listdlg (KEY, VALUE, ...)
Return user inputs from a list dialog box in a vector of selection indices SEL and a flag OK indicating how the user closed the dialog box.
The value of OK is 1 if the user closed the box with the OK button, otherwise it is 0 and SEL is empty.
The indices in SEL are 1-based.
The arguments are specified in form of KEY, VALUE pairs. The "ListString" argument pair must be specified.
Valid KEY and VALUE pairs are:
"ListString"
a cell array of strings comprising the content of the list.
"SelectionMode"
can be either "Single" or "Multiple" (default).
"ListSize"
a vector with two elements WIDTH and HEIGHT defining the size of the list field in pixels. Default is [160 300].
"InitialValue"
a vector containing 1-based indices of preselected elements. Default is 1 (first item).
"Name"
a string to be used as the dialog caption. Default is "".
"PromptString"
a cell array of strings to be displayed above the list field. Default is {}.
"OKString"
a string used to label the OK button. Default is "OK".
"CancelString"
a string used to label the Cancel button. Default is "Cancel".
Example:
[sel, ok] = listdlg ("ListString", {"An item", "another", "yet another"},
"SelectionMode", "Multiple");
if (ok == 1)
for i = 1:numel (sel)
disp (sel(i));
endfor
endif
See also: menu, errordlg, helpdlg, inputdlg, msgbox, questdlg, warndlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
Return user inputs from a list dialog box in a vector of selection indices SEL and a flag OK indicating how the user closed the dialog box.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
msgbox
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 811
-- Function File: H = msgbox (MSG)
-- Function File: H = msgbox (MSG, TITLE)
-- Function File: H = msgbox (MSG, TITLE, ICON)
-- Function File: H = msgbox (..., CREATEMODE)
Display MSG using a message dialog box.
The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.
The optional input TITLE (character string) can be used to decorate the dialog caption.
The optional argument ICON selects a dialog icon. It can be one of "none" (default), "error", "help", or "warn".
The return value is always 1.
Compatibility Note: The optional argument CREATEMODE is accepted for MATLAB compatibility, but is not implemented.
See also: errordlg, helpdlg, inputdlg, listdlg, questdlg, warndlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Display MSG using a message dialog box.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
questdlg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1154
-- Function File: BTN = questdlg (MSG)
-- Function File: BTN = questdlg (MSG, TITLE)
-- Function File: BTN = questdlg (MSG, TITLE, DEFAULT)
-- Function File: BTN = questdlg (MSG, TITLE, BTN1, BTN2, DEFAULT)
-- Function File: BTN = questdlg (MSG, TITLE, BTN1, BTN2, BTN3, DEFAULT)
Display MSG using a question dialog box and return the caption of the activated button.
The dialog may contain two or three buttons which will all close the dialog.
The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.
The optional TITLE (character string) can be used to decorate the dialog caption.
The string DEFAULT identifies the default button, which is activated by pressing the <ENTER> key. It must match one of the strings given in BTN1, BTN2, or BTN3.
If only MSG and TITLE are specified, three buttons with the default captions "Yes", "No", and "Cancel" are used.
If only two button captions, BTN1 and BTN2, are specified the dialog will have only these two buttons.
See also: errordlg, helpdlg, inputdlg, listdlg, warndlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Display MSG using a question dialog box and return the caption of the activated button.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
uicontextmenu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
-- Function File: HUI = uicontextmenu ("Name", value, ...)
# name: <cell-element>
# type: sq_string
# elements: 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uicontrol
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
-- Function File: HUI = uicontrol ("Name", value, ...)
-- Function File: HUI = uicontrol (PARENT, "Name", value, ...)
-- Function File: uicontrol (H)
# name: <cell-element>
# type: sq_string
# elements: 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
uigetdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 377
-- Function File: DIRNAME = uigetdir ()
-- Function File: DIRNAME = uigetdir (INIT_PATH)
-- Function File: DIRNAME = uigetdir (INIT_PATH, DIALOG_NAME)
Open a GUI dialog for selecting a directory.
If INIT_PATH is not given the current working directory is used.
DIALOG_NAME may be used to customize the dialog title.
See also: uigetfile, uiputfile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Open a GUI dialog for selecting a directory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uigetfile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1797
-- Function File: [FNAME, FPATH, FLTIDX] = uigetfile ()
-- Function File: [...] = uigetfile (FLT)
-- Function File: [...] = uigetfile (FLT, DIALOG_NAME)
-- Function File: [...] = uigetfile (FLT, DIALOG_NAME, DEFAULT_FILE)
-- Function File: [...] = uigetfile (..., "Position", [PX PY])
-- Function File: [...] = uigetfile (..., "MultiSelect", MODE)
Open a GUI dialog for selecting a file and return the filename FNAME, the path to this file FPATH, and the filter index FLTIDX.
FLT contains a (list of) file filter string(s) in one of the following formats:
"/path/to/filename.ext"
If a filename is given then the file extension is extracted and used as filter. In addition, the path is selected as current path and the filename is selected as default file. Example: 'uigetfile ("myfun.m")'
A single file extension "*.ext"
Example: 'uigetfile ("*.ext")'
A 2-column cell array
containing a file extension in the first column and a brief description in the second column. Example: 'uigetfile ({"*.ext", "My Description";"*.xyz", "XYZ-Format"})'
The filter string can also contain a semicolon separated list of filter extensions. Example: 'uigetfile ({"*.gif;*.png;*.jpg", "Supported Picture Formats"})'
DIALOG_NAME can be used to customize the dialog title.
If DEFAULT_FILE is given then it will be selected in the GUI dialog. If, in addition, a path is given it is also used as current path.
The screen position of the GUI dialog can be set using the "Position" key and a 2-element vector containing the pixel coordinates. Two or more files can be selected when setting the "MultiSelect" key to "on". In that case FNAME is a cell array containing the files.
See also: uiputfile, uigetdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
Open a GUI dialog for selecting a file and return the filename FNAME, the path to this file FPATH, and the filter index FLTIDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uimenu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1962
-- Function File: HUI = uimenu (PROPERTY, VALUE, ...)
-- Function File: HUI = uimenu (H, PROPERTY, VALUE, ...)
Create a uimenu object and return a handle to it.
If H is omitted then a top-level menu for the current figure is created. If H is given then a submenu relative to H is created.
uimenu objects have the following specific properties:
"accelerator"
A string containing the key combination together with CTRL to execute this menu entry (e.g., "x" for CTRL+x).
"callback"
Is the function called when this menu entry is executed. It can be either a function string (e.g., "myfun"), a function handle (e.g., @myfun) or a cell array containing the function handle and arguments for the callback function (e.g., {@myfun, arg1, arg2}).
"checked"
Can be set "on" or "off". Sets a mark at this menu entry.
"enable"
Can be set "on" or "off". If disabled the menu entry cannot be selected and it is grayed out.
"foregroundcolor"
A color value setting the text color for this menu entry.
"label"
A string containing the label for this menu entry. A "&"-symbol can be used to mark the "accelerator" character (e.g., "E&xit")
"position"
An scalar value containing the relative menu position. The entry with the lowest value is at the first position starting from left or top.
"separator"
Can be set "on" or "off". If enabled it draws a separator line above the current position. It is ignored for top level entries.
Examples:
f = uimenu ("label", "&File", "accelerator", "f");
e = uimenu ("label", "&Edit", "accelerator", "e");
uimenu (f, "label", "Close", "accelerator", "q", ...
"callback", "close (gcf)");
uimenu (e, "label", "Toggle &Grid", "accelerator", "g", ...
"callback", "grid (gca)");
See also: figure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create a uimenu object and return a handle to it.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
uipanel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 119
-- Function File: HUI = uipanel ("Name", value, ...)
-- Function File: HUI = uipanel (PARENT, "Name", value, ...)
# name: <cell-element>
# type: sq_string
# elements: 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
uipushtool
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
-- Function File: HUI = uipushtool ("Name", value, ...)
-- Function File: HUI = uipushtool (PARENT, "Name", value, ...)
# name: <cell-element>
# type: sq_string
# elements: 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uiputfile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1362
-- Function File: [FNAME, FPATH, FLTIDX] = uiputfile ()
-- Function File: [FNAME, FPATH, FLTIDX] = uiputfile (FLT)
-- Function File: [FNAME, FPATH, FLTIDX] = uiputfile (FLT, DIALOG_NAME)
-- Function File: [FNAME, FPATH, FLTIDX] = uiputfile (FLT, DIALOG_NAME, DEFAULT_FILE)
Open a GUI dialog for selecting a file.
FLT contains a (list of) file filter string(s) in one of the following formats:
"/path/to/filename.ext"
If a filename is given the file extension is extracted and used as filter. In addition the path is selected as current path and the filename is selected as default file. Example: 'uiputfile ("myfun.m")'
"*.ext"
A single file extension. Example: 'uiputfile ("*.ext")'
'{"*.ext", "My Description"}'
A 2-column cell array containing the file extension in the 1st column and a brief description in the 2nd column. Example: 'uiputfile ({"*.ext","My Description";"*.xyz", "XYZ-Format"})'
The filter string can also contain a semicolon separated list of filter extensions. Example: 'uiputfile ({"*.gif;*.png;*.jpg", "Supported Picture Formats"})'
DIALOG_NAME can be used to customize the dialog title. If DEFAULT_FILE is given it is preselected in the GUI dialog. If, in addition, a path is given it is also used as current path.
See also: uigetfile, uigetdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Open a GUI dialog for selecting a file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
uiresume
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 304
-- Function File: uiresume (H)
Resume program execution suspended with 'uiwait'.
The handle H must be the same as the on specified in 'uiwait'. If the handle is invalid or there is no 'uiwait' call pending for the figure with handle H, this function does nothing.
See also: uiwait.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Resume program execution suspended with 'uiwait'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
uitoggletool
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
-- Function File: HUI = uitoggletool ("Name", value, ...)
-- Function File: HUI = uitoggletool (PARENT, "Name", value, ...)
# name: <cell-element>
# type: sq_string
# elements: 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uitoolbar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
-- Function File: HUI = uitoolbar ("Name", value, ...)
-- Function File: HUI = uitoolbar (PARENT, "Name", value, ...)
# name: <cell-element>
# type: sq_string
# elements: 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uiwait
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
-- Function File: uiwait
-- Function File: uiwait (H)
-- Function File: uiwait (H, TIMEOUT)
Suspend program execution until the figure with handle H is deleted or 'uiresume' is called.
When no figure handle is specified this function uses the current figure. If the figure handle is invalid or there is no current figure, this functions returns immediately.
When specified, TIMEOUT defines the number of seconds to wait for the figure deletion or the 'uiresume' call. The timeout value must be at least 1. If a smaller value is specified, a warning is issued and a timeout value of 1 is used instead. If a non-integer value is specified, it is truncated towards 0. If TIMEOUT is not specified, the program execution is suspended indefinitely.
See also: uiresume, waitfor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Suspend program execution until the figure with handle H is deleted or 'uiresume' is called.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
waitbar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 842
-- Function File: H = waitbar (FRAC)
-- Function File: H = waitbar (FRAC, MSG)
-- Function File: H = waitbar (..., "FigureProperty", "Value", ...)
-- Function File: waitbar (FRAC)
-- Function File: waitbar (FRAC, HWBAR)
-- Function File: waitbar (FRAC, HWBAR, MSG)
Return a handle H to a new waitbar object.
The waitbar is filled to fraction FRAC which must be in the range [0, 1].
The optional message MSG is centered and displayed above the waitbar.
The appearance of the waitbar figure window can be configured by passing property/value pairs to the function.
When called with a single input the current waitbar, if it exists, is updated to the new value FRAC. If there are multiple outstanding waitbars they can be updated individually by passing the handle HWBAR of the specific waitbar to modify.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return a handle H to a new waitbar object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
waitforbuttonpress
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
-- Function File: waitforbuttonpress ()
-- Function File: B = waitforbuttonpress ()
Wait for mouse click or key press over the current figure window.
The return value of B is 0 if a mouse button was pressed or 1 if a key was pressed.
See also: waitfor, ginput, kbhit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Wait for mouse click or key press over the current figure window.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
warndlg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 668
-- Function File: H = warndlg (MSG)
-- Function File: H = warndlg (MSG, TITLE)
-- Function File: H = warndlg (MSG, TITLE, CREATEMODE)
Display MSG using a warning dialog box.
The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.
The optional input TITLE (character string) can be used to set the dialog caption. The default title is "Warning Dialog".
The return value is always 1.
Compatibility Note: The optional argument CREATEMODE is accepted for MATLAB compatibility, but is not implemented.
See also: helpdlg, inputdlg, listdlg, questdlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Display MSG using a warning dialog box.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
doc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 518
-- Command: doc FUNCTION_NAME
-- Command: doc
Display documentation for the function FUNCTION_NAME directly from an online version of the printed manual, using the GNU Info browser.
If invoked without an argument, the manual is shown from the beginning.
For example, the command 'doc rand' starts the GNU Info browser at the 'rand' node in the online version of the manual.
Once the GNU Info browser is running, help for using it is available using the command 'C-h'.
See also: help.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
Display documentation for the function FUNCTION_NAME directly from an online version of the printed manual, using the GNU Info browser.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
doc_cache_create
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 656
-- Function File: doc_cache_create (OUT_FILE, DIRECTORY)
-- Function File: doc_cache_create (OUT_FILE)
-- Function File: doc_cache_create ()
Generate documentation cache for all functions in DIRECTORY.
A documentation cache is generated for all functions in DIRECTORY which may be a single string or a cell array of strings. The cache is used to speed up the function 'lookfor'.
The cache is saved in the file OUT_FILE which defaults to the value 'doc-cache' if not given.
If no directory is given (or it is the empty matrix), a cache for built-in operators, etc. is generated.
See also: doc_cache_file, lookfor, path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Generate documentation cache for all functions in DIRECTORY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
get_first_help_sentence
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 876
-- Function File: TEXT = get_first_help_sentence (NAME)
-- Function File: TEXT = get_first_help_sentence (NAME, MAX_LEN)
-- Function File: [TEXT, STATUS] = get_first_help_sentence (...)
Return the first sentence of a function's help text.
The first sentence is defined as the text after the function declaration until either the first period (".") or the first appearance of two consecutive newlines ("\n\n"). The text is truncated to a maximum length of MAX_LEN, which defaults to 80.
The optional output argument STATUS returns the status reported by 'makeinfo'. If only one output argument is requested, and STATUS is nonzero, a warning is displayed.
As an example, the first sentence of this help text is
get_first_help_sentence ("get_first_help_sentence")
-| ans = Return the first sentence of a function's help text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the first sentence of a function's help text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
help
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 908
-- Command: help NAME
-- Command: help '--list'
-- Command: help '.'
-- Command: help
Display the help text for NAME.
For example, the command 'help help' prints a short message describing the 'help' command.
Given the single argument '--list', list all operators, keywords, built-in functions, and loadable functions available in the current session of Octave.
Given the single argument '.', list all operators available in the current session of Octave.
If invoked without any arguments, 'help' display instructions on how to access help from the command line.
The help command can provide information about most operators, for example 'help +', but not the comma and semicolon characters which are used by the Octave interpreter as command separators. For help on either of these type 'help comma' or 'help semicolon'.
See also: doc, lookfor, which, info.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Display the help text for NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lookfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1364
-- Command: lookfor STR
-- Command: lookfor -all STR
-- Function File: [FCN, HELP1STR] = lookfor (STR)
-- Function File: [FCN, HELP1STR] = lookfor ("-all", STR)
Search for the string STR in the documentation of all functions in the current function search path.
By default, 'lookfor' looks for STR in just the first sentence of the help string for each function found. The entire help text of each function can be searched by using the "-all" argument. All searches are case insensitive.
When called with no output arguments, 'lookfor' prints the list of matching functions to the terminal. Otherwise, the output argument FCNS contains the function names and HELP1STR contains the first sentence from the help string of each function.
Programming Note: The ability of 'lookfor' to correctly identify the first sentence of the help text is dependent on the format of the function's help. All Octave core functions are correctly formatted, but the same can not be guaranteed for external packages and user-supplied functions. Therefore, the use of the "-all" argument may be necessary to find related functions that are not a part of Octave.
The speed of lookup is greatly enhanced by having a cached documentation file. See 'doc_cache_create' for more information.
See also: help, doc, which, path, doc_cache_create.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Search for the string STR in the documentation of all functions in the current function search path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
print_usage
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Function File: print_usage ()
-- Function File: print_usage (NAME)
Print the usage message for the function NAME.
When called with no input arguments the 'print_usage' function displays the usage message of the currently executing function.
See also: help.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Print the usage message for the function NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
type
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 558
-- Command: type NAME ...
-- Command: type -q NAME ...
-- Function File: text = type ("NAME", ...)
Display the contents of NAME which may be a file, function (m-file), variable, operator, or keyword.
'type' normally prepends a header line describing the category of NAME such as function or variable; The '-q' option suppresses this behavior.
If no output variable is used the contents are displayed on screen. Otherwise, a cell array of strings is returned, where each element corresponds to the contents of each requested function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Display the contents of NAME which may be a file, function (m-file), variable, operator, or keyword.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
which
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 190
-- Command: which name ...
Display the type of each NAME.
If NAME is defined from a function file, the full name of the file is also displayed.
See also: help, lookfor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Display the type of each NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
autumn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
-- Function File: MAP = autumn ()
-- Function File: MAP = autumn (N)
Create color colormap. This colormap ranges from red through orange to yellow.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
bone
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
-- Function File: MAP = bone ()
-- Function File: MAP = bone (N)
Create color colormap. This colormap varies from black to white with gray-blue shades.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
brighten
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 703
-- Function File: MAP_OUT = brighten (BETA)
-- Function File: MAP_OUT = brighten (MAP, BETA)
-- Function File: MAP_OUT = brighten (H, BETA)
-- Function File: brighten (...)
Brighten or darken a colormap.
The argument BETA must be a scalar between -1 and 1, where a negative value darkens and a positive value brightens the colormap.
If the MAP argument is omitted, the function is applied to the current colormap.
The first argument can also be a valid graphics handle H, in which case 'brighten' is applied to the colormap associated with this handle.
If no output is specified then the result is written to the current colormap.
See also: colormap, contrast.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Brighten or darken a colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cmpermute
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 594
-- Function File: [Y, NEWMAP] = cmpermute (X, MAP)
-- Function File: [Y, NEWMAP] = cmpermute (X, MAP, INDEX)
Reorder colors in a colormap.
When called with only two arguments, 'cmpermute' randomly rearranges the colormap MAP and returns a new colormap NEWMAP. It also returns the indexed image Y which is the equivalent of the original input image X when displayed using NEWMAP.
When called with an optional third argument the order of colors in the new colormap is defined by INDEX.
*Caution:* 'index' should not have repeated elements or the function will fail.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Reorder colors in a colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cmunique
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1381
-- Function File: [Y, NEWMAP] = cmunique (X, MAP)
-- Function File: [Y, NEWMAP] = cmunique (RGB)
-- Function File: [Y, NEWMAP] = cmunique (I)
Convert an input image X to an ouput indexed image Y which uses the smallest colormap possible NEWMAP.
When the input is an indexed image (X with colormap MAP) the output is a colormap NEWMAP from which any repeated rows have been eliminated. The output image, Y, is the original input image with the indices adjusted to match the new, possibly smaller, colormap.
When the input is an RGB image (an MxNx3 array), the output colormap will contain one entry for every unique color in the original image. In the worst case the new map could have as many rows as the number of pixels in the original image.
When the input is a grayscale image I, the output colormap will contain one entry for every unique intensity value in the original image. In the worst case the new map could have as many rows as the number of pixels in the original image.
Implementation Details:
NEWMAP is always an Mx3 matrix, even if the input image is an intensity grayscale image I (all three RGB planes are assigned the same value).
The output image is of class uint8 if the size of the new colormap is less than or equal to 256. Otherwise, the output image is of class double.
See also: rgb2ind, gray2ind.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Convert an input image X to an ouput indexed image Y which uses the smallest colormap possible NEWMAP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
colorcube
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 512
-- Function File: MAP = colorcube ()
-- Function File: MAP = colorcube (N)
Create color colormap. This colormap is composed of as many equally spaced colors (not grays) in the RGB color space as possible.
If there are not a perfect number N of regularly spaced colors then the remaining entries in the colormap are gradients of pure red, green, blue, and gray.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
colormap
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1442
-- Function File: CMAP = colormap ()
-- Function File: CMAP = colormap (MAP)
-- Function File: CMAP = colormap ("default")
-- Function File: CMAP = colormap ("MAP_NAME")
-- Function File: CMAP = colormap (HAX, ...)
-- Command: colormap MAP_NAME
-- Function File: CMAPS = colormap ("list")
-- Function File: colormap ("register", "NAME")
-- Function File: colormap ("unregister", "NAME")
Query or set the current colormap.
With no input arguments, 'colormap' returns the current color map.
'colormap (MAP)' sets the current colormap to MAP. The colormap should be an N row by 3 column matrix. The columns contain red, green, and blue intensities respectively. All entries must be between 0 and 1 inclusive. The new colormap is returned.
'colormap ("default")' restores the default colormap (the 'jet' map with 64 entries). The default colormap is returned.
The map may also be specified by a string, "MAP_NAME", where MAP_NAME is the name of a function that returns a colormap.
If the first argument HAX is an axes handle, then the colormap for the parent figure of HAX is queried or set.
For convenience, it is also possible to use this function with the command form, 'colormap MAP_NAME'.
'colormap ("list")' returns a cell array with all of the available colormaps. The options "register" and "unregister" add or remove the colormap NAME from this list.
See also: jet.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Query or set the current colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contrast
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
-- Function File: CMAP = contrast (X)
-- Function File: CMAP = contrast (X, N)
Return a gray colormap that maximizes the contrast in an image.
The returned colormap will have N rows. If N is not defined then the size of the current colormap is used.
See also: colormap, brighten.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a gray colormap that maximizes the contrast in an image.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cool
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 275
-- Function File: MAP = cool ()
-- Function File: MAP = cool (N)
Create color colormap. The colormap varies from cyan to magenta.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
copper
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
-- Function File: MAP = copper ()
-- Function File: MAP = copper (N)
Create color colormap. This colormap varies from black to a light copper tone.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cubehelix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
-- Function File: MAP = cubehelix ()
-- Function File: MAP = cubehelix (N)
Create cubehelix colormap.
This colormap varies from black to white going though blue, green, and red tones while maintaining a monotonically increasing perception of intensity. This is achieved by transversing a color cube from black to white through a helix, hence the name cubehelix, while taking into account the perceived brightness of each channel according to the NTSC specifications from 1953.
rgbplot (cubehelix (256))
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
Reference: Green, D. A., 2011, '"A colour scheme for the display of astronomical intensity images"', Bulletin of the Astronomical Society of India, 39, 289.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Create cubehelix colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
flag
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 314
-- Function File: MAP = flag ()
-- Function File: MAP = flag (N)
Create color colormap. This colormap cycles through red, white, blue, and black with each index change.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gray
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
-- Function File: MAP = gray ()
-- Function File: MAP = gray (N)
Create gray colormap. This colormap varies from black to white with shades of gray.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Create gray colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gray2ind
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 591
-- Function File: IMG = gray2ind (I)
-- Function File: IMG = gray2ind (I, N)
-- Function File: IMG = gray2ind (BW)
-- Function File: IMG = gray2ind (BW, N)
-- Function File: [IMG, MAP] = gray2ind (...)
Convert a grayscale or binary intensity image to an indexed image.
The indexed image will consist of N different intensity values. If not given N defaults to 64 for grayscale images or 2 for binary black and white images.
The output IMG is of class uint8 if N is less than or equal to 256; Otherwise the return class is uint16.
See also: ind2gray, rgb2ind.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Convert a grayscale or binary intensity image to an indexed image.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
hot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
-- Function File: MAP = hot ()
-- Function File: MAP = hot (N)
Create color colormap. This colormap ranges from black through dark red, red, orange, yellow, to white.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
hsv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 550
-- Function File: hsv (N)
Create color colormap. This colormap begins with red, changes through yellow, green, cyan, blue, and magenta, before returning to red.
It is useful for displaying periodic functions. The map is obtained by linearly varying the hue through all possible values while keeping constant maximum saturation and value. The equivalent code is 'hsv2rgb ([(0:N-1)'/N, ones(N,2)])'.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hsv2rgb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
-- Function File: RGB_MAP = hsv2rgb (HSV_MAP)
-- Function File: RGB_IMG = hsv2rgb (HSV_IMG)
Transform a colormap or image from hue-saturation-value (HSV) space to red-green-blue (RGB) space.
A color in HSV space is represented by hue, saturation and value (brightness) levels. Value gives the amount of light in the color. Hue describes the dominant wavelength. Saturation is the amount of hue mixed into the color.
A color in the RGB space consists of red, green, and blue intensities.
See also: rgb2hsv, ind2rgb, ntsc2rgb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Transform a colormap or image from hue-saturation-value (HSV) space to red-green-blue (RGB) space.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
iscolormap
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 329
-- Function File: iscolormap (CMAP)
Return true if CMAP is a colormap.
A colormap is a real matrix with N rows and 3 columns. Each row represents a single color. The columns contain red, green, and blue intensities respectively. All entries must be between 0 and 1 inclusive.
See also: colormap, rgbplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return true if CMAP is a colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
image
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1887
-- Function File: image (IMG)
-- Function File: image (X, Y, IMG)
-- Function File: image (..., "PROP", VAL, ...)
-- Function File: image ("PROP1", VAL1, ...)
-- Function File: H = image (...)
Display a matrix as an indexed color image.
The elements of IMG are indices into the current colormap.
X and Y are optional 2-element vectors, '[min, max]', which specify the range for the axis labels. If a range is specified as '[max, min]' then the image will be reversed along that axis. For convenience, X and Y may be specified as N-element vectors matching the length of the data in IMG. However, only the first and last elements will be used to determine the axis limits. *Warning:* X and Y are ignored when using gnuplot 4.0 or earlier.
Multiple property/value pairs may be specified for the image object, but they must appear in pairs.
The optional return value H is a graphics handle to the image.
Implementation Note: The origin (0, 0) for images is located in the upper left. For ordinary plots, the origin is located in the lower left. Octave handles this inversion by plotting the data normally, and then reversing the direction of the y-axis by setting the 'ydir' property to "reverse". This has implications whenever an image and an ordinary plot need to be overlaid. The recommended solution is to display the image and then plot the reversed ydata using, for example, 'flipud (ydata)'.
Calling Forms: The 'image' function can be called in two forms: High-Level and Low-Level. When invoked with normal options, the High-Level form is used which first calls 'newplot' to prepare the graphic figure and axes. When the only inputs to 'image' are property/value pairs the Low-Level form is used which creates a new instance of an image object and inserts it in the current axes.
See also: imshow, imagesc, colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Display a matrix as an indexed color image.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
imagesc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1266
-- Function File: imagesc (IMG)
-- Function File: imagesc (X, Y, IMG)
-- Function File: imagesc (..., CLIMITS)
-- Function File: imagesc (..., "PROP", VAL, ...)
-- Function File: imagesc ("PROP1", VAL1, ...)
-- Function File: imagesc (HAX, ...)
-- Function File: H = imagesc (...)
Display a scaled version of the matrix IMG as a color image.
The colormap is scaled so that the entries of the matrix occupy the entire colormap. If 'CLIMITS = [LO, HI]' is given, then that range is set to the "clim" of the current axes.
The axis values corresponding to the matrix elements are specified in X and Y, either as pairs giving the minimum and maximum values for the respective axes, or as values for each row and column of the matrix IMG.
The optional return value H is a graphics handle to the image.
Calling Forms: The 'imagesc' function can be called in two forms: High-Level and Low-Level. When invoked with normal options, the High-Level form is used which first calls 'newplot' to prepare the graphic figure and axes. When the only inputs to 'image' are property/value pairs the Low-Level form is used which creates a new instance of an image object and inserts it in the current axes.
See also: image, imshow, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Display a scaled version of the matrix IMG as a color image.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
imfinfo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3857
-- Function File: INFO = imfinfo (FILENAME)
-- Function File: INFO = imfinfo (URL)
-- Function File: INFO = imfinfo (..., EXT)
Read image information from a file.
'imfinfo' returns a structure containing information about the image stored in the file FILENAME. If there is no file FILENAME, and EXT was specified, it will look for a file named FILENAME and extension EXT, i.e., a file named FILENAME.EXT.
The output structure INFO contains the following fields:
'Filename'
The full name of the image file.
'FileModDate'
Date of last modification to the file.
'FileSize'
Number of bytes of the image on disk
'Format'
Image format (e.g., "jpeg").
'Height'
Image height in pixels.
'Width'
Image Width in pixels.
'BitDepth'
Number of bits per channel per pixel.
'ColorType'
Image type. Value is "grayscale", "indexed", "truecolor", "CMYK", or "undefined".
'XResolution'
X resolution of the image.
'YResolution'
Y resolution of the image.
'ResolutionUnit'
Units of image resolution. Value is "Inch", "Centimeter", or "undefined".
'DelayTime'
Time in 1/100ths of a second (0 to 65535) which must expire before displaying the next image in an animated sequence.
'LoopCount'
Number of iterations to loop an animation.
'ByteOrder'
Endian option for formats that support it. Value is "little-endian", "big-endian", or "undefined".
'Gamma'
Gamma level of the image. The same color image displayed on two different workstations may look different due to differences in the display monitor.
'Quality'
JPEG/MIFF/PNG compression level. Value is an integer in the range [0 100].
'DisposalMethod'
Only valid for GIF images, control how successive frames are rendered (how the preceding frame is disposed of) when creating a GIF animation. Values can be "doNotSpecify", "leaveInPlace", "restoreBG", or "restorePrevious". For non-GIF files, value is an empty string.
'Chromaticities'
Value is a 1x8 Matrix with the x,y chromaticity values for white, red, green, and blue points, in that order.
'Comment'
Image comment.
'Compression'
Compression type. Value can be "none", "bzip", "fax3", "fax4", "jpeg", "lzw", "rle", "deflate", "lzma", "jpeg2000", "jbig2", "jbig2", or "undefined".
'Colormap'
Colormap for each image.
'Orientation'
The orientation of the image with respect to the rows and columns. Value is an integer between 1 and 8 as defined in the TIFF 6 specifications, and for MATLAB compatibility.
'Software'
Name and version of the software or firmware of the camera or image input device used to generate the image.
'Make'
The manufacturer of the recording equipment. This is the manufacture of the DSC, scanner, video digitizer or other equipment that generated the image.
'Model'
The model name or model number of the recording equipment as mentioned on the field "Make".
'DateTime'
The date and time of image creation as defined by the Exif standard, i.e., it is the date and time the file was changed.
'ImageDescription'
The title of the image as defined by the Exif standard.
'Artist'
Name of the camera owner, photographer or image creator.
'Copyright'
Copyright notice of the person or organization claiming rights to the image.
'DigitalCamera'
A struct with information retrieved from the Exif tag.
'GPSInfo'
A struct with geotagging information retrieved from the Exif tag.
See also: imread, imwrite, imshow, imformats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Read image information from a file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
imformats
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1731
-- Function File: imformats ()
-- Function File: FORMATS = imformats (EXT)
-- Function File: FORMATS = imformats (FORMAT)
-- Function File: FORMATS = imformats ("add", FORMAT)
-- Function File: FORMATS = imformats ("remove", EXT)
-- Function File: FORMATS = imformats ("update", EXT, FORMAT)
-- Function File: FORMATS = imformats ("factory")
Manage supported image formats.
FORMATS is a structure with information about each supported file format, or from a specific format EXT, the value displayed on the field 'ext'. It contains the following fields:
ext
The name of the file format. This may match the file extension but Octave will automatically detect the file format.
description
A long description of the file format.
isa
A function handle to confirm if a file is of the specified format.
write
A function handle to write if a file is of the specified format.
read
A function handle to open files the specified format.
info
A function handle to obtain image information of the specified format.
alpha
Logical value if format supports alpha channel (transparency or matte).
multipage
Logical value if format supports multipage (multiple images per file).
It is possible to change the way Octave manages file formats with the options "add", "remove", and "update", and supplying a structure FORMAT with the required fields. The option "factory" resets the configuration to the default.
This can be used by Octave packages to extend the image reading capabilities Octave, through use of the PKG_ADD and PKG_DEL commands.
See also: imfinfo, imread, imwrite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Manage supported image formats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
imread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2606
-- Function File: [IMG, MAP, ALPHA] = imread (FILENAME)
-- Function File: [...] = imread (URL)
-- Function File: [...] = imread (..., EXT)
-- Function File: [...] = imread (..., IDX)
-- Function File: [...] = imread (..., PARAM1, VAL1, ...)
Read images from various file formats.
Read an image as a matrix from the file FILENAME. If there is no file FILENAME, and EXT was specified, it will look for a file with the extension EXT. Finally, it will attempt to download and read an image from URL.
The size and class of the output depends on the format of the image. A color image is returned as an MxNx3 matrix. Gray-level and black-and-white images are of size MxN. Multipage images will have an additional 4th dimension.
The bit depth of the image determines the class of the output: "uint8", "uint16" or "single" for gray and color, and "logical" for black and white. Note that indexed images always return the indexes for a colormap, independent if MAP is a requested output. To obtain the actual RGB image, use 'ind2rgb'. When more than one indexed image is being read, MAP is obtained from the first. In some rare cases this may be incorrect and 'imfinfo' can be used to obtain the colormap of each image.
See the Octave manual for more information in representing images.
Some file formats, such as TIFF and GIF, are able to store multiple images in a single file. IDX can be a scalar or vector specifying the index of the images to read. By default, Octave will only read the first page.
Depending on the file format, it is possible to configure the reading of images with PARAM, VAL pairs. The following options are supported:
'"Frames" or "Index"'
This is an alternative method to specify IDX. When specifying it in this way, its value can also be the string "all".
'"Info"'
This option exists for MATLAB compatibility and has no effect. For maximum performance while reading multiple images from a single file, use the Index option.
'"PixelRegion"'
Controls the image region that is read. Takes as value a cell array with two arrays of 3 elements '{ROWS COLS}'. The elements in the array are the start, increment and end pixel to be read. If the increment value is omitted, defaults to 1. For example, the following are all equivalent:
imread (filename, "PixelRegion", {[200 600] [300 700]});
imread (filename, "PixelRegion", {[200 1 600] [300 1 700]});
imread (filename)(200:600, 300:700);
See also: imwrite, imfinfo, imformats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Read images from various file formats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
imshow
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1727
-- Function File: imshow (IM)
-- Function File: imshow (IM, LIMITS)
-- Function File: imshow (IM, MAP)
-- Function File: imshow (RGB, ...)
-- Function File: imshow (FILENAME)
-- Function File: imshow (..., STRING_PARAM1, VALUE1, ...)
-- Function File: H = imshow (...)
Display the image IM, where IM can be a 2-dimensional (grayscale image) or a 3-dimensional (RGB image) matrix.
If LIMITS is a 2-element vector '[LOW, HIGH]', the image is shown using a display range between LOW and HIGH. If an empty matrix is passed for LIMITS, the display range is computed as the range between the minimal and the maximal value in the image.
If MAP is a valid color map, the image will be shown as an indexed image using the supplied color map.
If a file name is given instead of an image, the file will be read and shown.
If given, the parameter STRING_PARAM1 has value VALUE1. STRING_PARAM1 can be any of the following:
"displayrange"
VALUE1 is the display range as described above.
"colormap"
VALUE1 is the colormap to use when displaying an indexed image.
"xdata"
If VALUE1 is a two element vector, it must contain horizontal axis limits in the form [xmin xmax]; Otherwise VALUE1 must be a vector and only the first and last elements will be used for xmin and xmax respectively.
"ydata"
If VALUE1 is a two element vector, it must contain vertical axis limits in the form [ymin ymax]; Otherwise VALUE1 must be a vector and only the first and last elements will be used for ymin and ymax respectively.
The optional return value H is a graphics handle to the image.
See also: image, imagesc, colormap, gray2ind, rgb2ind.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Display the image IM, where IM can be a 2-dimensional (grayscale image) or a 3-dimensional (RGB image) matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
imwrite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3288
-- Function File: imwrite (IMG, FILENAME)
-- Function File: imwrite (IMG, FILENAME, EXT)
-- Function File: imwrite (IMG, MAP, FILENAME)
-- Function File: imwrite (..., PARAM1, VAL1, ...)
Write images in various file formats.
The image IMG can be a binary, grayscale, RGB, or multi-dimensional image. The size and class of IMG should be the same as what should be expected when reading it with 'imread': the 3rd and 4th dimensions reserved for color space, and multiple pages respectively. If it's an indexed image, the colormap MAP must also be specified.
If EXT is not supplied, the file extension of FILENAME is used to determine the format. The actual supported formats are dependent on options made during the build of Octave. Use 'imformats' to check the support of the different image formats.
Depending on the file format, it is possible to configure the writing of images with PARAM, VAL pairs. The following options are supported:
'Alpha'
Alpha (transparency) channel for the image. This must be a matrix with same class, and number of rows and columns of IMG. In case of a multipage image, the size of the 4th dimension must also match and the third dimension must be a singleton. By default, image will be completely opaque.
'DelayTime'
For formats that accept animations (such as GIF), controls for how long a frame is displayed until it moves to the next one. The value must be scalar (which will applied to all frames in IMG), or a vector of length equal to the number of frames in IM. The value is in seconds, must be between 0 and 655.35, and defaults to 0.5.
'DisposalMethod'
For formats that accept animations (such as GIF), controls what happens to a frame before drawing the next one. Its value can be one of the following strings: "doNotSpecify" (default); "leaveInPlace"; "restoreBG"; and "restorePrevious", or a cell array of those string with length equal to the number of frames in IMG.
'LoopCount'
For formats that accept animations (such as GIF), controls how many times the sequence is repeated. A value of Inf means an infinite loop (default), a value of 0 or 1 that the sequence is played only once (loops zero times), while a value of 2 or above loops that number of times (looping twice means it plays the complete sequence 3 times). This option is ignored when there is only a single image at the end of writing the file.
'Quality'
Set the quality of the compression. The value should be an integer between 0 and 100, with larger values indicating higher visual quality and lower compression. Defaults to 75.
'WriteMode'
Some file formats, such as TIFF and GIF, are able to store multiple images in a single file. This option specifies if IMG should be appended to the file (if it exists) or if a new file should be created for it (possibly overwriting an existing file). The value should be the string "Overwrite" (default), or "Append".
Despite this option, the most efficient method of writing a multipage image is to pass a 4 dimensional IMG to 'imwrite', the same matrix that could be expected when using 'imread' with the option "Index" set to "all".
See also: imread, imfinfo, imformats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Write images in various file formats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ind2gray
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 829
-- Function File: I = ind2gray (X, MAP)
Convert a color indexed image to a grayscale intensity image.
The image X must be an indexed image which will be converted using the colormap CMAP. If CMAP does not contain enough colors for the image, pixels in X outside the range are mapped to the last color in the map before conversion to grayscale.
The output I is of the same class as the input X and may be one of 'uint8', 'uint16', 'single', or 'double'.
Implementation Note: There are several ways of converting colors to grayscale intensities. This functions uses the luminance value obtained from 'rgb2ntsc' which is 'I = 0.299*R + 0.587*G + 0.114*B'. Other possibilities include the value component from 'rgb2hsv' or using a single color channel from 'ind2rgb'.
See also: gray2ind, ind2rgb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Convert a color indexed image to a grayscale intensity image.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ind2rgb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 767
-- Function File: RGB = ind2rgb (X, MAP)
-- Function File: [R, G, B] = ind2rgb (X, MAP)
Convert an indexed image to red, green, and blue color components.
The image X must be an indexed image which will be converted using the colormap MAP. If MAP does not contain enough colors for the image, pixels in X outside the range are mapped to the last color in the map.
The output may be a single RGB image (MxNx3 matrix where M and N are the original image X dimensions, one for each of the red, green and blue channels). Alternatively, the individual red, green, and blue color matrices of size MxN may be returned.
Multi-dimensional indexed images (of size MxNx1xK) are also supported.
See also: rgb2ind, ind2gray, hsv2rgb, ntsc2rgb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Convert an indexed image to red, green, and blue color components.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
jet
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 320
-- Function File: MAP = jet ()
-- Function File: MAP = jet (N)
Create color colormap. This colormap ranges from dark blue through blue, cyan, green, yellow, red, to dark red.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lines
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 390
-- Function File: MAP = lines ()
-- Function File: MAP = lines (N)
Create color colormap. This colormap is composed of the list of colors in the current axes "ColorOrder" property. The default is blue, green, red, cyan, pink, yellow, and gray.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ntsc2rgb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
-- Function File: RGB_MAP = ntsc2rgb (YIQ_MAP)
-- Function File: RGB_IMG = ntsc2rgb (YIQ_IMG)
Transform a colormap or image from luminance-chrominance (NTSC) space to red-green-blue (RGB) color space.
Implementation Note: The conversion matrix is chosen to be the inverse of the matrix used for rgb2ntsc such that
x == ntsc2rgb (rgb2ntsc (x))
MATLAB uses a slightly different matrix where rounding means the equality above does not hold.
See also: rgb2ntsc, hsv2rgb, ind2rgb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Transform a colormap or image from luminance-chrominance (NTSC) space to red-green-blue (RGB) color space.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ocean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
-- Function File: MAP = ocean ()
-- Function File: MAP = ocean (N)
Create color colormap. This colormap varies from black to white with shades of blue.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pink
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 370
-- Function File: MAP = pink ()
-- Function File: MAP = pink (N)
Create color colormap. This colormap varies from black to white with shades of gray-pink.
This colormap gives a sepia tone when used on grayscale images.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
prism
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 332
-- Function File: MAP = prism ()
-- Function File: MAP = prism (N)
Create color colormap. This colormap cycles through red, orange, yellow, green, blue and violet with each index change.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rainbow
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 317
-- Function File: MAP = rainbow ()
-- Function File: MAP = rainbow (N)
Create color colormap. This colormap ranges from red through orange, yellow, green, blue, to violet.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rgb2hsv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 549
-- Function File: HSV_MAP = rgb2hsv (RGB)
-- Function File: HSV_MAP = rgb2hsv (RGB)
Transform a colormap or image from red-green-blue (RGB) space to hue-saturation-value (HSV) space.
A color in the RGB space consists of red, green, and blue intensities.
A color in HSV space is represented by hue, saturation, and value (brightness) levels. Value gives the amount of light in the color. Hue describes the dominant wavelength. Saturation is the amount of hue mixed into the color.
See also: hsv2rgb, rgb2ind, rgb2ntsc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Transform a colormap or image from red-green-blue (RGB) space to hue-saturation-value (HSV) space.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rgb2ind
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 925
-- Function File: [X, MAP] = rgb2ind (RGB)
-- Function File: [X, MAP] = rgb2ind (R, G, B)
Convert an image in red-green-blue (RGB) color space to an indexed image.
The input image RGB can be specified as a single matrix of size MxNx3, or as three separate variables, R, G, and B, its three color channels, red, green, and blue.
It outputs an indexed image X and a colormap MAP to interpret an image exactly the same as the input. No dithering or other form of color quantization is performed. The output class of the indexed image X can be uint8, uint16 or double, whichever is required to specify the number of unique colors in the image (which will be equal to the number of rows in MAP) in order
Multi-dimensional indexed images (of size MxNx3xK) are also supported, both via a single input (RGB) or its three color channels as separate variables.
See also: ind2rgb, rgb2hsv, rgb2ntsc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Convert an image in red-green-blue (RGB) color space to an indexed image.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rgb2ntsc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 739
-- Function File: YIQ_MAP = rgb2ntsc (RGB_MAP)
-- Function File: YIQ_IMG = rgb2ntsc (RGB_IMG)
Transform a colormap or image from red-green-blue (RGB) color space to luminance-chrominance (NTSC) space. The input may be of class uint8, uint16, single, or double. The output is of class double.
Implementation Note: The reference matrix for the transformation is
/Y\ 0.299 0.587 0.114 /R\
|I| = 0.596 -0.274 -0.322 |G|
\Q/ 0.211 -0.523 0.312 \B/
as documented in <http://en.wikipedia.org/wiki/YIQ> and truncated to 3 significant figures. Note: The FCC version of NTSC uses only 2 significant digits and is slightly different.
See also: ntsc2rgb, rgb2hsv, rgb2ind.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Transform a colormap or image from red-green-blue (RGB) color space to luminance-chrominance (NTSC) space.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rgbplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 799
-- Function File: rgbplot (CMAP)
-- Function File: rgbplot (CMAP, STYLE)
-- Function File: H = rgbplot (...)
Plot the components of a colormap.
Two different STYLEs are available for displaying the CMAP:
profile (default)
Plot the RGB line profile of the colormap for each of the channels (red, green and blue) with the plot lines colored appropriately. Each line represents the intensity of each RGB components across the colormap.
composite
Draw the colormap across the X-axis so that the actual index colors are visible rather than the individual color components.
The optional return value H is a graphics handle to the created plot.
Run 'demo rgbplot' to see an example of 'rgbplot' and each style option.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Plot the components of a colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spinmap
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 627
-- Function File: spinmap ()
-- Function File: spinmap (T)
-- Function File: spinmap (T, INC)
-- Function File: spinmap ("inf")
Cycle the colormap for T seconds with a color increment of INC.
Both parameters are optional. The default cycle time is 5 seconds and the default increment is 2. If the option "inf" is given then cycle continuously until 'Control-C' is pressed.
When rotating, the original color 1 becomes color 2, color 2 becomes color 3, etc. A positive or negative increment is allowed and a higher value of INC will cause faster cycling through the colormap.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Cycle the colormap for T seconds with a color increment of INC.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
spring
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Function File: MAP = spring ()
-- Function File: MAP = spring (N)
Create color colormap. This colormap varies from magenta to yellow.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
summer
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 280
-- Function File: MAP = summer ()
-- Function File: MAP = summer (N)
Create color colormap. This colormap varies from green to yellow.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
white
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
-- Function File: MAP = white ()
-- Function File: MAP = white (N)
Create color colormap. This colormap is completely white.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
winter
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 278
-- Function File: MAP = winter ()
-- Function File: MAP = winter (N)
Create color colormap. This colormap varies from blue to green.
The argument N must be a scalar. If unspecified, the length of the current colormap, or 64, is used.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
beep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 306
-- Function File: beep ()
Produce a beep from the speaker (or visual bell).
This function sends the alarm character "\a" to the terminal. Depending on the user's configuration this may produce an audible beep, a visual bell, or nothing at all.
See also: puts, fputs, printf, fprintf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Produce a beep from the speaker (or visual bell).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
csvread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
-- Function File: X = csvread (FILENAME)
-- Function File: X = csvread (FILENAME, DLM_OPTS)
Read the comma-separated-value file FILENAME into the matrix X.
This function is equivalent to
X = dlmread (FILENAME, "," , ...)
See also: csvwrite, dlmread, dlmwrite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Read the comma-separated-value file FILENAME into the matrix X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
csvwrite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 300
-- Function File: csvwrite (FILENAME, X)
-- Function File: csvwrite (FILENAME, X, DLM_OPTS)
Write the matrix X to the file FILENAME in comma-separated-value format.
This function is equivalent to
dlmwrite (FILENAME, X, ",", ...)
See also: csvread, dlmwrite, dlmread.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Write the matrix X to the file FILENAME in comma-separated-value format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dlmwrite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1600
-- Function File: dlmwrite (FILE, M)
-- Function File: dlmwrite (FILE, M, DELIM, R, C)
-- Function File: dlmwrite (FILE, M, KEY, VAL ...)
-- Function File: dlmwrite (FILE, M, "-append", ...)
-- Function File: dlmwrite (FID, ...)
Write the matrix M to the named file using delimiters.
FILE should be a file name or writable file ID given by 'fopen'.
The parameter DELIM specifies the delimiter to use to separate values on a row.
The value of R specifies the number of delimiter-only lines to add to the start of the file.
The value of C specifies the number of delimiters to prepend to each line of data.
If the argument "-append" is given, append to the end of FILE.
In addition, the following keyword value pairs may appear at the end of the argument list:
"append"
Either "on" or "off". See "-append" above.
"delimiter"
See DELIM above.
"newline"
The character(s) to use to separate each row. Three special cases exist for this option. "unix" is changed into "\n", "pc" is changed into "\r\n", and "mac" is changed into "\r". Any other value is used directly as the newline separator.
"roffset"
See R above.
"coffset"
See C above.
"precision"
The precision to use when writing the file. It can either be a format string (as used by fprintf) or a number of significant digits.
dlmwrite ("file.csv", reshape (1:16, 4, 4));
dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\n")
See also: dlmread, csvread, csvwrite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Write the matrix M to the named file using delimiters.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fileread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Function File: STR = fileread (FILENAME)
Read the contents of FILENAME and return it as a string.
See also: fread, textread, sscanf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Read the contents of FILENAME and return it as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
importdata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
-- Function File: A = importdata (FNAME)
-- Function File: A = importdata (FNAME, DELIMITER)
-- Function File: A = importdata (FNAME, DELIMITER, HEADER_ROWS)
-- Function File: [A, DELIMITER] = importdata (...)
-- Function File: [A, DELIMITER, HEADER_ROWS] = importdata (...)
Import data from the file FNAME.
Input parameters:
* FNAME The name of the file containing data.
* DELIMITER The character separating columns of data. Use '\t' for tab. (Only valid for ASCII files)
* HEADER_ROWS The number of header rows before the data begins. (Only valid for ASCII files)
Different file types are supported:
* ASCII table
Import ASCII table using the specified number of header rows and the specified delimiter.
* Image file
* MATLAB file
* Spreadsheet files (depending on external software)
* WAV file
See also: textscan, dlmread, csvread, load.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Import data from the file FNAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
is_valid_file_id
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
-- Function File: is_valid_file_id (FID)
Return true if FID refers to an open file.
See also: freport, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return true if FID refers to an open file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4661
-- Function File: [A, ...] = strread (STR)
-- Function File: [A, ...] = strread (STR, FORMAT)
-- Function File: [A, ...] = strread (STR, FORMAT, FORMAT_REPEAT)
-- Function File: [A, ...] = strread (STR, FORMAT, PROP1, VALUE1, ...)
-- Function File: [A, ...] = strread (STR, FORMAT, FORMAT_REPEAT, PROP1, VALUE1, ...)
Read data from a string.
The string STR is split into words that are repeatedly matched to the specifiers in FORMAT. The first word is matched to the first specifier, the second to the second specifier and so forth. If there are more words than specifiers, the process is repeated until all words have been processed.
The string FORMAT describes how the words in STR should be parsed. It may contain any combination of the following specifiers:
'%s'
The word is parsed as a string.
'%f'
'%n'
The word is parsed as a number and converted to double.
'%d'
'%u'
The word is parsed as a number and converted to int32.
'%*', '%*f', '%*s'
The word is skipped.
For %s and %d, %f, %n, %u and the associated %*s ... specifiers an optional width can be specified as %Ns, etc. where N is an integer > 1. For %f, format specifiers like %N.Mf are allowed.
'literals'
In addition the format may contain literal character strings; these will be skipped during reading.
Parsed word corresponding to the first specifier are returned in the first output argument and likewise for the rest of the specifiers.
By default, FORMAT is "%f", meaning that numbers are read from STR. This will do if STR contains only numeric fields.
For example, the string
STR = "\
Bunny Bugs 5.5\n\
Duck Daffy -7.5e-5\n\
Penguin Tux 6"
can be read using
[A, B, C] = strread (STR, "%s %s %f");
Optional numeric argument FORMAT_REPEAT can be used for limiting the number of items read:
-1
(default) read all of the string until the end.
N
Read N times NARGOUT items. 0 (zero) is an acceptable value for FORMAT_REPEAT.
The behavior of 'strread' can be changed via property-value pairs. The following properties are recognized:
"commentstyle"
Parts of STR are considered comments and will be skipped. VALUE is the comment style and can be any of the following.
* "shell" Everything from '#' characters to the nearest end-of-line is skipped.
* "c" Everything between '/*' and '*/' is skipped.
* "c++" Everything from '//' characters to the nearest end-of-line is skipped.
* "matlab" Everything from '%' characters to the nearest end-of-line is skipped.
* user-supplied. Two options: (1) One string, or 1x1 cell string: Skip everything to the right of it; (2) 2x1 cell string array: Everything between the left and right strings is skipped.
"delimiter"
Any character in VALUE will be used to split STR into words (default value = any whitespace).
"emptyvalue":
Value to return for empty numeric values in non-whitespace delimited data. The default is NaN. When the data type does not support NaN (int32 for example), then default is zero.
"multipledelimsasone"
Treat a series of consecutive delimiters, without whitespace in between, as a single delimiter. Consecutive delimiter series need not be vertically "aligned".
"treatasempty"
Treat single occurrences (surrounded by delimiters or whitespace) of the string(s) in VALUE as missing values.
"returnonerror"
If VALUE true (1, default), ignore read errors and return normally. If false (0), return an error.
"whitespace"
Any character in VALUE will be interpreted as whitespace and trimmed; the string defining whitespace must be enclosed in double quotes for proper processing of special characters like "\t". The default value for whitespace is " \b\r\n\t" (note the space). Unless whitespace is set to "" (empty) AND at least one "%s" format conversion specifier is supplied, a space is always part of whitespace.
When the number of words in STR doesn't match an exact multiple of the number of format conversion specifiers, strread's behavior depends on the last character of STR:
last character = "\n"
Data columns are padded with empty fields or Nan so that all columns have equal length
last character is not "\n"
Data columns are not padded; strread returns columns of unequal length
See also: textscan, textread, load, dlmread, fscanf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Read data from a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
textscan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2392
-- Function File: C = textscan (FID, FORMAT)
-- Function File: C = textscan (FID, FORMAT, N)
-- Function File: C = textscan (FID, FORMAT, PARAM, VALUE, ...)
-- Function File: C = textscan (FID, FORMAT, N, PARAM, VALUE, ...)
-- Function File: C = textscan (STR, ...)
-- Function File: [C, POSITION] = textscan (FID, ...)
Read data from a text file or string.
The string STR or file associated with FID is read from and parsed according to FORMAT. The function behaves like 'strread' except it can also read from file instead of a string. See the documentation of 'strread' for details.
In addition to the options supported by 'strread', this function supports a few more:
* "collectoutput": A value of 1 or true instructs textscan to concatenate consecutive columns of the same class in the output cell array. A value of 0 or false (default) leaves output in distinct columns.
* "endofline": Specify "\r", "\n" or "\r\n" (for CR, LF, or CRLF). If no value is given, it will be inferred from the file. If set to "" (empty string) EOLs are ignored as delimiters and added to whitespace.
* "headerlines": The first VALUE number of lines of FID are skipped.
* "returnonerror": If set to numerical 1 or true (default), return normally when read errors have been encountered. If set to 0 or false, return an error and no data. As the string or file is read by columns rather than by rows, and because textscan is fairly forgiving as regards read errors, setting this option may have little or no actual effect.
When reading from a character string, optional input argument N specifies the number of times FORMAT should be used (i.e., to limit the amount of data read). When reading from file, N specifies the number of data lines to read; in this sense it differs slightly from the format repeat count in strread.
The output C is a cell array whose second dimension is determined by the number of format specifiers.
The second output, POSITION, provides the position, in characters, from the beginning of the file.
If the format string is empty (not: omitted) and the file contains only numeric data (excluding headerlines), textscan will return data in a number of columns matching the number of numeric fields on the first data line of the file.
See also: dlmread, fscanf, load, strread, textread.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Read data from a text file or string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
textread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2728
-- Function File: [A, ...] = textread (FILENAME)
-- Function File: [A, ...] = textread (FILENAME, FORMAT)
-- Function File: [A, ...] = textread (FILENAME, FORMAT, N)
-- Function File: [A, ...] = textread (FILENAME, FORMAT, PROP1, VALUE1, ...)
-- Function File: [A, ...] = textread (FILENAME, FORMAT, N, PROP1, VALUE1, ...)
Read data from a text file.
The file FILENAME is read and parsed according to FORMAT. The function behaves like 'strread' except it works by parsing a file instead of a string. See the documentation of 'strread' for details.
In addition to the options supported by 'strread', this function supports two more:
* "headerlines": The first VALUE number of lines of FILENAME are skipped.
* "endofline": Specify a single character or "\r\n". If no value is given, it will be inferred from the file. If set to "" (empty string) EOLs are ignored as delimiters.
The optional input N (format repeat count) specifies the number of times the format string is to be used or the number of lines to be read, whichever happens first while reading. The former is equivalent to requesting that the data output vectors should be of length N. Note that when reading files with format strings referring to multiple lines, N should rather be the number of lines to be read than the number of format string uses.
If the format string is empty (not just omitted) and the file contains only numeric data (excluding headerlines), textread will return a rectangular matrix with the number of columns matching the number of numeric fields on the first data line of the file. Empty fields are returned as zero values.
Examples:
Assume a data file like:
1 a 2 b
3 c 4 d
5 e
[a, b] = textread (f, "%f %s")
returns two columns of data, one with doubles, the other a
cellstr array:
a = [1; 2; 3; 4; 5]
b = {"a"; "b"; "c"; "d"; "e"}
[a, b] = textread (f, "%f %s", 3)
(read data into two culumns, try to use the format string
three times)
returns
a = [1; 2; 3]
b = {"a"; "b"; "c"}
With a data file like:
1
a
2
b
[a, b] = textread (f, "%f %s", 2)
returns a = 1 and b = {"a"}; i.e., the format string is used
only once because the format string refers to 2 lines of the
data file. To obtain 2x1 data output columns, specify N = 4
(number of data lines containing all requested data) rather
than 2.
See also: strread, load, dlmread, fscanf, textscan.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Read data from a text file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java_get
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 486
-- Function File: VAL = java_get (OBJ, NAME)
Get the value of the field NAME of the Java object OBJ.
For static fields, OBJ can be a string representing the fully qualified name of the corresponding class.
When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax. For instance, the following two statements are equivalent
java_get (x, "field1")
x.field1
See also: java_set, javaMethod, javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Get the value of the field NAME of the Java object OBJ.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java_set
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
-- Function File: OBJ = java_set (OBJ, NAME, VAL)
Set the value of the field NAME of the Java object OBJ to VAL.
For static fields, OBJ can be a string representing the fully qualified named of the corresponding Java class.
When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax. For instance, the following two statements are equivalent
java_set (x, "field1", val)
x.field1 = val
See also: java_get, javaMethod, javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Set the value of the field NAME of the Java object OBJ to VAL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
javaArray
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 699
-- Function File: JARY = javaArray (CLASSNAME, SZ)
-- Function File: JARY = javaArray (CLASSNAME, M, N, ...)
Create a Java array of size SZ with elements of class CLASSNAME.
CLASSNAME may be a Java object representing a class or a string containing the fully qualified class name. The size of the object may also be specified with individual integer arguments M, N, etc.
The generated array is uninitialized. All elements are set to null if CLASSNAME is a reference type, or to a default value (usually 0) if CLASSNAME is a primitive type.
Sample code:
jary = javaArray ("java.lang.String", 2, 2);
jary(1,1) = "Hello";
See also: javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Create a Java array of size SZ with elements of class CLASSNAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
javaaddpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 393
-- Function File: javaaddpath (CLSPATH)
-- Function File: javaaddpath (CLSPATH1, ...)
Add CLSPATH to the dynamic class path of the Java virtual machine.
CLSPATH may either be a directory where '.class' files are found, or a '.jar' file containing Java classes. Multiple paths may be added at once by specifying additional arguments.
See also: javarmpath, javaclasspath.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Add CLSPATH to the dynamic class path of the Java virtual machine.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
javachk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1517
-- Function File: javachk (FEATURE)
-- Function File: javachk (FEATURE, COMPONENT)
-- Function File: MSG = javachk (...)
Check for the presence of the Java FEATURE in the current session and print or return an error message if it is not.
Possible features are:
"awt"
Abstract Window Toolkit for GUIs.
"desktop"
Interactive desktop is running.
"jvm"
Java Virtual Machine.
"swing"
Swing components for lightweight GUIs.
If FEATURE is supported and
* no output argument is requested:
Return an empty string
* an output argument is requested:
Return a struct with fields "feature" and "identifier" both empty
If FEATURE is not supported and
* no output argument is requested:
Emit an error message
* an output argument is requested:
Return a struct with field "feature" set to FEATURE and field "identifier" set to COMPONENT
The optional input COMPONENT will be used in place of FEATURE in any error messages for greater specificity.
'javachk' determines if specific Java features are available in an Octave session. This function is provided for scripts which may alter their behavior based on the availability of Java. The feature "desktop" is never available as Octave has no Java-based desktop. Other features may be available if Octave was compiled with the Java Interface and Java is installed.
See also: usejava, error.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Check for the presence of the Java FEATURE in the current session and print or return an error message if it is not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
javaclasspath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 969
-- Function File: javaclasspath ()
-- Function File: DPATH = javaclasspath ()
-- Function File: [DPATH, SPATH] = javaclasspath ()
-- Function File: CLSPATH = javaclasspath (WHAT)
Return the class path of the Java virtual machine in the form of a cell array of strings.
If called with no inputs:
* If no output is requested, the dynamic and static classpaths are printed to the standard output.
* If one output value DPATH is requested, the result is the dynamic classpath.
* If two output valuesDPATH and SPATH are requested, the first variable will contain the dynamic classpath and the second will contain the static classpath.
If called with a single input parameter WHAT:
"-dynamic"
Return the dynamic classpath.
"-static"
Return the static classpath.
"-all"
Return both the static and dynamic classpath in a single cellstr.
See also: javaaddpath, javarmpath.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the class path of the Java virtual machine in the form of a cell array of strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
javamem
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1636
-- Function File: javamem ()
-- Function File: JMEM = javamem ()
Show the current memory usage of the Java virtual machine (JVM) and run the garbage collector.
When no return argument is given the info is printed to the screen. Otherwise, the output cell array JMEM contains Maximum, Total, and Free memory (in bytes).
All Java-based routines are run in the JVM's shared memory pool, a dedicated and separate part of memory claimed by the JVM from your computer's total memory (which comprises physical RAM and virtual memory / swap space on hard disk).
The maximum allowable memory usage can be configured using the file 'java.opts'. The directory where this file resides is determined by the environment variable 'OCTAVE_JAVA_DIR'. If unset, the directory where 'javaaddpath.m' resides is used instead (typically 'OCTAVE_HOME/share/octave/OCTAVE_VERSION/m/java/').
'java.opts' is a plain text file with one option per line. The default initial memory size and default maximum memory size (which are both system dependent) can be overridden like so:
-Xms64m
-Xmx512m
(in megabytes in this example). You can adapt these values to your own requirements if your system has limited available physical memory or if you get Java memory errors.
"Total memory" is what the operating system has currently assigned to the JVM and depends on actual and active memory usage. "Free memory" is self-explanatory. During operation of Java-based Octave functions the amount of Total and Free memory will vary, due to Java's own cleaning up and your operating system's memory management.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Show the current memory usage of the Java virtual machine (JVM) and run the garbage collector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javarmpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
-- Function File: javarmpath (CLSPATH)
-- Function File: javarmpath (CLSPATH1, ...)
Remove CLSPATH from the dynamic class path of the Java virtual machine.
CLSPATH may either be a directory where '.class' files are found, or a '.jar' file containing Java classes. Multiple paths may be removed at once by specifying additional arguments.
See also: javaaddpath, javaclasspath.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Remove CLSPATH from the dynamic class path of the Java virtual machine.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
usejava
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 754
-- Function File: usejava (FEATURE)
Return true if the Java element FEATURE is available.
Possible features are:
"awt"
Abstract Window Toolkit for GUIs.
"desktop"
Interactive desktop is running.
"jvm"
Java Virtual Machine.
"swing"
Swing components for lightweight GUIs.
'usejava' determines if specific Java features are available in an Octave session. This function is provided for scripts which may alter their behavior based on the availability of Java. The feature "desktop" always returns 'false' as Octave has no Java-based desktop. Other features may be available if Octave was compiled with the Java Interface and Java is installed.
See also: javachk.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if the Java element FEATURE is available.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
bandwidth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
-- Function File: BW = bandwidth (A, TYPE)
-- Function File: [LOWER, UPPER] = bandwidth (A)
Compute the bandwidth of A.
The TYPE argument is the string "lower" for the lower bandwidth and "upper" for the upper bandwidth. If no TYPE is specified return both the lower and upper bandwidth of A.
The lower/upper bandwidth of a matrix is the number of subdiagonals/superdiagonals with nonzero entries.
See also: isbanded, isdiag, istril, istriu.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the bandwidth of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
commutation_matrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 370
-- Function File: commutation_matrix (M, N)
Return the commutation matrix K(m,n) which is the unique M*N by M*N matrix such that K(m,n) * vec(A) = vec(A') for all m by n matrices A.
If only one argument M is given, K(m,m) is returned.
See Magnus and Neudecker (1988), 'Matrix Differential Calculus with Applications in Statistics and Econometrics.'
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Return the commutation matrix K(m,n) which is the unique M*N by M*N matrix such that K(m,n) * vec(A) = vec(A') for all m by n matrices A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cond
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 894
-- Function File: cond (A)
-- Function File: cond (A, P)
Compute the P-norm condition number of a matrix.
'cond (A)' is defined as 'norm (A, P) * norm (inv (A), P)'.
By default, 'P = 2' is used which implies a (relatively slow) singular value decomposition. Other possible selections are 'P = 1, Inf, "fro"' which are generally faster. See 'norm' for a full discussion of possible P values.
The condition number of a matrix quantifies the sensitivity of the matrix inversion operation when small changes are made to matrix elements. Ideally the condition number will be close to 1. When the number is large this indicates small changes (such as underflow or round-off error) will produce large changes in the resulting output. In such cases the solution results from numerical computing are not likely to be accurate.
See also: condest, rcond, norm, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the P-norm condition number of a matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
condest
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1601
-- Function File: condest (A)
-- Function File: condest (A, T)
-- Function File: [EST, V] = condest (...)
-- Function File: [EST, V] = condest (A, SOLVE, SOLVE_T, T)
-- Function File: [EST, V] = condest (APPLY, APPLY_T, SOLVE, SOLVE_T, N, T)
Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator.
If T exceeds 5, then only 5 test vectors are used.
If the matrix is not explicit, e.g., when estimating the condition number of A given an LU factorization, 'condest' uses the following functions:
APPLY
'A*x' for a matrix 'x' of size N by T.
APPLY_T
'A'*x' for a matrix 'x' of size N by T.
SOLVE
'A \ b' for a matrix 'b' of size N by T.
SOLVE_T
'A' \ b' for a matrix 'b' of size N by T.
The implicit version requires an explicit dimension N.
'condest' uses a randomized algorithm to approximate the 1-norms.
'condest' returns the 1-norm condition estimate EST and a vector V satisfying 'norm (A*v, 1) == norm (A, 1) * norm (V, 1) / EST'. When EST is large, V is an approximate null vector.
References:
* N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'. SIMAX vol 21, no 4, pp 1185-1201. <http://dx.doi.org/10.1137/S0895479899356080>
* N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'. <http://citeseer.ist.psu.edu/223007.html>
See also: cond, norm, onenormest.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
cross
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 486
-- Function File: cross (X, Y)
-- Function File: cross (X, Y, DIM)
Compute the vector cross product of two 3-dimensional vectors X and Y.
If X and Y are matrices, the cross product is applied along the first dimension with three elements.
The optional argument DIM forces the cross product to be calculated along the specified dimension.
Example Code:
cross ([1,1,0], [0,1,1])
=> [ 1; -1; 1 ]
See also: dot, curl, divergence.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Compute the vector cross product of two 3-dimensional vectors X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
duplication_matrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 316
-- Function File: duplication_matrix (N)
Return the duplication matrix Dn which is the unique n^2 by n*(n+1)/2 matrix such that Dn vech (A) = vec (A) for all symmetric n by n matrices A.
See Magnus and Neudecker (1988), 'Matrix Differential Calculus with Applications in Statistics and Econometrics.'
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
Return the duplication matrix Dn which is the unique n^2 by n*(n+1)/2 matrix such that Dn vech (A) = vec (A) for all symmetric n by n matrices A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
expm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 911
-- Function File: expm (A)
Return the exponential of a matrix.
The matrix exponential is defined as the infinite Taylor series
expm (A) = I + A + A^2/2! + A^3/3! + ...
However, the Taylor series is _not_ the way to compute the matrix exponential; see Moler and Van Loan, 'Nineteen Dubious Ways to Compute the Exponential of a Matrix', SIAM Review, 1978. This routine uses Ward's diagonal Pade' approximation method with three step preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal Pade' approximations are rational polynomials of matrices
-1
D (A) N (A)
whose Taylor series matches the first '2q+1' terms of the Taylor series above; direct evaluation of the Taylor series (with the same preconditioning steps) may be desirable in lieu of the Pade' approximation when 'Dq(A)' is ill-conditioned.
See also: logm, sqrtm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return the exponential of a matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
housh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 602
-- Function File: [HOUSV, BETA, ZER] = housh (X, J, Z)
Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.e.,
(I - beta*housv*housv')x = norm (x)*e(j) if x(j) < 0,
(I - beta*housv*housv')x = -norm (x)*e(j) if x(j) >= 0
Inputs
X
vector
J
index into vector
Z
threshold for zero (usually should be the number 0)
Outputs (see Golub and Van Loan):
BETA
If beta = 0, then no reflection need be applied (zer set to 0)
HOUSV
householder vector
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isbanded
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 302
-- Function File: isbanded (A, LOWER, UPPER)
Return true if A is a matrix with entries confined between LOWER diagonals below the main diagonal and UPPER diagonals above the main diagonal.
LOWER and UPPER must be non-negative integers.
See also: isdiag, istril, istriu, bandwidth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Return true if A is a matrix with entries confined between LOWER diagonals below the main diagonal and UPPER diagonals above the main diagonal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isdefinite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
-- Function File: isdefinite (A)
-- Function File: isdefinite (A, TOL)
Return 1 if A is symmetric positive definite within the tolerance specified by TOL or 0 if A is symmetric positive semidefinite. Otherwise, return -1.
If TOL is omitted, use a tolerance of '100 * eps * norm (A, "fro")'
See also: issymmetric, ishermitian.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
Return 1 if A is symmetric positive definite within the tolerance specified by TOL or 0 if A is symmetric positive semidefinite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isdiag
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
-- Function File: isdiag (A)
Return true if A is a diagonal matrix.
See also: isbanded, istril, istriu, diag, bandwidth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return true if A is a diagonal matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
ishermitian
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
-- Function File: ishermitian (A)
-- Function File: ishermitian (A, TOL)
Return true if A is Hermitian within the tolerance specified by TOL.
The default tolerance is zero (uses faster code).
Matrix A is considered symmetric if 'norm (A - A', Inf) / norm (A, Inf) < TOL'.
See also: issymmetric, isdefinite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return true if A is Hermitian within the tolerance specified by TOL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
issymmetric
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
-- Function File: issymmetric (A)
-- Function File: issymmetric (A, TOL)
Return true if A is a symmetric matrix within the tolerance specified by TOL.
The default tolerance is zero (uses faster code).
Matrix A is considered symmetric if 'norm (A - A.', Inf) / norm (A, Inf) < TOL'.
See also: ishermitian, isdefinite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return true if A is a symmetric matrix within the tolerance specified by TOL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
istril
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 233
-- Function File: istril (A)
Return true if A is a lower triangular matrix.
A lower triangular matrix has nonzero entries only on the main diagonal and below.
See also: istriu, isbanded, isdiag, tril, bandwidth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Return true if A is a lower triangular matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
istriu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
-- Function File: istriu (A)
Return true if A is an upper triangular matrix.
An upper triangular matrix has nonzero entries only on the main diagonal and above.
See also: isdiag, isbanded, istril, triu, bandwidth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return true if A is an upper triangular matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
krylov
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1184
-- Function File: [U, H, NU] = krylov (A, V, K, EPS1, PFLG)
Construct an orthogonal basis U of block Krylov subspace
[v a*v a^2*v ... a^(k+1)*v]
using Householder reflections to guard against loss of orthogonality.
If V is a vector, then H contains the Hessenberg matrix such that a*u == u*h+rk*ek', in which 'rk = a*u(:,k)-u*h(:,k)', and ek' is the vector '[0, 0, ..., 1]' of length 'k'. Otherwise, H is meaningless.
If V is a vector and K is greater than 'length (A) - 1', then H contains the Hessenberg matrix such that 'a*u == u*h'.
The value of NU is the dimension of the span of the Krylov subspace (based on EPS1).
If B is a vector and K is greater than M-1, then H contains the Hessenberg decomposition of A.
The optional parameter EPS1 is the threshold for zero. The default value is 1e-12.
If the optional parameter PFLG is nonzero, row pivoting is used to improve numerical behavior. The default value is 0.
Reference: A. Hodel, P. Misra, 'Partial Pivoting in the Computation of Krylov Subspaces of Large Sparse Systems', Proceedings of the 42nd IEEE Conference on Decision and Control, December 2003.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Construct an orthogonal basis U of block Krylov subspace
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linsolve
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1616
-- Function File: X = linsolve (A, B)
-- Function File: X = linsolve (A, B, OPTS)
-- Function File: [X, R] = linsolve (...)
Solve the linear system 'A*x = b'.
With no options, this function is equivalent to the left division operator ('x = A \ b') or the matrix-left-divide function ('x = mldivide (A, b)').
Octave ordinarily examines the properties of the matrix A and chooses a solver that best matches the matrix. By passing a structure OPTS to 'linsolve' you can inform Octave directly about the matrix A. In this case Octave will skip the matrix examination and proceed directly to solving the linear system.
*Warning:* If the matrix A does not have the properties listed in the OPTS structure then the result will not be accurate AND no warning will be given. When in doubt, let Octave examine the matrix and choose the appropriate solver as this step takes little time and the result is cached so that it is only done once per linear system.
Possible OPTS fields (set value to true/false):
LT
A is lower triangular
UT
A is upper triangular
UHESS
A is upper Hessenberg (currently makes no difference)
SYM
A is symmetric or complex Hermitian (currently makes no difference)
POSDEF
A is positive definite
RECT
A is general rectangular (currently makes no difference)
TRANSA
Solve 'A'*x = b' by 'transpose (A) \ b'
The optional second output R is the inverse condition number of A (zero if matrix is singular).
See also: mldivide, matrix_type, rcond.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Solve the linear system 'A*x = b'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
logm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 512
-- Function File: S = logm (A)
-- Function File: S = logm (A, OPT_ITERS)
-- Function File: [S, ITERS] = logm (...)
Compute the matrix logarithm of the square matrix A.
The implementation utilizes a Pade' approximant and the identity
logm (A) = 2^k * logm (A^(1 / 2^k))
The optional input OPT_ITERS is the maximum number of square roots to compute and defaults to 100.
The optional output ITERS is the number of square roots actually computed.
See also: expm, sqrtm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the matrix logarithm of the square matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normest
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 529
-- Function File: N = normest (A)
-- Function File: N = normest (A, TOL)
-- Function File: [N, C] = normest (...)
Estimate the 2-norm of the matrix A using a power series analysis.
This is typically used for large matrices, where the cost of calculating 'norm (A)' is prohibitive and an approximation to the 2-norm is acceptable.
TOL is the tolerance to which the 2-norm is calculated. By default TOL is 1e-6.
The optional output C returns the number of iterations needed for 'normest' to converge.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Estimate the 2-norm of the matrix A using a power series analysis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
null
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
-- Function File: null (A)
-- Function File: null (A, TOL)
Return an orthonormal basis of the null space of A.
The dimension of the null space is taken as the number of singular values of A not greater than TOL. If the argument TOL is missing, it is computed as
max (size (A)) * max (svd (A)) * eps
See also: orth.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return an orthonormal basis of the null space of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
onenormest
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1249
-- Function File: [EST, V, W, ITER] = onenormest (A, T)
-- Function File: [EST, V, W, ITER] = onenormest (APPLY, APPLY_T, N, T)
Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors.
If T exceeds 5, then only 5 test vectors are used.
If the matrix is not explicit, e.g., when estimating the norm of 'inv (A)' given an LU factorization, 'onenormest' applies A and its conjugate transpose through a pair of functions APPLY and APPLY_T, respectively, to a dense matrix of size N by T. The implicit version requires an explicit dimension N.
Returns the norm estimate EST, two vectors V and W related by norm '(W, 1) = EST * norm (V, 1)', and the number of iterations ITER. The number of iterations is limited to 10 and is at least 2.
References:
* N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'. SIMAX vol 21, no 4, pp 1185-1201. <http://dx.doi.org/10.1137/S0895479899356080>
* N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'. <http://citeseer.ist.psu.edu/223007.html>
See also: condest, norm, cond.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
orth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
-- Function File: orth (A)
-- Function File: orth (A, TOL)
Return an orthonormal basis of the range space of A.
The dimension of the range space is taken as the number of singular values of A greater than TOL. If the argument TOL is missing, it is computed as
max (size (A)) * max (svd (A)) * eps
See also: null.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return an orthonormal basis of the range space of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
planerot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
-- Function File: [G, Y] = planerot (X)
Given a two-element column vector, return the 2 by 2 orthogonal matrix G such that 'Y = G * X' and 'Y(2) = 0'.
See also: givens.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Given a two-element column vector, return the 2 by 2 orthogonal matrix G such that 'Y = G * X' and 'Y(2) = 0'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
qzhess
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 777
-- Function File: [AA, BB, Q, Z] = qzhess (A, B)
Compute the Hessenberg-triangular decomposition of the matrix pencil '(A, B)', returning 'AA = Q * A * Z', 'BB = Q * B * Z', with Q and Z orthogonal.
For example:
[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
=> aa = [ -3.02244, -4.41741; 0.92998, 0.69749 ]
=> bb = [ -8.60233, -9.99730; 0.00000, -0.23250 ]
=> q = [ -0.58124, -0.81373; -0.81373, 0.58124 ]
=> z = [ 1, 0; 0, 1 ]
The Hessenberg-triangular decomposition is the first step in Moler and Stewart's QZ decomposition algorithm.
Algorithm taken from Golub and Van Loan, 'Matrix Computations, 2nd edition'.
See also: lu, chol, hess, qr, qz, schur, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
Compute the Hessenberg-triangular decomposition of the matrix pencil '(A, B)', returning 'AA = Q * A * Z', 'BB = Q * B * Z', with Q and Z orthogonal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rank
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 942
-- Function File: rank (A)
-- Function File: rank (A, TOL)
Compute the rank of matrix A, using the singular value decomposition.
The rank is taken to be the number of singular values of A that are greater than the specified tolerance TOL. If the second argument is omitted, it is taken to be
tol = max (size (A)) * sigma(1) * eps;
where 'eps' is machine precision and 'sigma(1)' is the largest singular value of A.
The rank of a matrix is the number of linearly independent rows or columns and determines how many particular solutions exist to a system of equations. Use 'null' for finding the remaining homogenous solutions.
Example:
x = [1 2 3
4 5 6
7 8 9];
rank (x)
=> 2
The number of linearly independent rows is only 2 because the final row is a linear combination of -1*row1 + 2*row2.
See also: null, sprank, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Compute the rank of matrix A, using the singular value decomposition.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 357
-- Function File: rref (A)
-- Function File: rref (A, TOL)
-- Function File: [R, K] = rref (...)
Return the reduced row echelon form of A.
TOL defaults to 'eps * max (size (A)) * norm (A, inf)'.
The optional return argument K contains the vector of "bound variables", which are those columns on which elimination has been performed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Return the reduced row echelon form of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
subspace
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
-- Function File: ANGLE = subspace (A, B)
Determine the largest principal angle between two subspaces spanned by the columns of matrices A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Determine the largest principal angle between two subspaces spanned by the columns of matrices A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
trace
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
-- Function File: trace (A)
Compute the trace of A, the sum of the elements along the main diagonal.
The implementation is straightforward: 'sum (diag (A))'.
See also: eig.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Compute the trace of A, the sum of the elements along the main diagonal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
vech
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
-- Function File: vech (X)
Return the vector obtained by eliminating all superdiagonal elements of the square matrix X and stacking the result one column above the other.
This has uses in matrix calculus where the underlying matrix is symmetric and it would be pointless to keep values above the main diagonal.
See also: vec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Return the vector obtained by eliminating all superdiagonal elements of the square matrix X and stacking the result one column above the other.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ans
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 234
-- Automatic Variable: ans
The most recently computed result that was not explicitly assigned to a variable.
For example, after the expression
3^2 + 4^2
is evaluated, the value returned by 'ans' is 25.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
The most recently computed result that was not explicitly assigned to a variable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
bug_report
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
-- Function File: bug_report ()
Display information about how to submit bug reports for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Display information about how to submit bug reports for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bunzip2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 377
-- Function File: FILELIST = bunzip2 (BZFILE)
-- Function File: FILELIST = bunzip2 (BZFILE, DIR)
Unpack the bzip2 archive BZFILE.
If DIR is specified the files are unpacked in this directory rather than the one where BZFILE is located.
The optional output FILELIST is a list of the uncompressed files.
See also: bzip2, unpack, gunzip, unzip, untar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Unpack the bzip2 archive BZFILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
bzip2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 777
-- Function File: FILELIST = bzip2 (FILES)
-- Function File: FILELIST = bzip2 (FILES, DIR)
Compress the list of files specified in FILES.
FILES is a character array or cell array of strings. Shell wildcards in the filename such as '*' or '?' are accepted and expanded. Each file is compressed separately and a new file with a '".bz2"' extension is created. The original files are not modified, but existing compressed files will be silently overwritten.
If DIR is defined the compressed files are placed in this directory, rather than the original directory where the uncompressed file resides. If DIR does not exist it is created.
The optional output FILELIST is a list of the compressed files.
See also: bunzip2, unpack, gzip, zip, tar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Compress the list of files specified in FILES.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cast
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 667
-- Function File: cast (VAL, "TYPE")
Convert VAL to data type TYPE.
VAL must be one of the numeric classes:
"double"
"single"
"logical"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
The value VAL may be modified to fit within the range of the new type.
Examples:
cast (-5, "uint8")
=> 0
cast (300, "int8")
=> 127
See also: typecast, int8, uint8, int16, uint16, int32, uint32, int64, uint64, double, single, logical, char, class, typeinfo.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Convert VAL to data type TYPE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
citation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 664
-- Command: citation
-- Command: citation PACKAGE
Display instructions for citing GNU Octave or its packages in publications.
When called without an argument, display information on how to cite the core GNU Octave system.
When given a package name PACKAGE, display information on citing the specific named package. Note that some packages may not yet have instructions on how to cite them.
The GNU Octave developers and its active community of package authors have invested a lot of time and effort in creating GNU Octave as it is today. Please give credit where credit is due and cite GNU Octave and its packages when you use them.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Display instructions for citing GNU Octave or its packages in publications.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
comma
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
-- Operator: ,
Array index, function argument, or command separator.
See also: semicolon.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Array index, function argument, or command separator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
compare_versions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
-- Function File: compare_versions (V1, V2, OPERATOR)
Compare two version strings using the given OPERATOR.
This function assumes that versions V1 and V2 are arbitrarily long strings made of numeric and period characters possibly followed by an arbitrary string (e.g., "1.2.3", "0.3", "0.1.2+", or "1.2.3.4-test1").
The version is first split into numeric and character portions and then the parts are padded to be the same length (i.e., "1.1" would be padded to be "1.1.0" when being compared with "1.1.1", and separately, the character parts of the strings are padded with nulls).
The operator can be any logical operator from the set
* "==" equal
* "<" less than
* "<=" less than or equal to
* ">" greater than
* ">=" greater than or equal to
* "!=" not equal
* "~=" not equal
Note that version "1.1-test2" will compare as greater than "1.1-test10". Also, since the numeric part is compared first, "a" compares less than "1a" because the second string starts with a numeric part even though 'double ("a")' is greater than 'double ("1").'
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compare two version strings using the given OPERATOR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
computer
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1084
-- Function File: computer ()
-- Function File: C = computer ()
-- Function File: [C, MAXSIZE] = computer ()
-- Function File: [C, MAXSIZE, ENDIAN] = computer ()
-- Function File: ARCH = computer ("arch")
Print or return a string of the form CPU-VENDOR-OS that identifies the type of computer that Octave is running on.
If invoked with an output argument, the value is returned instead of printed. For example:
computer ()
-| i586-pc-linux-gnu
mycomp = computer ()
=> mycomp = "i586-pc-linux-gnu"
If two output arguments are requested, also return the maximum number of elements for an array. This will depend on whether Octave has been compiled with 32-bit or 64-bit index vectors.
If three output arguments are requested, also return the byte order of the current system as a character ("B" for big-endian or "L" for little-endian).
If the argument "arch" is specified, return a string indicating the architecture of the computer on which Octave is running.
See also: isunix, ismac, ispc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Print or return a string of the form CPU-VENDOR-OS that identifies the type of computer that Octave is running on.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
copyfile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 741
-- Function File: [STATUS, MSG, MSGID] = copyfile (F1, F2)
-- Function File: [STATUS, MSG, MSGID] = copyfile (F1, F2, 'f')
Copy the source files or directories F1 to the destination F2.
The name F1 may contain globbing patterns. If F1 expands to multiple file names, F2 must be a directory.
When the force flag 'f' is given any existing files will be overwritten without prompting.
If successful, STATUS is 1, and MSG, MSGID are empty character strings (""). Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier. Note that the status code is exactly opposite that of the 'system' command.
See also: movefile, rename, unlink, delete, glob.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Copy the source files or directories F1 to the destination F2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
debug
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2099
-- Function File: debug ()
Summary of debugging commands.
For more information on each command and available options use 'help CMD'.
The debugging commands available in Octave are
'dbstop'
Add a breakpoint.
'dbclear'
Remove a breakpoint.
'dbstatus'
List all breakpoints.
'dbwhere'
Report the current file and line number where execution is stopped.
'dbtype'
Display the code of the function being debugged, enumerating the line numbers.
'dblist'
List 10 lines of code centered around the line number where execution is stopped.
'dbstep'
'dbnext'
Execute (step) one or more lines, follow execution into (step into) a function call, or execute until the end of a function (step out), and re-enter debug mode.
'dbcont'
Continue normal code execution from the debug prompt.
'dbquit'
Quit debugging mode immediately and return to the main prompt.
'dbstack'
Print a backtrace of the execution stack.
'dbup'
Move up the execution stack.
'dbdown'
Move down the execution stack.
'keyboard'
Force entry into debug mode from an m-file.
'debug_on_error'
Configure whether Octave enters debug mode when it encounters an error.
'debug_on_warning'
Configure whether Octave enters debug mode when it encounters a warning.
'debug_on_interrupt'
Configure whether Octave enters debug mode when it encounters an interrupt.
'isdebugmode'
Return true if in debug mode.
When Octave encounters a breakpoint, or other reason to enter debug mode, the prompt changes to "debug>". The workspace of the function where the breakpoint was encountered becomes available and any Octave command that is valid in that workspace context may be executed.
See also: dbstop, dbclear, dbstatus, dbwhere, dbtype, dbcont, dbquit, dbstack, dbup, dbdown, keyboard, debug_on_error, debug_on_warning, debug_on_interrupt, isdebugmode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Summary of debugging commands.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
delete
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
-- Function File: delete (FILE)
-- Function File: delete (FILE1, FILE2, ...)
-- Function File: delete (HANDLE)
Delete the named file or graphics handle.
FILE may contain globbing patterns such as '*'. Multiple files to be deleted may be specified in the same function call.
HANDLE may be a scalar or vector of graphic handles to delete.
Programming Note: Deleting graphics objects is the proper way to remove features from a plot without clearing the entire figure.
See also: clf, cla, unlink, rmdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Delete the named file or graphics handle.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
desktop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
-- Function File: USED = desktop ("-inuse")
Return true if the desktop (GUI) is currently in use.
See also: isguirunning.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if the desktop (GUI) is currently in use.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
dir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1351
-- Function File: dir
-- Function File: dir (DIRECTORY)
-- Function File: [LIST] = dir (DIRECTORY)
Display file listing for directory DIRECTORY.
If DIRECTORY is not specified then list the present working directory.
If a return value is requested, return a structure array with the fields
name
File or directory name.
date
Timestamp of file modification (string value).
bytes
File size in bytes.
isdir
True if name is a directory.
datenum
Timestamp of file modification as serial date number (double).
statinfo
Information structure returned from 'stat'.
If DIRECTORY is a filename, rather than a directory, then return information about the named file. DIRECTORY may also be a list rather than a single directory or file.
DIRECTORY is subject to shell expansion if it contains any wildcard characters '*', '?', '[]'. To find a literal example of a wildcard character the wildcard must be escaped using the backslash operator '\'.
Note that for symbolic links, 'dir' returns information about the file that the symbolic link points to rather than the link itself. However, if the link points to a nonexistent file, 'dir' returns information about the link.
See also: ls, readdir, glob, what, stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Display file listing for directory DIRECTORY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
dos
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 595
-- Function File: dos ("COMMAND")
-- Function File: STATUS = dos ("COMMAND")
-- Function File: [STATUS, TEXT] = dos ("COMMAND")
-- Function File: [...] = dos ("COMMAND", "-echo")
Execute a system command if running under a Windows-like operating system, otherwise do nothing.
Octave waits for the external command to finish before returning the exit status of the program in STATUS and any output in TEXT.
When called with no output argument, or the "-echo" argument is given, then TEXT is also sent to standard output.
See also: unix, system, isunix, ismac, ispc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Execute a system command if running under a Windows-like operating system, otherwise do nothing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
edit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3608
-- Command: edit NAME
-- Command: edit FIELD VALUE
-- Command: VALUE = edit get FIELD
Edit the named function, or change editor settings.
If 'edit' is called with the name of a file or function as its argument it will be opened in the text editor defined by 'EDITOR'.
* If the function NAME is available in a file on your path and that file is modifiable, then it will be edited in place. If it is a system function, then it will first be copied to the directory 'HOME' (see below) and then edited. If no file is found, then the m-file variant, ending with ".m", will be considered. If still no file is found, then variants with a leading "@" and then with both a leading "@" and trailing ".m" will be considered.
* If NAME is the name of a function defined in the interpreter but not in an m-file, then an m-file will be created in 'HOME' to contain that function along with its current definition.
* If 'NAME.cc' is specified, then it will search for 'NAME.cc' in the path and try to modify it, otherwise it will create a new '.cc' file in the current directory. If NAME happens to be an m-file or interpreter defined function, then the text of that function will be inserted into the .cc file as a comment.
* If 'NAME.ext' is on your path then it will be edited, otherwise the editor will be started with 'NAME.ext' in the current directory as the filename. If 'NAME.ext' is not modifiable, it will be copied to 'HOME' before editing.
*Warning:* You may need to clear NAME before the new definition is available. If you are editing a .cc file, you will need to execute 'mkoctfile NAME.cc' before the definition will be available.
If 'edit' is called with FIELD and VALUE variables, the value of the control field FIELD will be set to VALUE. If an output argument is requested and the first input argument is 'get' then 'edit' will return the value of the control field FIELD. If the control field does not exist, edit will return a structure containing all fields and values. Thus, 'edit get all' returns a complete control structure.
The following control fields are used:
'home'
This is the location of user local m-files. Be sure it is in your path. The default is '~/octave'.
'author'
This is the name to put after the "## Author:" field of new functions. By default it guesses from the 'gecos' field of the password database.
'email'
This is the e-mail address to list after the name in the author field. By default it guesses '<$LOGNAME@$HOSTNAME>', and if '$HOSTNAME' is not defined it uses 'uname -n'. You probably want to override this. Be sure to use the format '<user@host>'.
'license'
'gpl'
GNU General Public License (default).
'bsd'
BSD-style license without advertising clause.
'pd'
Public domain.
'"text"'
Your own default copyright and license.
Unless you specify 'pd', edit will prepend the copyright statement with "Copyright (C) yyyy Function Author".
'mode'
This value determines whether the editor should be started in async mode (editor is started in the background and Octave continues) or sync mode (Octave waits until the editor exits). Set it to "sync" to start the editor in sync mode. The default is "async" (*note system: XREFsystem.).
'editinplace'
Determines whether files should be edited in place, without regard to whether they are modifiable or not. The default is 'false'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Edit the named function, or change editor settings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
error_ids
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 859
'Octave:invalid-context'
Indicates the error was generated by an operation that cannot be executed in the scope from which it was called. For example, the function 'print_usage ()' when called from the Octave prompt raises this error.
'Octave:invalid-input-arg'
Indicates that a function was called with invalid input arguments.
'Octave:invalid-fun-call'
Indicates that a function was called in an incorrect way, e.g., wrong number of input arguments.
'Octave:invalid-indexing'
Indicates that a data-type was indexed incorrectly, e.g., real-value index for arrays, nonexistent field of a structure.
'Octave:bad-alloc'
Indicates that memory couldn't be allocated.
'Octave:undefined-function'
Indicates a call to a function that is not defined. The function may exist but Octave is unable to find it in the search path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
'Octave:invalid-context' Indicates the error was generated by an operation that cannot be executed in the scope from which it was called.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fact
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
-- Command: fact
-- Function File: TRUTH = fact ()
Display an amazing and random fact about the world's greatest hacker.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Display an amazing and random fact about the world's greatest hacker.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
fileattrib
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1190
-- Function File: [STATUS, RESULT, MSGID] = fileattrib (FILE)
Return information about FILE.
If successful, STATUS is 1, with RESULT containing a structure with the following fields:
'Name'
Full name of FILE.
'archive'
True if FILE is an archive (Windows).
'system'
True if FILE is a system file (Windows).
'hidden'
True if FILE is a hidden file (Windows).
'directory'
True if FILE is a directory.
'UserRead'
'GroupRead'
'OtherRead'
True if the user (group; other users) has read permission for FILE.
'UserWrite'
'GroupWrite'
'OtherWrite'
True if the user (group; other users) has write permission for FILE.
'UserExecute'
'GroupExecute'
'OtherExecute'
True if the user (group; other users) has execute permission for FILE.
If an attribute does not apply (i.e., archive on a Unix system) then the field is set to NaN.
With no input arguments, return information about the current directory.
If FILE contains globbing characters, return information about all the matching files.
See also: glob.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Return information about FILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
fileparts
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
-- Function File: [DIR, NAME, EXT] = fileparts (FILENAME)
Return the directory, name, and extension components of FILENAME.
The input FILENAME is a string which is parsed. There is no attempt to check whether the filename or directory specified actually exists.
See also: fullfile, filesep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the directory, name, and extension components of FILENAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fullfile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 972
-- Function File: FILENAME = fullfile (DIR1, DIR2, ..., FILE)
-- Function File: FILENAMES = fullfile (..., FILES)
Build complete filename from separate parts.
Joins any number of path components intelligently. The return value is the concatenation of each component with exactly one file separator between each non empty part and at most one leading and/or trailing file separator.
If the last component part is a cell array, returns a cell array of filepaths, one for each element in the last component, e.g.:
fullfile ("/home/username", "data", {"f1.csv", "f2.csv", "f3.csv"})
=> /home/username/data/f1.csv
/home/username/data/f2.csv
/home/username/data/f3.csv
On Windows systems, while forward slash file separators do work, they are replaced by backslashes; in addition drive letters are stripped of leading file separators to obtain a valid file path.
See also: fileparts, filesep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Build complete filename from separate parts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
genvarname
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2023
-- Function File: VARNAME = genvarname (STR)
-- Function File: VARNAME = genvarname (STR, EXCLUSIONS)
Create valid unique variable name(s) from STR.
If STR is a cellstr, then a unique variable is created for each cell in STR.
genvarname ({"foo", "foo"})
=>
{
[1,1] = foo
[1,2] = foo1
}
If EXCLUSIONS is given, then the variable(s) will be unique to each other and to EXCLUSIONS (EXCLUSIONS may be either a string or a cellstr).
x = 3.141;
genvarname ("x", who ())
=> x1
Note that the result is a char array or cell array of strings, not the variables themselves. To define a variable, 'eval()' can be used. The following trivial example sets 'x' to '42'.
name = genvarname ("x");
eval ([name " = 42"]);
=> x = 42
This can be useful for creating unique struct field names.
x = struct ();
for i = 1:3
x.(genvarname ("a", fieldnames (x))) = i;
endfor
=> x =
{
a = 1
a1 = 2
a2 = 3
}
Since variable names may only contain letters, digits, and underscores, 'genvarname' will replace any sequence of disallowed characters with an underscore. Also, variables may not begin with a digit; in this case an 'x' is added before the variable name.
Variable names beginning and ending with two underscores "__" are valid, but they are used internally by Octave and should generally be avoided; therefore, 'genvarname' will not generate such names.
'genvarname' will also ensure that returned names do not clash with keywords such as "for" and "if". A number will be appended if necessary. Note, however, that this does *not* include function names such as "sin". Such names should be included in EXCLUSIONS if necessary.
See also: isvarname, iskeyword, exist, who, tempname, eval.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Create valid unique variable name(s) from STR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
getappdata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 458
-- Function File: VALUE = getappdata (H, NAME)
-- Function File: APPDATA = getappdata (H)
Return the VALUE of the application data NAME for the graphics object with handle H.
H may also be a vector of graphics handles. If no second argument NAME is given then 'getappdata' returns a structure, APPDATA, whose fields correspond to the appdata properties.
See also: setappdata, isappdata, rmappdata, guidata, get, set, getpref, setpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return the VALUE of the application data NAME for the graphics object with handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getfield
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 573
-- Function File: VAL = getfield (S, FIELD)
-- Function File: VAL = getfield (S, SIDX1, FIELD1, FIDX1, ...)
Get the value of the field named FIELD from a structure or nested structure S.
If S is a structure array then SIDX selects an element of the structure array, FIELD specifies the field name of the selected element, and FIDX selects which element of the field (in the case of an array or cell array). See 'setfield' for a more complete description of the syntax.
See also: setfield, rmfield, orderfields, isfield, fieldnames, isstruct, struct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Get the value of the field named FIELD from a structure or nested structure S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gunzip
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 465
-- Function File: FILELIST = gunzip (GZFILE)
-- Function File: FILELIST = gunzip (GZFILE, DIR)
Unpack the gzip archive GZFILE.
If GZFILE is a directory, all gzfiles in the directory will be recursively unpacked.
If DIR is specified the files are unpacked in this directory rather than the one where GZFILE is located.
The optional output FILELIST is a list of the uncompressed files.
See also: gzip, unpack, bunzip2, unzip, untar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Unpack the gzip archive GZFILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gzip
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 882
-- Function File: FILELIST = gzip (FILES)
-- Function File: FILELIST = gzip (FILES, DIR)
Compress the list of files and directories specified in FILES.
FILES is a character array or cell array of strings. Shell wildcards in the filename such as '*' or '?' are accepted and expanded. Each file is compressed separately and a new file with a '".gz"' extension is created. The original files are not modified, but existing compressed files will be silently overwritten. If a directory is specified then 'gzip' recursively compresses all files in the directory.
If DIR is defined the compressed files are placed in this directory, rather than the original directory where the uncompressed file resides. If DIR does not exist it is created.
The optional output FILELIST is a list of the compressed files.
See also: gunzip, unpack, bzip2, zip, tar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compress the list of files and directories specified in FILES.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
info
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
-- Function File: info ()
Display contact information for the GNU Octave community.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Display contact information for the GNU Octave community.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
inputname
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
-- Function File: inputname (N)
Return the name of the N-th argument to the calling function.
If the argument is not a simple variable name, return an empty string. 'inputname' may only be used within a function body, not at the command line.
See also: nargin, nthargout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return the name of the N-th argument to the calling function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isappdata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 288
-- Function File: VALID = isappdata (H, NAME)
Return true if the named application data, NAME, exists for the graphics object with handle H.
H may also be a vector of graphics handles.
See also: getappdata, setappdata, rmappdata, guidata, get, set, getpref, setpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return true if the named application data, NAME, exists for the graphics object with handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isdeployed
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 265
-- Function File: isdeployed ()
Return true if the current program has been compiled and is running separately from the Octave interpreter and false if it is running in the Octave interpreter.
Currently, this function always returns false in Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
Return true if the current program has been compiled and is running separately from the Octave interpreter and false if it is running in the Octave interpreter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ismac
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
-- Function File: ismac ()
Return true if Octave is running on a Mac OS X system and false otherwise.
See also: isunix, ispc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return true if Octave is running on a Mac OS X system and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ispc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
-- Function File: ispc ()
Return true if Octave is running on a Windows system and false otherwise.
See also: isunix, ismac.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Return true if Octave is running on a Windows system and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isunix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
-- Function File: isunix ()
Return true if Octave is running on a Unix-like system and false otherwise.
See also: ismac, ispc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return true if Octave is running on a Unix-like system and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
license
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1477
-- Command: license
-- Command: license inuse
-- Command: license inuse FEATURE
-- Function File: license ("inuse")
-- Function File: RETVAL = license ("inuse")
-- Function File: RETVAL = license ("test", FEATURE)
-- Function File: RETVAL = license ("checkout", FEATURE)
-- Function File: [RETVAL, ERRMSG] = license ("checkout", FEATURE)
Get license information for Octave and Octave packages.
GNU Octave is free software distributed under the GNU General Public License (GPL), and a license manager makes no sense. This function is provided only for MATLAB compatibility.
When called with no extra input arguments, it returns the Octave license, otherwise the first input defines the operation mode and must be one of the following strings: 'inuse', 'test', and 'checkout'. The optional FEATURE argument can either be "octave" (core), or an Octave package.
"inuse"
Returns a list of loaded features, i.e., octave and the list of loaded packages. If an output is requested, it returns a struct array with the fields "feature", and "user".
"test"
Return true if the specified FEATURE is installed, false otherwise.
An optional third argument "enable" or "disable" is accepted but ignored.
"checkout"
Return true if the specified FEATURE is installed, false otherwise. An optional second output will have an error message if a package is not installed.
See also: pkg, ver, version.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Get license information for Octave and Octave packages.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
list_primes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
-- Function File: list_primes ()
-- Function File: list_primes (N)
List the first N primes.
If N is unspecified, the first 25 primes are listed.
See also: primes, isprime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
List the first N primes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
ls
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 963
-- Command: ls
-- Command: ls FILENAMES
-- Command: ls OPTIONS
-- Command: ls OPTIONS FILENAMES
-- Function File: LIST = ls (...)
List directory contents.
The 'ls' command is implemented by calling the native operating system's directory listing command--available OPTIONS will vary from system to system.
Filenames are subject to shell expansion if they contain any wildcard characters '*', '?', '[]'. To find a literal example of a wildcard character the wildcard must be escaped using the backslash operator '\'.
If the optional output LIST is requested then 'ls' returns a character array with one row for each file/directory name.
Example usage on a UNIX-like system:
ls -l
-| total 12
-| -rw-r--r-- 1 jwe users 4488 Aug 19 04:02 foo.m
-| -rw-r--r-- 1 jwe users 1315 Aug 17 23:14 bar.m
See also: dir, readdir, glob, what, stat, filesep, ls_command.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
List directory contents.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ls_command
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 179
-- Function File: VAL = ls_command ()
-- Function File: OLD_VAL = ls_command (NEW_VAL)
Query or set the shell command used by Octave's 'ls' command.
See also: ls.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Query or set the shell command used by Octave's 'ls' command.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
menu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 798
-- Function File: CHOICE = menu (TITLE, OPT1, ...)
-- Function File: CHOICE = menu (TITLE, {OPT1, ...})
Display a menu with heading TITLE and options OPT1, ..., and wait for user input.
If the GUI is running, or Java is available, the menu is displayed graphically using 'listdlg'. Otherwise, the title and menu options are printed on the console.
TITLE is a string and the options may be input as individual strings or as a cell array of strings.
The return value CHOICE is the number of the option selected by the user counting from 1.
This function is useful for interactive programs. There is no limit to the number of options that may be passed in, but it may be confusing to present more than will fit easily on one screen.
See also: input, listdlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Display a menu with heading TITLE and options OPT1, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
mex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 207
-- Command: mex [options] file ...
Compile source code written in C, C++, or Fortran, to a MEX file.
This is equivalent to 'mkoctfile --mex [options] file'.
See also: mkoctfile, mexext.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Compile source code written in C, C++, or Fortran, to a MEX file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mexext
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
-- Function File: mexext ()
Return the filename extension used for MEX files.
See also: mex.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Return the filename extension used for MEX files.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
mkoctfile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4131
-- Command: mkoctfile [-options] file ...
-- Function File: [OUTPUT, STATUS] = mkoctfile (...)
The 'mkoctfile' function compiles source code written in C, C++, or Fortran. Depending on the options used with 'mkoctfile', the compiled code can be called within Octave or can be used as a stand-alone application.
'mkoctfile' can be called from the shell prompt or from the Octave prompt. Calling it from the Octave prompt simply delegates the call to the shell prompt. The output is stored in the OUTPUT variable and the exit status in the STATUS variable.
'mkoctfile' accepts the following options, all of which are optional except for the file name of the code you wish to compile:
'-I DIR'
Add the include directory DIR to compile commands.
'-D DEF'
Add the definition DEF to the compiler call.
'-l LIB'
Add the library LIB to the link command.
'-L DIR'
Add the library directory DIR to the link command.
'-M'
'--depend'
Generate dependency files (.d) for C and C++ source files.
'-R DIR'
Add the run-time path to the link command.
'-Wl,...'
Pass flags though the linker like "-Wl,-rpath=...". The quotes are needed since commas are interpreted as command separators.
'-W...'
Pass flags though the compiler like "-Wa,OPTION".
'-c'
Compile but do not link.
'-g'
Enable debugging options for compilers.
'-o FILE'
'--output FILE'
Output file name. Default extension is .oct (or .mex if '--mex' is specified) unless linking a stand-alone executable.
'-p VAR'
'--print VAR'
Print the configuration variable VAR. Recognized variables are:
ALL_CFLAGS INCFLAGS
ALL_CXXFLAGS INCLUDEDIR
ALL_FFLAGS LAPACK_LIBS
ALL_LDFLAGS LD_CXX
AR LDFLAGS
BLAS_LIBS LD_STATIC_FLAG
CC LFLAGS
CFLAGS LIBDIR
CPICFLAG LIBOCTAVE
CPPFLAGS LIBOCTINTERP
CXX LIBS
CXXFLAGS OCTAVE_HOME
CXXPICFLAG OCTAVE_LIBS
DEPEND_EXTRA_SED_PATTERN OCTAVE_LINK_DEPS
DEPEND_FLAGS OCTAVE_LINK_OPTS
DL_LD OCTAVE_PREFIX
DL_LDFLAGS OCTINCLUDEDIR
F77 OCTLIBDIR
F77_INTEGER8_FLAG OCT_LINK_DEPS
FFLAGS OCT_LINK_OPTS
FFTW3F_LDFLAGS RANLIB
FFTW3F_LIBS RDYNAMIC_FLAG
FFTW3_LDFLAGS READLINE_LIBS
FFTW3_LIBS SED
FFTW_LIBS SPECIAL_MATH_LIB
FLIBS XTRA_CFLAGS
FPICFLAG XTRA_CXXFLAGS
'--link-stand-alone'
Link a stand-alone executable file.
'--mex'
Assume we are creating a MEX file. Set the default output extension to ".mex".
'-s'
'--strip'
Strip the output file.
'-v'
'--verbose'
Echo commands as they are executed.
'file'
The file to compile or link. Recognized file types are
.c C source
.cc C++ source
.C C++ source
.cpp C++ source
.f Fortran source (fixed form)
.F Fortran source (fixed form)
.f90 Fortran source (free form)
.F90 Fortran source (free form)
.o object file
.a library file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
The 'mkoctfile' function compiles source code written in C, C++, or Fortran.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
movefile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 923
-- Function File: movefile (F1)
-- Function File: movefile (F1, F2)
-- Function File: movefile (F1, F2, 'f')
-- Function File: [STATUS, MSG, MSGID] = movefile (...)
Move the source files or directories F1 to the destination F2.
The name F1 may contain globbing patterns. If F1 expands to multiple file names, F2 must be a directory. If no destination F2 is specified then the destination is the present working directory. If F2 is a file name then F1 is renamed to F2.
When the force flag 'f' is given any existing files will be overwritten without prompting.
If successful, STATUS is 1, and MSG, MSGID are empty character strings (""). Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier. Note that the status code is exactly opposite that of the 'system' command.
See also: rename, copyfile, unlink, delete, glob.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Move the source files or directories F1 to the destination F2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
namelengthmax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 436
-- Function File: namelengthmax ()
Return the MATLAB compatible maximum variable name length.
Octave is capable of storing strings up to 2^{31} - 1 in length. However for MATLAB compatibility all variable, function, and structure field names should be shorter than the length returned by 'namelengthmax'. In particular, variables stored to a MATLAB file format ('*.mat') will have their names truncated to this length.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the MATLAB compatible maximum variable name length.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
news
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 306
-- Command: news
-- Command: news PACKAGE
Display the current NEWS file for Octave or an installed package.
When called without an argument, display the NEWS file for Octave.
When given a package name PACKAGE, display the current NEWS file for that package.
See also: ver, pkg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Display the current NEWS file for Octave or an installed package.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
open
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 493
-- Function File: OUTPUT = open FILE
-- Function File: OUTPUT = open (FILE)
Open the file FILE in Octave or in an external application based on the file type as determined by the file name extension.
Recognized file types are
'.m'
Open file in the editor.
'.mat'
Load the file in the base workspace.
'.exe'
Execute the program (on Windows systems only).
Other file types are opened in the appropriate external application.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Open the file FILE in Octave or in an external application based on the file type as determined by the file name extension.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
orderfields
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1960
-- Function File: SOUT] = orderfields (S1)
-- Function File: SOUT] = orderfields (S1, S2)
-- Function File: SOUT] = orderfields (S1, {CELLSTR})
-- Function File: SOUT] = orderfields (S1, P)
-- Function File: [SOUT, P] = orderfields (...)
Return a _copy_ of S1 with fields arranged alphabetically, or as specified by the second input.
Given one input struct S1, arrange field names alphabetically.
If a second struct argument is given, arrange field names in S1 as they appear in S2. The second argument may also specify the order in a cell array of strings CELLSTR. The second argument may also be a permutation vector.
The optional second output argument P is the permutation vector which converts the original name order to the new name order.
Examples:
s = struct ("d", 4, "b", 2, "a", 1, "c", 3);
t1 = orderfields (s)
=> t1 =
{
a = 1
b = 2
c = 3
d = 4
}
t = struct ("d", {}, "c", {}, "b", {}, "a", {});
t2 = orderfields (s, t)
=> t2 =
{
d = 4
c = 3
b = 2
a = 1
}
t3 = orderfields (s, [3, 2, 4, 1])
=> t3 =
{
a = 1
b = 2
c = 3
d = 4
}
[t4, p] = orderfields (s, {"d", "c", "b", "a"})
=> t4 =
{
d = 4
c = 3
b = 2
a = 1
}
p =
1
4
2
3
See also: fieldnames, getfield, setfield, rmfield, isfield, isstruct, struct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return a _copy_ of S1 with fields arranged alphabetically, or as specified by the second input.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pack
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
-- Function File: pack ()
Consolidate workspace memory in MATLAB.
This function is provided for compatibility, but does nothing in Octave.
See also: clear.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Consolidate workspace memory in MATLAB.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
paren
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
-- Operator: (
-- Operator: )
Array index or function argument delimeter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Array index or function argument delimeter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
parseparams
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1172
-- Function File: [REG, PROP] = parseparams (PARAMS)
-- Function File: [REG, VAR1, ...] = parseparams (PARAMS, NAME1, DEFAULT1, ...)
Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element.
For example:
[reg, prop] = parseparams ({1, 2, "linewidth", 10})
reg =
{
[1,1] = 1
[1,2] = 2
}
prop =
{
[1,1] = linewidth
[1,2] = 10
}
The parseparams function may be used to separate regular numeric arguments from additional arguments given as property/value pairs of the VARARGIN cell array.
In the second form of the call, available options are specified directly with their default values given as name-value pairs. If PARAMS do not form name-value pairs, or if an option occurs that does not match any of the available options, an error occurs.
When called from an m-file function, the error is prefixed with the name of the caller function.
The matching of options is case-insensitive.
See also: varargin, inputParser.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
perl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 469
-- Function File: OUTPUT = perl (SCRIPTFILE)
-- Function File: OUTPUT = perl (SCRIPTFILE, ARGUMENT1, ARGUMENT2, ...)
-- Function File: [OUTPUT, STATUS] = perl (...)
Invoke Perl script SCRIPTFILE, possibly with a list of command line arguments.
Return output in OUTPUT and optional status in STATUS. If SCRIPTFILE is not an absolute file name it is searched for in the current directory and then in the Octave loadpath.
See also: system, python.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Invoke Perl script SCRIPTFILE, possibly with a list of command line arguments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
python
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 475
-- Function File: OUTPUT = python (SCRIPTFILE)
-- Function File: OUTPUT = python (SCRIPTFILE, ARGUMENT1, ARGUMENT2, ...)
-- Function File: [OUTPUT, STATUS] = python (...)
Invoke Python script SCRIPTFILE, possibly with a list of command line arguments.
Return output in OUTPUT and optional status in STATUS. If SCRIPTFILE is not an absolute file name it is searched for in the current directory and then in the Octave loadpath.
See also: system, perl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Invoke Python script SCRIPTFILE, possibly with a list of command line arguments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
recycle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 580
-- Function File: CURRENT_STATE = recycle ()
-- Function File: OLD_STATE = recycle (NEW_STATE)
Query or set the preference for recycling deleted files.
When recycling is enabled, commands which would permanently erase files instead move them to a temporary location (such as the directory labeled Trash).
Programming Note: This function is provided for MATLAB compatibility, but recycling is not implemented in Octave. To help avoid accidental data loss an error will be raised if an attempt is made to enable file recycling.
See also: delete, rmdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Query or set the preference for recycling deleted files.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
rmappdata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 360
-- Function File: rmappdata (H, NAME)
-- Function File: rmappdata (H, NAME1, NAME2, ...)
Delete the application data NAME from the graphics object with handle H.
H may also be a vector of graphics handles. Multiple application data names may be supplied to delete several properties at once.
See also: setappdata, getappdata, isappdata.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Delete the application data NAME from the graphics object with handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
run
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 920
-- Command: run SCRIPT
-- Function File: run ("SCRIPT")
Run SCRIPT in the current workspace.
Scripts which reside in directories specified in Octave's load path, and which end with the extension '".m"', can be run simply by typing their name. For scripts not located on the load path, use 'run'.
The file name SCRIPT can be a bare, fully qualified, or relative filename and with or without a file extension. If no extension is specified, Octave will first search for a script with the '".m"' extension before falling back to the script name without an extension.
Implementation Note: If SCRIPT includes a path component, then 'run' first changes the working directory to the directory where SCRIPT is found. Next, the script is executed. Finally, 'run' returns to the original working directory unless 'script' has specifically changed directories.
See also: path, addpath, source.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Run SCRIPT in the current workspace.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
semicolon
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
-- Operator: ;
Array row or command separator.
See also: comma.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Array row or command separator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
setappdata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 474
-- Function File: setappdata (H, NAME, VALUE)
-- Function File: setappdata (H, NAME1, VALUE1, NAME2, VALUE3, ...)
Set the application data NAME to VALUE for the graphics object with handle H.
H may also be a vector of graphics handles. If the application data with the specified NAME does not exist, it is created. Multiple NAME/VALUE pairs can be specified at a time.
See also: getappdata, isappdata, rmappdata, guidata, get, set, getpref, setpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Set the application data NAME to VALUE for the graphics object with handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setfield
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2570
-- Function File: SOUT = setfield (S, FIELD, VAL)
-- Function File: SOUT = setfield (S, SIDX1, FIELD1, FIDX1, SIDX2, FIELD2, FIDX2, ..., VAL)
Return a _copy_ of the structure S with the field member FIELD set to the value VAL.
For example:
S = struct ();
S = setfield (S, "foo bar", 42);
This is equivalent to
S.("foo bar") = 42;
Note that ordinary structure syntax 'S.foo bar = 42' cannot be used here, as the field name is not a valid Octave identifier because of the space character. Using arbitrary strings for field names is incompatible with MATLAB, and this usage will emit a warning if the warning ID 'Octave:language-extension' is enabled. *Note XREFwarning_ids::.
With the second calling form, set a field of a structure array. The input SIDX selects an element of the structure array, FIELD specifies the field name of the selected element, and FIDX selects which element of the field (in the case of an array or cell array). The SIDX, FIELD, and FIDX inputs can be repeated to address nested structure array elements. The structure array index and field element index must be cell arrays while the field name must be a string.
For example:
S = struct ("baz", 42);
setfield (S, {1}, "foo", {1}, "bar", 54)
=>
ans =
scalar structure containing the fields:
baz = 42
foo =
scalar structure containing the fields:
bar = 54
The example begins with an ordinary scalar structure to which a nested scalar structure is added. In all cases, if the structure index SIDX is not specified it defaults to 1 (scalar structure). Thus, the example above could be written more concisely as 'setfield (S, "foo", "bar", 54)'
Finally, an example with nested structure arrays:
SA.foo = 1;
SA = setfield (SA, {2}, "bar", {3}, "baz", {1, 4}, 5);
SA(2).bar(3)
=>
ans =
scalar structure containing the fields:
baz = 0 0 0 5
Here SA is a structure array whose field at elements 1 and 2 is in turn another structure array whose third element is a simple scalar structure. The terminal scalar structure has a field which contains a matrix value.
Note that the same result as in the above example could be achieved by:
SA.foo = 1;
SA(2).bar(3).baz(1,4) = 5
See also: getfield, rmfield, orderfields, isfield, fieldnames, isstruct, struct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return a _copy_ of the structure S with the field member FIELD set to the value VAL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
substruct
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 583
-- Function File: substruct (TYPE, SUBS, ...)
Create a subscript structure for use with 'subsref' or 'subsasgn'.
For example:
idx = substruct ("()", {3, ":"})
=>
idx =
{
type = ()
subs =
{
[1,1] = 3
[1,2] = :
}
}
x = [1, 2, 3;
4, 5, 6;
7, 8, 9];
subsref (x, idx)
=> 7 8 9
See also: subsref, subsasgn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Create a subscript structure for use with 'subsref' or 'subsasgn'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
swapbytes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 259
-- Function File: swapbytes (X)
Swap the byte order on values, converting from little endian to big endian and vice versa.
For example:
swapbytes (uint16 (1:4))
=> [ 256 512 768 1024]
See also: typecast, cast.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Swap the byte order on values, converting from little endian to big endian and vice versa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
symvar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 467
-- Function File: VARS = symvar (STR)
Identify the symbolic variable names in the string STR.
Common constant names such as 'i', 'j', 'pi', 'Inf' and Octave functions such as 'sin' or 'plot' are ignored.
Any names identified are returned in a cell array of strings. The array is empty if no variables were found.
Example:
symvar ("x^2 + y^2 == 4")
=> {
[1,1] = x
[2,1] = y
}
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Identify the symbolic variable names in the string STR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
tar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 703
-- Function File: FILELIST = tar (TARFILE, FILES)
-- Function File: FILELIST = tar (TARFILE, FILES, ROOTDIR)
Pack the list of files and directories specified in FILES into the TAR archive TARFILE.
FILES is a character array or cell array of strings. Shell wildcards in the filename such as '*' or '?' are accepted and expanded. Directories are recursively traversed and all files are added to the archive.
If ROOTDIR is defined then any files without absolute pathnames are located relative to ROOTDIR rather than the current directory.
The optional output FILELIST is a list of the files that were included in the archive.
See also: untar, unpack, bzip2, gzip, zip.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Pack the list of files and directories specified in FILES into the TAR archive TARFILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tempdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 321
-- Function File: DIR = tempdir ()
Return the name of the host system's directory for temporary files.
The directory name is taken first from the environment variable 'TMPDIR'. If that does not exist the system default returned by 'P_tmpdir' is used.
See also: P_tmpdir, tempname, mkstemp, tmpfile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Return the name of the host system's directory for temporary files.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
tmpnam
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 948
-- Function File: FNAME = tmpnam ()
-- Function File: FNAME = tmpnam (DIR)
-- Function File: FNAME = tmpnam (DIR, PREFIX)
Return a unique temporary file name as a string.
If PREFIX is omitted, a value of "oct-" is used.
If DIR is also omitted, the default directory for temporary files ('P_tmpdir' is used. If DIR is provided, it must exist, otherwise the default directory for temporary files is used.
Programming Note: Because the named file is not opened by 'tmpnam', it is possible, though relatively unlikely, that it will not be available by the time your program attempts to open it. If this is a concern, see 'tmpfile'. The functions 'tmpnam' and 'tempname' are equivalent with the latter provided for MATLAB compatibility.
*Caution*: 'tmpnam' will be removed in a future version of Octave. Use the equivalent 'tempname' in all new code.
See also: tempname, mkstemp, tempdir, P_tmpdir, tmpfile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return a unique temporary file name as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
unix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 595
-- Function File: unix ("COMMAND")
-- Function File: STATUS = unix ("COMMAND")
-- Function File: [STATUS, TEXT] = unix ("COMMAND")
-- Function File: [...] = unix ("COMMAND", "-echo")
Execute a system command if running under a Unix-like operating system, otherwise do nothing.
Octave waits for the external command to finish before returning the exit status of the program in STATUS and any output in TEXT.
When called with no output argument, or the "-echo" argument is given, then TEXT is also sent to standard output.
See also: dos, system, isunix, ismac, ispc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Execute a system command if running under a Unix-like operating system, otherwise do nothing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unpack
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1201
-- Function File: FILES = unpack (FILE)
-- Function File: FILES = unpack (FILE, DIR)
-- Function File: FILES = unpack (FILE, DIR, FILETYPE)
Unpack the archive FILE based on its extension to the directory DIR.
If FILE is a list of strings, then each file is unpacked individually. Shell wildcards in the filename such as '*' or '?' are accepted and expanded.
If DIR is not specified or is empty ('[]'), it defaults to the current directory. If a directory is in the file list, then FILETYPE must also be specified.
The specific archive filetype is inferred from the extension of the file. The FILETYPE may also be specified directly using a string which corresponds to a known extension.
Valid filetype extensions:
'bz'
'bz2'
bzip archive
'gz'
gzip archive
'tar'
tar archive
'tarbz'
'tarbz2'
'tbz'
'tbz2'
tar + bzip archive
'targz'
'tgz'
tar + gzip archive
'z'
compress archive
'zip'
zip archive
The optional return value is a list of FILES unpacked.
See also: bunzip2, gunzip, unzip, untar, bzip2, gzip, zip, tar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Unpack the archive FILE based on its extension to the directory DIR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
untar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
-- Function File: untar (TARFILE)
-- Function File: untar (TARFILE, DIR)
Unpack the TAR archive TARFILE.
If DIR is specified the files are unpacked in this directory rather than the one where TARFILE is located.
The optional output FILELIST is a list of the uncompressed files.
See also: tar, unpack, bunzip2, gunzip, unzip.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Unpack the TAR archive TARFILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
unzip
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 375
-- Function File: FILELIST = unzip (ZIPFILE)
-- Function File: FILELIST = unzip (ZIPFILE, DIR)
Unpack the ZIP archive ZIPFILE.
If DIR is specified the files are unpacked in this directory rather than the one where ZIPFILE is located.
The optional output FILELIST is a list of the uncompressed files.
See also: zip, unpack, bunzip2, gunzip, untar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Unpack the ZIP archive ZIPFILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ver
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 830
-- Function File: ver
-- Function File: ver Octave
-- Function File: ver PACKAGE
-- Function File: v = ver (...)
Display a header containing the current Octave version number, license string, and operating system. The header is followed by a list of installed packages, versions, and installation directories.
Use the package name PACKAGE or Octave to limit the listing to a desired component.
When called with an output argument, return a vector of structures describing Octave and each installed package. The structure includes the following fields.
'Name'
Package name.
'Version'
Version of the package.
'Revision'
Revision of the package.
'Date'
Date of the version/revision.
See also: version, octave_config_info, usejava, pkg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Display a header containing the current Octave version number, license string, and operating system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
version
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 209
-- Function File: version ()
Return the version number of Octave as a string.
This is an alias for the function 'OCTAVE_VERSION' provided for compatibility.
See also: OCTAVE_VERSION, ver.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the version number of Octave as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
warning_ids
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10266
'Octave:abbreviated-property-match'
By default, the 'Octave:abbreviated-property-match' warning is enabled.
'Octave:array-to-scalar'
If the 'Octave:array-to-scalar' warning is enabled, Octave will warn when an implicit conversion from an array to a scalar value is attempted. By default, the 'Octave:array-to-scalar' warning is disabled.
'Octave:array-to-vector'
If the 'Octave:array-to-vector' warning is enabled, Octave will warn when an implicit conversion from an array to a vector value is attempted. By default, the 'Octave:array-to-vector' warning is disabled.
'Octave:assign-as-truth-value'
If the 'Octave:assign-as-truth-value' warning is enabled, a warning is issued for statements like
if (s = t)
...
since such statements are not common, and it is likely that the intent was to write
if (s == t)
...
instead.
There are times when it is useful to write code that contains assignments within the condition of a 'while' or 'if' statement. For example, statements like
while (c = getc ())
...
are common in C programming.
It is possible to avoid all warnings about such statements by disabling the 'Octave:assign-as-truth-value' warning, but that may also let real errors like
if (x = 1) # intended to test (x == 1)!
...
slip by.
In such cases, it is possible suppress errors for specific statements by writing them with an extra set of parentheses. For example, writing the previous example as
while ((c = getc ()))
...
will prevent the warning from being printed for this statement, while allowing Octave to warn about other assignments used in conditional contexts.
By default, the 'Octave:assign-as-truth-value' warning is enabled.
'Octave:associativity-change'
If the 'Octave:associativity-change' warning is enabled, Octave will warn about possible changes in the meaning of some code due to changes in associativity for some operators. Associativity changes have typically been made for MATLAB compatibility. By default, the 'Octave:associativity-change' warning is enabled.
'Octave:autoload-relative-file-name'
If the 'Octave:autoload-relative-file-name' is enabled, Octave will warn when parsing autoload() function calls with relative paths to function files. This usually happens when using autoload() calls in PKG_ADD files, when the PKG_ADD file is not in the same directory as the .oct file referred to by the autoload() command. By default, the 'Octave:autoload-relative-file-name' warning is enabled.
'Octave:built-in-variable-assignment'
By default, the 'Octave:built-in-variable-assignment' warning is enabled.
'Octave:deprecated-keyword'
If the 'Octave:deprecated-keyword' warning is enabled, a warning is issued when Octave encounters a keyword that is obsolete and scheduled for removal from Octave. By default, the 'Octave:deprecated-keyword' warning is enabled.
'Octave:divide-by-zero'
If the 'Octave:divide-by-zero' warning is enabled, a warning is issued when Octave encounters a division by zero. By default, the 'Octave:divide-by-zero' warning is enabled.
'Octave:fopen-file-in-path'
By default, the 'Octave:fopen-file-in-path' warning is enabled.
'Octave:function-name-clash'
If the 'Octave:function-name-clash' warning is enabled, a warning is issued when Octave finds that the name of a function defined in a function file differs from the name of the file. (If the names disagree, the name declared inside the file is ignored.) By default, the 'Octave:function-name-clash' warning is enabled.
'Octave:future-time-stamp'
If the 'Octave:future-time-stamp' warning is enabled, Octave will print a warning if it finds a function file with a time stamp that is in the future. By default, the 'Octave:future-time-stamp' warning is enabled.
'Octave:glyph-render'
By default, the 'Octave:glyph-render' warning is enabled.
'Octave:imag-to-real'
If the 'Octave:imag-to-real' warning is enabled, a warning is printed for implicit conversions of complex numbers to real numbers. By default, the 'Octave:imag-to-real' warning is disabled.
'Octave:language-extension'
Print warnings when using features that are unique to the Octave language and that may still be missing in MATLAB. By default, the 'Octave:language-extension' warning is disabled. The '--traditional' or '--braindead' startup options for Octave may also be of use, *note Command Line Options::.
'Octave:load-file-in-path'
By default, the 'Octave:load-file-in-path' warning is enabled.
'Octave:logical-conversion'
By default, the 'Octave:logical-conversion' warning is enabled.
'Octave:md5sum-file-in-path'
By default, the 'Octave:md5sum-file-in-path' warning is enabled.
'Octave:missing-glyph'
By default, the 'Octave:missing-glyph' warning is enabled.
'Octave:missing-semicolon'
If the 'Octave:missing-semicolon' warning is enabled, Octave will warn when statements in function definitions don't end in semicolons. By default the 'Octave:missing-semicolon' warning is disabled.
'Octave:mixed-string-concat'
If the 'Octave:mixed-string-concat' warning is enabled, print a warning when concatenating a mixture of double and single quoted strings. By default, the 'Octave:mixed-string-concat' warning is disabled.
'Octave:neg-dim-as-zero'
If the 'Octave:neg-dim-as-zero' warning is enabled, print a warning for expressions like
eye (-1)
By default, the 'Octave:neg-dim-as-zero' warning is disabled.
'Octave:nested-functions-coerced'
By default, the 'Octave:nested-functions-coerced' warning is enabled.
'Octave:noninteger-range-as-index'
By default, the 'Octave:noninteger-range-as-index' warning is enabled.
'Octave:num-to-str'
If the 'Octave:num-to-str' warning is enable, a warning is printed for implicit conversions of numbers to their ASCII character equivalents when strings are constructed using a mixture of strings and numbers in matrix notation. For example,
[ "f", 111, 111 ]
=> "foo"
elicits a warning if the 'Octave:num-to-str' warning is enabled. By default, the 'Octave:num-to-str' warning is enabled.
'Octave:possible-matlab-short-circuit-operator'
If the 'Octave:possible-matlab-short-circuit-operator' warning is enabled, Octave will warn about using the not short circuiting operators '&' and '|' inside 'if' or 'while' conditions. They normally never short circuit, but MATLAB always short circuits if any logical operators are used in a condition. You can turn on the option
do_braindead_shortcircuit_evaluation (1)
if you would like to enable this short-circuit evaluation in Octave. Note that the '&&' and '||' operators always short circuit in both Octave and MATLAB, so it's only necessary to enable MATLAB-style short-circuiting if it's too arduous to modify existing code that relies on this behavior. By default, the 'Octave:possible-matlab-short-circuit-operator' warning is enabled.
'Octave:precedence-change'
If the 'Octave:precedence-change' warning is enabled, Octave will warn about possible changes in the meaning of some code due to changes in precedence for some operators. Precedence changes have typically been made for MATLAB compatibility. By default, the 'Octave:precedence-change' warning is enabled.
'Octave:recursive-path-search'
By default, the 'Octave:recursive-path-search' warning is enabled.
'Octave:remove-init-dir'
The 'path' function changes the search path that Octave uses to find functions. It is possible to set the path to a value which excludes Octave's own built-in functions. If the 'Octave:remove-init-dir' warning is enabled then Octave will warn when the 'path' function has been used in a way that may render Octave unworkable. By default, the 'Octave:remove-init-dir' warning is enabled.
'Octave:reload-forces-clear'
If several functions have been loaded from the same file, Octave must clear all the functions before any one of them can be reloaded. If the 'Octave:reload-forces-clear' warning is enabled, Octave will warn you when this happens, and print a list of the additional functions that it is forced to clear. By default, the 'Octave:reload-forces-clear' warning is enabled.
'Octave:resize-on-range-error'
If the 'Octave:resize-on-range-error' warning is enabled, print a warning when a matrix is resized by an indexed assignment with indices outside the current bounds. By default, the ## 'Octave:resize-on-range-error' warning is disabled.
'Octave:separator-insert'
Print warning if commas or semicolons might be inserted automatically in literal matrices. By default, the 'Octave:separator-insert' warning is disabled.
'Octave:shadowed-function'
By default, the 'Octave:shadowed-function' warning is enabled.
'Octave:single-quote-string'
Print warning if a single quote character is used to introduce a string constant. By default, the 'Octave:single-quote-string' warning is disabled.
'Octave:nearly-singular-matrix'
'Octave:singular-matrix'
By default, the 'Octave:nearly-singular-matrix' and 'Octave:singular-matrix' warnings are enabled.
'Octave:sqrtm:SingularMatrix'
By default, the 'Octave:sqrtm:SingularMatrix' warning is enabled.
'Octave:str-to-num'
If the 'Octave:str-to-num' warning is enabled, a warning is printed for implicit conversions of strings to their numeric ASCII equivalents. For example,
"abc" + 0
=> 97 98 99
elicits a warning if the 'Octave:str-to-num' warning is enabled. By default, the 'Octave:str-to-num' warning is disabled.
'Octave:undefined-return-values'
If the 'Octave:undefined-return-values' warning is disabled, print a warning if a function does not define all the values in the return list which are expected. By default, the 'Octave:undefined-return-values' warning is enabled.
'Octave:variable-switch-label'
If the 'Octave:variable-switch-label' warning is enabled, Octave will print a warning if a switch label is not a constant or constant expression. By default, the 'Octave:variable-switch-label' warning is disabled.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
'Octave:abbreviated-property-match' By default, the 'Octave:abbreviated-property-match' warning is enabled.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
what
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1037
-- Command: what
-- Command: what DIR
-- Function File: w = what (DIR)
List the Octave specific files in directory DIR.
If DIR is not specified then the current directory is used.
If a return argument is requested, the files found are returned in the structure W. The structure contains the following fields:
path
Full path to directory DIR
m
Cell array of m-files
mat
Cell array of mat files
mex
Cell array of mex files
oct
Cell array of oct files
mdl
Cell array of mdl files
slx
Cell array of slx files
p
Cell array of p-files
classes
Cell array of class directories ('@CLASSNAME/')
packages
Cell array of package directories ('+PKGNAME/')
Compatibility Note: Octave does not support mdl, slx, and p files; nor does it support package directories. 'what' will always return an empty list for these categories.
See also: which, ls, exist.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
List the Octave specific files in directory DIR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
xor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3778
-- Function File: Z = xor (X, Y)
-- Function File: Z = xor (X1, X2, ...)
Return the "exclusive or" of X and Y.
For boolean expressions X and Y, 'xor (X, Y)' is true if and only if one of X or Y is true. Otherwise, if X and Y are both true or both false, 'xor' returns false.
The truth table for the xor operation is
X Y Z
- - -
0 0 0
1 0 1
0 1 1
1 1 0
If more than two arguments are given the xor operation is applied cumulatively from left to right:
(...((x1 XOR x2) XOR x3) XOR ...)
See also: and, or, not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the "exclusive or" of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
zip
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 722
-- Function File: FILELIST = zip (ZIPFILE, FILES)
-- Function File: FILELIST = zip (ZIPFILE, FILES, ROOTDIR)
Compress the list of files and directories specified in FILES into the ZIP archive ZIPFILE.
FILES is a character array or cell array of strings. Shell wildcards in the filename such as '*' or '?' are accepted and expanded. Directories are recursively traversed and all files are compressed and added to the archive.
If ROOTDIR is defined then any files without absolute pathnames are located relative to ROOTDIR rather than the current directory.
The optional output FILELIST is a list of the files that were included in the archive.
See also: unzip, unpack, bzip2, gzip, tar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Compress the list of files and directories specified in FILES into the ZIP archive ZIPFILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fminbnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1184
-- Function File: [X, FVAL, INFO, OUTPUT] = fminbnd (FUN, A, B, OPTIONS)
Find a minimum point of a univariate function.
FUN should be a function handle or name. A, B specify a starting interval. OPTIONS is a structure specifying additional options. Currently, 'fminbnd' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "MaxIter", "MaxFunEvals". For a description of these options, see *note optimset: XREFoptimset.
On exit, the function returns X, the approximate minimum point and FVAL, the function value thereof.
INFO is an exit flag that can have these values:
* 1 The algorithm converged to a solution.
* 0 Maximum number of iterations or function evaluations has been exhausted.
* -1 The algorithm has been terminated from user output function.
Notes: The search for a minimum is restricted to be in the interval bound by A and B. If you only have an initial point to begin searching from you will need to use an unconstrained minimization algorithm such as 'fminunc' or 'fminsearch'. 'fminbnd' internally uses a Golden Section search strategy.
See also: fzero, fminunc, fminsearch, optimset.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Find a minimum point of a univariate function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
fminsearch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 999
-- Function File: X = fminsearch (FUN, X0)
-- Function File: X = fminsearch (FUN, X0, OPTIONS)
-- Function File: [X, FVAL] = fminsearch (...)
Find a value of X which minimizes the function FUN.
The search begins at the point X0 and iterates using the Nelder & Mead Simplex algorithm (a derivative-free method). This algorithm is better-suited to functions which have discontinuities or for which a gradient-based search such as 'fminunc' fails.
Options for the search are provided in the parameter OPTIONS using the function 'optimset'. Currently, 'fminsearch' accepts the options: "TolX", "MaxFunEvals", "MaxIter", "Display". For a description of these options, see 'optimset'.
On exit, the function returns X, the minimum point, and FVAL, the function value thereof.
Example usages:
fminsearch (@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0])
fminsearch (inline ("(x(1)-5).^2+(x(2)-8).^4", "x"), [0;0])
See also: fminbnd, fminunc, optimset.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Find a value of X which minimizes the function FUN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fminunc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2542
-- Function File: fminunc (FCN, X0)
-- Function File: fminunc (FCN, X0, OPTIONS)
-- Function File: [X, FVAL, INFO, OUTPUT, GRAD, HESS] = fminunc (FCN, ...)
Solve an unconstrained optimization problem defined by the function FCN.
FCN should accept a vector (array) defining the unknown variables, and return the objective function value, optionally with gradient. 'fminunc' attempts to determine a vector X such that 'FCN (X)' is a local minimum.
X0 determines a starting guess. The shape of X0 is preserved in all calls to FCN, but otherwise is treated as a column vector.
OPTIONS is a structure specifying additional options. Currently, 'fminunc' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "TolFun", "MaxIter", "MaxFunEvals", "GradObj", "FinDiffType", "TypicalX", "AutoScaling".
If "GradObj" is "on", it specifies that FCN, when called with 2 output arguments, also returns the Jacobian matrix of partial first derivatives at the requested point. 'TolX' specifies the termination tolerance for the unknown variables X, while 'TolFun' is a tolerance for the objective function value FVAL. The default is '1e-7' for both options.
For a description of the other options, see 'optimset'.
On return, X is the location of the minimum and FVAL contains the value of the objective function at X.
INFO may be one of the following values:
1
Converged to a solution point. Relative gradient error is less than specified by 'TolFun'.
2
Last relative step size was less than 'TolX'.
3
Last relative change in function value was less than 'TolFun'.
0
Iteration limit exceeded--either maximum number of algorithm iterations 'MaxIter' or maximum number of function evaluations 'MaxFunEvals'.
-1
Algorithm terminated by 'OutputFcn'.
-3
The trust region radius became excessively small.
Optionally, 'fminunc' can return a structure with convergence statistics (OUTPUT), the output gradient (GRAD) at the solution X, and approximate Hessian (HESS) at the solution X.
Application Notes: If have only a single nonlinear equation of one variable then using 'fminbnd' is usually a better choice.
The algorithm used by 'fminsearch' is a gradient search which depends on the objective function being differentiable. If the function has discontinuities it may be better to use a derivative-free algorithm such as 'fminsearch'.
See also: fminbnd, fminsearch, optimset.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Solve an unconstrained optimization problem defined by the function FCN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fsolve
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4353
-- Function File: fsolve (FCN, X0, OPTIONS)
-- Function File: [X, FVEC, INFO, OUTPUT, FJAC] = fsolve (FCN, ...)
Solve a system of nonlinear equations defined by the function FCN.
FCN should accept a vector (array) defining the unknown variables, and return a vector of left-hand sides of the equations. Right-hand sides are defined to be zeros. In other words, this function attempts to determine a vector X such that 'FCN (X)' gives (approximately) all zeros.
X0 determines a starting guess. The shape of X0 is preserved in all calls to FCN, but otherwise it is treated as a column vector.
OPTIONS is a structure specifying additional options. Currently, 'fsolve' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "TolFun", "MaxIter", "MaxFunEvals", "Jacobian", "Updating", "ComplexEqn" "TypicalX", "AutoScaling" and "FinDiffType".
If "Jacobian" is "on", it specifies that FCN, called with 2 output arguments also returns the Jacobian matrix of right-hand sides at the requested point. "TolX" specifies the termination tolerance in the unknown variables, while "TolFun" is a tolerance for equations. Default is '1e-7' for both "TolX" and "TolFun".
If "AutoScaling" is on, the variables will be automatically scaled according to the column norms of the (estimated) Jacobian. As a result, TolF becomes scaling-independent. By default, this option is off because it may sometimes deliver unexpected (though mathematically correct) results.
If "Updating" is "on", the function will attempt to use Broyden updates to update the Jacobian, in order to reduce the amount of Jacobian calculations. If your user function always calculates the Jacobian (regardless of number of output arguments) then this option provides no advantage and should be set to false.
"ComplexEqn" is "on", 'fsolve' will attempt to solve complex equations in complex variables, assuming that the equations possess a complex derivative (i.e., are holomorphic). If this is not what you want, you should unpack the real and imaginary parts of the system to get a real system.
For description of the other options, see 'optimset'.
On return, FVAL contains the value of the function FCN evaluated at X.
INFO may be one of the following values:
1
Converged to a solution point. Relative residual error is less than specified by TolFun.
2
Last relative step size was less that TolX.
3
Last relative decrease in residual was less than TolF.
0
Iteration limit exceeded.
-3
The trust region radius became excessively small.
Note: If you only have a single nonlinear equation of one variable, using 'fzero' is usually a much better idea.
Note about user-supplied Jacobians: As an inherent property of the algorithm, a Jacobian is always requested for a solution vector whose residual vector is already known, and it is the last accepted successful step. Often this will be one of the last two calls, but not always. If the savings by reusing intermediate results from residual calculation in Jacobian calculation are significant, the best strategy is to employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is called with that vector, then the intermediate results should be saved for future Jacobian evaluation, and should be kept until a Jacobian evaluation is requested or until OutputFcn is called with a different vector, in which case they should be dropped in favor of this most recent vector. A short example how this can be achieved follows:
function [fvec, fjac] = user_func (x, optimvalues, state)
persistent sav = [], sav0 = [];
if (nargin == 1)
## evaluation call
if (nargout == 1)
sav0.x = x; # mark saved vector
## calculate fvec, save results to sav0.
elseif (nargout == 2)
## calculate fjac using sav.
endif
else
## outputfcn call.
if (all (x == sav0.x))
sav = sav0;
endif
## maybe output iteration status, etc.
endif
endfunction
## ...
fsolve (@user_func, x0, optimset ("OutputFcn", @user_func, ...))
See also: fzero, optimset.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Solve a system of nonlinear equations defined by the function FCN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fzero
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1864
-- Function File: fzero (FUN, X0)
-- Function File: fzero (FUN, X0, OPTIONS)
-- Function File: [X, FVAL, INFO, OUTPUT] = fzero (...)
Find a zero of a univariate function.
FUN is a function handle, inline function, or string containing the name of the function to evaluate.
X0 should be a two-element vector specifying two points which bracket a zero. In other words, there must be a change in sign of the function between X0(1) and X0(2). More mathematically, the following must hold
sign (FUN(X0(1))) * sign (FUN(X0(2))) <= 0
If X0 is a single scalar then several nearby and distant values are probed in an attempt to obtain a valid bracketing. If this is not successful, the function fails.
OPTIONS is a structure specifying additional options. Currently, 'fzero' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "MaxIter", "MaxFunEvals". For a description of these options, see *note optimset: XREFoptimset.
On exit, the function returns X, the approximate zero point and FVAL, the function value thereof.
INFO is an exit flag that can have these values:
* 1 The algorithm converged to a solution.
* 0 Maximum number of iterations or function evaluations has been reached.
* -1 The algorithm has been terminated from user output function.
* -5 The algorithm may have converged to a singular point.
OUTPUT is a structure containing runtime information about the 'fzero' algorithm. Fields in the structure are:
* iterations Number of iterations through loop.
* nfev Number of function evaluations.
* bracketx A two-element vector with the final bracketing of the zero along the x-axis.
* brackety A two-element vector with the final bracketing of the zero along the y-axis.
See also: optimset, fsolve.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Find a zero of a univariate function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
glpk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11032
-- Function File: [XOPT, FMIN, ERRNUM, EXTRA] = glpk (C, A, B, LB, UB, CTYPE, VARTYPE, SENSE, PARAM)
Solve a linear program using the GNU GLPK library.
Given three arguments, 'glpk' solves the following standard LP:
min C'*x
subject to
A*x = b
x >= 0
but may also solve problems of the form
[ min | max ] C'*x
subject to
A*x [ "=" | "<=" | ">=" ] b
x >= LB
x <= UB
Input arguments:
C
A column array containing the objective function coefficients.
A
A matrix containing the constraints coefficients.
B
A column array containing the right-hand side value for each constraint in the constraint matrix.
LB
An array containing the lower bound on each of the variables. If LB is not supplied, the default lower bound for the variables is zero.
UB
An array containing the upper bound on each of the variables. If UB is not supplied, the default upper bound is assumed to be infinite.
CTYPE
An array of characters containing the sense of each constraint in the constraint matrix. Each element of the array may be one of the following values
"F"
A free (unbounded) constraint (the constraint is ignored).
"U"
An inequality constraint with an upper bound ('A(i,:)*x <= b(i)').
"S"
An equality constraint ('A(i,:)*x = b(i)').
"L"
An inequality with a lower bound ('A(i,:)*x >= b(i)').
"D"
An inequality constraint with both upper and lower bounds ('A(i,:)*x >= -b(i)') _and_ ('A(i,:)*x <= b(i)').
VARTYPE
A column array containing the types of the variables.
"C"
A continuous variable.
"I"
An integer variable.
SENSE
If SENSE is 1, the problem is a minimization. If SENSE is -1, the problem is a maximization. The default value is 1.
PARAM
A structure containing the following parameters used to define the behavior of solver. Missing elements in the structure take on default values, so you only need to set the elements that you wish to change from the default.
Integer parameters:
'msglev (default: 1)'
Level of messages output by solver routines:
0 ('GLP_MSG_OFF')
No output.
1 ('GLP_MSG_ERR')
Error and warning messages only.
2 ('GLP_MSG_ON')
Normal output.
3 ('GLP_MSG_ALL')
Full output (includes informational messages).
'scale (default: 16)'
Scaling option. The values can be combined with the bitwise OR operator and may be the following:
1 ('GLP_SF_GM')
Geometric mean scaling.
16 ('GLP_SF_EQ')
Equilibration scaling.
32 ('GLP_SF_2N')
Round scale factors to power of two.
64 ('GLP_SF_SKIP')
Skip if problem is well scaled.
Alternatively, a value of 128 ('GLP_SF_AUTO') may be also specified, in which case the routine chooses the scaling options automatically.
'dual (default: 1)'
Simplex method option:
1 ('GLP_PRIMAL')
Use two-phase primal simplex.
2 ('GLP_DUALP')
Use two-phase dual simplex, and if it fails, switch to the primal simplex.
3 ('GLP_DUAL')
Use two-phase dual simplex.
'price (default: 34)'
Pricing option (for both primal and dual simplex):
17 ('GLP_PT_STD')
Textbook pricing.
34 ('GLP_PT_PSE')
Steepest edge pricing.
'itlim (default: intmax)'
Simplex iterations limit. It is decreased by one each time when one simplex iteration has been performed, and reaching zero value signals the solver to stop the search.
'outfrq (default: 200)'
Output frequency, in iterations. This parameter specifies how frequently the solver sends information about the solution to the standard output.
'branch (default: 4)'
Branching technique option (for MIP only):
1 ('GLP_BR_FFV')
First fractional variable.
2 ('GLP_BR_LFV')
Last fractional variable.
3 ('GLP_BR_MFV')
Most fractional variable.
4 ('GLP_BR_DTH')
Heuristic by Driebeck and Tomlin.
5 ('GLP_BR_PCH')
Hybrid pseudocost heuristic.
'btrack (default: 4)'
Backtracking technique option (for MIP only):
1 ('GLP_BT_DFS')
Depth first search.
2 ('GLP_BT_BFS')
Breadth first search.
3 ('GLP_BT_BLB')
Best local bound.
4 ('GLP_BT_BPH')
Best projection heuristic.
'presol (default: 1)'
If this flag is set, the simplex solver uses the built-in LP presolver. Otherwise the LP presolver is not used.
'lpsolver (default: 1)'
Select which solver to use. If the problem is a MIP problem this flag will be ignored.
1
Revised simplex method.
2
Interior point method.
'rtest (default: 34)'
Ratio test technique:
17 ('GLP_RT_STD')
Standard ("textbook").
34 ('GLP_RT_HAR')
Harris' two-pass ratio test.
'tmlim (default: intmax)'
Searching time limit, in milliseconds.
'outdly (default: 0)'
Output delay, in seconds. This parameter specifies how long the solver should delay sending information about the solution to the standard output.
'save (default: 0)'
If this parameter is nonzero, save a copy of the problem in CPLEX LP format to the file '"outpb.lp"'. There is currently no way to change the name of the output file.
Real parameters:
'tolbnd (default: 1e-7)'
Relative tolerance used to check if the current basic solution is primal feasible. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
'toldj (default: 1e-7)'
Absolute tolerance used to check if the current basic solution is dual feasible. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
'tolpiv (default: 1e-10)'
Relative tolerance used to choose eligible pivotal elements of the simplex table. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
'objll (default: -DBL_MAX)'
Lower limit of the objective function. If the objective function reaches this limit and continues decreasing, the solver stops the search. This parameter is used in the dual simplex method only.
'objul (default: +DBL_MAX)'
Upper limit of the objective function. If the objective function reaches this limit and continues increasing, the solver stops the search. This parameter is used in the dual simplex only.
'tolint (default: 1e-5)'
Relative tolerance used to check if the current basic solution is integer feasible. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
'tolobj (default: 1e-7)'
Relative tolerance used to check if the value of the objective function is not better than in the best known integer feasible solution. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
Output values:
XOPT
The optimizer (the value of the decision variables at the optimum).
FOPT
The optimum value of the objective function.
ERRNUM
Error code.
0
No error.
1 ('GLP_EBADB')
Invalid basis.
2 ('GLP_ESING')
Singular matrix.
3 ('GLP_ECOND')
Ill-conditioned matrix.
4 ('GLP_EBOUND')
Invalid bounds.
5 ('GLP_EFAIL')
Solver failed.
6 ('GLP_EOBJLL')
Objective function lower limit reached.
7 ('GLP_EOBJUL')
Objective function upper limit reached.
8 ('GLP_EITLIM')
Iterations limit exhausted.
9 ('GLP_ETMLIM')
Time limit exhausted.
10 ('GLP_ENOPFS')
No primal feasible solution.
11 ('GLP_ENODFS')
No dual feasible solution.
12 ('GLP_EROOT')
Root LP optimum not provided.
13 ('GLP_ESTOP')
Search terminated by application.
14 ('GLP_EMIPGAP')
Relative MIP gap tolerance reached.
15 ('GLP_ENOFEAS')
No primal/dual feasible solution.
16 ('GLP_ENOCVG')
No convergence.
17 ('GLP_EINSTAB')
Numerical instability.
18 ('GLP_EDATA')
Invalid data.
19 ('GLP_ERANGE')
Result out of range.
EXTRA
A data structure containing the following fields:
'lambda'
Dual variables.
'redcosts'
Reduced Costs.
'time'
Time (in seconds) used for solving LP/MIP problem.
'status'
Status of the optimization.
1 ('GLP_UNDEF')
Solution status is undefined.
2 ('GLP_FEAS')
Solution is feasible.
3 ('GLP_INFEAS')
Solution is infeasible.
4 ('GLP_NOFEAS')
Problem has no feasible solution.
5 ('GLP_OPT')
Solution is optimal.
6 ('GLP_UNBND')
Problem has no unbounded solution.
Example:
c = [10, 6, 4]';
A = [ 1, 1, 1;
10, 4, 5;
2, 2, 6];
b = [100, 600, 300]';
lb = [0, 0, 0]';
ub = [];
ctype = "UUU";
vartype = "CCC";
s = -1;
param.msglev = 1;
param.itlim = 100;
[xmin, fmin, status, extra] = ...
glpk (c, A, b, lb, ub, ctype, vartype, s, param);
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve a linear program using the GNU GLPK library.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
lsqnonneg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1435
-- Function File: X = lsqnonneg (C, D)
-- Function File: X = lsqnonneg (C, D, X0)
-- Function File: X = lsqnonneg (C, D, X0, OPTIONS)
-- Function File: [X, RESNORM] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL, EXITFLAG] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT, LAMBDA] = lsqnonneg (...)
Minimize 'norm (C*X - d)' subject to 'X >= 0'.
C and D must be real.
X0 is an optional initial guess for X.
Currently, 'lsqnonneg' recognizes these options: "MaxIter", "TolX". For a description of these options, see *note optimset: XREFoptimset.
Outputs:
* resnorm
The squared 2-norm of the residual: norm (C*X-D)^2
* residual
The residual: D-C*X
* exitflag
An indicator of convergence. 0 indicates that the iteration count was exceeded, and therefore convergence was not reached; >0 indicates that the algorithm converged. (The algorithm is stable and will converge given enough iterations.)
* output
A structure with two fields:
* "algorithm": The algorithm used ("nnls")
* "iterations": The number of iterations taken.
* lambda
Not implemented.
See also: optimset, pqpnonneg, lscov.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Minimize 'norm (C*X - d)' subject to 'X >= 0'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
optimget
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 342
-- Function File: optimget (OPTIONS, PARNAME)
-- Function File: optimget (OPTIONS, PARNAME, DEFAULT)
Return the specific option PARNAME from the optimization options structure OPTIONS created by 'optimset'.
If PARNAME is not defined then return DEFAULT if supplied, otherwise return an empty matrix.
See also: optimset.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Return the specific option PARNAME from the optimization options structure OPTIONS created by 'optimset'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
optimset
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3041
-- Function File: optimset ()
-- Function File: OPTIONS = optimset ()
-- Function File: OPTIONS = optimset (PAR, VAL, ...)
-- Function File: OPTIONS = optimset (OLD, PAR, VAL, ...)
-- Function File: OPTIONS = optimset (OLD, NEW)
Create options structure for optimization functions.
When called without any input or output arguments, 'optimset' prints a list of all valid optimization parameters.
When called with one output and no inputs, return an options structure with all valid option parameters initialized to '[]'.
When called with a list of parameter/value pairs, return an options structure with only the named parameters initialized.
When the first input is an existing options structure OLD, the values are updated from either the PAR/VAL list or from the options structure NEW.
Valid parameters are:
AutoScaling
ComplexEqn
Display
Request verbose display of results from optimizations. Values are:
"off" [default]
No display.
"iter"
Display intermediate results for every loop iteration.
"final"
Display the result of the final loop iteration.
"notify"
Display the result of the final loop iteration if the function has failed to converge.
FinDiffType
FunValCheck
When enabled, display an error if the objective function returns an invalid value (a complex number, NaN, or Inf). Must be set to "on" or "off" [default]. Note: the functions 'fzero' and 'fminbnd' correctly handle Inf values and only complex values or NaN will cause an error in this case.
GradObj
When set to "on", the function to be minimized must return a second argument which is the gradient, or first derivative, of the function at the point X. If set to "off" [default], the gradient is computed via finite differences.
Jacobian
When set to "on", the function to be minimized must return a second argument which is the Jacobian, or first derivative, of the function at the point X. If set to "off" [default], the Jacobian is computed via finite differences.
MaxFunEvals
Maximum number of function evaluations before optimization stops. Must be a positive integer.
MaxIter
Maximum number of algorithm iterations before optimization stops. Must be a positive integer.
OutputFcn
A user-defined function executed once per algorithm iteration.
TolFun
Termination criterion for the function output. If the difference in the calculated objective function between one algorithm iteration and the next is less than 'TolFun' the optimization stops. Must be a positive scalar.
TolX
Termination criterion for the function input. If the difference in X, the current search point, between one algorithm iteration and the next is less than 'TolX' the optimization stops. Must be a positive scalar.
TypicalX
Updating
See also: optimget.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Create options structure for optimization functions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
pqpnonneg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1152
-- Function File: X = pqpnonneg (C, D)
-- Function File: X = pqpnonneg (C, D, X0)
-- Function File: [X, MINVAL] = pqpnonneg (...)
-- Function File: [X, MINVAL, EXITFLAG] = pqpnonneg (...)
-- Function File: [X, MINVAL, EXITFLAG, OUTPUT] = pqpnonneg (...)
-- Function File: [X, MINVAL, EXITFLAG, OUTPUT, LAMBDA] = pqpnonneg (...)
Minimize '1/2*x'*c*x + d'*x' subject to 'X >= 0'.
C ## and D must be real, and C must be symmetric and positive definite.
X0 is an optional initial guess for X.
Outputs:
* minval
The minimum attained model value, 1/2*xmin'*c*xmin + d'*xmin
* exitflag
An indicator of convergence. 0 indicates that the iteration count was exceeded, and therefore convergence was not reached; >0 indicates that the algorithm converged. (The algorithm is stable and will converge given enough iterations.)
* output
A structure with two fields:
* "algorithm": The algorithm used ("nnls")
* "iterations": The number of iterations taken.
* lambda
Not implemented.
See also: optimset, lsqnonneg, qp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Minimize '1/2*x'*c*x + d'*x' subject to 'X >= 0'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1873
-- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H)
-- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q)
-- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B)
-- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B, LB, UB)
-- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B, LB, UB, A_LB, A_IN, A_UB)
-- Function File: [X, OBJ, INFO, LAMBDA] = qp (..., OPTIONS)
Solve a quadratic program (QP).
Solve the quadratic program defined by
min 0.5 x'*H*x + x'*q
x
subject to
A*x = b
lb <= x <= ub
A_lb <= A_in*x <= A_ub
using a null-space active-set method.
Any bound (A, B, LB, UB, A_LB, A_UB) may be set to the empty matrix ('[]') if not present. If the initial guess is feasible the algorithm is faster.
OPTIONS
An optional structure containing the following parameter(s) used to define the behavior of the solver. Missing elements in the structure take on default values, so you only need to set the elements that you wish to change from the default.
'MaxIter (default: 200)'
Maximum number of iterations.
INFO
Structure containing run-time information about the algorithm. The following fields are defined:
'solveiter'
The number of iterations required to find the solution.
'info'
An integer indicating the status of the solution.
0
The problem is feasible and convex. Global solution found.
1
The problem is not convex. Local solution found.
2
The problem is not convex and unbounded.
3
Maximum number of iterations reached.
6
The problem is infeasible.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Solve a quadratic program (QP).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sqp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4175
-- Function File: [X, OBJ, INFO, ITER, NF, LAMBDA] = sqp (X0, PHI)
-- Function File: [...] = sqp (X0, PHI, G)
-- Function File: [...] = sqp (X0, PHI, G, H)
-- Function File: [...] = sqp (X0, PHI, G, H, LB, UB)
-- Function File: [...] = sqp (X0, PHI, G, H, LB, UB, MAXITER)
-- Function File: [...] = sqp (X0, PHI, G, H, LB, UB, MAXITER, TOL)
Minimize an objective function using sequential quadratic programming (SQP).
Solve the nonlinear program
min phi (x)
x
subject to
g(x) = 0
h(x) >= 0
lb <= x <= ub
using a sequential quadratic programming method.
The first argument is the initial guess for the vector X0.
The second argument is a function handle pointing to the objective function PHI. The objective function must accept one vector argument and return a scalar.
The second argument may also be a 2- or 3-element cell array of function handles. The first element should point to the objective function, the second should point to a function that computes the gradient of the objective function, and the third should point to a function that computes the Hessian of the objective function. If the gradient function is not supplied, the gradient is computed by finite differences. If the Hessian function is not supplied, a BFGS update formula is used to approximate the Hessian.
When supplied, the gradient function 'PHI{2}' must accept one vector argument and return a vector. When supplied, the Hessian function 'PHI{3}' must accept one vector argument and return a matrix.
The third and fourth arguments G and H are function handles pointing to functions that compute the equality constraints and the inequality constraints, respectively. If the problem does not have equality (or inequality) constraints, then use an empty matrix ([]) for G (or H). When supplied, these equality and inequality constraint functions must accept one vector argument and return a vector.
The third and fourth arguments may also be 2-element cell arrays of function handles. The first element should point to the constraint function and the second should point to a function that computes the gradient of the constraint function:
[ d f(x) d f(x) d f(x) ]
transpose ( [ ------ ----- ... ------ ] )
[ dx_1 dx_2 dx_N ]
The fifth and sixth arguments, LB and UB, contain lower and upper bounds on X. These must be consistent with the equality and inequality constraints G and H. If the arguments are vectors then X(i) is bound by LB(i) and UB(i). A bound can also be a scalar in which case all elements of X will share the same bound. If only one bound (lb, ub) is specified then the other will default to (-REALMAX, +REALMAX).
The seventh argument MAXITER specifies the maximum number of iterations. The default value is 100.
The eighth argument TOL specifies the tolerance for the stopping criteria. The default value is 'sqrt (eps)'.
The value returned in INFO may be one of the following:
101
The algorithm terminated normally. All constraints meet the specified tolerance.
102
The BFGS update failed.
103
The maximum number of iterations was reached.
104
The stepsize has become too small, i.e., delta X, is less than 'TOL * norm (x)'.
An example of calling 'sqp':
function r = g (x)
r = [ sumsq(x)-10;
x(2)*x(3)-5*x(4)*x(5);
x(1)^3+x(2)^3+1 ];
endfunction
function obj = phi (x)
obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
endfunction
x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
[x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])
x =
-1.71714
1.59571
1.82725
-0.76364
-0.76364
obj = 0.053950
info = 101
iter = 8
nf = 10
lambda =
-0.0401627
0.0379578
-0.0052227
See also: qp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Minimize an objective function using sequential quadratic programming (SQP).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
matlabroot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 216
-- Function File: matlabroot ()
Return the name of the top-level Octave installation directory.
This is an alias for the function 'OCTAVE_HOME' provided for compatibility.
See also: OCTAVE_HOME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the name of the top-level Octave installation directory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
pathdef
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
-- Function File: VAL = pathdef ()
Return the default path for Octave.
The path information is extracted from one of four sources. The possible sources, in order of preference, are:
1. '.octaverc'
2. '~/.octaverc'
3. '<OCTAVE_HOME>/.../<version>/m/startup/octaverc'
4. Octave's path prior to changes by any octaverc file.
See also: path, addpath, rmpath, genpath, savepath.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return the default path for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
savepath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 985
-- Function File: savepath ()
-- Function File: savepath (FILE)
-- Function File: STATUS = savepath (...)
Save the unique portion of the current function search path that is not set during Octave's initialization process to FILE.
If FILE is omitted, Octave looks in the current directory for a project-specific '.octaverc' file in which to save the path information. If no such file is present then the user's configuration file '~/.octaverc' is used.
If successful, 'savepath' returns 0.
The 'savepath' function makes it simple to customize a user's configuration file to restore the working paths necessary for a particular instance of Octave. Assuming no filename is specified, Octave will automatically restore the saved directory paths from the appropriate '.octaverc' file when starting up. If a filename has been specified then the paths may be restored manually by calling 'source FILE'.
See also: path, addpath, rmpath, genpath, pathdef.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Save the unique portion of the current function search path that is not set during Octave's initialization process to FILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pkg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7061
-- Command: pkg COMMAND PKG_NAME
-- Command: pkg COMMAND OPTION PKG_NAME
Manage packages (groups of add-on functions) for Octave.
Different actions are available depending on the value of COMMAND.
Available commands:
'install'
Install named packages. For example,
pkg install image-1.0.0.tar.gz
installs the package found in the file 'image-1.0.0.tar.gz'.
The OPTION variable can contain options that affect the manner in which a package is installed. These options can be one or more of
'-nodeps'
The package manager will disable dependency checking. With this option it is possible to install a package even when it depends on another package which is not installed on the system. *Use this option with care.*
'-noauto'
The package manager will not automatically load the installed package when starting Octave. This overrides any setting within the package.
'-auto'
The package manager will automatically load the installed package when starting Octave. This overrides any setting within the package.
'-local'
A local installation (package available only to current user) is forced, even if the user has system privileges.
'-global'
A global installation (package available to all users) is forced, even if the user doesn't normally have system privileges.
'-forge'
Install a package directly from the Octave-Forge repository. This requires an internet connection and the cURL library.
'-verbose'
The package manager will print the output of all commands as they are performed.
'update'
Check installed Octave-Forge packages against repository and update any outdated items. This requires an internet connection and the cURL library. Usage:
pkg update
'uninstall'
Uninstall named packages. For example,
pkg uninstall image
removes the 'image' package from the system. If another installed package depends on the 'image' package an error will be issued. The package can be uninstalled anyway by using the '-nodeps' option.
'load'
Add named packages to the path. After loading a package it is possible to use the functions provided by the package. For example,
pkg load image
adds the 'image' package to the path. It is possible to load all installed packages at once with the keyword 'all'. Usage:
pkg load all
'unload'
Remove named packages from the path. After unloading a package it is no longer possible to use the functions provided by the package. It is possible to unload all installed packages at once with the keyword 'all'. Usage:
pkg unload all
'list'
Show the list of currently installed packages. For example,
pkg list
will produce a short report with the package name, version, and installation directory for each installed package. Supply a package name to limit reporting to a particular package. For example:
pkg list image
If a single return argument is requested then 'pkg' returns a cell array where each element is a structure with information on a single package.
installed_packages = pkg ("list")
If two output arguments are requested 'pkg' splits the list of installed packages into those which were installed by the current user, and those which were installed by the system administrator.
[user_packages, system_packages] = pkg ("list")
The "-forge" option lists packages available at the Octave-Forge repository. This requires an internet connection and the cURL library. For example:
oct_forge_pkgs = pkg ("list", "-forge")
'describe'
Show a short description of the named installed packages, with the option "-verbose" also list functions provided by the package. For example,
pkg describe -verbose all
will describe all installed packages and the functions they provide. If one output is requested a cell of structure containing the description and list of functions of each package is returned as output rather than printed on screen:
desc = pkg ("describe", "secs1d", "image")
If any of the requested packages is not installed, 'pkg' returns an error, unless a second output is requested:
[desc, flag] = pkg ("describe", "secs1d", "image")
FLAG will take one of the values "Not installed", "Loaded", or "Not loaded" for each of the named packages.
'prefix'
Set the installation prefix directory. For example,
pkg prefix ~/my_octave_packages
sets the installation prefix to '~/my_octave_packages'. Packages will be installed in this directory.
It is possible to get the current installation prefix by requesting an output argument. For example:
pfx = pkg ("prefix")
The location in which to install the architecture dependent files can be independently specified with an addition argument. For example:
pkg prefix ~/my_octave_packages ~/my_arch_dep_pkgs
'local_list'
Set the file in which to look for information on locally installed packages. Locally installed packages are those that are available only to the current user. For example:
pkg local_list ~/.octave_packages
It is possible to get the current value of local_list with the following
pkg local_list
'global_list'
Set the file in which to look for information on globally installed packages. Globally installed packages are those that are available to all users. For example:
pkg global_list /usr/share/octave/octave_packages
It is possible to get the current value of global_list with the following
pkg global_list
'build'
Build a binary form of a package or packages. The binary file produced will itself be an Octave package that can be installed normally with 'pkg'. The form of the command to build a binary package is
pkg build builddir image-1.0.0.tar.gz ...
where 'builddir' is the name of a directory where the temporary installation will be produced and the binary packages will be found. The options '-verbose' and '-nodeps' are respected, while all other options are ignored.
'rebuild'
Rebuild the package database from the installed directories. This can be used in cases where the package database has been corrupted. It can also take the '-auto' and '-noauto' options to allow the autoloading state of a package to be changed. For example,
pkg rebuild -noauto image
will remove the autoloading status of the image package.
See also: ver, news.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Manage packages (groups of add-on functions) for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
annotation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4711
-- Function File: annotation (TYPE)
-- Function File: annotation ("line", X, Y)
-- Function File: annotation ("arrow", X, Y)
-- Function File: annotation ("doublearrow", X, Y)
-- Function File: annotation ("textarrow", X, Y)
-- Function File: annotation ("textbox", POS)
-- Function File: annotation ("rectangle", POS)
-- Function File: annotation ("ellipse", POS)
-- Function File: annotation (..., PROP, VAL)
-- Function File: annotation (HF, ...)
-- Function File: H = annotation (...)
Draw annotations to emphasize parts of a figure.
You may build a default annotation by specifying only the TYPE of the annotation.
Otherwise you can select the type of annotation and then set its position using either X and Y coordinates for line-based annotations or a position vector POS for others. In either case, coordinates are interpreted using the "units" property of the annotation object. The default is "normalized", which means the lower left hand corner of the figure has coordinates '[0 0]' and the upper right hand corner '[1 1]'.
If the first argument HF is a figure handle, then plot into this figure, rather than the current figure returned by 'gcf'.
Further arguments can be provided in the form of PROP/VAL pairs to customize the annotation appearance.
The optional return value H is a graphics handle to the created annotation object. This can be used with the 'set' function to customize an existing annotation object.
All annotation objects share two properties:
* "units": the units in which coordinates are interpreted.
Its value may be one of "centimeters" | "characters" | "inches" | "{normalized}" | "pixels" | "points".
* "position": a four-element vector [x0 y0 width height].
The vector specifies the coordinates (x0,y0) of the origin of the annotation object, its width, and its height. The width and height may be negative, depending on the orientation of the object.
Valid annotation types and their specific properties are described below:
"line"
Constructs a line. X and Y must be two-element vectors specifying the x and y coordinates of the two ends of the line.
The line can be customized using "linewidth", "linestyle", and "color" properties the same way as for 'line' objects.
"arrow"
Construct an arrow. The second point in vectors X and Y specifies the arrowhead coordinates.
Besides line properties, the arrowhead can be customized using "headlength", "headwidth", and "headstyle" properties. Supported values for "headstyle" property are: ["diamond" | "ellipse" | "plain" | "rectangle" | "vback1" | "{vback2}" | "vback3"]
"doublearrow"
Construct a double arrow. Vectors X and Y specify the arrowhead coordinates.
The line and the arrowhead can be customized as for arrow annotations, but some property names are duplicated: "head1length"/"head2length", "head1width"/"head2width", etc. The index 1 marks the properties of the arrowhead at the first point in X and Y coordinates.
"textarrow"
Construct an arrow with a text label at the opposite end from the arrowhead.
The line and the arrowhead can be customized as for arrow annotations, and the text can be customized using the same properties as 'text' graphics objects. Note, however, that some text property names are prefixed with "text" to distinguish them from arrow properties: "textbackgroundcolor", "textcolor", "textedgecolor", "textlinewidth", "textmargin", "textrotation".
"textbox"
Construct a box with text inside. POS specifies the "position" property of the annotation.
You may use "backgroundcolor", "edgecolor", "linestyle", and "linewidth" properties to customize the box background color and edge appearance. A limited set of 'text' objects properties are also available; Besides "font..." properties, you may also use "horizontalalignment" and "verticalalignment" to position the text inside the box.
Finally, the "fitboxtotext" property controls the actual extent of the box. If "on" (the default) the box limits are fitted to the text extent.
"rectangle"
Construct a rectangle. POS specifies the "position" property of the annotation.
You may use "facecolor", "color", "linestyle", and "linewidth" properties to customize the rectangle background color and edge appearance.
"ellipse"
Construct an ellipse. POS specifies the "position" property of the annotation.
See "rectangle" annotations for customization.
See also: xlabel, ylabel, zlabel, title, text, gtext, legend, colorbar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Draw annotations to emphasize parts of a figure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
axis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2831
-- Function File: axis ()
-- Function File: axis ([X_lo X_hi])
-- Function File: axis ([X_lo X_hi Y_lo Y_hi])
-- Function File: axis ([X_lo X_hi Y_lo Y_hi Z_lo Z_hi])
-- Function File: axis (OPTION)
-- Function File: axis (..., OPTION)
-- Function File: axis (HAX, ...)
-- Function File: LIMITS = axis ()
Set axis limits and appearance.
The argument LIMITS should be a 2-, 4-, or 6-element vector. The first and second elements specify the lower and upper limits for the x-axis. The third and fourth specify the limits for the y-axis, and the fifth and sixth specify the limits for the z-axis. The special values -Inf and Inf may be used to indicate that the limit should automatically be computed based on the data in the axis.
Without any arguments, 'axis' turns autoscaling on.
With one output argument, 'LIMITS = axis' returns the current axis limits.
The vector argument specifying limits is optional, and additional string arguments may be used to specify various axis properties. For example,
axis ([1, 2, 3, 4], "square");
forces a square aspect ratio, and
axis ("tic", "labely");
turns tic marks on for all axes and tic mark labels on for the y-axis only.
The following options control the aspect ratio of the axes.
"square"
Force a square aspect ratio.
"equal"
Force x distance to equal y-distance.
"normal"
Restore default aspect ratio.
The following options control the way axis limits are interpreted.
"auto"
Set the specified axes to have nice limits around the data or all if no axes are specified.
"manual"
Fix the current axes limits.
"tight"
Fix axes to the limits of the data.
"image"
Equivalent to "tight" and "equal".
The following options affect the appearance of tic marks.
"on"
Turn tic marks and labels on for all axes.
"off"
Turn tic marks off for all axes.
"tic[xyz]"
Turn tic marks on for all axes, or turn them on for the specified axes and off for the remainder.
"label[xyz]"
Turn tic labels on for all axes, or turn them on for the specified axes and off for the remainder.
"nolabel"
Turn tic labels off for all axes.
Note, if there are no tic marks for an axis, there can be no labels.
The following options affect the direction of increasing values on the axes.
"ij"
Reverse y-axis, so lower values are nearer the top.
"xy"
Restore y-axis, so higher values are nearer the top.
If the first argument HAX is an axes handle, then operate on this axes rather than the current axes returned by 'gca'.
See also: xlim, ylim, zlim, daspect, pbaspect, box, grid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Set axis limits and appearance.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
box
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 390
-- Command: box
-- Command: box on
-- Command: box off
-- Function File: box (HAX, ...)
Control display of the axis border.
The argument may be either "on" or "off". If it is omitted, the current box state is toggled.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
See also: axis, grid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Control display of the axis border.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
caxis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1008
-- Function File: caxis ([cmin cmax])
-- Function File: caxis ("auto")
-- Function File: caxis ("manual")
-- Function File: caxis (HAX, ...)
-- Function File: LIMITS = caxis ()
Query or set color axis limits for plots.
The limits argument should be a 2-element vector specifying the lower and upper limits to assign to the first and last value in the colormap. Data values outside this range are clamped to the first and last colormap entries.
If the "auto" option is given then automatic colormap limits are applied. The automatic algorithm sets CMIN to the minimum data value and CMAX to the maximum data value. If "manual" is specified then the "climmode" property is set to "manual" and the numeric values in the "clim" property are used for limits.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
Called without arguments the current color axis limits are returned.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Query or set color axis limits for plots.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
clabel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1652
-- Function File: clabel (C, H)
-- Function File: clabel (C, H, V)
-- Function File: clabel (C, H, "manual")
-- Function File: clabel (C)
-- Function File: clabel (..., PROP, VAL, ...)
-- Function File: H = clabel (...)
Add labels to the contours of a contour plot.
The contour levels are specified by the contour matrix C which is returned by 'contour', 'contourc', 'contourf', and 'contour3'. Contour labels are rotated to match the local line orientation and centered on the line. The position of labels along the contour line is chosen randomly.
If the argument H is a handle to a contour group object, then label this plot rather than the one in the current axes returned by 'gca'.
By default, all contours are labeled. However, the contours to label can be specified by the vector V. If the "manual" argument is given then the contours to label can be selected with the mouse.
Additional property/value pairs that are valid properties of text objects can be given and are passed to the underlying text objects. Moreover, the contour group property "LabelSpacing" is available which determines the spacing between labels on a contour to be specified. The default is 144 points, or 2 inches.
The optional return value H is a vector of graphics handles to the text objects representing each label. The "userdata" property of the text objects contains the numerical value of the contour label.
An example of the use of 'clabel' is
[c, h] = contour (peaks (), -4 : 6);
clabel (c, h, -4:2:6, "fontsize", 12);
See also: contour, contourf, contour3, meshc, surfc, text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Add labels to the contours of a contour plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
daspect
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 753
-- Function File: DATA_ASPECT_RATIO = daspect ()
-- Function File: daspect (DATA_ASPECT_RATIO)
-- Function File: daspect (MODE)
-- Function File: DATA_ASPECT_RATIO_MODE = daspect ("mode")
-- Function File: daspect (HAX, ...)
Query or set the data aspect ratio of the current axes.
The aspect ratio is a normalized 3-element vector representing the span of the x, y, and z-axis limits.
'daspect (MODE)'
Set the data aspect ratio mode of the current axes. MODE is either "auto" or "manual".
'daspect ("mode")'
Return the data aspect ratio mode of the current axes.
'daspect (HAX, ...)'
Operate on the axes in handle HAX instead of the current axes.
See also: axis, pbaspect, xlim, ylim, zlim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Query or set the data aspect ratio of the current axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
datetick
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 600
-- Function File: datetick ()
-- Function File: datetick (FORM)
-- Function File: datetick (AXIS, FORM)
-- Function File: datetick (..., "keeplimits")
-- Function File: datetick (..., "keepticks")
-- Function File: datetick (HAX, ...)
Add date formatted tick labels to an axis.
The axis to apply the ticks to is determined by AXIS which can take the values "x", "y", or "z". The default value is "x".
The formatting of the labels is determined by the variable FORM, which can either be a string or positive integer that 'datestr' accepts.
See also: datenum, datestr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Add date formatted tick labels to an axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
diffuse
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
-- Function File: diffuse (SX, SY, SZ, LV)
Calculate the diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ.
The light source location vector LV can be given as a 2-element vector [azimuth, elevation] in degrees or as a 3-element vector [x, y, z].
See also: specular, surfl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Calculate the diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
grid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 734
-- Command: grid
-- Command: grid on
-- Command: grid off
-- Command: grid minor
-- Command: grid minor on
-- Command: grid minor off
-- Function File: grid (HAX, ...)
Control the display of plot grid lines.
The function state input may be either "on" or "off". If it is omitted, the current grid state is toggled.
When the first argument is "minor" all subsequent commands modify the minor grid rather than the major grid.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
To control the grid lines for an individual axis use the 'set' function. For example:
set (gca, "ygrid", "on");
See also: axis, box.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Control the display of plot grid lines.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gtext
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 726
-- Function File: gtext (S)
-- Function File: gtext ({S1, S2, ...})
-- Function File: gtext ({S1; S2; ...})
-- Function File: gtext (..., PROP, VAL, ...)
-- Function File: H = gtext (...)
Place text on the current figure using the mouse.
The text is defined by the string S. If S is a cell string organized as a row vector then each string of the cell array is written to a separate line. If S is organized as a column vector then one string element of the cell array is placed for every mouse click.
Optional property/value pairs are passed directly to the underlying text objects.
The optional return value H is a graphics handle to the created text object(s).
See also: ginput, text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Place text on the current figure using the mouse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hidden
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 787
-- Command: hidden
-- Command: hidden on
-- Command: hidden off
-- Function File: MODE = hidden (...)
Control mesh hidden line removal.
When called with no argument the hidden line removal state is toggled.
When called with one of the modes "on" or "off" the state is set accordingly.
The optional output argument MODE is the current state.
Hidden Line Removal determines what graphic objects behind a mesh plot are visible. The default is for the mesh to be opaque and lines behind the mesh are not visible. If hidden line removal is turned off then objects behind the mesh can be seen through the faces (openings) of the mesh, although the mesh grid lines are still opaque.
See also: mesh, meshc, meshz, ezmesh, ezmeshc, trimesh, waterfall.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Control mesh hidden line removal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
legend
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5893
-- Function File: legend (STR1, STR2, ...)
-- Function File: legend (MATSTR)
-- Function File: legend (CELLSTR)
-- Function File: legend (..., "location", POS)
-- Function File: legend (..., "orientation", ORIENT)
-- Function File: legend (HAX, ...)
-- Function File: legend (HOBJS, ...)
-- Function File: legend (HAX, HOBJS, ...)
-- Function File: legend ("OPTION")
-- Function File: [HLEG, HLEG_OBJ, HPLOT, LABELS] = legend (...)
Display a legend for the current axes using the specified strings as labels.
Legend entries may be specified as individual character string arguments, a character array, or a cell array of character strings.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'. If the handles, HOBJS, are not specified then the legend's strings will be associated with the axes' descendants. 'legend' works on line graphs, bar graphs, etc. A plot must exist before legend is called.
The optional parameter POS specifies the location of the legend as follows:
pos location of the legend
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
north center top
south center bottom
east right center
west left center
northeast right top (default)
northwest left top
southeast right bottom
southwest left bottom
outside can be appended to any location string
The optional parameter ORIENT determines if the key elements are placed vertically or horizontally. The allowed values are "vertical" (default) or "horizontal".
The following customizations are available using OPTION:
"show"
Show legend on the plot
"hide"
Hide legend on the plot
"toggle"
Toggles between "hide" and "show"
"boxon"
Show a box around legend (default)
"boxoff"
Hide the box around legend
"right"
Place label text to the right of the keys (default)
"left"
Place label text to the left of the keys
"off"
Delete the legend object
The optional output values are
HLEG
The graphics handle of the legend object.
HLEG_OBJ
Graphics handles to the text and line objects which make up the legend.
HPLOT
Graphics handles to the plot objects which were used in making the legend.
LABELS
A cell array of strings of the labels in the legend.
The legend label text is either provided in the call to 'legend' or is taken from the DisplayName property of graphics objects. If no labels or DisplayNames are available, then the label text is simply "data1", "data2", ..., "dataN".
Implementation Note: A legend is implemented as an additional axes object of the current figure with the "tag" set to "legend". Properties of the legend object may be manipulated directly by using 'set'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Display a legend for the current axes using the specified strings as labels.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
orient
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1014
-- Function File: orient (ORIENTATION)
-- Function File: orient (HFIG, ORIENTATION)
-- Function File: ORIENTATION = orient ()
-- Function File: ORIENTATION = orient (HFIG)
Query or set the print orientation for figure HFIG.
Valid values for ORIENTATION are "portrait", "landscape", and "tall".
The "landscape" option changes the orientation so the plot width is larger than the plot height. The "paperposition" is also modified so that the plot fills the page, while leaving a 0.25 inch border.
The "tall" option sets the orientation to "portrait" and fills the page with the plot, while leaving a 0.25 inch border.
The "portrait" option (default) changes the orientation so the plot height is larger than the plot width. It also restores the default "paperposition" property.
When called with no arguments, return the current print orientation.
If the argument HFIG is omitted, then operate on the current figure returned by 'gcf'.
See also: print, saveas.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Query or set the print orientation for figure HFIG.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
pbaspect
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 790
-- Function File: PLOT_BOX_ASPECT_RATIO = pbaspect ( )
-- Function File: pbaspect (PLOT_BOX_ASPECT_RATIO)
-- Function File: pbaspect (MODE)
-- Function File: PLOT_BOX_ASPECT_RATIO_MODE = pbaspect ("mode")
-- Function File: pbaspect (HAX, ...)
Query or set the plot box aspect ratio of the current axes.
The aspect ratio is a normalized 3-element vector representing the rendered lengths of the x, y, and z axes.
'pbaspect(MODE)'
Set the plot box aspect ratio mode of the current axes. MODE is either "auto" or "manual".
'pbaspect ("mode")'
Return the plot box aspect ratio mode of the current axes.
'pbaspect (HAX, ...)'
Operate on the axes in handle HAX instead of the current axes.
See also: axis, daspect, xlim, ylim, zlim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the plot box aspect ratio of the current axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
shading
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 603
-- Function File: shading (TYPE)
-- Function File: shading (HAX, TYPE)
Set the shading of patch or surface graphic objects.
Valid arguments for TYPE are
"flat"
Single colored patches with invisible edges.
"faceted"
Single colored patches with visible edges.
"interp"
Color between patch vertices are interpolated and the patch edges are invisible.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
See also: fill, mesh, patch, pcolor, surf, surface, hidden.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Set the shading of patch or surface graphic objects.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
specular
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 623
-- Function File: specular (SX, SY, SZ, LV, VV)
-- Function File: specular (SX, SY, SZ, LV, VV, SE)
Calculate the specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation.
The light source location and viewer location vectors are specified using parameters LV and VV respectively. The location vectors can given as 2-element vectors [azimuth, elevation] in degrees or as 3-element vectors [x, y, z].
An optional sixth argument specifies the specular exponent (spread) SE. If not given, SE defaults to 10.
See also: diffuse, surfl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Calculate the specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
text
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 641
-- Function File: text (X, Y, STRING)
-- Function File: text (X, Y, Z, STRING)
-- Function File: text (..., PROP, VAL, ...)
-- Function File: H = text (...)
Create a text object with text STRING at position X, Y, (Z) on the current axes.
Multiple locations can be specified if X, Y, (Z) are vectors. Multiple strings can be specified with a character matrix or a cell array of strings.
Optional property/value pairs may be used to control the appearance of the text.
The optional return value H is a vector of graphics handles to the created text objects.
See also: gtext, title, xlabel, ylabel, zlabel.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create a text object with text STRING at position X, Y, (Z) on the current axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
title
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 592
-- Function File: title (STRING)
-- Function File: title (STRING, PROP, VAL, ...)
-- Function File: title (HAX, ...)
-- Function File: H = title (...)
Specify the string used as a title for the current axis.
An optional list of PROPERTY/VALUE pairs can be used to change the appearance of the created title text object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created text object.
See also: xlabel, ylabel, zlabel, text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Specify the string used as a title for the current axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
view
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 932
-- Function File: view (AZIMUTH, ELEVATION)
-- Function File: view ([AZIMUTH ELEVATION])
-- Function File: view ([X Y Z])
-- Function File: view (2)
-- Function File: view (3)
-- Function File: view (HAX, ...)
-- Function File: [AZIMUTH, ELEVATION] = view ()
Query or set the viewpoint for the current axes.
The parameters AZIMUTH and ELEVATION can be given as two arguments or as 2-element vector. The viewpoint can also be specified with Cartesian coordinates X, Y, and Z.
The call 'view (2)' sets the viewpoint to AZIMUTH = 0 and ELEVATION = 90, which is the default for 2-D graphs.
The call 'view (3)' sets the viewpoint to AZIMUTH = -37.5 and ELEVATION = 30, which is the default for 3-D graphs.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
If no inputs are given, return the current AZIMUTH and ELEVATION.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Query or set the viewpoint for the current axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
whitebg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 775
-- Function File: whitebg ()
-- Function File: whitebg (COLOR)
-- Function File: whitebg ("none")
-- Function File: whitebg (HFIG, ...)
Invert the colors in the current color scheme.
The root properties are also inverted such that all subsequent plot use the new color scheme.
If the optional argument COLOR is present then the background color is set to COLOR rather than inverted. COLOR may be a string representing one of the eight known colors or an RGB triplet. The special string argument "none" restores the plot to the default colors.
If the first argument HFIG is a figure handle, then operate on this figure rather than the current figure returned by 'gcf'. The root properties will not be changed.
See also: reset, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Invert the colors in the current color scheme.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
xlabel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 610
-- Function File: xlabel (STRING)
-- Function File: xlabel (STRING, PROPERTY, VAL, ...)
-- Function File: xlabel (HAX, ...)
-- Function File: H = xlabel (...)
Specify the string used to label the x-axis of the current axis.
An optional list of PROPERTY/VALUE pairs can be used to change the properties of the created text label.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created text object.
See also: ylabel, zlabel, datetick, title, text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Specify the string used to label the x-axis of the current axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
xlim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
-- Function File: XLIMITS = xlim ()
-- Function File: XMODE = xlim ("mode")
-- Function File: xlim ([X_LO X_HI])
-- Function File: xlim ("auto")
-- Function File: xlim ("manual")
-- Function File: xlim (HAX, ...)
Query or set the limits of the x-axis for the current plot.
Called without arguments 'xlim' returns the x-axis limits of the current plot.
With the input query "mode", return the current x-limit calculation mode which is either "auto" or "manual".
If passed a 2-element vector [X_LO X_HI], the limits of the x-axis are set to these values and the mode is set to "manual".
The current plotting mode can be changed by using either "auto" or "manual" as the argument.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
See also: ylim, zlim, axis, set, get, gca.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the limits of the x-axis for the current plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ylabel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 672
-- Function File: ylabel (STRING)
-- Function File: ylabel (STRING, PROPERTY, VAL, ...)
-- Function File: ylabel (HAX, ...)
-- Function File: H = ylabel (...)
Specify the string used to label the y-axis of the current axis.
If HAX is specified then label the axis defined by HAX.
An optional list of PROPERTY/VALUE pairs can be used to change the properties of the created text label.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created text object.
See also: xlabel, zlabel, datetick, title, text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Specify the string used to label the y-axis of the current axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ylim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
-- Function File: YLIMITS = ylim ()
-- Function File: XMODE = ylim ("mode")
-- Function File: ylim ([Y_LO Y_HI])
-- Function File: ylim ("auto")
-- Function File: ylim ("manual")
-- Function File: ylim (HAX, ...)
Query or set the limits of the y-axis for the current plot.
Called without arguments 'ylim' returns the y-axis limits of the current plot.
With the input query "mode", return the current y-limit calculation mode which is either "auto" or "manual".
If passed a 2-element vector [Y_LO Y_HI], the limits of the y-axis are set to these values and the mode is set to "manual".
The current plotting mode can be changed by using either "auto" or "manual" as the argument.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
See also: xlim, zlim, axis, set, get, gca.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the limits of the y-axis for the current plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zlabel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 622
-- Function File: zlabel (STRING)
-- Function File: zlabel (STRING, PROPERTY, VAL, ...)
-- Function File: zlabel (HAX, ...)
-- Function File: H = zlabel (...)
Specify the string used to label the z-axis of the current axis.
An optional list of PROPERTY/VALUE pairs can be used to change the properties of the created text label.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created text object.
See also: xlabel, ylabel, datetick, title, text.
Author: jwe
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Specify the string used to label the z-axis of the current axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
zlim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
-- Function File: ZLIMITS = zlim ()
-- Function File: XMODE = zlim ("mode")
-- Function File: zlim ([Z_LO Z_HI])
-- Function File: zlim ("auto")
-- Function File: zlim ("manual")
-- Function File: zlim (HAX, ...)
Query or set the limits of the z-axis for the current plot.
Called without arguments 'zlim' returns the z-axis limits of the current plot.
With the input query "mode", return the current z-limit calculation mode which is either "auto" or "manual".
If passed a 2-element vector [Z_LO Z_HI], the limits of the x-axis are set to these values and the mode is set to "manual".
The current plotting mode can be changed by using either "auto" or "manual" as the argument.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
See also: xlim, ylim, axis, set, get, gca.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the limits of the z-axis for the current plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
area
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1306
-- Function File: area (Y)
-- Function File: area (X, Y)
-- Function File: area (..., LVL)
-- Function File: area (..., PROP, VAL, ...)
-- Function File: area (HAX, ...)
-- Function File: H = area (...)
Area plot of the columns of Y.
This plot shows the contributions of each column value to the row sum. It is functionally similar to 'plot (X, cumsum (Y, 2))', except that the area under the curve is shaded.
If the X argument is omitted it defaults to '1:rows (Y)'. A value LVL can be defined that determines where the base level of the shading under the curve should be defined. The default level is 0.
Additional property/value pairs are passed directly to the underlying patch object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the hggroup object comprising the area patch objects. The "BaseValue" property of the hggroup can be used to adjust the level where shading begins.
Example: Verify identity sin^2 + cos^2 = 1
t = linspace (0, 2*pi, 100)';
y = [sin(t).^2, cos(t).^2];
area (t, y);
legend ("sin^2", "cos^2", "location", "NorthEastOutside");
See also: plot, patch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Area plot of the columns of Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
barh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1710
-- Function File: barh (Y)
-- Function File: barh (X, Y)
-- Function File: barh (..., W)
-- Function File: barh (..., STYLE)
-- Function File: barh (..., PROP, VAL, ...)
-- Function File: barh (HAX, ...)
-- Function File: H = barh (..., PROP, VAL, ...)
Produce a horizontal bar graph from two vectors of X-Y data.
If only one argument is given, it is taken as a vector of Y values and the X coordinates are the range '1:numel (Y)'.
The optional input W controls the width of the bars. A value of 1.0 will cause each bar to exactly touch any adjacent bars. The default width is 0.8.
If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph. By default the columns are plotted side-by-side. This behavior can be changed by the STYLE argument which can take the following values:
"grouped" (default)
Side-by-side bars with a gap between bars and centered over the Y-coordinate.
"stacked"
Bars are stacked so that each Y value has a single bar composed of multiple segments.
"hist"
Side-by-side bars with no gap between bars and centered over the Y-coordinate.
"histc"
Side-by-side bars with no gap between bars and left-aligned to the Y-coordinate.
Optional property/value pairs are passed directly to the underlying patch objects.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created bar series hggroup. For a description of the use of the bar series, *note bar: XREFbar.
See also: bar, hist, pie, plot, patch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce a horizontal bar graph from two vectors of X-Y data.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
bar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2561
-- Function File: bar (Y)
-- Function File: bar (X, Y)
-- Function File: bar (..., W)
-- Function File: bar (..., STYLE)
-- Function File: bar (..., PROP, VAL, ...)
-- Function File: bar (HAX, ...)
-- Function File: H = bar (..., PROP, VAL, ...)
Produce a bar graph from two vectors of X-Y data.
If only one argument is given, Y, it is taken as a vector of Y values and the X coordinates are the range '1:numel (Y)'.
The optional input W controls the width of the bars. A value of 1.0 will cause each bar to exactly touch any adjacent bars. The default width is 0.8.
If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph. By default the columns are plotted side-by-side. This behavior can be changed by the STYLE argument which can take the following values:
"grouped" (default)
Side-by-side bars with a gap between bars and centered over the X-coordinate.
"stacked"
Bars are stacked so that each X value has a single bar composed of multiple segments.
"hist"
Side-by-side bars with no gap between bars and centered over the X-coordinate.
"histc"
Side-by-side bars with no gap between bars and left-aligned to the X-coordinate.
Optional property/value pairs are passed directly to the underlying patch objects.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of handles to the created "bar series" hggroups with one handle per column of the variable Y. This series makes it possible to change a common element in one bar series object and have the change reflected in the other "bar series". For example,
h = bar (rand (5, 10));
set (h(1), "basevalue", 0.5);
changes the position on the base of all of the bar series.
The following example modifies the face and edge colors using property/value pairs.
bar (randn (1, 100), "facecolor", "r", "edgecolor", "b");
The color of the bars is taken from the figure's colormap, such that
bar (rand (10, 3));
colormap (summer (64));
will change the colors used for the bars. The color of bars can also be set manually using the "facecolor" property as shown below.
h = bar (rand (10, 3));
set (h(1), "facecolor", "r")
set (h(2), "facecolor", "g")
set (h(3), "facecolor", "b")
See also: barh, hist, pie, plot, patch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Produce a bar graph from two vectors of X-Y data.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
colorbar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2180
-- Command: colorbar
-- Function File: colorbar (LOC)
-- Function File: colorbar (DELETE_OPTION)
-- Function File: colorbar (HCB, ...)
-- Function File: colorbar (HAX, ...)
-- Function File: colorbar (..., "peer", HAX, ...)
-- Function File: colorbar (..., "location", LOC, ...)
-- Function File: colorbar (..., PROP, VAL, ...)
-- Function File: H = colorbar (...)
Add a colorbar to the current axes.
A colorbar displays the current colormap along with numerical rulings so that the color scale can be interpreted.
The optional input LOC determines the location of the colorbar. Valid values for LOC are
"EastOutside"
Place the colorbar outside the plot to the right. This is the default.
"East"
Place the colorbar inside the plot to the right.
"WestOutside"
Place the colorbar outside the plot to the left.
"West"
Place the colorbar inside the plot to the left.
"NorthOutside"
Place the colorbar above the plot.
"North"
Place the colorbar at the top of the plot.
"SouthOutside"
Place the colorbar under the plot.
"South"
Place the colorbar at the bottom of the plot.
To remove a colorbar from a plot use any one of the following keywords for the DELETE_OPTION: "delete", "hide", "off".
If the argument "peer" is given, then the following argument is treated as the axes handle in which to add the colorbar. Alternatively, If the first argument HAX is an axes handle, then the colorbar is added to this axis, rather than the current axes returned by 'gca'.
If the first argument HCB is a handle to a colorbar object, then operate on this colorbar directly.
Additional property/value pairs are passed directly to the underlying axes object.
The optional return value H is a graphics handle to the created colorbar object.
Implementation Note: A colorbar is created as an additional axes to the current figure with the "tag" property set to "colorbar". The created axes object has the extra property "location" which controls the positioning of the colorbar.
See also: colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Add a colorbar to the current axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
comet3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 647
-- Function File: comet3 (Z)
-- Function File: comet3 (X, Y, Z)
-- Function File: comet3 (X, Y, Z, P)
-- Function File: comet3 (HAX, ...)
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y, Z).
If only Z is specified then X, Y default to the indices of Z.
The speed of the comet may be controlled by P, which represents the time each point is displayed before moving to the next one. The default for P is 0.1 seconds.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
See also: comet.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y, Z).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
comet
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 628
-- Function File: comet (Y)
-- Function File: comet (X, Y)
-- Function File: comet (X, Y, P)
-- Function File: comet (HAX, ...)
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y).
If X is not specified it defaults to the indices of Y.
The speed of the comet may be controlled by P, which represents the time each point is displayed before moving to the next one. The default for P is 0.1 seconds.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
See also: comet3.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
compass
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 956
-- Function File: compass (U, V)
-- Function File: compass (Z)
-- Function File: compass (..., STYLE)
-- Function File: compass (HAX, ...)
-- Function File: H = compass (...)
Plot the '(U, V)' components of a vector field emanating from the origin of a polar plot.
The arrow representing each vector has one end at the origin and the tip at [U(i), V(i)]. If a single complex argument Z is given, then 'U = real (Z)' and 'V = imag (Z)'.
The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of graphics handles to the line objects representing the drawn vectors.
a = toeplitz ([1;randn(9,1)], [1,randn(1,9)]);
compass (eig (a));
See also: polar, feather, quiver, rose, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Plot the '(U, V)' components of a vector field emanating from the origin of a polar plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contour3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1420
-- Function File: contour3 (Z)
-- Function File: contour3 (Z, VN)
-- Function File: contour3 (X, Y, Z)
-- Function File: contour3 (X, Y, Z, VN)
-- Function File: contour3 (..., STYLE)
-- Function File: contour3 (HAX, ...)
-- Function File: [C, H] = contour3 (...)
Create a 3-D contour plot.
'contour3' plots level curves (contour lines) of the matrix Z at a Z level corresponding to each contour. This is in contrast to 'contour' which plots all of the contour lines at the same Z level and produces a 2-D plot.
The level curves are taken from the contour matrix C computed by 'contourc' for the same arguments; see the latter for their interpretation.
The appearance of contour lines can be defined with a line style STYLE in the same manner as 'plot'. Only line style and color are used; Any markers defined by STYLE are ignored.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional output C are the contour levels in 'contourc' format.
The optional return value H is a graphics handle to the hggroup comprising the contour lines.
Example:
contour3 (peaks (19));
colormap cool;
hold on;
surf (peaks (19), "facecolor", "none", "edgecolor", "black");
See also: contour, contourc, contourf, clabel, meshc, surfc, caxis, colormap, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Create a 3-D contour plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contourc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1473
-- Function File: [C, LEV] = contourc (Z)
-- Function File: [C, LEV] = contourc (Z, VN)
-- Function File: [C, LEV] = contourc (X, Y, Z)
-- Function File: [C, LEV] = contourc (X, Y, Z, VN)
Compute contour lines (isolines of constant Z value).
The matrix Z contains height values above the rectangular grid determined by X and Y. If only a single input Z is provided then X is taken to be '1:rows (Z)' and Y is taken to be '1:columns (Z)'.
The optional input VN is either a scalar denoting the number of contour lines to compute or a vector containing the Z values where lines will be computed. When VN is a vector the number of contour lines is 'numel (VN)'. However, to compute a single contour line at a given value use 'VN = [val, val]'. If VN is omitted it defaults to 10.
The return value C is a 2xN matrix containing the contour lines in the following format
C = [lev1, x1, x2, ..., levn, x1, x2, ...
len1, y1, y2, ..., lenn, y1, y2, ...]
in which contour line N has a level (height) of LEVN and length of LENN.
The optional return value LEV is a vector with the Z values of the contour levels.
Example:
x = 0:2;
y = x;
z = x' * y;
contourc (x, y, z, 2:3)
=> 2.0000 2.0000 1.0000 3.0000 1.5000 2.0000
2.0000 1.0000 2.0000 2.0000 2.0000 1.5000
See also: contour, contourf, contour3, clabel.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute contour lines (isolines of constant Z value).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contourf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1340
-- Function File: contourf (Z)
-- Function File: contourf (Z, VN)
-- Function File: contourf (X, Y, Z)
-- Function File: contourf (X, Y, Z, VN)
-- Function File: contourf (..., STYLE)
-- Function File: contourf (HAX, ...)
-- Function File: [C, H] = contourf (...)
Create a 2-D contour plot with filled intervals.
Plot level curves (contour lines) of the matrix Z and fill the region between lines with colors from the current colormap.
The level curves are taken from the contour matrix C computed by 'contourc' for the same arguments; see the latter for their interpretation.
The appearance of contour lines can be defined with a line style STYLE in the same manner as 'plot'. Only line style and color are used; Any markers defined by STYLE are ignored.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional output C contains the contour levels in 'contourc' format.
The optional return value H is a graphics handle to the hggroup comprising the contour lines.
The following example plots filled contours of the 'peaks' function.
[x, y, z] = peaks (50);
contourf (x, y, z, -7:9)
See also: ezcontourf, contour, contourc, contour3, clabel, meshc, surfc, caxis, colormap, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Create a 2-D contour plot with filled intervals.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
contour
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1171
-- Function File: contour (Z)
-- Function File: contour (Z, VN)
-- Function File: contour (X, Y, Z)
-- Function File: contour (X, Y, Z, VN)
-- Function File: contour (..., STYLE)
-- Function File: contour (HAX, ...)
-- Function File: [C, H] = contour (...)
Create a 2-D contour plot.
Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by 'contourc' from the same arguments; see the latter for their interpretation.
The appearance of contour lines can be defined with a line style STYLE in the same manner as 'plot'. Only line style and color are used; Any markers defined by STYLE are ignored.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional output C contains the contour levels in 'contourc' format.
The optional return value H is a graphics handle to the hggroup comprising the contour lines.
Example:
x = 0:2;
y = x;
z = x' * y;
contour (x, y, z, 2:3)
See also: ezcontour, contourc, contourf, contour3, clabel, meshc, surfc, caxis, colormap, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Create a 2-D contour plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cylinder
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 917
-- Command: cylinder
-- Function File: cylinder (R)
-- Function File: cylinder (R, N)
-- Function File: cylinder (HAX, ...)
-- Function File: [X, Y, Z] = cylinder (...)
Plot a 3-D unit cylinder.
The optional input R is a vector specifying the radius along the unit z-axis. The default is [1 1] indicating radius 1 at 'Z == 0' and at 'Z == 1'.
The optional input N determines the number of faces around the circumference of the cylinder. The default value is 20.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
If outputs are requested 'cylinder' returns three matrices in 'meshgrid' format, such that 'surf (X, Y, Z)' generates a unit cylinder.
Example:
[x, y, z] = cylinder (10:-1:0, 50);
surf (x, y, z);
title ("a cone");
See also: ellipsoid, rectangle, sphere.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Plot a 3-D unit cylinder.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ellipsoid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 773
-- Function File: ellipsoid (XC, YC, ZC, XR, YR, ZR, N)
-- Function File: ellipsoid (..., N)
-- Function File: ellipsoid (HAX, ...)
-- Function File: [X, Y, Z] = ellipsoid (...)
Plot a 3-D ellipsoid.
The inputs XC, YC, ZC specify the center of the ellipsoid. The inputs XR, YR, ZR specify the semi-major axis lengths.
The optional input N determines the number of faces around the circumference of the cylinder. The default value is 20.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
If outputs are requested 'ellipsoid' returns three matrices in 'meshgrid' format, such that 'surf (X, Y, Z)' generates the ellipsoid.
See also: cylinder, rectangle, sphere.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Plot a 3-D ellipsoid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
errorbar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4165
-- Function File: errorbar (Y, EY)
-- Function File: errorbar (Y, ..., FMT)
-- Function File: errorbar (X, Y, EY)
-- Function File: errorbar (X, Y, ERR, FMT)
-- Function File: errorbar (X, Y, LERR, UERR, FMT)
-- Function File: errorbar (X, Y, EX, EY, FMT)
-- Function File: errorbar (X, Y, LX, UX, LY, UY, FMT)
-- Function File: errorbar (X1, Y1, ..., FMT, XN, YN, ...)
-- Function File: errorbar (HAX, ...)
-- Function File: H = errorbar (...)
Create a 2-D plot with errorbars.
Many different combinations of arguments are possible. The simplest form is
errorbar (Y, EY)
where the first argument is taken as the set of Y coordinates, the second argument EY are the errors around the Y values, and the X coordinates are taken to be the indices of the elements ('1:numel (Y)').
The general form of the function is
errorbar (X, Y, ERR1, ..., FMT, ...)
After the X and Y arguments there can be 1, 2, or 4 parameters specifying the error values depending on the nature of the error values and the plot format FMT.
ERR (scalar)
When the error is a scalar all points share the same error value. The errorbars are symmetric and are drawn from DATA-ERR to DATA+ERR. The FMT argument determines whether ERR is in the x-direction, y-direction (default), or both.
ERR (vector or matrix)
Each data point has a particular error value. The errorbars are symmetric and are drawn from DATA(n)-ERR(n) to DATA(n)+ERR(n).
LERR, UERR (scalar)
The errors have a single low-side value and a single upper-side value. The errorbars are not symmetric and are drawn from DATA-LERR to DATA+UERR.
LERR, UERR (vector or matrix)
Each data point has a low-side error and an upper-side error. The errorbars are not symmetric and are drawn from DATA(n)-LERR(n) to DATA(n)+UERR(n).
Any number of data sets (X1,Y1, X2,Y2, ...) may appear as long as they are separated by a format string FMT.
If Y is a matrix, X and the error parameters must also be matrices having the same dimensions. The columns of Y are plotted versus the corresponding columns of X and errorbars are taken from the corresponding columns of the error parameters.
If FMT is missing, the yerrorbars ("~") plot style is assumed.
If the FMT argument is supplied then it is interpreted, as in normal plots, to specify the line style, marker, and color. In addition, FMT may include an errorbar style which *must precede* the ordinary format codes. The following errorbar styles are supported:
'~'
Set yerrorbars plot style (default).
'>'
Set xerrorbars plot style.
'~>'
Set xyerrorbars plot style.
'#~'
Set yboxes plot style.
'#'
Set xboxes plot style.
'#~>'
Set xyboxes plot style.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a handle to the hggroup object representing the data plot and errorbars.
Note: For compatibility with MATLAB a line is drawn through all data points. However, most scientific errorbar plots are a scatter plot of points with errorbars. To accomplish this, add a marker style to the FMT argument such as ".". Alternatively, remove the line by modifying the returned graphic handle with 'set (h, "linestyle", "none")'.
Examples:
errorbar (X, Y, EX, ">.r")
produces an xerrorbar plot of Y versus X with X errorbars drawn from X-EX to X+EX. The marker "." is used so no connecting line is drawn and the errorbars appear in red.
errorbar (X, Y1, EY, "~",
X, Y2, LY, UY)
produces yerrorbar plots with Y1 and Y2 versus X. Errorbars for Y1 are drawn from Y1-EY to Y1+EY, errorbars for Y2 from Y2-LY to Y2+UY.
errorbar (X, Y, LX, UX,
LY, UY, "~>")
produces an xyerrorbar plot of Y versus X in which X errorbars are drawn from X-LX to X+UX and Y errorbars from Y-LY to Y+UY.
See also: semilogxerr, semilogyerr, loglogerr, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Create a 2-D plot with errorbars.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ezcontourf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1107
-- Function File: ezcontourf (F)
-- Function File: ezcontourf (..., DOM)
-- Function File: ezcontourf (..., N)
-- Function File: ezcontourf (HAX, ...)
-- Function File: H = ezcontourf (...)
Plot the filled contour lines of a function.
F is a string, inline function, or function handle with two arguments defining the function. By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum values of both X and Y. If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.
N is a scalar defining the number of points to use in each dimension.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
Example:
f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezcontourf (f, [-3, 3]);
See also: contourf, ezcontour, ezplot, ezmeshc, ezsurfc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Plot the filled contour lines of a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ezcontour
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1094
-- Function File: ezcontour (F)
-- Function File: ezcontour (..., DOM)
-- Function File: ezcontour (..., N)
-- Function File: ezcontour (HAX, ...)
-- Function File: H = ezcontour (...)
Plot the contour lines of a function.
F is a string, inline function, or function handle with two arguments defining the function. By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum values of both X and Y. If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.
N is a scalar defining the number of points to use in each dimension.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
Example:
f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezcontour (f, [-3, 3]);
See also: contour, ezcontourf, ezplot, ezmeshc, ezsurfc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Plot the contour lines of a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezmeshc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1522
-- Function File: ezmeshc (F)
-- Function File: ezmeshc (FX, FY, FZ)
-- Function File: ezmeshc (..., DOM)
-- Function File: ezmeshc (..., N)
-- Function File: ezmeshc (..., "circ")
-- Function File: ezmeshc (HAX, ...)
-- Function File: H = ezmeshc (...)
Plot the mesh and contour lines defined by a function.
F is a string, inline function, or function handle with two arguments defining the function. By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.
If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.
If DOM is a two element vector, it represents the minimum and maximum values of both X and Y. If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.
N is a scalar defining the number of points to use in each dimension.
If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a 2-element vector with a graphics handle for the created mesh plot and a second handle for the created contour plot.
Example: 2-argument function
f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezmeshc (f, [-3, 3]);
See also: meshc, ezmesh, ezplot, ezsurf, ezsurfc, hidden.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Plot the mesh and contour lines defined by a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ezmesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1653
-- Function File: ezmesh (F)
-- Function File: ezmesh (FX, FY, FZ)
-- Function File: ezmesh (..., DOM)
-- Function File: ezmesh (..., N)
-- Function File: ezmesh (..., "circ")
-- Function File: ezmesh (HAX, ...)
-- Function File: H = ezmesh (...)
Plot the mesh defined by a function.
F is a string, inline function, or function handle with two arguments defining the function. By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.
If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.
If DOM is a two element vector, it represents the minimum and maximum values of both X and Y. If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.
N is a scalar defining the number of points to use in each dimension.
If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
Example 1: 2-argument function
f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezmesh (f, [-3, 3]);
Example 2: parametrically defined function
fx = @(s,t) cos (s) .* cos (t);
fy = @(s,t) sin (s) .* cos (t);
fz = @(s,t) sin (t);
ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
See also: mesh, ezmeshc, ezplot, ezsurf, ezsurfc, hidden.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Plot the mesh defined by a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezplot3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 993
-- Function File: ezplot3 (FX, FY, FZ)
-- Function File: ezplot3 (..., DOM)
-- Function File: ezplot3 (..., N)
-- Function File: ezplot3 (HAX, ...)
-- Function File: H = ezplot3 (...)
Plot a parametrically defined curve in three dimensions.
FX, FY, and FZ are strings, inline functions, or function handles with one argument defining the function. By default the plot is over the domain '0 <= T <= 2*pi' with 500 points.
If DOM is a two element vector, it represents the minimum and maximum values of T.
N is a scalar defining the number of points to use in plotting the function.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
fx = @(t) cos (t);
fy = @(t) sin (t);
fz = @(t) t;
ezplot3 (fx, fy, fz, [0, 10*pi], 100);
See also: plot3, ezplot, ezmesh, ezsurf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Plot a parametrically defined curve in three dimensions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ezplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1575
-- Function File: ezplot (F)
-- Function File: ezplot (F2V)
-- Function File: ezplot (FX, FY)
-- Function File: ezplot (..., DOM)
-- Function File: ezplot (..., N)
-- Function File: ezplot (HAX, ...)
-- Function File: H = ezplot (...)
Plot the 2-D curve defined by the function F.
The function F may be a string, inline function, or function handle and can have either one or two variables. If F has one variable, then the function is plotted over the domain '-2*pi < X < 2*pi' with 500 points.
If F2V is a function of two variables then the implicit function 'F(X,Y) = 0' is calculated over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.
For example:
ezplot (@(X, Y) X.^2 - Y.^2 - 1)
If two functions are passed as inputs then the parametric function
X = FX (T)
Y = FY (T)
is plotted over the domain '-2*pi <= T <= 2*pi' with 500 points.
If DOM is a two element vector, it represents the minimum and maximum values of both X and Y, or T for a parametric plot. If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.
N is a scalar defining the number of points to use in plotting the function.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of graphics handles to the created line objects.
See also: plot, ezplot3, ezpolar, ezcontour, ezcontourf, ezmesh, ezmeshc, ezsurf, ezsurfc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Plot the 2-D curve defined by the function F.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezpolar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 934
-- Function File: ezpolar (F)
-- Function File: ezpolar (..., DOM)
-- Function File: ezpolar (..., N)
-- Function File: ezpolar (HAX, ...)
-- Function File: H = ezpolar (...)
Plot a 2-D function in polar coordinates.
The function F is a string, inline function, or function handle with a single argument. The expected form of the function is 'RHO = F(THETA)'. By default the plot is over the domain '0 <= THETA <= 2*pi' with 500 points.
If DOM is a two element vector, it represents the minimum and maximum values of THETA.
N is a scalar defining the number of points to use in plotting the function.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
Example:
ezpolar (@(t) sin (5/4 * t), [0, 8*pi]);
See also: polar, ezplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Plot a 2-D function in polar coordinates.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezsurfc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1509
-- Function File: ezsurfc (F)
-- Function File: ezsurfc (FX, FY, FZ)
-- Function File: ezsurfc (..., DOM)
-- Function File: ezsurfc (..., N)
-- Function File: ezsurfc (..., "circ")
-- Function File: ezsurfc (HAX, ...)
-- Function File: H = ezsurfc (...)
Plot the surface and contour lines defined by a function.
F is a string, inline function, or function handle with two arguments defining the function. By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.
If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.
If DOM is a two element vector, it represents the minimum and maximum values of both X and Y. If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.
N is a scalar defining the number of points to use in each dimension.
If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a 2-element vector with a graphics handle for the created surface plot and a second handle for the created contour plot.
Example:
f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezsurfc (f, [-3, 3]);
See also: surfc, ezsurf, ezplot, ezmesh, ezmeshc, shading.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Plot the surface and contour lines defined by a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ezsurf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1657
-- Function File: ezsurf (F)
-- Function File: ezsurf (FX, FY, FZ)
-- Function File: ezsurf (..., DOM)
-- Function File: ezsurf (..., N)
-- Function File: ezsurf (..., "circ")
-- Function File: ezsurf (HAX, ...)
-- Function File: H = ezsurf (...)
Plot the surface defined by a function.
F is a string, inline function, or function handle with two arguments defining the function. By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.
If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.
If DOM is a two element vector, it represents the minimum and maximum values of both X and Y. If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.
N is a scalar defining the number of points to use in each dimension.
If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
Example 1: 2-argument function
f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezsurf (f, [-3, 3]);
Example 2: parametrically defined function
fx = @(s,t) cos (s) .* cos (t);
fy = @(s,t) sin (s) .* cos (t);
fz = @(s,t) sin (t);
ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
See also: surf, ezsurfc, ezplot, ezmesh, ezmeshc, shading.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Plot the surface defined by a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
feather
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
-- Function File: feather (U, V)
-- Function File: feather (Z)
-- Function File: feather (..., STYLE)
-- Function File: feather (HAX, ...)
-- Function File: H = feather (...)
Plot the '(U, V)' components of a vector field emanating from equidistant points on the x-axis.
If a single complex argument Z is given, then 'U = real (Z)' and 'V = imag (Z)'.
The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of graphics handles to the line objects representing the drawn vectors.
phi = [0 : 15 : 360] * pi/180;
feather (sin (phi), cos (phi));
See also: plot, quiver, compass.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Plot the '(U, V)' components of a vector field emanating from equidistant points on the x-axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fill
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1668
-- Function File: fill (X, Y, C)
-- Function File: fill (X1, Y1, C1, X2, Y2, C2)
-- Function File: fill (..., PROP, VAL)
-- Function File: fill (HAX, ...)
-- Function File: H = fill (...)
Create one or more filled 2-D polygons.
The inputs X and Y are the coordinates of the polygon vertices. If the inputs are matrices then the rows represent different vertices and each column produces a different polygon. 'fill' will close any open polygons before plotting.
The input C determines the color of the polygon. The simplest form is a single color specification such as a 'plot' format or an RGB-triple. In this case the polygon(s) will have one unique color. If C is a vector or matrix then the color data is first scaled using 'caxis' and then indexed into the current colormap. A row vector will color each polygon (a column from matrices X and Y) with a single computed color. A matrix C of the same size as X and Y will compute the color of each vertex and then interpolate the face color between the vertices.
Multiple property/value pairs for the underlying patch object may be specified, but they must appear in pairs.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of graphics handles to the created patch objects.
Example: red square
vertices = [0 0
1 0
1 1
0 1];
fill (vertices(:,1), vertices(:,2), "r");
axis ([-0.5 1.5, -0.5 1.5])
axis equal
See also: patch, caxis, colormap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Create one or more filled 2-D polygons.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1813
-- Function File: fplot (FN, LIMITS)
-- Function File: fplot (..., TOL)
-- Function File: fplot (..., N)
-- Function File: fplot (..., FMT)
-- Function File: [X, Y] = fplot (...)
Plot a function FN within the range defined by LIMITS.
FN is a function handle, inline function, or string containing the name of the function to evaluate.
The limits of the plot are of the form '[XLO, XHI]' or '[XLO, XHI, YLO, YHI]'.
The next three arguments are all optional and any number of them may be given in any order.
TOL is the relative tolerance to use for the plot and defaults to 2e-3 (.2%).
N is the minimum number of points to use. When N is specified, the maximum stepsize will be 'XHI - XLO / N'. More than N points may still be used in order to meet the relative tolerance requirement.
The FMT argument specifies the linestyle to be used by the plot command.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
With no output arguments the results are immediately plotted. With two output arguments the 2-D plot data is returned. The data can subsequently be plotted manually with 'plot (X, Y)'.
Example:
fplot (@cos, [0, 2*pi])
fplot ("[cos(x), sin(x)]", [0, 2*pi])
Programming Notes:
'fplot' works best with continuous functions. Functions with discontinuities are unlikely to plot well. This restriction may be removed in the future.
'fplot' requires that the function accept and return a vector argument. Consider this when writing user-defined functions and use '.*', './', etc. See the function 'vectorize' for potentially converting inline or anonymous functions to vectorized versions.
See also: ezplot, plot, vectorize.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Plot a function FN within the range defined by LIMITS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hist
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1619
-- Function File: hist (Y)
-- Function File: hist (Y, X)
-- Function File: hist (Y, NBINS)
-- Function File: hist (Y, X, NORM)
-- Function File: hist (..., PROP, VAL, ...)
-- Function File: hist (HAX, ...)
-- Function File: [NN, XX] = hist (...)
Produce histogram counts or plots.
With one vector input argument, Y, plot a histogram of the values with 10 bins. The range of the histogram bins is determined by the range of the data. With one matrix input argument, Y, plot a histogram where each bin contains a bar per input column.
Given a second vector argument, X, use that as the centers of the bins, with the width of the bins determined from the adjacent values in the vector.
If scalar, the second argument, NBINS, defines the number of bins.
If a third argument is provided, the histogram is normalized such that the sum of the bars is equal to NORM.
Extreme values are lumped into the first and last bins.
The histogram's appearance may be modified by specifying property/value pairs. For example the face and edge color may be modified.
hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");
The histogram's colors also depend upon the current colormap.
hist (rand (10, 3));
colormap (summer ());
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
With two output arguments, produce the values NN (numbers of elements) and XX (bin centers) such that 'bar (XX, NN)' will plot the histogram.
See also: histc, bar, pie, rose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Produce histogram counts or plots.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isocolors
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3351
-- Function File: [CD] = isocolors (C, V)
-- Function File: [CD] = isocolors (X, Y, Z, C, V)
-- Function File: [CD] = isocolors (X, Y, Z, R, G, B, V)
-- Function File: [CD] = isocolors (R, G, B, V)
-- Function File: [CD] = isocolors (..., P)
-- Function File: isocolors (...)
Compute isosurface colors.
If called with one output argument and the first input argument C is a three-dimensional array that contains color values and the second input argument V keeps the vertices of a geometry then return a matrix CD with color data information for the geometry at computed points '[x, y, z] = meshgrid (1:l, 1:m, 1:n)'. The output argument CD can be taken to manually set FaceVertexCData of a patch.
If called with further input arguments X, Y and Z which are three-dimensional arrays of the same size than C then the color data is taken at those given points. Instead of the color data C this function can also be called with RGB values R, G, B. If input argumnets X, Y, Z are not given then again 'meshgrid' computed values are taken.
Optionally, the patch handle P can be given as the last input argument to all variations of function calls instead of the vertices data V. Finally, if no output argument is given then directly change the colors of a patch that is given by the patch handle P.
For example:
function [] = isofinish (p)
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
set (p, "FaceColor", "interp");
## set (p, "FaceLighting", "flat");
## light ("Position", [1 1 5]); # Available with JHandles
endfunction
N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); # Open another figure window
subplot (2,2,1); view (-38, 20);
[f, v] = isosurface (x, y, z, c, iso);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
cdat = rand (size (c)); # Compute random patch color data
isocolors (x, y, z, cdat, p); # Directly set colors of patch
isofinish (p); # Call user function isofinish
subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
[r, g, b] = meshgrid (lin, 2-lin, 2-lin);
cdat = isocolors (x, y, z, c, v); # Compute color data vertices
set (p, "FaceVertexCData", cdat); # Set color data manually
isofinish (p);
subplot (2,2,3); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
cdat = isocolors (r, g, b, c, p); # Compute color data patch
set (p, "FaceVertexCData", cdat); # Set color data manually
isofinish (p);
subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
r = g = b = repmat ([1:N] / N, [N, 1, N]); # Black to white
cdat = isocolors (x, y, z, r, g, b, v);
set (p, "FaceVertexCData", cdat);
isofinish (p);
See also: isosurface, isonormals.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Compute isosurface colors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isonormals
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3282
-- Function File: [N] = isonormals (VAL, V)
-- Function File: [N] = isonormals (VAL, P)
-- Function File: [N] = isonormals (X, Y, Z, VAL, V)
-- Function File: [N] = isonormals (X, Y, Z, VAL, P)
-- Function File: [N] = isonormals (..., "negate")
-- Function File: isonormals (..., P)
Calculate normals to an isosurface.
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data for an isosurface geometry and the second input argument V keeps the vertices of an isosurface then return the normals N in form of a matrix with the same size than V at computed points '[x, y, z] = meshgrid (1:l, 1:m, 1:n)'. The output argument N can be taken to manually set VERTEXNORMALS of a patch.
If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points. Instead of the vertices data V a patch handle P can be passed to this function.
If given the string input argument "negate" as last input argument then compute the reverse vector normals of an isosurface geometry.
If no output argument is given then directly redraw the patch that is given by the patch handle P.
For example:
function [] = isofinish (p)
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
set (p, "VertexNormals", -get (p,"VertexNormals")); # Revert normals
set (p, "FaceColor", "interp");
## set (p, "FaceLighting", "phong");
## light ("Position", [1 1 5]); # Available with JHandles
endfunction
N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); # Open another figure window
subplot (2,2,1); view (-38, 20);
[f, v, cdat] = isosurface (x, y, z, c, iso, y);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
isofinish (p); # Call user function isofinish
subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
isonormals (x, y, z, c, p); # Directly modify patch
isofinish (p);
subplot (2,2,3); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
n = isonormals (x, y, z, c, v); # Compute normals of isosurface
set (p, "VertexNormals", n); # Manually set vertex normals
isofinish (p);
subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
isonormals (x, y, z, c, v, "negate"); # Use reverse directly
isofinish (p);
See also: isosurface, isocolors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Calculate normals to an isosurface.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isosurface
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4058
-- Function File: [FV] = isosurface (VAL, ISO)
-- Function File: [FV] = isosurface (X, Y, Z, VAL, ISO)
-- Function File: [FV] = isosurface (..., "noshare", "verbose")
-- Function File: [FVC] = isosurface (..., COL)
-- Function File: [F, V] = isosurface (X, Y, Z, VAL, ISO)
-- Function File: [F, V, C] = isosurface (X, Y, Z, VAL, ISO, COL)
-- Function File: isosurface (X, Y, Z, VAL, ISO, COL, OPT)
Calculate isosurface of 3-D data.
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data of an isosurface geometry and the second input argument ISO keeps the isovalue as a scalar value then return a structure array FV that contains the fields FACES and VERTICES at computed points '[x, y, z] = meshgrid (1:l, 1:m, 1:n)'. The output argument FV can directly be taken as an input argument for the 'patch' function.
If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points.
The string input argument "noshare" is only for compatibility and has no effect. If given the string input argument "verbose" then print messages to the command line interface about the current progress.
If called with the input argument COL which is a three-dimensional array of the same size than VAL then take those values for the interpolation of coloring the isosurface geometry. Add the field FACEVERTEXCDATA to the structure array FV.
If called with two or three output arguments then return the information about the faces F, vertices V and color data C as separate arrays instead of a single structure array.
If called with no output argument then directly process the isosurface geometry with the 'patch' command.
For example,
[x, y, z] = meshgrid (1:5, 1:5, 1:5);
val = rand (5, 5, 5);
isosurface (x, y, z, val, .5);
will directly draw a random isosurface geometry in a graphics window. Another example for an isosurface geometry with different additional coloring
N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); # Open another figure window
subplot (2,2,1); view (-38, 20);
[f, v] = isosurface (x, y, z, c, iso);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceColor", "green", "FaceLighting", "phong");
# light ("Position", [1 1 5]); # Available with the JHandles package
subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "blue");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceColor", "none", "FaceLighting", "phong");
# light ("Position", [1 1 5]);
subplot (2,2,3); view (-38, 20);
[f, v, c] = isosurface (x, y, z, c, iso, y);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...
"FaceColor", "interp", "EdgeColor", "none");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceLighting", "phong");
# light ("Position", [1 1 5]);
subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...
"FaceColor", "interp", "EdgeColor", "blue");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceLighting", "phong");
# light ("Position", [1 1 5]);
See also: isonormals, isocolors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Calculate isosurface of 3-D data.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
line
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 799
-- Function File: line ()
-- Function File: line (X, Y)
-- Function File: line (X, Y, PROPERTY, VALUE, ...)
-- Function File: line (X, Y, Z)
-- Function File: line (X, Y, Z, PROPERTY, VALUE, ...)
-- Function File: line (PROPERTY, VALUE, ...)
-- Function File: line (HAX, ...)
-- Function File: H = line (...)
Create line object from X and Y (and possibly Z) and insert in the current axes.
Multiple property-value pairs may be specified for the line object, but they must appear in pairs.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle (or vector of handles) to the line objects created.
See also: image, patch, rectangle, surface, text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create line object from X and Y (and possibly Z) and insert in the current axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
loglogerr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1051
-- Function File: loglogerr (Y, EY)
-- Function File: loglogerr (Y, ..., FMT)
-- Function File: loglogerr (X, Y, EY)
-- Function File: loglogerr (X, Y, ERR, FMT)
-- Function File: loglogerr (X, Y, LERR, UERR, FMT)
-- Function File: loglogerr (X, Y, EX, EY, FMT)
-- Function File: loglogerr (X, Y, LX, UX, LY, UY, FMT)
-- Function File: loglogerr (X1, Y1, ..., FMT, XN, YN, ...)
-- Function File: loglogerr (HAX, ...)
-- Function File: H = loglogerr (...)
Produce 2-D plots on a double logarithm axis with errorbars.
Many different combinations of arguments are possible. The most common form is
loglogerr (X, Y, EY, FMT)
which produces a double logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT. *Note errorbar: XREFerrorbar, for available formats and additional information.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
See also: errorbar, semilogxerr, semilogyerr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce 2-D plots on a double logarithm axis with errorbars.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
loglog
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 635
-- Function File: loglog (Y)
-- Function File: loglog (X, Y)
-- Function File: loglog (X, Y, PROP, VALUE, ...)
-- Function File: loglog (X, Y, FMT)
-- Function File: loglog (HAX, ...)
-- Function File: H = loglog (...)
Produce a 2-D plot using logarithmic scales for both axes.
See the documentation of 'plot' for a description of the arguments that 'loglog' will accept.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
See also: plot, semilogx, semilogy.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Produce a 2-D plot using logarithmic scales for both axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
meshc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1480
-- Function File: meshc (X, Y, Z)
-- Function File: meshc (Z)
-- Function File: meshc (..., C)
-- Function File: meshc (..., PROP, VAL, ...)
-- Function File: meshc (HAX, ...)
-- Function File: H = meshc (...)
Plot a 3-D wireframe mesh with underlying contour lines.
The wireframe mesh is plotted using rectangles. The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'. over a 2-D rectangular region in the x-y plane. Z determines the height above the plane of each vertex. If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'. Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally the color of the mesh can be specified independently of Z by supplying a color matrix, C.
Any property/value pairs are passed directly to the underlying surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a 2-element vector with a graphics handle to the created surface object and to the created contour plot.
See also: ezmeshc, mesh, meshz, contour, surfc, surface, meshgrid, hidden, shading, colormap, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Plot a 3-D wireframe mesh with underlying contour lines.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1397
-- Function File: mesh (X, Y, Z)
-- Function File: mesh (Z)
-- Function File: mesh (..., C)
-- Function File: mesh (..., PROP, VAL, ...)
-- Function File: mesh (HAX, ...)
-- Function File: H = mesh (...)
Plot a 3-D wireframe mesh.
The wireframe mesh is plotted using rectangles. The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'. over a 2-D rectangular region in the x-y plane. Z determines the height above the plane of each vertex. If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'. Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of Z by supplying a color matrix, C.
Any property/value pairs are passed directly to the underlying surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
See also: ezmesh, meshc, meshz, trimesh, contour, surf, surface, meshgrid, hidden, shading, colormap, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Plot a 3-D wireframe mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
meshz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1430
-- Function File: meshz (X, Y, Z)
-- Function File: meshz (Z)
-- Function File: meshz (..., C)
-- Function File: meshz (..., PROP, VAL, ...)
-- Function File: meshz (HAX, ...)
-- Function File: H = meshz (...)
Plot a 3-D wireframe mesh with a surrounding curtain.
The wireframe mesh is plotted using rectangles. The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'. over a 2-D rectangular region in the x-y plane. Z determines the height above the plane of each vertex. If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 0:columns (Z) - 1, Y = 0:rows (Z) - 1'. Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally the color of the mesh can be specified independently of Z by supplying a color matrix, C.
Any property/value pairs are passed directly to the underlying surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
See also: mesh, meshc, contour, surf, surface, waterfall, meshgrid, hidden, shading, colormap, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Plot a 3-D wireframe mesh with a surrounding curtain.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pareto
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1706
-- Function File: pareto (Y)
-- Function File: pareto (Y, X)
-- Function File: pareto (HAX, ...)
-- Function File: H = pareto (...)
Draw a Pareto chart.
A Pareto chart is a bar graph that arranges information in such a way that priorities for process improvement can be established; It organizes and displays information to show the relative importance of data. The chart is similar to the histogram or bar chart, except that the bars are arranged in decreasing magnitude from left to right along the x-axis.
The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the majority of an effect is due to a small subset of the causes. For quality improvement, the first few contributing causes (leftmost bars as presented on the diagram) to a problem usually account for the majority of the result. Thus, targeting these "major causes" for elimination results in the most cost-effective improvement scheme.
Typically only the magnitude data Y is present in which case X is taken to be the range '1 : length (Y)'. If X is given it may be a string array, a cell array of strings, or a numerical vector.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a 2-element vector with a graphics handle for the created bar plot and a second handle for the created line plot.
An example of the use of 'pareto' is
Cheese = {"Cheddar", "Swiss", "Camembert", ...
"Munster", "Stilton", "Blue"};
Sold = [105, 30, 70, 10, 15, 20];
pareto (Sold, Cheese);
See also: bar, barh, hist, pie, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Draw a Pareto chart.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
patch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2374
-- Function File: patch ()
-- Function File: patch (X, Y, C)
-- Function File: patch (X, Y, Z, C)
-- Function File: patch (FV)
-- Function File: patch ("Faces", FACES, "Vertices", VERTS, ...)
-- Function File: patch (..., PROP, VAL, ...)
-- Function File: patch (HAX, ...)
-- Function File: H = patch (...)
Create patch object in the current axes with vertices at locations (X, Y) and of color C.
If the vertices are matrices of size MxN then each polygon patch has M vertices and a total of N polygons will be created. If some polygons do not have M vertices use NaN to represent "no vertex". If the Z input is present then 3-D patches will be created.
The color argument C can take many forms. To create polygons which all share a single color use a string value (e.g., "r" for red), a scalar value which is scaled by 'caxis' and indexed into the current colormap, or a 3-element RGB vector with the precise TrueColor.
If C is a vector of length N then the ith polygon will have a color determined by scaling entry C(i) according to 'caxis' and then indexing into the current colormap. More complicated coloring situations require directly manipulating patch property/value pairs.
Instead of specifying polygons by matrices X and Y, it is possible to present a unique list of vertices and then a list of polygon faces created from those vertices. In this case the "Vertices" matrix will be an Nx2 (2-D patch) or Nx3 (3-D path). The MxN "Faces" matrix describes M polygons having N vertices--each row describes a single polygon and each column entry is an index into the "Vertices" matrix to identify a vertex. The patch object can be created by directly passing the property/value pairs "Vertices"/VERTS, "Faces"/FACES as inputs.
A third input form is to create a structure FV with the fields "vertices", "faces", and optionally "facevertexcdata".
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created patch object.
Implementation Note: Patches are highly configurable objects. To truly customize them requires setting patch properties directly. Useful patch properties are: "cdata", "edgecolor", "facecolor", "faces", "facevertexcdata".
See also: fill, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Create patch object in the current axes with vertices at locations (X, Y) and of color C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pcolor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1537
-- Function File: pcolor (X, Y, C)
-- Function File: pcolor (C)
-- Function File: pcolor (HAX, ...)
-- Function File: H = pcolor (...)
Produce a 2-D density plot.
A 'pcolor' plot draws rectangles with colors from the matrix C over the two-dimensional region represented by the matrices X and Y. X and Y are the coordinates of the mesh's vertices and are typically the output of 'meshgrid'. If X and Y are vectors, then a typical vertex is (X(j), Y(i), C(i,j)). Thus, columns of C correspond to different X values and rows of C correspond to different Y values.
The values in C are scaled to span the range of the current colormap. Limits may be placed on the color axis by the command 'caxis', or by setting the 'clim' property of the parent axis.
The face color of each cell of the mesh is determined by interpolating the values of C for each of the cell's vertices; Contrast this with 'imagesc' which renders one cell for each element of C.
'shading' modifies an attribute determining the manner by which the face color of each cell is interpolated from the values of C, and the visibility of the cells' edges. By default the attribute is "faceted", which renders a single color for each cell's face with the edge visible.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
See also: caxis, shading, meshgrid, contour, imagesc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Produce a 2-D density plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
peaks
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1056
-- Function File: peaks ()
-- Function File: peaks (N)
-- Function File: peaks (X, Y)
-- Function File: Z = peaks (...)
-- Function File: [X, Y, Z] = peaks (...)
Plot a function with lots of local maxima and minima.
The function has the form
f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ...
- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
- 1/3*exp(-(x+1)^2 - y^2)
Called without a return argument, 'peaks' plots the surface of the above function using 'surf'.
If N is a scalar, 'peaks' plots the value of the above function on an N-by-N mesh over the range [-3,3]. The default value for N is 49.
If N is a vector, then it represents the grid values over which to calculate the function. If X and Y are specified then the function value is calculated over the specified grid of vertices.
When called with output arguments, return the data for the function evaluated over the meshgrid. This can subsequently be plotted with 'surf (X, Y, Z)'.
See also: sombrero, meshgrid, mesh, surf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Plot a function with lots of local maxima and minima.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pie3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1227
-- Function File: pie3 (X)
-- Function File: pie3 (..., EXPLODE)
-- Function File: pie3 (..., LABELS)
-- Function File: pie3 (HAX, ...);
-- Function File: H = pie3 (...);
Plot a 3-D pie chart.
Called with a single vector argument, produces a 3-D pie chart of the elements in X. The size of the ith slice is the percentage that the element Xi represents of the total sum of X: 'pct = X(i) / sum (X)'.
The optional input EXPLODE is a vector of the same length as X that, if nonzero, "explodes" the slice from the pie chart.
The optional input LABELS is a cell array of strings of the same length as X specifying the label for each slice.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a list of graphics handles to the patch, surface, and text objects generating the plot.
Note: If 'sum (X) <= 1' then the elements of X are interpreted as percentages directly and are not normalized by 'sum (x)'. Furthermore, if the sum is less than 1 then there will be a missing slice in the pie plot to represent the missing, unspecified percentage.
See also: pie, bar, hist, rose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Plot a 3-D pie chart.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pie
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1204
-- Function File: pie (X)
-- Function File: pie (..., EXPLODE)
-- Function File: pie (..., LABELS)
-- Function File: pie (HAX, ...);
-- Function File: H = pie (...);
Plot a 2-D pie chart.
When called with a single vector argument, produce a pie chart of the elements in X. The size of the ith slice is the percentage that the element Xi represents of the total sum of X: 'pct = X(i) / sum (X)'.
The optional input EXPLODE is a vector of the same length as X that, if nonzero, "explodes" the slice from the pie chart.
The optional input LABELS is a cell array of strings of the same length as X specifying the label for each slice.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a list of handles to the patch and text objects generating the plot.
Note: If 'sum (X) <= 1' then the elements of X are interpreted as percentages directly and are not normalized by 'sum (x)'. Furthermore, if the sum is less than 1 then there will be a missing slice in the pie plot to represent the missing, unspecified percentage.
See also: pie3, bar, hist, rose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Plot a 2-D pie chart.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
plot3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2083
-- Function File: plot3 (X, Y, Z)
-- Function File: plot3 (X, Y, Z, PROP, VALUE, ...)
-- Function File: plot3 (X, Y, Z, FMT)
-- Function File: plot3 (X, CPLX)
-- Function File: plot3 (CPLX)
-- Function File: plot3 (HAX, ...)
-- Function File: H = plot3 (...)
Produce 3-D plots.
Many different combinations of arguments are possible. The simplest form is
plot3 (X, Y, Z)
in which the arguments are taken to be the vertices of the points to be plotted in three dimensions. If all arguments are vectors of the same length, then a single continuous line is drawn. If all arguments are matrices, then each column of is treated as a separate line. No attempt is made to transpose the arguments to make the number of rows match.
If only two arguments are given, as
plot3 (X, CPLX)
the real and imaginary parts of the second argument are used as the Y and Z coordinates, respectively.
If only one argument is given, as
plot3 (CPLX)
the real and imaginary parts of the argument are used as the Y and Z values, and they are plotted versus their index.
Arguments may also be given in groups of three as
plot3 (X1, Y1, Z1, X2, Y2, Z2, ...)
in which each set of three arguments is treated as a separate line or set of lines in three dimensions.
To plot multiple one- or two-argument groups, separate each group with an empty format string, as
plot3 (X1, C1, "", C2, "", ...)
Multiple property-value pairs may be specified which will affect the line objects drawn by 'plot3'. If the FMT argument is supplied it will format the line objects in the same manner as 'plot'.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
Example:
z = [0:0.05:5];
plot3 (cos (2*pi*z), sin (2*pi*z), z, ";helix;");
plot3 (z, exp (2i*pi*z), ";complex sinusoid;");
See also: ezplot3, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Produce 3-D plots.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
plot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6229
-- Function File: plot (Y)
-- Function File: plot (X, Y)
-- Function File: plot (X, Y, FMT)
-- Function File: plot (..., PROPERTY, VALUE, ...)
-- Function File: plot (X1, Y1, ..., XN, YN)
-- Function File: plot (HAX, ...)
-- Function File: H = plot (...)
Produce 2-D plots.
Many different combinations of arguments are possible. The simplest form is
plot (Y)
where the argument is taken as the set of Y coordinates and the X coordinates are taken to be the range '1:numel (Y)'.
If more than one argument is given, they are interpreted as
plot (Y, PROPERTY, VALUE, ...)
or
plot (X, Y, PROPERTY, VALUE, ...)
or
plot (X, Y, FMT, ...)
and so on. Any number of argument sets may appear. The X and Y values are interpreted as follows:
* If a single data argument is supplied, it is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements, starting with 1.
* If X and Y are scalars, a single point is plotted.
* 'squeeze()' is applied to arguments with more than two dimensions, but no more than two singleton dimensions.
* If both arguments are vectors, the elements of Y are plotted versus the elements of X.
* If X is a vector and Y is a matrix, then the columns (or rows) of Y are plotted versus X. (using whichever combination matches, with columns tried first.)
* If the X is a matrix and Y is a vector, Y is plotted versus the columns (or rows) of X. (using whichever combination matches, with columns tried first.)
* If both arguments are matrices, the columns of Y are plotted versus the columns of X. In this case, both matrices must have the same number of rows and columns and no attempt is made to transpose the arguments to make the number of rows match.
Multiple property-value pairs may be specified, but they must appear in pairs. These arguments are applied to the line objects drawn by 'plot'. Useful properties to modify are "linestyle", "linewidth", "color", "marker", "markersize", "markeredgecolor", "markerfacecolor".
The FMT format argument can also be used to control the plot style. The format is composed of three parts: linestyle, markerstyle, color. When a markerstyle is specified, but no linestyle, only the markers are plotted. Similarly, if a linestyle is specified, but no markerstyle, then only lines are drawn. If both are specified then lines and markers will be plotted. If no FMT and no PROPERTY/VALUE pairs are given, then the default plot style is solid lines with no markers and the color determined by the "colororder" property of the current axes.
Format arguments:
linestyle
'-' Use solid lines (default).
'--' Use dashed lines.
':' Use dotted lines.
'-.' Use dash-dotted lines.
markerstyle
'+' crosshair
'o' circle
'*' star
'.' point
'x' cross
's' square
'd' diamond
'^' upward-facing triangle
'v' downward-facing triangle
'>' right-facing triangle
'<' left-facing triangle
'p' pentagram
'h' hexagram
color
'k' blacK
'r' Red
'g' Green
'b' Blue
'm' Magenta
'c' Cyan
'w' White
";key;"
Here "key" is the label to use for the plot legend.
The FMT argument may also be used to assign legend keys. To do so, include the desired label between semicolons after the formatting sequence described above, e.g., "+b;Key Title;". Note that the last semicolon is required and Octave will generate an error if it is left out.
Here are some plot examples:
plot (x, y, "or", x, y2, x, y3, "m", x, y4, "+")
This command will plot 'y' with red circles, 'y2' with solid lines, 'y3' with solid magenta lines, and 'y4' with points displayed as '+'.
plot (b, "*", "markersize", 10)
This command will plot the data in the variable 'b', with points displayed as '*' and a marker size of 10.
t = 0:0.1:6.3;
plot (t, cos(t), "-;cos(t);", t, sin(t), "-b;sin(t);");
This will plot the cosine and sine functions and label them accordingly in the legend.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of graphics handles to the created line objects.
To save a plot, in one of several image formats such as PostScript or PNG, use the 'print' command.
See also: axis, box, grid, hold, legend, title, xlabel, ylabel, xlim, ylim, ezplot, errorbar, fplot, line, plot3, polar, loglog, semilogx, semilogy, subplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Produce 2-D plots.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
plotmatrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1440
-- Function File: plotmatrix (X, Y)
-- Function File: plotmatrix (X)
-- Function File: plotmatrix (..., STYLE)
-- Function File: plotmatrix (HAX, ...)
-- Function File: [H, AX, BIGAX, P, PAX] = plotmatrix (...)
Scatter plot of the columns of one matrix against another.
Given the arguments X and Y that have a matching number of rows, 'plotmatrix' plots a set of axes corresponding to
plot (X(:, i), Y(:, j))
When called with a single argument X this is equivalent to
plotmatrix (X, X)
except that the diagonal of the set of axes will be replaced with the histogram 'hist (X(:, i))'.
The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the 'plot' command.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H provides handles to the individual graphics objects in the scatter plots, whereas AX returns the handles to the scatter plot axis objects.
BIGAX is a hidden axis object that surrounds the other axes, such that the commands 'xlabel', 'title', etc., will be associated with this hidden axis.
Finally, P returns the graphics objects associated with the histogram and PAX the corresponding axes objects.
Example:
plotmatrix (randn (100, 3), "g+")
See also: scatter, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Scatter plot of the columns of one matrix against another.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
plotyy
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1292
-- Function File: plotyy (X1, Y1, X2, Y2)
-- Function File: plotyy (..., FUN)
-- Function File: plotyy (..., FUN1, FUN2)
-- Function File: plotyy (HAX, ...)
-- Function File: [AX, H1, H2] = plotyy (...)
Plot two sets of data with independent y-axes and a common x-axis.
The arguments X1 and Y1 define the arguments for the first plot and X1 and Y2 for the second.
By default the arguments are evaluated with 'feval (@plot, X, Y)'. However the type of plot can be modified with the FUN argument, in which case the plots are generated by 'feval (FUN, X, Y)'. FUN can be a function handle, an inline function, or a string of a function name.
The function to use for each of the plots can be independently defined with FUN1 and FUN2.
If the first argument HAX is an axes handle, then it defines the principal axis in which to plot the X1 and Y1 data.
The return value AX is a vector with the axis handles of the two y-axes. H1 and H2 are handles to the objects generated by the plot commands.
x = 0:0.1:2*pi;
y1 = sin (x);
y2 = exp (x - 1);
ax = plotyy (x, y1, x - 1, y2, @plot, @semilogy);
xlabel ("X");
ylabel (ax(1), "Axis 1");
ylabel (ax(2), "Axis 2");
See also: plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Plot two sets of data with independent y-axes and a common x-axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
polar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1286
-- Function File: polar (THETA, RHO)
-- Function File: polar (THETA, RHO, FMT)
-- Function File: polar (CPLX)
-- Function File: polar (CPLX, FMT)
-- Function File: polar (HAX, ...)
-- Function File: H = polar (...)
Create a 2-D plot from polar coordinates THETA and RHO.
If a single complex input CPLX is given then the real part is used for THETA and the imaginary part is used for RHO.
The optional argument FMT specifies the line format in the same way as 'plot'.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
Implementation Note: The polar axis is drawn using line and text objects encapsulated in an hggroup. The hggroup properties are linked to the original axes object such that altering an appearance property, for example 'fontname', will update the polar axis. Two new properties are added to the original axes-'rtick', 'ttick'-which replace 'xtick', 'ytick'. The first is a list of tick locations in the radial (rho) direction; The second is a list of tick locations in the angular (theta) direction specified in degrees, i.e., in the range 0-359.
See also: rose, compass, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Create a 2-D plot from polar coordinates THETA and RHO.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
quiver3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1656
-- Function File: quiver3 (U, V, W)
-- Function File: quiver3 (X, Y, Z, U, V, W)
-- Function File: quiver3 (..., S)
-- Function File: quiver3 (..., STYLE)
-- Function File: quiver3 (..., "filled")
-- Function File: quiver3 (HAX, ...)
-- Function File: H = quiver3 (...)
Plot a 3-D vector field with arrows.
Plot the (U, V, W) components of a vector field in an (X, Y, Z) meshgrid. If the grid is uniform then X, Y, and Z can be specified as vectors.
If X, Y, and Z are undefined they are assumed to be '(1:M, 1:N, 1:P)' where '[M, N] = size (U)' and 'P = max (size (W))'.
The variable S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing. A value of 0 disables all scaling. The default value is 0.9.
The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command. If a marker is specified then markers at the grid points of the vectors are drawn rather than arrows. If the argument "filled" is given then the markers are filled.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to a quiver object. A quiver object regroups the components of the quiver plot (body, arrow, and marker), and allows them to be changed together.
[x, y, z] = peaks (25);
surf (x, y, z);
hold on;
[u, v, w] = surfnorm (x, y, z / 10);
h = quiver3 (x, y, z, u, v, w);
set (h, "maxheadsize", 0.33);
See also: quiver, compass, feather, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Plot a 3-D vector field with arrows.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
quiver
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1545
-- Function File: quiver (U, V)
-- Function File: quiver (X, Y, U, V)
-- Function File: quiver (..., S)
-- Function File: quiver (..., STYLE)
-- Function File: quiver (..., "filled")
-- Function File: quiver (HAX, ...)
-- Function File: H = quiver (...)
Plot a 2-D vector field with arrows.
Plot the (U, V) components of a vector field in an (X, Y) meshgrid. If the grid is uniform then X and Y can be specified as vectors.
If X and Y are undefined they are assumed to be '(1:M, 1:N)' where '[M, N] = size (U)'.
The variable S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing. A value of 0 disables all scaling. The default value is 0.9.
The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command. If a marker is specified then markers at the grid points of the vectors are drawn rather than arrows. If the argument "filled" is given then the markers are filled.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to a quiver object. A quiver object regroups the components of the quiver plot (body, arrow, and marker), and allows them to be changed together.
Example:
[x, y] = meshgrid (1:2:20);
h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
set (h, "maxheadsize", 0.33);
See also: quiver3, compass, feather, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Plot a 2-D vector field with arrows.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
rectangle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1517
-- Function File: rectangle ()
-- Function File: rectangle (..., "Position", POS)
-- Function File: rectangle (..., "Curvature", CURV)
-- Function File: rectangle (..., "EdgeColor", EC)
-- Function File: rectangle (..., "FaceColor", FC)
-- Function File: rectangle (HAX, ...)
-- Function File: H = rectangle (...)
Draw a rectangular patch defined by POS and CURV.
The variable 'POS(1:2)' defines the lower left-hand corner of the patch and 'POS(3:4)' defines its width and height. By default, the value of POS is '[0, 0, 1, 1]'.
The variable CURV defines the curvature of the sides of the rectangle and may be a scalar or two-element vector with values between 0 and 1. A value of 0 represents no curvature of the side, whereas a value of 1 means that the side is entirely curved into the arc of a circle. If CURV is a two-element vector, then the first element is the curvature along the x-axis of the patch and the second along y-axis.
If CURV is a scalar, it represents the curvature of the shorter of the two sides of the rectangle and the curvature of the other side is defined by
min (pos(1:2)) / max (pos(1:2)) * curv
Additional property/value pairs are passed to the underlying patch command.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created rectangle object.
See also: patch, line, cylinder, ellipsoid, sphere.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Draw a rectangular patch defined by POS and CURV.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ribbon
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 682
-- Function File: ribbon (Y)
-- Function File: ribbon (X, Y)
-- Function File: ribbon (X, Y, WIDTH)
-- Function File: ribbon (HAX, ...)
-- Function File: H = ribbon (...)
Draw a ribbon plot for the columns of Y vs. X.
The optional parameter WIDTH specifies the width of a single ribbon (default is 0.75). If X is omitted, a vector containing the row numbers is assumed ('1:rows (Y)').
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of graphics handles to the surface objects representing each ribbon.
See also: surface, waterfall.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Draw a ribbon plot for the columns of Y vs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rose
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1139
-- Function File: rose (TH)
-- Function File: rose (TH, NBINS)
-- Function File: rose (TH, BINS)
-- Function File: rose (HAX, ...)
-- Function File: H = rose (...)
-- Function File: [THOUT ROUT] = rose (...)
Plot an angular histogram.
With one vector argument, TH, plot the histogram with 20 angular bins. If TH is a matrix then each column of TH produces a separate histogram.
If NBINS is given and is a scalar, then the histogram is produced with NBIN bins. If BINS is a vector, then the center of each bin is defined by the values of BINS and the number of bins is given by the number of elements in BINS.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a vector of graphics handles to the line objects representing each histogram.
If two output arguments are requested then no plot is made and the polar vectors necessary to plot the histogram are returned instead.
[th, r] = rose ([2*randn(1e5,1), pi + 2*randn(1e5,1)]);
polar (th, r);
See also: hist, polar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Plot an angular histogram.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
scatter3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1692
-- Function File: scatter3 (X, Y, Z)
-- Function File: scatter3 (X, Y, Z, S)
-- Function File: scatter3 (X, Y, Z, S, C)
-- Function File: scatter3 (..., STYLE)
-- Function File: scatter3 (..., "filled")
-- Function File: scatter3 (..., PROP, VAL)
-- Function File: scatter3 (HAX, ...)
-- Function File: H = scatter3 (...)
Draw a 3-D scatter plot.
A marker is plotted at each point defined by the coordinates in the vectors X, Y, and Z.
The size of the markers is determined by S, which can be a scalar or a vector of the same length as X, Y, and Z. If S is not given, or is an empty matrix, then a default value of 8 points is used.
The color of the markers is determined by C, which can be a string defining a fixed color; a 3-element vector giving the red, green, and blue components of the color; a vector of the same length as X that gives a scaled index into the current colormap; or an Nx3 matrix defining the RGB color of each marker individually.
The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the 'plot' command. If no marker is specified it defaults to "o" or circles. If the argument "filled" is given then the markers are filled.
Additional property/value pairs are passed directly to the underlying patch object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the hggroup object representing the points.
[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [], z(:));
See also: scatter, patch, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Draw a 3-D scatter plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
scatter
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1697
-- Function File: scatter (X, Y)
-- Function File: scatter (X, Y, S)
-- Function File: scatter (X, Y, S, C)
-- Function File: scatter (..., STYLE)
-- Function File: scatter (..., "filled")
-- Function File: scatter (..., PROP, VAL, ...)
-- Function File: scatter (HAX, ...)
-- Function File: H = scatter (...)
Draw a 2-D scatter plot.
A marker is plotted at each point defined by the coordinates in the vectors X and Y.
The size of the markers is determined by S, which can be a scalar or a vector of the same length as X and Y. If S is not given, or is an empty matrix, then a default value of 8 points is used.
The color of the markers is determined by C, which can be a string defining a fixed color; a 3-element vector giving the red, green, and blue components of the color; a vector of the same length as X that gives a scaled index into the current colormap; or an Nx3 matrix defining the RGB color of each marker individually.
The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the 'plot' command. If no marker is specified it defaults to "o" or circles. If the argument "filled" is given then the markers are filled.
Additional property/value pairs are passed directly to the underlying patch object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created patch object.
Example:
x = randn (100, 1);
y = randn (100, 1);
scatter (x, y, [], sqrt (x.^2 + y.^2));
See also: scatter3, patch, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Draw a 2-D scatter plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
semilogxerr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1103
-- Function File: semilogxerr (Y, EY)
-- Function File: semilogxerr (Y, ..., FMT)
-- Function File: semilogxerr (X, Y, EY)
-- Function File: semilogxerr (X, Y, ERR, FMT)
-- Function File: semilogxerr (X, Y, LERR, UERR, FMT)
-- Function File: semilogxerr (X, Y, EX, EY, FMT)
-- Function File: semilogxerr (X, Y, LX, UX, LY, UY, FMT)
-- Function File: semilogxerr (X1, Y1, ..., FMT, XN, YN, ...)
-- Function File: semilogxerr (HAX, ...)
-- Function File: H = semilogxerr (...)
Produce 2-D plots using a logarithmic scale for the x-axis and errorbars at each data point.
Many different combinations of arguments are possible. The most common form is
semilogxerr (X, Y, EY, FMT)
which produces a semi-logarithmic plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT. *Note errorbar: XREFerrorbar, for available formats and additional information.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
See also: errorbar, semilogyerr, loglogerr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Produce 2-D plots using a logarithmic scale for the x-axis and errorbars at each data point.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
semilogx
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 653
-- Function File: semilogx (Y)
-- Function File: semilogx (X, Y)
-- Function File: semilogx (X, Y, PROPERTY, VALUE, ...)
-- Function File: semilogx (X, Y, FMT)
-- Function File: semilogx (HAX, ...)
-- Function File: H = semilogx (...)
Produce a 2-D plot using a logarithmic scale for the x-axis.
See the documentation of 'plot' for a description of the arguments that 'semilogx' will accept.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
See also: plot, semilogy, loglog.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce a 2-D plot using a logarithmic scale for the x-axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
semilogyerr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1103
-- Function File: semilogyerr (Y, EY)
-- Function File: semilogyerr (Y, ..., FMT)
-- Function File: semilogyerr (X, Y, EY)
-- Function File: semilogyerr (X, Y, ERR, FMT)
-- Function File: semilogyerr (X, Y, LERR, UERR, FMT)
-- Function File: semilogyerr (X, Y, EX, EY, FMT)
-- Function File: semilogyerr (X, Y, LX, UX, LY, UY, FMT)
-- Function File: semilogyerr (X1, Y1, ..., FMT, XN, YN, ...)
-- Function File: semilogyerr (HAX, ...)
-- Function File: H = semilogyerr (...)
Produce 2-D plots using a logarithmic scale for the y-axis and errorbars at each data point.
Many different combinations of arguments are possible. The most common form is
semilogyerr (X, Y, EY, FMT)
which produces a semi-logarithmic plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT. *Note errorbar: XREFerrorbar, for available formats and additional information.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
See also: errorbar, semilogxerr, loglogerr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Produce 2-D plots using a logarithmic scale for the y-axis and errorbars at each data point.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
semilogy
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 651
-- Function File: semilogy (Y)
-- Function File: semilogy (X, Y)
-- Function File: semilogy (X, Y, PROPERTY, VALUE, ...)
-- Function File: semilogy (X, Y, FMT)
-- Function File: semilogy (H, ...)
-- Function File: H = semilogy (...)
Produce a 2-D plot using a logarithmic scale for the y-axis.
See the documentation of 'plot' for a description of the arguments that 'semilogy' will accept.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created plot.
See also: plot, semilogx, loglog.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce a 2-D plot using a logarithmic scale for the y-axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
shrinkfaces
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1714
-- Function File: shrinkfaces (P, SF)
-- Function File: NFV = shrinkfaces (P, SF)
-- Function File: NFV = shrinkfaces (FV, SF)
-- Function File: NFV = shrinkfaces (F, V, SF)
-- Function File: [NF, NV] = shrinkfaces (...)
Reduce the size of faces in a patch by the shrink factor SF.
The patch object can be specified by a graphics handle (P), a patch structure (FV) with the fields "faces" and "vertices", or as two separate matrices (F, V) of faces and vertices.
The shrink factor SF is a positive number specifying the percentage of the original area the new face will occupy. If no factor is given the default is 0.3 (a reduction to 30% of the original size). A factor greater than 1.0 will result in the expansion of faces.
Given a patch handle as the first input argument and no output parameters, perform the shrinking of the patch faces in place and redraw the patch.
If called with one output argument, return a structure with fields "faces", "vertices", and "facevertexcdata" containing the data after shrinking. This structure can be used directly as an input argument to the 'patch' function.
*Caution:*: Performing the shrink operation on faces which are not convex can lead to undesirable results.
Example: a triangulated 3/4 circle and the corresponding shrunken version.
[phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4));
tri = delaunay (phi(:), r(:));
v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))];
clf ()
p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none");
fv = shrinkfaces (p);
patch (fv)
axis equal
grid on
See also: patch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Reduce the size of faces in a patch by the shrink factor SF.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
slice
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1900
-- Function File: slice (X, Y, Z, V, SX, SY, SZ)
-- Function File: slice (X, Y, Z, V, XI, YI, ZI)
-- Function File: slice (V, SX, SY, SZ)
-- Function File: slice (V, XI, YI, ZI)
-- Function File: slice (..., METHOD)
-- Function File: slice (HAX, ...)
-- Function File: H = slice (...)
Plot slices of 3-D data/scalar fields.
Each element of the 3-dimensional array V represents a scalar value at a location given by the parameters X, Y, and Z. The parameters X, X, and Z are either 3-dimensional arrays of the same size as the array V in the "meshgrid" format or vectors. The parameters XI, etc. respect a similar format to X, etc., and they represent the points at which the array VI is interpolated using interp3. The vectors SX, SY, and SZ contain points of orthogonal slices of the respective axes.
If X, Y, Z are omitted, they are assumed to be 'x = 1:size (V, 2)', 'y = 1:size (V, 1)' and 'z = 1:size (V, 3)'.
METHOD is one of:
"nearest"
Return the nearest neighbor.
"linear"
Linear interpolation from nearest neighbors.
"cubic"
Cubic interpolation from four nearest neighbors (not implemented yet).
"spline"
Cubic spline interpolation--smooth first and second derivatives throughout the curve.
The default method is "linear".
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
Examples:
[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
slice (x, y, z, v, [], 0, []);
[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);
See also: interp3, surface, pcolor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Plot slices of 3-D data/scalar fields.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sombrero
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 711
-- Function File: sombrero ()
-- Function File: sombrero (N)
-- Function File: Z = sombrero (...)
-- Function File: [X, Y, Z] = sombrero (...)
Plot the familiar 3-D sombrero function.
The function plotted is
z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))
Called without a return argument, 'sombrero' plots the surface of the above function over the meshgrid [-8,8] using 'surf'.
If N is a scalar the plot is made with N grid lines. The default value for N is 41.
When called with output arguments, return the data for the function evaluated over the meshgrid. This can subsequently be plotted with 'surf (X, Y, Z)'.
See also: peaks, meshgrid, mesh, surf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Plot the familiar 3-D sombrero function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sphere
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 750
-- Function File: sphere ()
-- Function File: sphere (N)
-- Function File: sphere (HAX, ...)
-- Function File: [X, Y, Z] = sphere (...)
Plot a 3-D unit sphere.
The optional input N determines the number of faces around the circumference of the sphere. The default value is 20.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
If outputs are requested 'sphere' returns three matrices in 'meshgrid' format such that 'surf (X, Y, Z)' generates a unit sphere.
Example:
[x, y, z] = sphere (40);
surf (3*x, 3*y, 3*z);
axis equal;
title ("sphere of radius 3");
See also: cylinder, ellipsoid, rectangle.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Plot a 3-D unit sphere.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
stairs
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1173
-- Function File: stairs (Y)
-- Function File: stairs (X, Y)
-- Function File: stairs (..., STYLE)
-- Function File: stairs (..., PROP, VAL, ...)
-- Function File: stairs (HAX, ...)
-- Function File: H = stairs (...)
-- Function File: [XSTEP, YSTEP] = stairs (...)
Produce a stairstep plot.
The arguments X and Y may be vectors or matrices. If only one argument is given, it is taken as a vector of Y values and the X coordinates are taken to be the indices of the elements.
The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.
Multiple property/value pairs may be specified, but they must appear in pairs.
If the first argument HAX is an axis handle, then plot into this axis, rather than the current axis handle returned by 'gca'.
If one output argument is requested, return a graphics handle to the created plot. If two output arguments are specified, the data are generated but not plotted. For example,
stairs (x, y);
and
[xs, ys] = stairs (x, y);
plot (xs, ys);
are equivalent.
See also: bar, hist, plot, stem.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Produce a stairstep plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
stem3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1350
-- Function File: stem3 (X, Y, Z)
-- Function File: stem3 (..., LINESPEC)
-- Function File: stem3 (..., "filled")
-- Function File: stem3 (..., PROP, VAL, ...)
-- Function File: stem3 (HAX, ...)
-- Function File: H = stem3 (...)
Plot a 3-D stem graph.
Stems are drawn from the height Z to the location in the x-y plane determined by X and Y. The default color is "b" (blue), the default line style is "-", and the default marker is "o".
The line style can be altered by the 'linespec' argument in the same manner as the 'plot' command. If the "filled" argument is present the markers at the top of the stems will be filled in.
Optional property/value pairs may be specified to control the appearance of the plot.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a handle to the "stem series" hggroup containing the line and marker objects used for the plot. *Note stem: XREFstem, for a description of the "stem series" object.
Example:
theta = 0:0.2:6;
stem3 (cos (theta), sin (theta), theta);
plots 31 stems with heights from 0 to 6 lying on a circle.
Implementation Note: Color definitions with RGB-triples are not valid.
See also: stem, bar, hist, plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Plot a 3-D stem graph.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
stemleaf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2454
-- Function File: stemleaf (X, CAPTION)
-- Function File: stemleaf (X, CAPTION, STEM_SZ)
-- Function File: PLOTSTR = stemleaf (...)
Compute and display a stem and leaf plot of the vector X.
The input X should be a vector of integers. Any non-integer values will be converted to integer by 'X = fix (X)'. By default each element of X will be plotted with the last digit of the element as a leaf value and the remaining digits as the stem. For example, 123 will be plotted with the stem '12' and the leaf '3'. The second argument, CAPTION, should be a character array which provides a description of the data. It is included as a heading for the output.
The optional input STEM_SZ sets the width of each stem. The stem width is determined by '10^(STEM_SZ + 1)'. The default stem width is 10.
The output of 'stemleaf' is composed of two parts: a "Fenced Letter Display," followed by the stem-and-leaf plot itself. The Fenced Letter Display is described in 'Exploratory Data Analysis'. Briefly, the entries are as shown:
Fenced Letter Display
#% nx|___________________ nx = numel (x)
M% mi| md | mi median index, md median
H% hi|hl hu| hs hi lower hinge index, hl,hu hinges,
1 |x(1) x(nx)| hs h_spreadx(1), x(nx) first
_______ and last data value.
______|step |_______ step 1.5*h_spread
f|ifl ifh| inner fence, lower and higher
|nfl nfh| no.\ of data points within fences
F|ofl ofh| outer fence, lower and higher
|nFl nFh| no.\ of data points outside outer
fences
The stem-and-leaf plot shows on each line the stem value followed by the string made up of the leaf digits. If the STEM_SZ is not 1 the successive leaf values are separated by ",".
With no return argument, the plot is immediately displayed. If an output argument is provided, the plot is returned as an array of strings.
The leaf digits are not sorted. If sorted leaf values are desired, use 'XS = sort (X)' before calling 'stemleaf (XS)'.
The stem and leaf plot and associated displays are described in: Ch. 3, 'Exploratory Data Analysis' by J. W. Tukey, Addison-Wesley, 1977.
See also: hist, printd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Compute and display a stem and leaf plot of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
stem
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2780
-- Function File: stem (Y)
-- Function File: stem (X, Y)
-- Function File: stem (..., LINESPEC)
-- Function File: stem (..., "filled")
-- Function File: stem (..., PROP, VAL, ...)
-- Function File: stem (HAX, ...)
-- Function File: H = stem (...)
Plot a 2-D stem graph.
If only one argument is given, it is taken as the y-values and the x-coordinates are taken from the indices of the elements.
If Y is a matrix, then each column of the matrix is plotted as a separate stem graph. In this case X can either be a vector, the same length as the number of rows in Y, or it can be a matrix of the same size as Y.
The default color is "b" (blue), the default line style is "-", and the default marker is "o". The line style can be altered by the 'linespec' argument in the same manner as the 'plot' command. If the "filled" argument is present the markers at the top of the stems will be filled in. For example,
x = 1:10;
y = 2*x;
stem (x, y, "r");
plots 10 stems with heights from 2 to 20 in red;
Optional property/value pairs may be specified to control the appearance of the plot.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a handle to a "stem series" hggroup. The single hggroup handle has all of the graphical elements comprising the plot as its children; This allows the properties of multiple graphics objects to be changed by modifying just a single property of the "stem series" hggroup.
For example,
x = [0:10]';
y = [sin(x), cos(x)]
h = stem (x, y);
set (h(2), "color", "g");
set (h(1), "basevalue", -1)
changes the color of the second "stem series" and moves the base line of the first.
Stem Series Properties
linestyle
The linestyle of the stem. (Default: "-")
linewidth
The width of the stem. (Default: 0.5)
color
The color of the stem, and if not separately specified, the marker. (Default: "b" [blue])
marker
The marker symbol to use at the top of each stem. (Default: "o")
markeredgecolor
The edge color of the marker. (Default: "color" property)
markerfacecolor
The color to use for "filling" the marker. (Default: "none" [unfilled])
markersize
The size of the marker. (Default: 6)
baseline
The handle of the line object which implements the baseline. Use 'set' with the returned handle to change graphic properties of the baseline.
basevalue
The y-value where the baseline is drawn. (Default: 0)
See also: stem3, bar, hist, plot, stairs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Plot a 2-D stem graph.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
surface
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1026
-- Function File: surface (X, Y, Z, C)
-- Function File: surface (X, Y, Z)
-- Function File: surface (Z, C)
-- Function File: surface (Z)
-- Function File: surface (..., PROP, VAL, ...)
-- Function File: surface (HAX, ...)
-- Function File: H = surface (...)
Create a surface graphic object given matrices X and Y from 'meshgrid' and a matrix of values Z corresponding to the X and Y coordinates of the surface.
If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. If only a single input Z is given then X is taken to be '1:rows (Z)' and Y is '1:columns (Z)'.
Any property/value input pairs are assigned to the surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
See also: surf, mesh, patch, line.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Create a surface graphic object given matrices X and Y from 'meshgrid' and a matrix of values Z corresponding to the X and Y coordinates of the surface.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
surfc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1601
-- Function File: surfc (X, Y, Z)
-- Function File: surfc (Z)
-- Function File: surfc (..., C)
-- Function File: surfc (..., PROP, VAL, ...)
-- Function File: surfc (HAX, ...)
-- Function File: H = surfc (...)
Plot a 3-D surface mesh with underlying contour lines.
The surface mesh is plotted using shaded rectangles. The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'. over a 2-D rectangular region in the x-y plane. Z determines the height above the plane of each vertex. If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'. Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The color of the surface is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally, the color of the surface can be specified independently of Z by supplying a color matrix, C.
Any property/value pairs are passed directly to the underlying surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
Note: The exact appearance of the surface can be controlled with the 'shading' command or by using 'set' to control surface object properties.
See also: ezsurfc, surf, surfl, surfnorm, trisurf, contour, mesh, surface, meshgrid, hidden, shading, colormap, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Plot a 3-D surface mesh with underlying contour lines.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
surfl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2011
-- Function File: surfl (Z)
-- Function File: surfl (X, Y, Z)
-- Function File: surfl (..., LSRC)
-- Function File: surfl (X, Y, Z, LSRC, P)
-- Function File: surfl (..., "cdata")
-- Function File: surfl (..., "light")
-- Function File: surfl (HAX, ...)
-- Function File: H = surfl (...)
Plot a 3-D surface using shading based on various lighting models.
The surface mesh is plotted using shaded rectangles. The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'. over a 2-D rectangular region in the x-y plane. Z determines the height above the plane of each vertex. If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'. Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The default lighting mode "cdata", changes the cdata property of the surface object to give the impression of a lighted surface. *Warning:* The alternative mode "light" mode which creates a light object to illuminate the surface is not implemented (yet).
The light source location can be specified using LSRC. It can be given as a 2-element vector [azimuth, elevation] in degrees, or as a 3-element vector [lx, ly, lz]. The default value is rotated 45 degrees counterclockwise to the current view.
The material properties of the surface can specified using a 4-element vector P = [AM D SP EXP] which defaults to P = [0.55 0.6 0.4 10].
"AM" strength of ambient light
"D" strength of diffuse reflection
"SP" strength of specular reflection
"EXP" specular exponent
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
Example:
colormap (bone (64));
surfl (peaks);
shading interp;
See also: diffuse, specular, surf, shading, colormap, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Plot a 3-D surface using shading based on various lighting models.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
surf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1565
-- Function File: surf (X, Y, Z)
-- Function File: surf (Z)
-- Function File: surf (..., C)
-- Function File: surf (..., PROP, VAL, ...)
-- Function File: surf (HAX, ...)
-- Function File: H = surf (...)
Plot a 3-D surface mesh.
The surface mesh is plotted using shaded rectangles. The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'. over a 2-D rectangular region in the x-y plane. Z determines the height above the plane of each vertex. If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'. Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The color of the surface is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally, the color of the surface can be specified independently of Z by supplying a color matrix, C.
Any property/value pairs are passed directly to the underlying surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
Note: The exact appearance of the surface can be controlled with the 'shading' command or by using 'set' to control surface object properties.
See also: ezsurf, surfc, surfl, surfnorm, trisurf, contour, mesh, surface, meshgrid, hidden, shading, colormap, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Plot a 3-D surface mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
surfnorm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1460
-- Function File: surfnorm (X, Y, Z)
-- Function File: surfnorm (Z)
-- Function File: surfnorm (..., PROP, VAL, ...)
-- Function File: surfnorm (HAX, ...)
-- Function File: [NX, NY, NZ] = surfnorm (...)
Find the vectors normal to a meshgridded surface.
If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. If only a single input Z is given then X is taken to be '1:rows (Z)' and Y is '1:columns (Z)'.
If no return arguments are requested, a surface plot with the normal vectors to the surface is plotted.
Any property/value input pairs are assigned to the surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
If output arguments are requested then the components of the normal vectors are returned in NX, NY, and NZ and no plot is made.
An example of the use of 'surfnorm' is
surfnorm (peaks (25));
Algorithm: The normal vectors are calculated by taking the cross product of the diagonals of each of the quadrilaterals in the meshgrid to find the normal vectors of the centers of these quadrilaterals. The four nearest normal vectors to the meshgrid points are then averaged to obtain the normal to the surface at the meshgridded points.
See also: isonormals, quiver3, surf, meshgrid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Find the vectors normal to a meshgridded surface.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
tetramesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1305
-- Function File: tetramesh (T, X)
-- Function File: tetramesh (T, X, C)
-- Function File: tetramesh (..., PROPERTY, VAL, ...)
-- Function File: H = tetramesh (...)
Display the tetrahedrons defined in the m-by-4 matrix T as 3-D patches.
T is typically the output of a Delaunay triangulation of a 3-D set of points. Every row of T contains four indices into the n-by-3 matrix X of the vertices of a tetrahedron. Every row in X represents one point in 3-D space.
The vector C specifies the color of each tetrahedron as an index into the current colormap. The default value is 1:m where m is the number of tetrahedrons; the indices are scaled to map to the full range of the colormap. If there are more tetrahedrons than colors in the colormap then the values in C are cyclically repeated.
Calling 'tetramesh (..., "property", "value", ...)' passes all property/value pairs directly to the patch function as additional arguments.
The optional return value H is a vector of patch handles where each handle represents one tetrahedron in the order given by T. A typical use case for H is to turn the respective patch "visible" property "on" or "off".
Type 'demo tetramesh' to see examples on using 'tetramesh'.
See also: trimesh, delaunay, delaunayn, patch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Display the tetrahedrons defined in the m-by-4 matrix T as 3-D patches.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
trimesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1357
-- Function File: trimesh (TRI, X, Y, Z, C)
-- Function File: trimesh (TRI, X, Y, Z)
-- Function File: trimesh (TRI, X, Y)
-- Function File: trimesh (..., PROP, VAL, ...)
-- Function File: H = trimesh (...)
Plot a 3-D triangular wireframe mesh.
In contrast to 'mesh', which plots a mesh using rectangles, 'trimesh' plots the mesh using triangles.
TRI is typically the output of a Delaunay triangulation over the grid of X, Y. Every row of TRI represents one triangle and contains three indices into [X, Y] which are the vertices of the triangles in the x-y plane. Z determines the height above the plane of each vertex. If no Z input is given then the triangles are plotted as a 2-D figure.
The color of the trimesh is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of Z by supplying a color matrix, C. If Z has N elements, then C should be an Nx1 vector for colormap data or an Nx3 matrix for RGB data.
Any property/value pairs are passed directly to the underlying patch object.
The optional return value H is a graphics handle to the created patch object.
See also: mesh, tetramesh, triplot, trisurf, delaunay, patch, hidden.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Plot a 3-D triangular wireframe mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
triplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 643
-- Function File: triplot (TRI, X, Y)
-- Function File: triplot (TRI, X, Y, LINESPEC)
-- Function File: H = triplot (...)
Plot a 2-D triangular mesh.
TRI is typically the output of a Delaunay triangulation over the grid of X, Y. Every row of TRI represents one triangle and contains three indices into [X, Y] which are the vertices of the triangles in the x-y plane.
The linestyle to use for the plot can be defined with the argument LINESPEC of the same format as the 'plot' command.
The optional return value H is a graphics handle to the created patch object.
See also: plot, trimesh, trisurf, delaunay.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Plot a 2-D triangular mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
trisurf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1237
-- Function File: trisurf (TRI, X, Y, Z, C)
-- Function File: trisurf (TRI, X, Y, Z)
-- Function File: trisurf (..., PROP, VAL, ...)
-- Function File: H = trisurf (...)
Plot a 3-D triangular surface.
In contrast to 'surf', which plots a surface mesh using rectangles, 'trisurf' plots the mesh using triangles.
TRI is typically the output of a Delaunay triangulation over the grid of X, Y. Every row of TRI represents one triangle and contains three indices into [X, Y] which are the vertices of the triangles in the x-y plane. Z determines the height above the plane of each vertex.
The color of the trimesh is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of Z by supplying a color matrix, C. If Z has N elements, then C should be an Nx1 vector for colormap data or an Nx3 matrix for RGB data.
Any property/value pairs are passed directly to the underlying patch object.
The optional return value H is a graphics handle to the created patch object.
See also: surf, triplot, trimesh, delaunay, patch, shading.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Plot a 3-D triangular surface.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
waterfall
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1538
-- Function File: waterfall (X, Y, Z)
-- Function File: waterfall (Z)
-- Function File: waterfall (..., C)
-- Function File: waterfall (..., PROP, VAL, ...)
-- Function File: waterfall (HAX, ...)
-- Function File: H = waterfall (...)
Plot a 3-D waterfall plot.
A waterfall plot is similar to a 'meshz' plot except only mesh lines for the rows of Z (x-values) are shown.
The wireframe mesh is plotted using rectangles. The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'. over a 2-D rectangular region in the x-y plane. Z determines the height above the plane of each vertex. If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'. Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap. Use 'caxis' and/or change the colormap to control the appearance.
Optionally the color of the mesh can be specified independently of Z by supplying a color matrix, C.
Any property/value pairs are passed directly to the underlying surface object.
If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.
The optional return value H is a graphics handle to the created surface object.
See also: meshz, mesh, meshc, contour, surf, surface, ribbon, meshgrid, hidden, shading, colormap, caxis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Plot a 3-D waterfall plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
allchild
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 441
-- Function File: H = allchild (HANDLES)
Find all children, including hidden children, of a graphics object.
This function is similar to 'get (h, "children")', but also returns hidden objects (HandleVisibility = "off").
If HANDLES is a scalar, H will be a vector. Otherwise, H will be a cell matrix of the same size as HANDLES and each cell will contain a vector of handles.
See also: findall, findobj, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Find all children, including hidden children, of a graphics object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ancestor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 605
-- Function File: PARENT = ancestor (H, TYPE)
-- Function File: PARENT = ancestor (H, TYPE, "toplevel")
Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string.
If TYPE is a cell array of strings, return the first parent whose type matches any of the given type strings.
If the handle object H itself is of type TYPE, return H.
If "toplevel" is given as a third argument, return the highest parent in the object hierarchy that matches the condition, instead of the first (nearest) one.
See also: findobj, findall, allchild.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
axes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 708
-- Function File: axes ()
-- Function File: axes (PROPERTY, VALUE, ...)
-- Function File: axes (HAX)
-- Function File: H = axes (...)
Create an axes object and return a handle to it, or set the current axes to HAX.
Called without any arguments, or with PROPERTY/VALUE pairs, construct a new axes. For accepted properties and corresponding values, *note set: XREFset.
Called with a single axes handle argument HAX, the function makes HAX the current axis. It also restacks the axes in the corresponding figure so that HAX is the first entry in the list of children. This causes HAX to be displayed on top of any other axes objects (Z-order stacking).
See also: gca, set, get.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create an axes object and return a handle to it, or set the current axes to HAX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cla
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 633
-- Command: cla
-- Command: cla reset
-- Function File: cla (HAX)
-- Function File: cla (HAX, "reset")
Clear the current axes.
'cla' operates by deleting child graphic objects with visible handles (HandleVisibility = "on").
If the optional argument "reset" is specified, delete all child objects including those with hidden handles and reset all axis properties to their defaults. However, the following properties are not reset: Position, Units.
If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.
See also: clf, delete, reset.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Clear the current axes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
clf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 816
-- Command: clf
-- Command: clf reset
-- Function File: clf (HFIG)
-- Function File: clf (HFIG, "reset")
-- Function File: H = clf (...)
Clear the current figure window.
'clf' operates by deleting child graphics objects with visible handles (HandleVisibility = "on").
If the optional argument "reset" is specified, delete all child objects including those with hidden handles and reset all figure properties to their defaults. However, the following properties are not reset: Position, Units, PaperPosition, PaperUnits.
If the first argument HFIG is a figure handle, then operate on this figure rather than the current figure returned by 'gcf'.
The optional return value H is the graphics handle of the figure window that was cleared.
See also: cla, close, delete, reset.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Clear the current figure window.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
close
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1190
-- Command: close
-- Command: close (H)
-- Command: close H
-- Command: close all
-- Command: close all hidden
-- Command: close all force
Close figure window(s).
When called with no arguments, close the current figure. This is equivalent to 'close (gcf)'. If the input H is a graphic handle, or vector of graphics handles, then close each figure in H.
If the argument "all" is given then all figures with visible handles (HandleVisibility = "on") are closed.
If the argument "all hidden" is given then all figures, including hidden ones, are closed.
If the argument "all force" is given then all figures are closed even when "closerequestfcn" has been altered to prevent closing the window.
Implementation Note: 'close' operates by calling the function specified by the "closerequestfcn" property for each figure. By default, the function 'closereq' is used. It is possible that the function invoked will delay or abort removing the figure. To remove a figure without executing any callback functions use 'delete'. When writing a callback function to close a window do not use 'close' to avoid recursion.
See also: closereq, delete.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Close figure window(s).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
closereq
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
-- Function File: closereq ()
Close the current figure and delete all graphics objects associated with it.
By default, the "closerequestfcn" property of a new plot figure points to this function.
See also: close, delete.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Close the current figure and delete all graphics objects associated with it.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
colstyle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
-- Function File: [STYLE, COLOR, MARKER, MSG] = colstyle (LINESPEC)
Parse LINESPEC and return the line style, color, and markers given.
In the case of an error, the string MSG will return the text of the error.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Parse LINESPEC and return the line style, color, and markers given.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
copyobj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
-- Function File: HNEW = copyobj (HORIG)
-- Function File: HNEW = copyobj (HORIG, HPARENT)
Construct a copy of the graphic object associated with handle HORIG and return a handle HNEW to the new object.
If a parent handle HPARENT (root, figure, axes, or hggroup) is specified, the copied object will be created as a child of HPARENT.
See also: struct2hdl, hdl2struct, findobj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Construct a copy of the graphic object associated with handle HORIG and return a handle HNEW to the new object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
figure
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 763
-- Command: figure
-- Command: figure N
-- Function File: figure (N)
-- Function File: figure (..., "PROPERTY", VALUE, ...)
-- Function File: H = figure (...)
Create a new figure window for plotting.
If no arguments are specified, a new figure with the next available number is created.
If called with an integer N, and no such numbered figure exists, then a new figure with the specified number is created. If the figure already exists then it is made visible and becomes the current figure for plotting.
Multiple property-value pairs may be specified for the figure object, but they must appear in pairs.
The optional return value H is a graphics handle to the created figure object.
See also: axes, gcf, clf, close.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Create a new figure window for plotting.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findall
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 832
-- Function File: H = findall ()
-- Function File: H = findall (PROP_NAME, PROP_VALUE, ...)
-- Function File: H = findall (PROP_NAME, PROP_VALUE, "-LOGICAL_OP", PROP_NAME, PROP_VALUE)
-- Function File: H = findall ("-property", PROP_NAME)
-- Function File: H = findall ("-regexp", PROP_NAME, PATTERN)
-- Function File: H = findall (HLIST, ...)
-- Function File: H = findall (HLIST, "flat", ...)
-- Function File: H = findall (HLIST, "-depth", D, ...)
Find graphics object, including hidden ones, with specified property values.
The return value H is a list of handles to the found graphic objects.
'findall' performs the same search as 'findobj', but it includes hidden objects (HandleVisibility = "off"). For full documentation, *note findobj: XREFfindobj.
See also: findobj, allchild, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Find graphics object, including hidden ones, with specified property values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
findfigs
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 173
-- Function File: findfigs ()
Find all visible figures that are currently off the screen and move them onto the screen.
See also: allchild, figure, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Find all visible figures that are currently off the screen and move them onto the screen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findobj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1988
-- Function File: H = findobj ()
-- Function File: H = findobj (PROP_NAME, PROP_VALUE, ...)
-- Function File: H = findobj (PROP_NAME, PROP_VALUE, "-LOGICAL_OP", PROP_NAME, PROP_VALUE)
-- Function File: H = findobj ("-property", PROP_NAME)
-- Function File: H = findobj ("-regexp", PROP_NAME, PATTERN)
-- Function File: H = findobj (HLIST, ...)
-- Function File: H = findobj (HLIST, "flat", ...)
-- Function File: H = findobj (HLIST, "-depth", D, ...)
Find graphics object with specified property values.
The simplest form is
findobj (PROP_NAME, PROP_VALUE)
which returns the handles of all objects which have a property named PROP_NAME that has the value PROP_VALUE. If multiple property/value pairs are specified then only objects meeting all of the conditions are returned.
The search can be limited to a particular set of objects and their descendants, by passing a handle or set of handles HLIST as the first argument.
The depth of the object hierarchy to search can be limited with the "-depth" argument. An example of searching only three generations of children is:
findobj (HLIST, "-depth", 3, PROP_NAME, PROP_VALUE)
Specifying a depth D of 0, limits the search to the set of objects passed in HLIST. A depth D of 0 is equivalent to the "flat" argument.
A specified logical operator may be applied to the pairs of PROP_NAME and PROP_VALUE. The supported logical operators are: "-and", "-or", "-xor", "-not".
Objects may also be matched by comparing a regular expression to the property values, where property values that match 'regexp (PROP_VALUE, PATTERN)' are returned.
Finally, objects may be matched by property name only by using the "-property" option.
Implementation Note: The search only includes objects with visible handles (HandleVisibility = "on"). *Note findall: XREFfindall, to search for all objects including hidden ones.
See also: findall, allchild, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Find graphics object with specified property values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
frame2im
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 420
-- Function File: [X, MAP] = frame2im (F)
Convert movie frame to indexed image.
A movie frame is simply a struct with the fields "cdata" and "colormap".
Support for N-dimensional images or movies is given when F is a struct array. In such cases, X will be a MxNx1xK or MxNx3xK for indexed and RGB movies respectively, with each frame concatenated along the 4th dimension.
See also: im2frame.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert movie frame to indexed image.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gca
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 840
-- Function File: H = gca ()
Return a handle to the current axis object.
The current axis is the default target for graphics output. In the case of a figure with multiple axes, 'gca' returns the last created axes or the last axes that was clicked on with the mouse.
If no current axes object exists, create one and return its handle. The handle may then be used to examine or set properties of the axes. For example,
ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);
creates an empty axes object and then changes its location and size in the figure window.
Note: To find the current axis without creating a new axes object if it does not exist, query the "CurrentAxes" property of a figure.
get (gcf, "currentaxes");
See also: gcf, gco, gcbf, gcbo, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return a handle to the current axis object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gcbf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
-- Function File: FIG = gcbf ()
Return a handle to the figure containing the object whose callback is currently executing.
If no callback is executing, this function returns the empty matrix. The handle returned by this function is the same as the second output argument of 'gcbo'.
See also: gcbo, gcf, gco, gca, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return a handle to the figure containing the object whose callback is currently executing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gcbo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 563
-- Function File: H = gcbo ()
-- Function File: [H, FIG] = gcbo ()
Return a handle to the object whose callback is currently executing.
If no callback is executing, this function returns the empty matrix. This handle is obtained from the root object property "CallbackObject".
When called with a second output argument, return the handle of the figure containing the object whose callback is currently executing. If no callback is executing the second output is also set to the empty matrix.
See also: gcbf, gco, gca, gcf, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return a handle to the object whose callback is currently executing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gcf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 914
-- Function File: H = gcf ()
Return a handle to the current figure.
The current figure is the default target for graphics output. If multiple figures exist, 'gcf' returns the last created figure or the last figure that was clicked on with the mouse.
If a current figure does not exist, create one and return its handle. The handle may then be used to examine or set properties of the figure. For example,
fplot (@sin, [-10, 10]);
fig = gcf ();
set (fig, "numbertitle", "off", "name", "sin plot")
plots a sine wave, finds the handle of the current figure, and then renames the figure window to describe the contents.
Note: To find the current figure without creating a new one if it does not exist, query the "CurrentFigure" property of the root graphics object.
get (0, "currentfigure");
See also: gca, gco, gcbf, gcbo, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return a handle to the current figure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gco
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
-- Function File: H = gco ()
-- Function File: H = gco (FIG)
Return a handle to the current object of the current figure, or a handle to the current object of the figure with handle FIG.
The current object of a figure is the object that was last clicked on. It is stored in the "CurrentObject" property of the target figure.
If the last mouse click did not occur on any child object of the figure, then the current object is the figure itself.
If no mouse click occurred in the target figure, this function returns an empty matrix.
Programming Note: The value returned by this function is not necessarily the same as the one returned by 'gcbo' during callback execution. An executing callback can be interrupted by another callback and the current object may be changed.
See also: gcbo, gca, gcf, gcbf, get, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Return a handle to the current object of the current figure, or a handle to the current object of the figure with handle FIG.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ginput
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 849
-- Function File: [X, Y, BUTTONS] = ginput (N)
-- Function File: [X, Y, BUTTONS] = ginput ()
Return the position and type of mouse button clicks and/or key strokes in the current figure window.
If N is defined, then capture N events before returning. When N is not defined 'ginput' will loop until the return key <RET> is pressed.
The return values X, Y are the coordinates where the mouse was clicked in the units of the current axes. The return value BUTTON is 1, 2, or 3 for the left, middle, or right button. If a key is pressed the ASCII value is returned in BUTTON.
Implementation Note: 'ginput' is intenteded for 2-D plots. For 3-D plots see the CURRENTPOINT property of the current axes which can be transformed with knowledge of the current 'view' into data units.
See also: gtext, waitforbuttonpress.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Return the position and type of mouse button clicks and/or key strokes in the current figure window.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
graphics_toolkit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 817
-- Function File: NAME = graphics_toolkit ()
-- Function File: NAME = graphics_toolkit (HLIST)
-- Function File: graphics_toolkit (NAME)
-- Function File: graphics_toolkit (HLIST, NAME)
Query or set the default graphics toolkit which is assigned to new figures.
With no inputs, return the current default graphics toolkit. If the input is a list of figure graphic handles, HLIST, then return the name of the graphics toolkit in use for each figure.
When called with a single input NAME set the default graphics toolkit to NAME. If the toolkit is not already loaded, it is initialized by calling the function '__init_NAME__'. If the first input is a list of figure handles, HLIST, then the graphics toolkit is set to NAME for these figures only.
See also: available_graphics_toolkits.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Query or set the default graphics toolkit which is assigned to new figures.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
hdl2struct
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 314
-- Function File: S = hdl2struct (H)
Return a structure, S, whose fields describe the properties of the object, and its children, associated with the handle, H.
The fields of the structure S are "type", "handle", "properties", "children", and "special".
See also: struct2hdl, hgsave, findobj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Return a structure, S, whose fields describe the properties of the object, and its children, associated with the handle, H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hggroup
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 880
-- Function File: hggroup ()
-- Function File: hggroup (HAX)
-- Function File: hggroup (..., PROPERTY, VALUE, ...)
-- Function File: H = hggroup (...)
Create handle graphics group object with axes parent HAX.
If no parent is specified, the group is created in the current axes.
Multiple property/value pairs may be specified for the hggroup, but they must appear in pairs.
The optional return value H is a graphics handle to the created hggroup object.
Programming Note: An hggroup is a way to group base graphics objects such as line objects or patch objects into a single unit which can react appropriately. For example, the individual lines of a contour plot are collected into a single hggroup so that they can be made visible/invisible with a single command, 'set (hg_handle, "visible", "off")'.
See also: addproperty, addlistener.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Create handle graphics group object with axes parent HAX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hgload
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 271
-- Function File: H = hgload (FILENAME)
Load the graphics object in FILENAME into the graphics handle H.
If FILENAME has no extension, Octave will try to find the file with and without the standard extension of '.ofig'.
See also: hgsave, struct2hdl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Load the graphics object in FILENAME into the graphics handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hgsave
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 864
-- Function File: hgsave (FILENAME)
-- Function File: hgsave (H, FILENAME)
-- Function File: hgsave (H, FILENAME, FMT)
Save the graphics handle H to the file FILENAME in the format FMT.
If unspecified, H is the current figure as returned by 'gcf'.
When FILENAME does not have an extension the default filename extension '.ofig' will be appended.
If present, FMT should be one of the following:
* '-binary', '-float-binary'
* '-hdf5', '-float-hdf5'
* '-V7', '-v7', '-7', '-mat7-binary'
* '-V6', '-v6', '-6', '-mat6-binary'
* '-text'
* '-zip', '-z'
When producing graphics for final publication use 'print' or 'saveas'. When it is important to be able to continue to edit a figure as an Octave object, use 'hgsave'/'hgload'.
See also: hgload, hdl2struct, saveas, print.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Save the graphics handle H to the file FILENAME in the format FMT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hold
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1033
-- Command: hold
-- Command: hold on
-- Command: hold off
-- Command: hold all
-- Function File: hold (HAX, ...)
Toggle or set the "hold" state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.
'hold on'
Retain plot data and settings so that subsequent plot commands are displayed on a single graph.
'hold all'
Retain plot line color, line style, data, and settings so that subsequent plot commands are displayed on a single graph with the next line color and style.
'hold off'
Restore default graphics settings which clear the graph and reset axis properties before each new plot command. (default).
'hold'
Toggle the current hold state.
When given the additional argument HAX, the hold state is modified for this axis rather than the current axes returned by 'gca'.
To query the current hold state use the 'ishold' function.
See also: ishold, cla, clf, newplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
Toggle or set the "hold" state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
im2frame
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 434
-- Function File: im2frame (RGB)
-- Function File: im2frame (X, MAP)
Convert image to movie frame.
A movie frame is simply a struct with the fields "cdata" and "colormap".
Support for N-dimensional images is given when each image projection, matrix sizes of MxN and MxNx3 for RGB images, is concatenated along the fourth dimension. In such cases, the returned value is a struct array.
See also: frame2im.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Convert image to movie frame.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isaxes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Function File: isaxes (H)
Return true if H is an axes graphics handle and false otherwise.
If H is a matrix then return a logical array which is true where the elements of H are axes graphics handles and false where they are not.
See also: isaxes, ishandle.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return true if H is an axes graphics handle and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isfigure
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 287
-- Function File: isfigure (H)
Return true if H is a figure graphics handle and false otherwise.
If H is a matrix then return a logical array which is true where the elements of H are figure graphics handles and false where they are not.
See also: isaxes, ishandle.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return true if H is a figure graphics handle and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ishghandle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 222
-- Function File: ishghandle (H)
Return true if H is a graphics handle and false otherwise.
This function is equivalent to 'ishandle' and is provided for compatibility with MATLAB.
See also: ishandle.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ishold
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 389
-- Command: ishold
-- Function File: ishold (HAX)
-- Function File: ishold (HFIG)
Return true if the next plot will be added to the current plot, or false if the plot device will be cleared before drawing the next plot.
If the first argument is an axes handle HAX or figure handle HFIG then operate on this plot rather than the current one.
See also: hold, newplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Return true if the next plot will be added to the current plot, or false if the plot device will be cleared before drawing the next plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isprop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
-- Function File: RES = isprop (OBJ, "PROP")
Return true if PROP is a property of the object OBJ.
OBJ may also be an array of objects in which case RES will be a logical array indicating whether each handle has the property PROP.
For plotting, OBJ is a handle to a graphics object. Otherwise, OBJ should be an instance of a class.
See also: get, set, ismethod, isobject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return true if PROP is a property of the object OBJ.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linkaxes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 808
-- Function File: linkaxes (HAX)
-- Function File: linkaxes (HAX, OPTSTR)
Link the axis limits of 2-D plots such that a change in one is propagated to the others.
The axes handles to be linked are passed as the first argument HAX.
The optional second argument is a string which defines which axis limits will be linked. The possible values for OPTSTR are:
"x"
Link x-axes
"y"
Link y-axes
"xy" (default)
Link both axes
"off"
Turn off linking
If unspecified the default is to link both X and Y axes.
When linking, the limits from the first axes in HAX are applied to the other axes in the list. Subsequent changes to any one of the axes will be propagated to the others.
See also: linkprop, addproperty.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Link the axis limits of 2-D plots such that a change in one is propagated to the others.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linkprop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1236
-- Function File: HLINK = linkprop (H, "PROP")
-- Function File: HLINK = linkprop (H, {"PROP1", "PROP2", ...})
Link graphic object properties, such that a change in one is propagated to the others.
The input H is a vector of graphic handles to link.
PROP may be a string when linking a single property, or a cell array of strings for multiple properties. During the linking process all properties in PROP will initially be set to the values that exist on the first object in the list H.
The function returns HLINK which is a special object describing the link. As long as the reference HLINK exists the link between graphic objects will be active. This means that HLINK must be preserved in a workspace variable, a global variable, or otherwise stored using a function such as 'setappdata', 'guidata'. To unlink properties, execute 'clear HLINK'.
An example of the use of 'linkprop' is
x = 0:0.1:10;
subplot (1,2,1);
h1 = plot (x, sin (x));
subplot (1,2,2);
h2 = plot (x, cos (x));
hlink = linkprop ([h1, h2], {"color","linestyle"});
set (h1, "color", "green");
set (h2, "linestyle", "--");
See also: linkaxes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Link graphic object properties, such that a change in one is propagated to the others.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
meshgrid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1523
-- Function File: [XX, YY] = meshgrid (X, Y)
-- Function File: [XX, YY, ZZ] = meshgrid (X, Y, Z)
-- Function File: [XX, YY] = meshgrid (X)
-- Function File: [XX, YY, ZZ] = meshgrid (X)
Given vectors of X and Y coordinates, return matrices XX and YY corresponding to a full 2-D grid.
The rows of XX are copies of X, and the columns of YY are copies of Y. If Y is omitted, then it is assumed to be the same as X.
If the optional Z input is given, or ZZ is requested, then the output will be a full 3-D grid.
'meshgrid' is most frequently used to produce input for a 2-D or 3-D function that will be plotted. The following example creates a surface plot of the "sombrero" function.
f = @(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
range = linspace (-8, 8, 41);
[X, Y] = meshgrid (range, range);
Z = f (X, Y);
surf (X, Y, Z);
Programming Note: 'meshgrid' is restricted to 2-D or 3-D grid generation. The 'ndgrid' function will generate 1-D through N-D grids. However, the functions are not completely equivalent. If X is a vector of length M and Y is a vector of length N, then 'meshgrid' will produce an output grid which is NxM. 'ndgrid' will produce an output which is MxN (transpose) for the same input. Some core functions expect 'meshgrid' input and others expect 'ndgrid' input. Check the documentation for the function in question to determine the proper input format.
See also: ndgrid, mesh, contour, surf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Given vectors of X and Y coordinates, return matrices XX and YY corresponding to a full 2-D grid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ndgrid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 860
-- Function File: [Y1, Y2, ..., Yn] = ndgrid (X1, X2, ..., Xn)
-- Function File: [Y1, Y2, ..., Yn] = ndgrid (X)
Given n vectors X1, ..., Xn, 'ndgrid' returns n arrays of dimension n.
The elements of the i-th output argument contains the elements of the vector Xi repeated over all dimensions different from the i-th dimension. Calling ndgrid with only one input argument X is equivalent to calling ndgrid with all n input arguments equal to X:
[Y1, Y2, ..., Yn] = ndgrid (X, ..., X)
Programming Note: 'ndgrid' is very similar to the function 'meshgrid' except that the first two dimensions are transposed in comparison to 'meshgrid'. Some core functions expect 'meshgrid' input and others expect 'ndgrid' input. Check the documentation for the function in question to determine the proper input format.
See also: meshgrid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Given n vectors X1, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
newplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7506
-- Function File: newplot ()
-- Function File: newplot (HFIG)
-- Function File: newplot (HAX)
-- Function File: HAX = newplot (...)
Prepare graphics engine to produce a new plot.
This function is called at the beginning of all high-level plotting functions. It is not normally required in user programs. 'newplot' queries the "NextPlot" field of the current figure and axis to determine what to do.
Figure NextPlot Action
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
"new" Create a new figure and make it the current figure.
"add" (default) Add new graphic objects to the current figure.
"replacechildren" Delete child objects whose HandleVisibility is set to "on". Set NextPlot property to "add". This typically clears a figure, but leaves in place hidden objects such as menubars. This is equivalent to 'clf'.
"replace" Delete all child objects of the figure and reset all figure properties to their defaults. However, the following four properties are not reset: Position, Units, PaperPosition, PaperUnits. This is equivalent to 'clf reset'.
Axis NextPlot Action
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
"add" Add new graphic objects to the current axes. This is equivalent to 'hold on'.
"replacechildren" Delete child objects whose HandleVisibility is set to "on", but leave axis properties unmodified. This typically clears a plot, but preserves special settings such as log scaling for axes. This is equivalent to 'cla'.
"replace" (default) Delete all child objects of the axis and reset all axis properties to their defaults. However, the following properties are not reset: Position, Units. This is equivalent to 'cla reset'.
If the optional input HFIG or HAX is given then prepare the specified figure or axes rather than the current figure and axes.
The optional return value HAX is a graphics handle to the created axes object (not figure).
*Caution:* Calling 'newplot' may change the current figure and current axis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Prepare graphics engine to produce a new plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 594
-- Command: pan
-- Command: pan on
-- Command: pan off
-- Command: pan xon
-- Command: pan yon
-- Function File: pan (HFIG, OPTION)
Control the interactive panning mode of a figure in the GUI.
Given the option "on" or "off", set the interactive pan mode on or off.
With no arguments, toggle the current pan mode on or off.
Given the option "xon" or "yon", enable pan mode for the x or y axis only.
If the first argument HFIG is a figure, then operate on the given figure rather than the current figure as returned by 'gcf'.
See also: rotate3d, zoom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Control the interactive panning mode of a figure in the GUI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
printd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
-- Function File: printd (OBJ, FILENAME)
-- Function File: OUT_FILE = printd (...)
Convert any object acceptable to 'disp' into the format selected by the suffix of FILENAME.
If the return argument OUT_FILE is given, the name of the created file is returned.
This function is intended to facilitate manipulation of the output of functions such as 'stemleaf'.
See also: stemleaf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Convert any object acceptable to 'disp' into the format selected by the suffix of FILENAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
print
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8025
-- Function File: print ()
-- Function File: print (OPTIONS)
-- Function File: print (FILENAME, OPTIONS)
-- Function File: print (H, FILENAME, OPTIONS)
Print a plot, or save it to a file.
Both output formatted for printing (PDF and PostScript), and many bitmapped and vector image formats are supported.
FILENAME defines the name of the output file. If the file name has no suffix, one is inferred from the specified device and appended to the file name. If no filename is specified, the output is sent to the printer.
H specifies the handle of the figure to print. If no handle is specified the current figure is used.
For output to a printer, PostScript file, or PDF file, the paper size is specified by the figure's 'papersize' property. The location and size of the image on the page are specified by the figure's 'paperposition' property. The orientation of the page is specified by the figure's 'paperorientation' property.
The width and height of images are specified by the figure's 'paperpositon(3:4)' property values.
The 'print' command supports many OPTIONS:
'-fH'
Specify the handle, H, of the figure to be printed. The default is the current figure.
'-PPRINTER'
Set the PRINTER name to which the plot is sent if no FILENAME is specified.
'-GGHOSTSCRIPT_COMMAND'
Specify the command for calling Ghostscript. For Unix and Windows the defaults are "gs" and "gswin32c", respectively.
'-color'
'-mono'
Color or monochrome output.
'-solid'
'-dashed'
Force all lines to be solid or dashed, respectively.
'-portrait'
'-landscape'
Specify the orientation of the plot for printed output. For non-printed output the aspect ratio of the output corresponds to the plot area defined by the "paperposition" property in the orientation specified. This option is equivalent to changing the figure's "paperorientation" property.
'-TextAlphaBits=N'
'-GraphicsAlphaBits=N'
Octave is able to produce output for various printers, bitmaps, and vector formats by using Ghostscript. For bitmap and printer output anti-aliasing is applied using Ghostscript's TextAlphaBits and GraphicsAlphaBits options. The default number of bits for each is 4. Allowed values for N are 1, 2, or 4.
'-dDEVICE'
The available output format is specified by the option DEVICE, and is one of:
'ps'
'ps2'
'psc'
'psc2'
PostScript (level 1 and 2, mono and color). The FLTK graphics toolkit generates PostScript level 3.0.
'eps'
'eps2'
'epsc'
'epsc2'
Encapsulated PostScript (level 1 and 2, mono and color). The FLTK graphic toolkit generates PostScript level 3.0.
'pslatex'
'epslatex'
'pdflatex'
'pslatexstandalone'
'epslatexstandalone'
'pdflatexstandalone'
Generate a LaTeX file 'FILENAME.tex' for the text portions of a plot and a file 'FILENAME.(ps|eps|pdf)' for the remaining graphics. The graphics file suffix .ps|eps|pdf is determined by the specified device type. The LaTeX file produced by the 'standalone' option can be processed directly by LaTeX. The file generated without the 'standalone' option is intended to be included from another LaTeX document. In either case, the LaTeX file contains an '\includegraphics' command so that the generated graphics file is automatically included when the LaTeX file is processed. The text that is written to the LaTeX file contains the strings *exactly* as they were specified in the plot. If any special characters of the TeX mode interpreter were used, the file must be edited before LaTeX processing. Specifically, the special characters must be enclosed with dollar signs ('$ ... $'), and other characters that are recognized by LaTeX may also need editing (.e.g., braces). The 'pdflatex' device, and any
of the 'standalone' formats, are not available with the Gnuplot toolkit.
'tikz'
Generate a LaTeX file using PGF/TikZ. For the FLTK toolkit the result is PGF.
'ill'
'aifm'
Adobe Illustrator (Obsolete for Gnuplot versions > 4.2)
'cdr'
'corel'
CorelDraw
'dxf'
AutoCAD
'emf'
'meta'
Microsoft Enhanced Metafile
'fig'
XFig. For the Gnuplot graphics toolkit, the additional options '-textspecial' or '-textnormal' can be used to control whether the special flag should be set for the text in the figure. (default is '-textnormal')
'hpgl'
HP plotter language
'mf'
Metafont
'png'
Portable network graphics
'jpg'
'jpeg'
JPEG image
'gif'
GIF image (only available for the Gnuplot graphics toolkit)
'pbm'
PBMplus
'svg'
Scalable vector graphics
'pdf'
Portable document format
NOTE: The gnuplot binary as shipped by Debian cannot create PDF files, see http://bugs.debian.org/478677
If the device is omitted, it is inferred from the file extension, or if there is no filename it is sent to the printer as PostScript.
'-dGHOSTSCRIPT_DEVICE'
Additional devices are supported by Ghostscript. Some examples are;
'pdfwrite'
Produces pdf output from eps
'ljet2p'
HP LaserJet IIP
'pcx24b'
24-bit color PCX file format
'ppm'
Portable Pixel Map file format
For a complete list, type 'system ("gs -h")' to see what formats and devices are available.
When Ghostscript output is sent to a printer the size is determined by the figure's "papersize" property. When the output is sent to a file the size is determined by the plot box defined by the figure's "paperposition" property.
'-append'
Append PostScript or PDF output to a pre-existing file of the same type.
'-rNUM'
Resolution of bitmaps in pixels per inch. For both metafiles and SVG the default is the screen resolution; for other formats it is 150 dpi. To specify screen resolution, use "-r0".
'-loose'
'-tight'
Force a tight or loose bounding box for eps files. The default is loose.
'-PREVIEW'
Add a preview to eps files. Supported formats are:
'-interchange'
Provide an interchange preview.
'-metafile'
Provide a metafile preview.
'-pict'
Provide pict preview.
'-tiff'
Provide a tiff preview.
'-SXSIZE,YSIZE'
Plot size in pixels for EMF, GIF, JPEG, PBM, PNG, and SVG. For PS, EPS, PDF, and other vector formats the plot size is in points. This option is equivalent to changing the size of the plot box associated with the "paperposition" property. When using the command form of the print function you must quote the XSIZE,YSIZE option. For example, by writing "-S640,480".
'-FFONTNAME'
'-FFONTNAME:SIZE'
'-F:SIZE'
Use FONTNAME and/or FONTSIZE for all text. FONTNAME is ignored for some devices: dxf, fig, hpgl, etc.
The filename and options can be given in any order.
Example: Print to a file using the pdf device.
figure (1);
clf ();
surf (peaks);
print figure1.pdf
Example: Print to a file using jpg device.
clf ();
surf (peaks);
print -djpg figure2.jpg
Example: Print to printer named PS_printer using ps format.
clf ();
surf (peaks);
print -dpswrite -PPS_printer
See also: saveas, hgsave, orient, figure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Print a plot, or save it to a file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
refreshdata
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 939
-- Function File: refreshdata ()
-- Function File: refreshdata (H)
-- Function File: refreshdata (H, WORKSPACE)
Evaluate any 'datasource' properties of the current figure and update the plot if the corresponding data has changed.
If the first argument H is a list of graphic handles, then operate on these objects rather than the current figure returned by 'gcf'.
The optional second argument WORKSPACE can take the following values:
"base"
Evaluate the datasource properties in the base workspace. (default).
"caller"
Evaluate the datasource properties in the workspace of the function that called 'refreshdata'.
An example of the use of 'refreshdata' is:
x = 0:0.1:10;
y = sin (x);
plot (x, y, "ydatasource", "y");
for i = 1 : 100
pause (0.1);
y = sin (x + 0.1*i);
refreshdata ();
endfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Evaluate any 'datasource' properties of the current figure and update the plot if the corresponding data has changed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
refresh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 264
-- Function File: refresh ()
-- Function File: refresh (H)
Refresh a figure, forcing it to be redrawn.
When called without an argument the current figure is redrawn. Otherwise, the figure with graphic handle H is redrawn.
See also: drawnow.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Refresh a figure, forcing it to be redrawn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rotate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 451
-- Function File: rotate (H, DIR, ALPHA)
-- Function File: rotate (..., ORIGIN)
Rotate the plot object H through ALPHA degrees around the line with direction DIR and origin ORIGIN.
The default value of ORIGIN is the center of the axes object that is the parent of H.
If H is a vector of handles, they must all have the same parent axes object.
Graphics objects that may be rotated are lines, surfaces, patches, and images.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Rotate the plot object H through ALPHA degrees around the line with direction DIR and origin ORIGIN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rotate3d
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 497
-- Command: rotate3d
-- Command: rotate3d on
-- Command: rotate3d off
-- Function File: rotate3d (HFIG, OPTION)
Control the interactive 3-D rotation mode of a figure in the GUI.
Given the option "on" or "off", set the interactive rotate mode on or off.
With no arguments, toggle the current rotate mode on or off.
If the first argument HFIG is a figure, then operate on the given figure rather than the current figure as returned by 'gcf'.
See also: pan, zoom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Control the interactive 3-D rotation mode of a figure in the GUI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
saveas
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 720
-- Function File: saveas (H, FILENAME)
-- Function File: saveas (H, FILENAME, FMT)
Save graphic object H to the file FILENAME in graphic format FMT.
FMT should be one of the following formats:
'ps'
PostScript
'eps'
Encapsulated PostScript
'jpg'
JPEG Image
'png'
PNG Image
'emf'
Enhanced Meta File
'pdf'
Portable Document Format
All device formats specified in 'print' may also be used. If FMT is omitted it is extracted from the extension of FILENAME. The default format is "pdf".
clf ();
surf (peaks);
saveas (1, "figure1.png");
See also: print, hgsave, orient.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Save graphic object H to the file FILENAME in graphic format FMT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
shg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
-- Command: shg
Show the graph window.
Currently, this is the same as executing 'drawnow'.
See also: drawnow, figure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Show the graph window.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
struct2hdl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 786
-- Function File: H = struct2hdl (S)
-- Function File: H = struct2hdl (S, P)
-- Function File: H = struct2hdl (S, P, HILEV)
Construct a graphics handle object H from the structure S.
The structure must contain the fields "handle", "type", "children", "properties", and "special".
If the handle of an existing figure or axes is specified, P, the new object will be created as a child of that object. If no parent handle is provided then a new figure and the necessary children will be constructed using the default values from the root figure.
A third boolean argument HILEV can be passed to specify whether the function should preserve listeners/callbacks, e.g., for legends or hggroups. The default is false.
See also: hdl2struct, hgload, findobj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Construct a graphics handle object H from the structure S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
subplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2166
-- Function File: subplot (ROWS, COLS, INDEX)
-- Function File: subplot (RCN)
-- Function File: subplot (HAX)
-- Function File: subplot (..., "align")
-- Function File: subplot (..., "replace")
-- Function File: subplot (..., "position", POS)
-- Function File: subplot (..., PROP, VAL, ...)
-- Function File: HAX = subplot (...)
Set up a plot grid with ROWS by COLS subwindows and set the current axes for plotting ('gca') to the location given by INDEX.
If only one numeric argument is supplied, then it must be a three digit value specifying the number of rows in digit 1, the number of columns in digit 2, and the plot index in digit 3.
The plot index runs row-wise; First, all columns in a row are numbered and then the next row is filled.
For example, a plot with 2x3 grid will have plot indices running as follows:
+-----+-----+-----+
| 1 | 2 | 3 |
+-----+-----+-----+
| 4 | 5 | 6 |
+-----+-----+-----+
INDEX may also be a vector. In this case, the new axis will enclose the grid locations specified. The first demo illustrates this:
demo ("subplot", 1)
The index of the subplot to make active may also be specified by its axes handle, HAX, returned from a previous 'subplot' command.
If the option "align" is given then the plot boxes of the subwindows will align, but this may leave no room for axis tick marks or labels.
If the option "replace" is given then the subplot axis will be reset, rather than just switching the current axis for plotting to the requested subplot.
The "position" property can be used to exactly position the subplot axes within the current figure. The option POS is a 4-element vector [x, y, width, height] that determines the location and size of the axes. The values in POS are normalized in the range [0,1].
Any property/value pairs are passed directly to the underlying axes object.
If the output HAX is requested, subplot returns the axis handle for the subplot. This is useful for modifying the properties of a subplot using 'set'.
See also: axes, plot, gca, set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Set up a plot grid with ROWS by COLS subwindows and set the current axes for plotting ('gca') to the location given by INDEX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
zoom
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1194
-- Command: zoom
-- Command: zoom (FACTOR)
-- Command: zoom on
-- Command: zoom off
-- Command: zoom xon
-- Command: zoom yon
-- Command: zoom out
-- Command: zoom reset
-- Command: zoom (HFIG, OPTION)
Zoom the current axes object or control the interactive zoom mode of a figure in the GUI.
Given a numeric argument greater than zero, zoom by the given factor. If the zoom factor is greater than one, zoom in on the plot. If the factor is less than one, zoom out. If the zoom factor is a two- or three-element vector, then the elements specify the zoom factors for the x, y, and z axes respectively.
Given the option "on" or "off", set the interactive zoom mode on or off.
With no arguments, toggle the current zoom mode on or off.
Given the option "xon" or "yon", enable zoom mode for the x or y-axis only.
Given the option "out", zoom to the initial zoom setting.
Given the option "reset", store the current zoom setting so that 'zoom out' will return to this zoom level.
If the first argument HFIG is a figure, then operate on the given figure rather than the current figure as returned by 'gcf'.
See also: pan, rotate3d.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Zoom the current axes object or control the interactive zoom mode of a figure in the GUI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
compan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 869
-- Function File: compan (C)
Compute the companion matrix corresponding to polynomial coefficient vector C.
The companion matrix is
_ _
| -c(2)/c(1) -c(3)/c(1) ... -c(N)/c(1) -c(N+1)/c(1) |
| 1 0 ... 0 0 |
| 0 1 ... 0 0 |
A = | . . . . . |
| . . . . . |
| . . . . . |
|_ 0 0 ... 1 0 _|
The eigenvalues of the companion matrix are equal to the roots of the polynomial.
See also: roots, poly, eig.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Compute the companion matrix corresponding to polynomial coefficient vector C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
conv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 597
-- Function File: conv (A, B)
-- Function File: conv (A, B, SHAPE)
Convolve two vectors A and B.
The output convolution is a vector with length equal to 'length (A) + length (B) - 1'. When A and B are the coefficient vectors of two polynomials, the convolution represents the coefficient vector of the product polynomial.
The optional SHAPE argument may be
SHAPE = "full"
Return the full convolution. (default)
SHAPE = "same"
Return the central part of the convolution with the same size as A.
See also: deconv, conv2, convn, fftconv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Convolve two vectors A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
deconv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
-- Function File: deconv (Y, A)
Deconvolve two vectors.
'[b, r] = deconv (y, a)' solves for B and R such that 'y = conv (a, b) + r'.
If Y and A are polynomial coefficient vectors, B will contain the coefficients of the polynomial quotient and R will be a remainder polynomial of lowest order.
See also: conv, residue.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Deconvolve two vectors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mkpp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 997
-- Function File: PP = mkpp (BREAKS, COEFS)
-- Function File: PP = mkpp (BREAKS, COEFS, D)
Construct a piecewise polynomial (pp) structure from sample points BREAKS and coefficients COEFS.
BREAKS must be a vector of strictly increasing values. The number of intervals is given by 'NI = length (BREAKS) - 1'.
When M is the polynomial order COEFS must be of size: NI x M + 1.
The i-th row of COEFS, 'COEFS (I,:)', contains the coefficients for the polynomial over the I-th interval, ordered from highest (M) to lowest (0).
COEFS may also be a multi-dimensional array, specifying a vector-valued or array-valued polynomial. In that case the polynomial order is defined by the length of the last dimension of COEFS. The size of first dimension(s) are given by the scalar or vector D. If D is not given it is set to '1'. In any case COEFS is reshaped to a 2-D matrix of size '[NI*prod(D M)] '
See also: unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Construct a piecewise polynomial (pp) structure from sample points BREAKS and coefficients COEFS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mpoles
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
-- Function File: [MULTP, IDXP] = mpoles (P)
-- Function File: [MULTP, IDXP] = mpoles (P, TOL)
-- Function File: [MULTP, IDXP] = mpoles (P, TOL, REORDER)
Identify unique poles in P and their associated multiplicity.
The output is ordered from largest pole to smallest pole.
If the relative difference of two poles is less than TOL then they are considered to be multiples. The default value for TOL is 0.001.
If the optional parameter REORDER is zero, poles are not sorted.
The output MULTP is a vector specifying the multiplicity of the poles. 'MULTP(n)' refers to the multiplicity of the Nth pole 'P(IDXP(n))'.
For example:
p = [2 3 1 1 2];
[m, n] = mpoles (p)
=> m = [1; 1; 2; 1; 2]
=> n = [2; 5; 1; 4; 3]
=> p(n) = [3, 2, 2, 1, 1]
See also: residue, poly, roots, conv, deconv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Identify unique poles in P and their associated multiplicity.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
pchip
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1070
-- Function File: PP = pchip (X, Y)
-- Function File: YI = pchip (X, Y, XI)
Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of points X and Y.
If called with two arguments, return the piecewise polynomial PP that may be used with 'ppval' to evaluate the polynomial at specific points.
When called with a third input argument, 'pchip' evaluates the pchip polynomial at the points XI. The third calling form is equivalent to 'ppval (pchip (X, Y), XI)'.
The variable X must be a strictly monotonic vector (either increasing or decreasing) of length N.
Y can be either a vector or array. If Y is a vector then it must be the same length N as X. If Y is an array then the size of Y must have the form '[S1, S2, ..., SK, N]' The array is reshaped internally to a matrix where the leading dimension is given by 'S1 * S2 * ... * SK' and each row of this matrix is then treated separately. Note that this is exactly opposite to 'interp1' but is done for MATLAB compatibility.
See also: spline, ppval, mkpp, unmkpp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of points X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
poly
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 938
-- Function File: poly (A)
-- Function File: poly (X)
If A is a square N-by-N matrix, 'poly (A)' is the row vector of the coefficients of 'det (z * eye (N) - A)', the characteristic polynomial of A.
For example, the following code finds the eigenvalues of A which are the roots of 'poly (A)'.
roots (poly (eye (3)))
=> 1.00001 + 0.00001i
1.00001 - 0.00001i
0.99999 + 0.00000i
In fact, all three eigenvalues are exactly 1 which emphasizes that for numerical performance the 'eig' function should be used to compute eigenvalues.
If X is a vector, 'poly (X)' is a vector of the coefficients of the polynomial whose roots are the elements of X. That is, if C is a polynomial, then the elements of 'D = roots (poly (C))' are contained in C. The vectors C and D are not identical, however, due to sorting and numerical errors.
See also: roots, eig.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
If A is a square N-by-N matrix, 'poly (A)' is the row vector of the coefficients of 'det (z * eye (N) - A)', the characteristic polynomial of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
polyaffine
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 323
-- Function File: polyaffine (F, MU)
Return the coefficients of the polynomial vector F after an affine transformation.
If F is the vector representing the polynomial f(x), then 'G = polyaffine (F, MU)' is the vector representing:
g(x) = f( (x - MU(1)) / MU(2) )
See also: polyval, polyfit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Return the coefficients of the polynomial vector F after an affine transformation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyder
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 516
-- Function File: polyder (P)
-- Function File: [K] = polyder (A, B)
-- Function File: [Q, D] = polyder (B, A)
Return the coefficients of the derivative of the polynomial whose coefficients are given by the vector P.
If a pair of polynomials is given, return the derivative of the product A*B.
If two inputs and two outputs are given, return the derivative of the polynomial quotient B/A. The quotient numerator is in Q and the denominator in D.
See also: polyint, polyval, polyreduce.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Return the coefficients of the derivative of the polynomial whose coefficients are given by the vector P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyeig
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 545
-- Function File: Z = polyeig (C0, C1, ..., CL)
-- Function File: [V, Z] = polyeig (C0, C1, ..., CL)
Solve the polynomial eigenvalue problem of degree L.
Given an N*N matrix polynomial
'C(s) = C0 + C1 s + ... + CL s^l'
'polyeig' solves the eigenvalue problem
'(C0 + C1 + ... + CL)v = 0'.
Note that the eigenvalues Z are the zeros of the matrix polynomial. Z is a row vector with N*L elements. V is a matrix (N x N*L) with columns that correspond to the eigenvectors.
See also: eig, eigs, compan.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Solve the polynomial eigenvalue problem of degree L.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyfit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1583
-- Function File: P = polyfit (X, Y, N)
-- Function File: [P, S] = polyfit (X, Y, N)
-- Function File: [P, S, MU] = polyfit (X, Y, N)
Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit to the points '[X, Y]'.
If N is a logical vector, it is used as a mask to selectively force the corresponding polynomial coefficients to be used or ignored.
The polynomial coefficients are returned in a row vector.
The optional output S is a structure containing the following fields:
'R'
Triangular factor R from the QR decomposition.
'X'
The Vandermonde matrix used to compute the polynomial coefficients.
'C'
The unscaled covariance matrix, formally equal to the inverse of X'*X, but computed in a way minimizing roundoff error propagation.
'df'
The degrees of freedom.
'normr'
The norm of the residuals.
'yf'
The values of the polynomial for each value of X.
The second output may be used by 'polyval' to calculate the statistical error limits of the predicted values. In particular, the standard deviation of P coefficients is given by
'sqrt (diag (s.C)/s.df)*s.normr'.
When the third output, MU, is present the coefficients, P, are associated with a polynomial in
'XHAT = (X - MU(1)) / MU(2)'
where MU(1) = mean (X), and MU(2) = std (X).
This linear transformation of X improves the numerical stability of the fit.
See also: polyval, polyaffine, roots, vander, zscore.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit to the points '[X, Y]'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polygcd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 727
-- Function File: Q = polygcd (B, A)
-- Function File: Q = polygcd (B, A, TOL)
Find the greatest common divisor of two polynomials.
This is equivalent to the polynomial found by multiplying together all the common roots. Together with deconv, you can reduce a ratio of two polynomials.
The tolerance TOL defaults to 'sqrt (eps)'.
*Caution:* This is a numerically unstable algorithm and should not be used on large polynomials.
Example code:
polygcd (poly (1:8), poly (3:12)) - poly (3:8)
=> [ 0, 0, 0, 0, 0, 0, 0 ]
deconv (poly (1:8), polygcd (poly (1:8), poly (3:12))) - poly (1:2)
=> [ 0, 0, 0 ]
See also: poly, roots, conv, deconv, residue.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Find the greatest common divisor of two polynomials.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
-- Function File: polyint (P)
-- Function File: polyint (P, K)
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector P.
The variable K is the constant of integration, which by default is set to zero.
See also: polyder, polyval.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyout
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 459
-- Function File: polyout (C)
-- Function File: polyout (C, X)
-- Function File: STR = polyout (...)
Display a formatted version of the polynomial C.
The formatted polynomial
c(x) = c(1) * x^n + ... + c(n) x + c(n+1)
is returned as a string or written to the screen if 'nargout' is zero.
The second argument X specifies the variable name to use for each term and defaults to the string "s".
See also: polyreduce.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Display a formatted version of the polynomial C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
polyreduce
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
-- Function File: polyreduce (C)
Reduce a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros.
See also: polyout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Reduce a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyval
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 750
-- Function File: Y = polyval (P, X)
-- Function File: Y = polyval (P, X, [], MU)
-- Function File: [Y, DY] = polyval (P, X, S)
-- Function File: [Y, DY] = polyval (P, X, S, MU)
Evaluate the polynomial P at the specified values of X.
If X is a vector or matrix, the polynomial is evaluated for each of the elements of X.
When MU is present, evaluate the polynomial for (X-MU(1))/MU(2).
In addition to evaluating the polynomial, the second output represents the prediction interval, Y +/- DY, which contains at least 50% of the future predictions. To calculate the prediction interval, the structured variable S, originating from 'polyfit', must be supplied.
See also: polyvalm, polyaffine, polyfit, roots, poly.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Evaluate the polynomial P at the specified values of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
polyvalm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
-- Function File: polyvalm (C, X)
Evaluate a polynomial in the matrix sense.
'polyvalm (C, X)' will evaluate the polynomial in the matrix sense, i.e., matrix multiplication is used instead of element by element multiplication as used in 'polyval'.
The argument X must be a square matrix.
See also: polyval, roots, poly.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Evaluate a polynomial in the matrix sense.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ppval
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 397
-- Function File: YI = ppval (PP, XI)
Evaluate the piecewise polynomial structure PP at the points XI.
If PP describes a scalar polynomial function, the result is an array of the same shape as XI. Otherwise, the size of the result is '[pp.dim, length(XI)]' if XI is a vector, or '[pp.dim, size(XI)]' if it is a multi-dimensional array.
See also: mkpp, unmkpp, spline, pchip.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Evaluate the piecewise polynomial structure PP at the points XI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ppder
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 252
-- Function File: ppd = ppder (pp)
-- Function File: ppd = ppder (pp, m)
Compute the piecewise M-th derivative of a piecewise polynomial struct PP.
If M is omitted the first derivative is calculated.
See also: mkpp, ppval, ppint.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Compute the piecewise M-th derivative of a piecewise polynomial struct PP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ppint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 230
-- Function File: PPI = ppint (PP)
-- Function File: PPI = ppint (PP, C)
Compute the integral of the piecewise polynomial struct PP.
C, if given, is the constant of integration.
See also: mkpp, ppval, ppder.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the integral of the piecewise polynomial struct PP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ppjumps
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 239
-- Function File: JUMPS = ppjumps (PP)
Evaluate the boundary jumps of a piecewise polynomial.
If there are n intervals, and the dimensionality of PP is d, the resulting array has dimensions '[d, n-1]'.
See also: mkpp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Evaluate the boundary jumps of a piecewise polynomial.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
residue
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2384
-- Function File: [R, P, K, E] = residue (B, A)
-- Function File: [B, A] = residue (R, P, K)
-- Function File: [B, A] = residue (R, P, K, E)
The first calling form computes the partial fraction expansion for the quotient of the polynomials, B and A.
The quotient is defined as
B(s) M r(m) N
---- = SUM ------------- + SUM k(i)*s^(N-i)
A(s) m=1 (s-p(m))^e(m) i=1
where M is the number of poles (the length of the R, P, and E), the K vector is a polynomial of order N-1 representing the direct contribution, and the E vector specifies the multiplicity of the m-th residue's pole.
For example,
b = [1, 1, 1];
a = [1, -5, 8, -4];
[r, p, k, e] = residue (b, a)
=> r = [-2; 7; 3]
=> p = [2; 2; 1]
=> k = [](0x0)
=> e = [1; 2; 1]
which represents the following partial fraction expansion
s^2 + s + 1 -2 7 3
------------------- = ----- + ------- + -----
s^3 - 5s^2 + 8s - 4 (s-2) (s-2)^2 (s-1)
The second calling form performs the inverse operation and computes the reconstituted quotient of polynomials, B(s)/A(s), from the partial fraction expansion; represented by the residues, poles, and a direct polynomial specified by R, P and K, and the pole multiplicity E.
If the multiplicity, E, is not explicitly specified the multiplicity is determined by the function 'mpoles'.
For example:
r = [-2; 7; 3];
p = [2; 2; 1];
k = [1, 0];
[b, a] = residue (r, p, k)
=> b = [1, -5, 9, -3, 1]
=> a = [1, -5, 8, -4]
where mpoles is used to determine e = [1; 2; 1]
Alternatively the multiplicity may be defined explicitly, for example,
r = [7; 3; -2];
p = [2; 1; 2];
k = [1, 0];
e = [2; 1; 1];
[b, a] = residue (r, p, k, e)
=> b = [1, -5, 9, -3, 1]
=> a = [1, -5, 8, -4]
which represents the following partial fraction expansion
-2 7 3 s^4 - 5s^3 + 9s^2 - 3s + 1
----- + ------- + ----- + s = --------------------------
(s-2) (s-2)^2 (s-1) s^3 - 5s^2 + 8s - 4
See also: mpoles, poly, roots, conv, deconv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
The first calling form computes the partial fraction expansion for the quotient of the polynomials, B and A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
roots
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 517
-- Function File: roots (C)
Compute the roots of the polynomial C.
For a vector C with N components, return the roots of the polynomial
c(1) * x^(N-1) + ... + c(N-1) * x + c(N)
As an example, the following code finds the roots of the quadratic polynomial
p(x) = x^2 - 5.
c = [1, 0, -5];
roots (c)
=> 2.2361
=> -2.2361
Note that the true result is +/- sqrt(5) which is roughly +/- 2.2361.
See also: poly, compan, fzero.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Compute the roots of the polynomial C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
spline
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1275
-- Function File: PP = spline (X, Y)
-- Function File: YI = spline (X, Y, XI)
Return the cubic spline interpolant of points X and Y.
When called with two arguments, return the piecewise polynomial PP that may be used with 'ppval' to evaluate the polynomial at specific points.
When called with a third input argument, 'spline' evaluates the spline at the points XI. The third calling form 'spline (X, Y, XI)' is equivalent to 'ppval (spline (X, Y), XI)'.
The variable X must be a vector of length N.
Y can be either a vector or array. If Y is a vector it must have a length of either N or 'N + 2'. If the length of Y is N, then the "not-a-knot" end condition is used. If the length of Y is 'N + 2', then the first and last values of the vector Y are the values of the first derivative of the cubic spline at the endpoints.
If Y is an array, then the size of Y must have the form '[S1, S2, ..., SK, N]' or '[S1, S2, ..., SK, N + 2]'. The array is reshaped internally to a matrix where the leading dimension is given by 'S1 * S2 * ... * SK' and each row of this matrix is then treated separately. Note that this is exactly the opposite of 'interp1' but is done for MATLAB compatibility.
See also: pchip, ppval, mkpp, unmkpp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return the cubic spline interpolant of points X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
splinefit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2668
-- Function File: PP = splinefit (X, Y, BREAKS)
-- Function File: PP = splinefit (X, Y, P)
-- Function File: PP = splinefit (..., "periodic", PERIODIC)
-- Function File: PP = splinefit (..., "robust", ROBUST)
-- Function File: PP = splinefit (..., "beta", BETA)
-- Function File: PP = splinefit (..., "order", ORDER)
-- Function File: PP = splinefit (..., "constraints", CONSTRAINTS)
Fit a piecewise cubic spline with breaks (knots) BREAKS to the noisy data, X and Y.
X is a vector, and Y is a vector or N-D array. If Y is an N-D array, then X(j) is matched to Y(:,...,:,j).
P is a positive integer defining the number of intervals along X, and P+1 is the number of breaks. The number of points in each interval differ by no more than 1.
The optional property PERIODIC is a logical value which specifies whether a periodic boundary condition is applied to the spline. The length of the period is 'max (BREAKS) - min (BREAKS)'. The default value is 'false'.
The optional property ROBUST is a logical value which specifies if robust fitting is to be applied to reduce the influence of outlying data points. Three iterations of weighted least squares are performed. Weights are computed from previous residuals. The sensitivity of outlier identification is controlled by the property BETA. The value of BETA is restricted to the range, 0 < BETA < 1. The default value is BETA = 1/2. Values close to 0 give all data equal weighting. Increasing values of BETA reduce the influence of outlying data. Values close to unity may cause instability or rank deficiency.
The fitted spline is returned as a piecewise polynomial, PP, and may be evaluated using 'ppval'.
The splines are constructed of polynomials with degree ORDER. The default is a cubic, ORDER=3. A spline with P pieces has P+ORDER degrees of freedom. With periodic boundary conditions the degrees of freedom are reduced to P.
The optional property, CONSTAINTS, is a structure specifying linear constraints on the fit. The structure has three fields, "xc", "yc", and "cc".
"xc"
Vector of the x-locations of the constraints.
"yc"
Constraining values at the locations XC. The default is an array of zeros.
"cc"
Coefficients (matrix). The default is an array of ones. The number of rows is limited to the order of the piecewise polynomials, ORDER.
Constraints are linear combinations of derivatives of order 0 to ORDER-1 according to
cc(1,j) * y(xc(j)) + cc(2,j) * y'(xc(j)) + ... = yc(:,...,:,j).
See also: interp1, unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Fit a piecewise cubic spline with breaks (knots) BREAKS to the noisy data, X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unmkpp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 666
-- Function File: [X, P, N, K, D] = unmkpp (PP)
Extract the components of a piecewise polynomial structure PP.
The components are:
X
Sample points.
P
Polynomial coefficients for points in sample interval. 'P (I, :)' contains the coefficients for the polynomial over interval I ordered from highest to lowest. If 'D > 1', 'P (R, I, :)' contains the coefficients for the r-th polynomial defined on interval I.
N
Number of polynomial pieces.
K
Order of the polynomial plus 1.
D
Number of polynomials defined for each interval.
See also: mkpp, ppval, spline, pchip.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Extract the components of a piecewise polynomial structure PP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
addpref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 494
-- Function File: addpref (GROUP, PREF, VAL)
Add a preference PREF and associated value VAL to the named preference group GROUP.
The named preference group must be a character string.
The preference PREF may be a character string or a cell array of character strings.
The corresponding value VAL may be any value, or, if PREF is a cell array of strings, VAL must be a cell array of values with the same size as PREF.
See also: setpref, getpref, ispref, rmpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Add a preference PREF and associated value VAL to the named preference group GROUP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getpref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 914
-- Function File: getpref (GROUP, PREF)
-- Function File: getpref (GROUP, PREF, DEFAULT)
-- Function File: getpref (GROUP)
Return the preference value corresponding to the named preference PREF in the preference group GROUP.
The named preference group must be a character string.
If PREF does not exist in GROUP and DEFAULT is specified, return DEFAULT.
The preference PREF may be a character string or a cell array of character strings.
The corresponding default value DEFAULT may be any value, or, if PREF is a cell array of strings, DEFAULT must be a cell array of values with the same size as PREF.
If neither PREF nor DEFAULT are specified, return a structure of preferences for the preference group GROUP.
If no arguments are specified, return a structure containing all groups of preferences and their values.
See also: addpref, setpref, ispref, rmpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Return the preference value corresponding to the named preference PREF in the preference group GROUP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ispref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 445
-- Function File: ispref (GROUP, PREF)
-- Function File: ispref (GROUP)
Return true if the named preference PREF exists in the preference group GROUP.
The named preference group must be a character string.
The preference PREF may be a character string or a cell array of character strings.
If PREF is not specified, return true if the preference group GROUP exists.
See also: getpref, addpref, setpref, rmpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Return true if the named preference PREF exists in the preference group GROUP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
prefdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 316
-- Command: prefdir
-- Command: DIR = prefdir
Return the directory that contains the preferences for Octave.
Examples:
Display the preferences directory
prefdir
Change to the preferences folder
cd (prefdir)
See also: getpref, setpref, addpref, rmpref, ispref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return the directory that contains the preferences for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
preferences
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
-- Command: preferences
Display the GUI preferences dialog window for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Display the GUI preferences dialog window for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rmpref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
-- Function File: rmpref (GROUP, PREF)
-- Function File: rmpref (GROUP)
Remove the named preference PREF from the preference group GROUP.
The named preference group must be a character string.
The preference PREF may be a character string or cell array of strings.
If PREF is not specified, remove the preference group GROUP.
It is an error to remove a nonexistent preference or group.
See also: addpref, ispref, setpref, getpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Remove the named preference PREF from the preference group GROUP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
setpref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 554
-- Function File: setpref (GROUP, PREF, VAL)
Set a preference PREF to the given VAL in the named preference group GROUP.
The named preference group must be a character string.
The preference PREF may be a character string or a cell array of character strings.
The corresponding value VAL may be any value, or, if PREF is a cell array of strings, VAL must be a cell array of values with the same size as PREF.
If the named preference or group does not exist, it is added.
See also: addpref, getpref, ispref, rmpref.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Set a preference PREF to the given VAL in the named preference group GROUP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
intersect
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 647
-- Function File: C = intersect (A, B)
-- Function File: C = intersect (A, B, "rows")
-- Function File: [C, IA, IB] = intersect (...)
Return the unique elements common to both A and B sorted in ascending order.
If A and B are both row vectors then return a row vector; Otherwise, return a column vector. The inputs may also be cell arrays of strings.
If the optional input "rows" is given then return the common rows of A and B. The inputs must be 2-D matrices to use this option.
If requested, return index vectors IA and IB such that 'C = A(IA)' and 'C = B(IB)'.
See also: unique, union, setdiff, setxor, ismember.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Return the unique elements common to both A and B sorted in ascending order.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ismember
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1198
-- Function File: TF = ismember (A, S)
-- Function File: TF = ismember (A, S, "rows")
-- Function File: [TF, S_IDX] = ismember (...)
Return a logical matrix TF with the same shape as A which is true (1) if the element in A is found in S and false (0) if it is not.
If a second output argument is requested then the index into S of each matching element is also returned.
a = [3, 10, 1];
s = [0:9];
[tf, s_idx] = ismember (a, s)
=> tf = [1, 0, 1]
=> s_idx = [4, 0, 2]
The inputs A and S may also be cell arrays.
a = {"abc"};
s = {"abc", "def"};
[tf, s_idx] = ismember (a, s)
=> tf = [1, 0]
=> s_idx = [1, 0]
If the optional third argument "rows" is given then compare rows in A with rows in S. The inputs must be 2-D matrices with the same number of columns to use this option.
a = [1:3; 5:7; 4:6];
s = [0:2; 1:3; 2:4; 3:5; 4:6];
[tf, s_idx] = ismember (a, s, "rows")
=> tf = logical ([1; 0; 1])
=> s_idx = [2; 0; 5];
See also: lookup, unique, union, intersect, setdiff, setxor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
Return a logical matrix TF with the same shape as A which is true (1) if the element in A is found in S and false (0) if it is not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
powerset
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 502
-- Function File: powerset (A)
-- Function File: powerset (A, "rows")
Compute the powerset (all subsets) of the set A.
The set A must be a numerical matrix or a cell array of strings. The output will always be a cell array of either vectors or strings.
With the optional argument "rows", each row of the set A is considered one element of the set. The input must be a 2-D numeric matrix to use this argument.
See also: unique, union, intersect, setdiff, setxor, ismember.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the powerset (all subsets) of the set A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
setdiff
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 618
-- Function File: C = setdiff (A, B)
-- Function File: C = setdiff (A, B, "rows")
-- Function File: [C, IA] = setdiff (...)
Return the unique elements in A that are not in B sorted in ascending order.
If A is a row vector return a column vector; Otherwise, return a column vector. The inputs may also be cell arrays of strings.
If the optional input "rows" is given then return the rows in A that are not in B. The inputs must be 2-D matrices to use this option.
If requested, return the index vector IA such that 'C = A(IA)'.
See also: unique, union, intersect, setxor, ismember.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Return the unique elements in A that are not in B sorted in ascending order.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
setxor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 686
-- Function File: C = setxor (A, B)
-- Function File: C = setxor (A, B, "rows")
-- Function File: [C, IA, IB] = setxor (...)
Return the unique elements exclusive to sets A or B sorted in ascending order.
If A and B are both row vectors then return a row vector; Otherwise, return a column vector. The inputs may also be cell arrays of strings.
If the optional input "rows" is given then return the rows exclusive to sets A and B. The inputs must be 2-D matrices to use this option.
If requested, return index vectors IA and IB such that 'A(IA)' and 'B(IB)' are disjoint sets whose union is C.
See also: unique, union, intersect, setdiff, ismember.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Return the unique elements exclusive to sets A or B sorted in ascending order.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
union
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 685
-- Function File: C = union (A, B)
-- Function File: C = union (A, B, "rows")
-- Function File: [C, IA, IB] = union (...)
Return the unique elements that are in either A or B sorted in ascending order.
If A and B are both row vectors then return a row vector; Otherwise, return a column vector. The inputs may also be cell arrays of strings.
If the optional input "rows" is given then return rows that are in either A or B. The inputs must be 2-D matrices to use this option.
The optional outputs IA and IB are index vectors such that 'A(IA)' and 'B(IB)' are disjoint sets whose union is C.
See also: unique, intersect, setdiff, setxor, ismember.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return the unique elements that are in either A or B sorted in ascending order.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unique
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 980
-- Function File: unique (X)
-- Function File: unique (X, "rows")
-- Function File: [Y, I, J] = unique (...)
-- Function File: [Y, I, J] = unique (..., "first")
-- Function File: [Y, I, J] = unique (..., "last")
Return the unique elements of X sorted in ascending order.
If the input X is a column vector then return a column vector; Otherwise, return a row vector. X may also be a cell array of strings.
If the optional argument "rows" is given then return the unique rows of X sorted in ascending order. The input must be a 2-D matrix to use this option.
If requested, return index vectors I and J such that 'Y = X(I)' and 'X = Y(J)'.
Additionally, if I is a requested output then one of "first" or "last" may be given as an input. If "last" is specified, return the highest possible indices in I, otherwise, if "first" is specified, return the lowest. The default is "last".
See also: union, intersect, setdiff, setxor, ismember.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the unique elements of X sorted in ascending order.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arch_fit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 864
-- Function File: [A, B] = arch_fit (Y, X, P, ITER, GAMMA, A0, B0)
Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.
The model is
y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2
in which e(t) is N(0, h(t)), given a time-series vector Y up to time t-1 and a matrix of (ordinary) regressors X up to t. The order of the regression of the residual variance is specified by P.
If invoked as 'arch_fit (Y, K, P)' with a positive integer K, fit an ARCH(K, P) process, i.e., do the above with the t-th row of X given by
[1, y(t-1), ..., y(t-k)]
Optionally, one can specify the number of iterations ITER, the updating factor GAMMA, and initial values a0 and b0 for the scoring algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arch_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 374
-- Function File: arch_rnd (A, B, T)
Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A.
The result y(t) follows the model
y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t),
where e(t), given Y up to time t-1, is N(0, h(t)), with
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
arch_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 949
-- Function File: [PVAL, LM] = arch_test (Y, X, P)
For a linear regression model
y = x * b + e
perform a Lagrange Multiplier (LM) test of the null hypothesis of no conditional heteroscedascity against the alternative of CH(P).
I.e., the model is
y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
given Y up to t-1 and X up to t, e(t) is N(0, h(t)) with
h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2,
and the null is a(1) == ... == a(p) == 0.
If the second argument is a scalar integer, k, perform the same test in a linear autoregression model of order k, i.e., with
[1, y(t-1), ..., y(t-K)]
as the t-th row of X.
Under the null, LM approximately has a chisquare distribution with P degrees of freedom and PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
For a linear regression model
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arma_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 597
-- Function File: arma_rnd (A, B, V, T, N)
Return a simulation of the ARMA model.
The ARMA model is defined by
x(n) = a(1) * x(n-1) + ... + a(k) * x(n-k)
+ e(n) + b(1) * e(n-1) + ... + b(l) * e(n-l)
in which K is the length of vector A, L is the length of vector B and E is Gaussian white noise with variance V. The function returns a vector of length T.
The optional parameter N gives the number of dummy X(I) used for initialization, i.e., a sequence of length T+N is generated and X(N+1:T+N) is returned. If N is omitted, N = 100 is used.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return a simulation of the ARMA model.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
autoreg_matrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 356
-- Function File: autoreg_matrix (Y, K)
Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.
In other words, for T > K, '[1, Y(T-1), ..., Y(T-K)]' is the t-th row of the result.
The resulting matrix may be used as a regressor matrix in autoregressions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bartlett
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
-- Function File: bartlett (M)
Return the filter coefficients of a Bartlett (triangular) window of length M.
For a definition of the Bartlett window see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return the filter coefficients of a Bartlett (triangular) window of length M.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
blackman
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 585
-- Function File: blackman (M)
-- Function File: blackman (M, "periodic")
-- Function File: blackman (M, "symmetric")
Return the filter coefficients of a Blackman window of length M.
If the optional argument "periodic" is given, the periodic form of the window is returned. This is equivalent to the window of length M+1 with the last coefficient removed. The optional argument "symmetric" is equivalent to not specifying a second argument.
For a definition of the Blackman window, see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return the filter coefficients of a Blackman window of length M.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
detrend
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 547
-- Function File: detrend (X, P)
If X is a vector, 'detrend (X, P)' removes the best fit of a polynomial of order P from the data X.
If X is a matrix, 'detrend (X, P)' does the same for each column in X.
The second argument P is optional. If it is not specified, a value of 1 is assumed. This corresponds to removing a linear trend.
The order of the polynomial can also be given as a string, in which case P must be either "constant" (corresponds to 'P=0') or "linear" (corresponds to 'P=1').
See also: polyfit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
If X is a vector, 'detrend (X, P)' removes the best fit of a polynomial of order P from the data X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
diffpara
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 702
-- Function File: [D, DD] = diffpara (X, A, B)
Return the estimator D for the differencing parameter of an integrated time series.
The frequencies from [2*pi*a/t, 2*pi*b/T] are used for the estimation. If B is omitted, the interval [2*pi/T, 2*pi*a/T] is used. If both B and A are omitted then a = 0.5 * sqrt (T) and b = 1.5 * sqrt (T) is used, where T is the sample size. If X is a matrix, the differencing parameter of each column is estimated.
The estimators for all frequencies in the intervals described above is returned in DD.
The value of D is simply the mean of DD.
Reference: P.J. Brockwell & R.A. Davis. 'Time Series: Theory and Methods'. Springer 1987.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return the estimator D for the differencing parameter of an integrated time series.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
durbinlevinson
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 389
-- Function File: durbinlevinson (C, OLDPHI, OLDV)
Perform one step of the Durbin-Levinson algorithm.
The vector C specifies the autocovariances '[gamma_0, ..., gamma_t]' from lag 0 to T, OLDPHI specifies the coefficients based on C(T-1) and OLDV specifies the corresponding error.
If OLDPHI and OLDV are omitted, all steps from 1 to T of the algorithm are performed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Perform one step of the Durbin-Levinson algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fftconv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 530
-- Function File: fftconv (X, Y)
-- Function File: fftconv (X, Y, N)
Convolve two vectors using the FFT for computation.
'c = fftconv (X, Y)' returns a vector of length equal to 'length (X) + length (Y) - 1'. If X and Y are the coefficient vectors of two polynomials, the returned value is the coefficient vector of the product polynomial.
The computation uses the FFT by calling the function 'fftfilt'. If the optional argument N is specified, an N-point FFT is used.
See also: deconv, conv, conv2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Convolve two vectors using the FFT for computation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fftfilt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 545
-- Function File: fftfilt (B, X)
-- Function File: fftfilt (B, X, N)
Filter X with the FIR filter B using the FFT.
If X is a matrix, filter each column of the matrix.
Given the optional third argument, N, 'fftfilt' uses the overlap-add method to filter X with B using an N-point FFT. The FFT size must be an even power of 2 and must be greater than or equal to the length of B. If the specified N does not meet these criteria, it is automatically adjusted to the nearest value that does.
See also: filter, filter2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Filter X with the FIR filter B using the FFT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fftshift
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 709
-- Function File: fftshift (X)
-- Function File: fftshift (X, DIM)
Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.
If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift (fft (X))' corresponds to frequencies
f = [ -(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df ]
where df = 1 / dt.
If X is a matrix, the same holds for rows and columns. If X is an array, then the same holds along each dimension.
The optional DIM argument can be used to limit the dimension along which the permutation occurs.
See also: ifftshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
filter2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 552
-- Function File: Y = filter2 (B, X)
-- Function File: Y = filter2 (B, X, SHAPE)
Apply the 2-D FIR filter B to X.
If the argument SHAPE is specified, return an array of the desired shape. Possible values are:
"full"
pad X with zeros on all sides before filtering.
"same"
unpadded X (default)
"valid"
trim X after filtering so edge effects are no included.
Note this is just a variation on convolution, with the parameters reversed and B rotated 180 degrees.
See also: conv2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Apply the 2-D FIR filter B to X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
fractdiff
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
-- Function File: fractdiff (X, D)
Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
freqz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1415
-- Function File: [H, W] = freqz (B, A, N, "whole")
-- Function File: [H, W] = freqz (B)
-- Function File: [H, W] = freqz (B, A)
-- Function File: [H, W] = freqz (B, A, N)
-- Function File: H = freqz (B, A, W)
-- Function File: [H, W] = freqz (..., FS)
-- Function File: freqz (...)
Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively.
The response is evaluated at N angular frequencies between 0 and 2*pi.
The output value W is a vector of the frequencies.
If A is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR filter).
If N is omitted, a value of 512 is assumed. For fastest computation, N should factor into a small number of small primes.
If the fourth argument, "whole", is omitted the response is evaluated at frequencies between 0 and pi.
'freqz (B, A, W)'
Evaluate the response at the specific frequencies in the vector W. The values for W are measured in radians.
'[...] = freqz (..., FS)'
Return frequencies in Hz instead of radians assuming a sampling rate FS. If you are evaluating the response at specific frequencies W, those frequencies should be requested in Hz rather than radians.
'freqz (...)'
Plot the magnitude and phase response of H rather than returning them.
See also: freqz_plot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
freqz_plot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
-- Function File: freqz_plot (W, H)
-- Function File: freqz_plot (W, H, FREQ_NORM)
Plot the magnitude and phase response of H.
If the optional FREQ_NORM argument is true, the frequency vector W is in units of normalized radians. If FREQ_NORM is false, or not given, then W is measured in Hertz.
See also: freqz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Plot the magnitude and phase response of H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hamming
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 579
-- Function File: hamming (M)
-- Function File: hamming (M, "periodic")
-- Function File: hamming (M, "symmetric")
Return the filter coefficients of a Hamming window of length M.
If the optional argument "periodic" is given, the periodic form of the window is returned. This is equivalent to the window of length M+1 with the last coefficient removed. The optional argument "symmetric" is equivalent to not specifying a second argument.
For a definition of the Hamming window see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the filter coefficients of a Hamming window of length M.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hanning
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 579
-- Function File: hanning (M)
-- Function File: hanning (M, "periodic")
-- Function File: hanning (M, "symmetric")
Return the filter coefficients of a Hanning window of length M.
If the optional argument "periodic" is given, the periodic form of the window is returned. This is equivalent to the window of length M+1 with the last coefficient removed. The optional argument "symmetric" is equivalent to not specifying a second argument.
For a definition of the Hanning window see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the filter coefficients of a Hanning window of length M.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
hurst
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
-- Function File: hurst (X)
Estimate the Hurst parameter of sample X via the rescaled range statistic.
If X is a matrix, the parameter is estimated for every column.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Estimate the Hurst parameter of sample X via the rescaled range statistic.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ifftshift
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 238
-- Function File: ifftshift (X)
-- Function File: ifftshift (X, DIM)
Undo the action of the 'fftshift' function.
For even length X, 'fftshift' is its own inverse, but odd lengths differ slightly.
See also: fftshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Undo the action of the 'fftshift' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
periodogram
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1908
-- Function File: [PXX, W] = periodogram (X)
-- Function File: [PXX, W] = periodogram (X, WIN)
-- Function File: [PXX, W] = periodogram (X, WIN, NFFT)
-- Function File: [PXX, F] = periodogram (X, WIN, NFFT, FS)
-- Function File: [PXX, F] = periodogram (..., "RANGE")
-- Function File: periodogram (...)
Return the periodogram (Power Spectral Density) of X.
The possible inputs are:
X
data vector. If X is real-valued a one-sided spectrum is estimated. If X is complex-valued, or "RANGE" specifies "twosided", the full spectrum is estimated.
WIN
window weight data. If window is empty or unspecified a default rectangular window is used. Otherwise, the window is applied to the signal ('X .* WIN') before computing the periodogram. The window data must be a vector of the same length as X.
NFFT
number of frequency bins. The default is 256 or the next higher power of 2 greater than the length of X ('max (256, 2.^nextpow2 (length (x)))'). If NFFT is greater than the length of the input then X will be zero-padded to the length of NFFT.
FS
sampling rate. The default is 1.
RANGE
range of spectrum. "onesided" computes spectrum from [0..nfft/2+1]. "twosided" computes spectrum from [0..nfft-1].
The optional second output W are the normalized angular frequencies. For a one-sided calculation W is in the range [0, pi] if NFFT is even and [0, pi) if NFFT is odd. Similarly, for a two-sided calculation W is in the range [0, 2*pi] or [0, 2*pi) depending on NFFT.
If a sampling frequency is specified, FS, then the output frequencies F will be in the range [0, FS/2] or [0, FS/2) for one-sided calculations. For two-sided calculations the range will be [0, FS).
When called with no outputs the periodogram is immediately plotted in the current figure window.
See also: fft.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return the periodogram (Power Spectral Density) of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sinc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
-- Function File: sinc (X)
Compute the sinc function.
Return sin (pi*x) / (pi*x).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Compute the sinc function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sinetone
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 323
-- Function File: sinetone (FREQ, RATE, SEC, AMPL)
Return a sinetone of frequency FREQ with a length of SEC seconds at sampling rate RATE and with amplitude AMPL.
The arguments FREQ and AMPL may be vectors of common size.
The defaults are RATE = 8000, SEC = 1, and AMPL = 64.
See also: sinewave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Return a sinetone of frequency FREQ with a length of SEC seconds at sampling rate RATE and with amplitude AMPL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sinewave
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 225
-- Function File: sinewave (M, N, D)
Return an M-element vector with I-th element given by 'sin (2 * pi * (I+D-1) / N)'.
The default value for D is 0 and the default value for N is M.
See also: sinetone.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return an M-element vector with I-th element given by 'sin (2 * pi * (I+D-1) / N)'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
spectral_adf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 484
-- Function File: spectral_adf (C)
-- Function File: spectral_adf (C, WIN)
-- Function File: spectral_adf (C, WIN, B)
Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.
The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_lw'.
If WIN is omitted, the triangle window is used.
If B is omitted, '1 / sqrt (length (X))' is used.
See also: spectral_xdf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
spectral_xdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 470
-- Function File: spectral_xdf (X)
-- Function File: spectral_xdf (X, WIN)
-- Function File: spectral_xdf (X, WIN, B)
Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.
The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_sw'.
If WIN is omitted, the triangle window is used.
If B is omitted, '1 / sqrt (length (X))' is used.
See also: spectral_adf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spencer
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
-- Function File: spencer (X)
Return Spencer's 15 point moving average of each column of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return Spencer's 15 point moving average of each column of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
stft
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1204
-- Function File: Y = stft (X)
-- Function File: Y = stft (X, WIN_SIZE)
-- Function File: Y = stft (X, WIN_SIZE, INC)
-- Function File: Y = stft (X, WIN_SIZE, INC, NUM_COEF)
-- Function File: Y = stft (X, WIN_SIZE, INC, NUM_COEF, WIN_TYPE)
-- Function File: [Y, C] = stft (...)
Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.
Before computing the Fourier transform, one of the following windows is applied:
"hanning"
win_type = 1
"hamming"
win_type = 2
"rectangle"
win_type = 3
The window names can be passed as strings or by the WIN_TYPE number.
The following defaults are used for unspecified arguments: WIN_SIZE = 80, INC = 24, NUM_COEF = 64, and WIN_TYPE = 1.
'Y = stft (X, ...)' returns the absolute values of the Fourier coefficients according to the NUM_COEF positive frequencies.
'[Y, C] = stft (x, ...)' returns the entire STFT-matrix Y and a 3-element vector C containing the window size, increment, and window type, which is needed by the 'synthesis' function.
See also: synthesis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
synthesis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Function File: X = synthesis (Y, C)
Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.
The values Y and C can be derived by
[Y, C] = stft (X , ...)
See also: stft.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unwrap
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 371
-- Function File: B = unwrap (X)
-- Function File: B = unwrap (X, TOL)
-- Function File: B = unwrap (X, TOL, DIM)
Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL.
TOL defaults to pi.
Unwrap will work along the dimension DIM. If DIM is unspecified it defaults to the first non-singleton dimension.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
yulewalker
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
-- Function File: [A, V] = yulewalker (C)
Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'.
Returns the AR coefficients, A, and the variance of white noise, V.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
bicg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1631
-- Function File: X = bicg (A, B, RTOL, MAXIT, M1, M2, X0)
-- Function File: X = bicg (A, B, RTOL, MAXIT, P)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC] = bicg (A, B, ...)
Solve 'A x = b' using the Bi-conjugate gradient iterative method.
- RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.
- MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.
- X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.
A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x, "notransp") = A*x' and 'f(x, "transp") = A'*x'.
The preconditioner P is given as 'P = M1 * M2'. Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x, "notransp") = M1 \ x' or 'g(x, "notransp") = M2 \ x' and 'g(x, "transp") = M1' \ x' or 'g(x, "transp") = M2' \ x'.
If called with more than one output parameter
- FLAG indicates the exit status:
- 0: iteration converged to the within the chosen tolerance
- 1: the maximum number of iterations was reached before convergence
- 3: the algorithm reached stagnation
(the value 2 is unused but skipped for compatibility).
- RELRES is the final value of the relative residual.
- ITER is the number of iterations performed.
- RESVEC is a vector containing the relative residual at each iteration.
See also: bicgstab, cgs, gmres, pcg, qmr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Solve 'A x = b' using the Bi-conjugate gradient iterative method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bicgstab
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1526
-- Function File: X = bicgstab (A, B, RTOL, MAXIT, M1, M2, X0)
-- Function File: X = bicgstab (A, B, RTOL, MAXIT, P)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC] = bicgstab (A, B, ...)
Solve 'A x = b' using the stabilizied Bi-conjugate gradient iterative method.
- RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.
- MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.
- X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.
A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x) = A*x'.
The preconditioner P is given as 'P = M1 * M2'. Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x) = M1 \ x' or 'g(x) = M2 \ x'.
If called with more than one output parameter
- FLAG indicates the exit status:
- 0: iteration converged to the within the chosen tolerance
- 1: the maximum number of iterations was reached before convergence
- 3: the algorithm reached stagnation
(the value 2 is unused but skipped for compatibility).
- RELRES is the final value of the relative residual.
- ITER is the number of iterations performed.
- RESVEC is a vector containing the relative residual at each iteration.
See also: bicg, cgs, gmres, pcg, qmr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Solve 'A x = b' using the stabilizied Bi-conjugate gradient iterative method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cgs
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1528
-- Function File: X = cgs (A, B, RTOL, MAXIT, M1, M2, X0)
-- Function File: X = cgs (A, B, RTOL, MAXIT, P)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC] = cgs (A, B, ...)
Solve 'A x = b', where A is a square matrix, using the Conjugate Gradients Squared method.
- RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.
- MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.
- X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.
A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x) = A*x'.
The preconditioner P is given as 'P = M1 * M2'. Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x) = M1 \ x' or 'g(x) = M2 \ x'.
If called with more than one output parameter
- FLAG indicates the exit status:
- 0: iteration converged to the within the chosen tolerance
- 1: the maximum number of iterations was reached before convergence
- 3: the algorithm reached stagnation
(the value 2 is unused but skipped for compatibility).
- RELRES is the final value of the relative residual.
- ITER is the number of iterations performed.
- RESVEC is a vector containing the relative residual at each iteration.
See also: pcg, bicgstab, bicg, gmres, qmr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Solve 'A x = b', where A is a square matrix, using the Conjugate Gradients Squared method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
colperm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
-- Function File: P = colperm (S)
Return the column permutations such that the columns of 'S (:, P)' are ordered in terms of increasing number of nonzero elements.
If S is symmetric, then P is chosen such that 'S (P, P)' orders the rows and columns with increasing number of nonzeros elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
Return the column permutations such that the columns of 'S (:, P)' are ordered in terms of increasing number of nonzero elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
eigs
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5549
-- Function File: D = eigs (A)
-- Function File: D = eigs (A, K)
-- Function File: D = eigs (A, K, SIGMA)
-- Function File: D = eigs (A, K, SIGMA, OPTS)
-- Function File: D = eigs (A, B)
-- Function File: D = eigs (A, B, K)
-- Function File: D = eigs (A, B, K, SIGMA)
-- Function File: D = eigs (A, B, K, SIGMA, OPTS)
-- Function File: D = eigs (AF, N)
-- Function File: D = eigs (AF, N, B)
-- Function File: D = eigs (AF, N, K)
-- Function File: D = eigs (AF, N, B, K)
-- Function File: D = eigs (AF, N, K, SIGMA)
-- Function File: D = eigs (AF, N, B, K, SIGMA)
-- Function File: D = eigs (AF, N, K, SIGMA, OPTS)
-- Function File: D = eigs (AF, N, B, K, SIGMA, OPTS)
-- Function File: [V, D] = eigs (A, ...)
-- Function File: [V, D] = eigs (AF, N, ...)
-- Function File: [V, D, FLAG] = eigs (A, ...)
-- Function File: [V, D, FLAG] = eigs (AF, N, ...)
Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria.
The number of eigenvalues and eigenvectors to calculate is given by K and defaults to 6.
By default, 'eigs' solve the equation 'A * v = lambda * v', where 'lambda' is a scalar representing one of the eigenvalues, and 'v' is the corresponding eigenvector. If given the positive definite matrix B then 'eigs' solves the general eigenvalue equation 'A * v = lambda * B * v'.
The argument SIGMA determines which eigenvalues are returned. SIGMA can be either a scalar or a string. When SIGMA is a scalar, the K eigenvalues closest to SIGMA are returned. If SIGMA is a string, it must have one of the following values.
"lm"
Largest Magnitude (default).
"sm"
Smallest Magnitude.
"la"
Largest Algebraic (valid only for real symmetric problems).
"sa"
Smallest Algebraic (valid only for real symmetric problems).
"be"
Both Ends, with one more from the high-end if K is odd (valid only for real symmetric problems).
"lr"
Largest Real part (valid only for complex or unsymmetric problems).
"sr"
Smallest Real part (valid only for complex or unsymmetric problems).
"li"
Largest Imaginary part (valid only for complex or unsymmetric problems).
"si"
Smallest Imaginary part (valid only for complex or unsymmetric problems).
If OPTS is given, it is a structure defining possible options that 'eigs' should use. The fields of the OPTS structure are:
'issym'
If AF is given, then flags whether the function AF defines a symmetric problem. It is ignored if A is given. The default is false.
'isreal'
If AF is given, then flags whether the function AF defines a real problem. It is ignored if A is given. The default is true.
'tol'
Defines the required convergence tolerance, calculated as 'tol * norm (A)'. The default is 'eps'.
'maxit'
The maximum number of iterations. The default is 300.
'p'
The number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but a greater use of memory. The optimal value of 'p' is problem dependent and should be in the range K to N. The default value is '2 * K'.
'v0'
The starting vector for the algorithm. An initial vector close to the final vector will speed up convergence. The default is for ARPACK to randomly generate a starting vector. If specified, 'v0' must be an N-by-1 vector where 'N = rows (A)'
'disp'
The level of diagnostic printout (0|1|2). If 'disp' is 0 then diagnostics are disabled. The default value is 0.
'cholB'
Flag if 'chol (B)' is passed rather than B. The default is false.
'permB'
The permutation vector of the Cholesky factorization of B if 'cholB' is true. That is 'chol (B(permB, permB))'. The default is '1:N'.
It is also possible to represent A by a function denoted AF. AF must be followed by a scalar argument N defining the length of the vector argument accepted by AF. AF can be a function handle, an inline function, or a string. When AF is a string it holds the name of the function to use.
AF is a function of the form 'y = af (x)' where the required return value of AF is determined by the value of SIGMA. The four possible forms are
'A * x'
if SIGMA is not given or is a string other than "sm".
'A \ x'
if SIGMA is 0 or "sm".
'(A - sigma * I) \ x'
for the standard eigenvalue problem, where 'I' is the identity matrix of the same size as A.
'(A - sigma * B) \ x'
for the general eigenvalue problem.
The return arguments of 'eigs' depend on the number of return arguments requested. With a single return argument, a vector D of length K is returned containing the K eigenvalues that have been found. With two return arguments, V is a N-by-K matrix whose columns are the K eigenvectors corresponding to the returned eigenvalues. The eigenvalues themselves are returned in D in the form of a N-by-K matrix, where the elements on the diagonal are the eigenvalues.
Given a third return argument FLAG, 'eigs' returns the status of the convergence. If FLAG is 0 then all eigenvalues have converged. Any other value indicates a failure to converge.
This function is based on the ARPACK package, written by R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang. For more information see <http://www.caam.rice.edu/software/ARPACK/>.
See also: eig, svds.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
etreeplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
-- Function File: etreeplot (A)
-- Function File: etreeplot (A, NODE_STYLE, EDGE_STYLE)
Plot the elimination tree of the matrix A or A+A' if A in not symmetric.
The optional parameters NODE_STYLE and EDGE_STYLE define the output style.
See also: treeplot, gplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Plot the elimination tree of the matrix A or A+A' if A in not symmetric.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gmres
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1678
-- Function File: X = gmres (A, B, M, RTOL, MAXIT, M1, M2, X0)
-- Function File: X = gmres (A, B, M, RTOL, MAXIT, P)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC] = gmres (...)
Solve 'A x = b' using the Preconditioned GMRES iterative method with restart, a.k.a. PGMRES(m).
- RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.
- MAXIT is the maximum number of outer iterations, if not given or set to [] the default value 'min (10, numel (b) / restart)' is used.
- X0 is the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.
- M is the restart parameter, if not given or set to [] the default value 'numel (b)' is used.
Argument A can be passed as a matrix, function handle, or inline function 'f' such that 'f(x) = A*x'.
The preconditioner P is given as 'P = M1 * M2'. Both M1 and M2 can be passed as a matrix, function handle, or inline function 'g' such that 'g(x) = M1\x' or 'g(x) = M2\x'.
Besides the vector X, additional outputs are:
- FLAG indicates the exit status:
0 : iteration converged to within the specified tolerance
1 : maximum number of iterations exceeded
2 : unused, but skipped for compatibility
3 : algorithm reached stagnation (no change between iterations)
- RELRES is the final value of the relative residual.
- ITER is a vector containing the number of outer iterations and total iterations performed.
- RESVEC is a vector containing the relative residual at each iteration.
See also: bicg, bicgstab, cgs, pcg, pcr, qmr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Solve 'A x = b' using the Preconditioned GMRES iterative method with restart, a.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 572
-- Function File: gplot (A, XY)
-- Function File: gplot (A, XY, LINE_STYLE)
-- Function File: [X, Y] = gplot (A, XY)
Plot a graph defined by A and XY in the graph theory sense.
A is the adjacency matrix of the array to be plotted and XY is an N-by-2 matrix containing the coordinates of the nodes of the graph.
The optional parameter LINE_STYLE defines the output style for the plot. Called with no output arguments the graph is plotted directly. Otherwise, return the coordinates of the plot in X and Y.
See also: treeplot, etreeplot, spy.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Plot a graph defined by A and XY in the graph theory sense.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ichol
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3987
-- Function File: L = ichol (A)
-- Function File: L = ichol (A, OPTS)
Compute the incomplete Cholesky factorization of the sparse square matrix A.
By default, 'ichol' uses only the lower triangle of A and produces a lower triangular factor L such that L*L' approximates A.
The factor given by this routine may be useful as a preconditioner for a system of linear equations being solved by iterative methods such as PCG (Preconditioned Conjugate Gradient).
The factorization may be modified by passing options in a structure OPTS. The option name is a field of the structure and the setting is the value of field. Names and specifiers are case sensitive.
type
Type of factorization.
"nofill" (default)
Incomplete Cholesky factorization with no fill-in (IC(0)).
"ict"
Incomplete Cholesky factorization with threshold dropping (ICT).
diagcomp
A non-negative scalar ALPHA for incomplete Cholesky factorization of 'A + ALPHA * diag (diag (A))' instead of A. This can be useful when A is not positive definite. The default value is 0.
droptol
A non-negative scalar specifying the drop tolerance for factorization if performing ICT. The default value is 0 which produces the complete Cholesky factorization.
Non-diagonal entries of L are set to 0 unless
'abs (L(i,j)) >= droptol * norm (A(j:end, j), 1)'.
michol
Modified incomplete Cholesky factorization:
"off" (default)
Row and column sums are not necessarily preserved.
"on"
The diagonal of L is modified so that row (and column) sums are preserved even when elements have been dropped during the factorization. The relationship preserved is: 'A * e = L * L' * e', where e is a vector of ones.
shape
"lower" (default)
Use only the lower triangle of A and return a lower triangular factor L such that L*L' approximates A.
"upper"
Use only the upper triangle of A and return an upper triangular factor U such that 'U'*U' approximates A.
EXAMPLES
The following problem demonstrates how to factorize a sample symmetric positive definite matrix with the full Cholesky decomposition and with the incomplete one.
A = [ 0.37, -0.05, -0.05, -0.07;
-0.05, 0.116, 0.0, -0.05;
-0.05, 0.0, 0.116, -0.05;
-0.07, -0.05, -0.05, 0.202];
A = sparse (A);
nnz (tril (A))
ans = 9
L = chol (A, "lower");
nnz (L)
ans = 10
norm (A - L * L', "fro") / norm (A, "fro")
ans = 1.1993e-16
opts.type = "nofill";
L = ichol (A, opts);
nnz (L)
ans = 9
norm (A - L * L', "fro") / norm (A, "fro")
ans = 0.019736
Another example for decomposition is a finite difference matrix used to solve a boundary value problem on the unit square.
nx = 400; ny = 200;
hx = 1 / (nx + 1); hy = 1 / (ny + 1);
Dxx = spdiags ([ones(nx, 1), -2*ones(nx, 1), ones(nx, 1)],
[-1 0 1 ], nx, nx) / (hx ^ 2);
Dyy = spdiags ([ones(ny, 1), -2*ones(ny, 1), ones(ny, 1)],
[-1 0 1 ], ny, ny) / (hy ^ 2);
A = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
nnz (tril (A))
ans = 239400
opts.type = "nofill";
L = ichol (A, opts);
nnz (tril (A))
ans = 239400
norm (A - L * L', "fro") / norm (A, "fro")
ans = 0.062327
References for implemented algorithms:
[1] Y. Saad. "Preconditioning Techniques." 'Iterative Methods for Sparse Linear Systems', PWS Publishing Company, 1996.
[2] M. Jones, P. Plassmann: 'An Improved Incomplete Cholesky Factorization', 1992.
See also: chol, ilu, pcg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Compute the incomplete Cholesky factorization of the sparse square matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ilu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4241
-- Function File: ilu (A)
-- Function File: ilu (A, OPTS)
-- Function File: [L, U] = ilu (...)
-- Function File: [L, U, P] = ilu (...)
Compute the incomplete LU factorization of the sparse square matrix A.
'ilu' returns a unit lower triangular matrix L, an upper triangular matrix U, and optionally a permutation matrix P, such that 'L*U' approximates 'P*A'.
The factors given by this routine may be useful as preconditioners for a system of linear equations being solved by iterative methods such as BICG (BiConjugate Gradients) or GMRES (Generalized Minimum Residual Method).
The factorization may be modified by passing options in a structure OPTS. The option name is a field of the structure and the setting is the value of field. Names and specifiers are case sensitive.
'type'
Type of factorization.
"nofill"
ILU factorization with no fill-in (ILU(0)).
Additional supported options: 'milu'.
"crout"
Crout version of ILU factorization (ILUC).
Additional supported options: 'milu', 'droptol'.
"ilutp" (default)
ILU factorization with threshold and pivoting.
Additional supported options: 'milu', 'droptol', 'udiag', 'thresh'.
'droptol'
A non-negative scalar specifying the drop tolerance for factorization. The default value is 0 which produces the complete LU factorization.
Non-diagonal entries of U are set to 0 unless
'abs (U(i,j)) >= droptol * norm (A(:,j))'.
Non-diagonal entries of L are set to 0 unless
'abs (L(i,j)) >= droptol * norm (A(:,j))/U(j,j)'.
'milu'
Modified incomplete LU factorization:
"row"
Row-sum modified incomplete LU factorization. The factorization preserves row sums: 'A * e = L * U * e', where e is a vector of ones.
"col"
Column-sum modified incomplete LU factorization. The factorization preserves column sums: 'e' * A = e' * L * U'.
"off" (default)
Row and column sums are not necessarily preserved.
'udiag'
If true, any zeros on the diagonal of the upper triangular factor are replaced by the local drop tolerance 'droptol * norm (A(:,j))/U(j,j)'. The default is false.
'thresh'
Pivot threshold for factorization. It can range between 0 (diagonal pivoting) and 1 (default), where the maximum magnitude entry in the column is chosen to be the pivot.
If 'ilu' is called with just one output, the returned matrix is 'L + U - speye (size (A))', where L is unit lower triangular and U is upper triangular.
With two outputs, 'ilu' returns a unit lower triangular matrix L and an upper triangular matrix U. For OPTS.type == "ilutp", one of the factors is permuted based on the value of OPTS.milu. When OPTS.milu == "row", U is a column permuted upper triangular factor. Otherwise, L is a row-permuted unit lower triangular factor.
If there are three named outputs and OPTS.milu != "row", P is returned such that L and U are incomplete factors of 'P*A'. When OPTS.milu == "row", P is returned such that L and U are incomplete factors of 'A*P'.
EXAMPLES
A = gallery ("neumann", 1600) + speye (1600);
opts.type = "nofill";
nnz (A)
ans = 7840
nnz (lu (A))
ans = 126478
nnz (ilu (A, opts))
ans = 7840
This shows that A has 7,840 nonzeros, the complete LU factorization has 126,478 nonzeros, and the incomplete LU factorization, with 0 level of fill-in, has 7,840 nonzeros, the same amount as A. Taken from: http://www.mathworks.com/help/matlab/ref/ilu.html
A = gallery ("wathen", 10, 10);
b = sum (A, 2);
tol = 1e-8;
maxit = 50;
opts.type = "crout";
opts.droptol = 1e-4;
[L, U] = ilu (A, opts);
x = bicg (A, b, tol, maxit, L, U);
norm (A * x - b, inf)
This example uses ILU as preconditioner for a random FEM-Matrix, which has a large condition number. Without L and U BICG would not converge.
See also: lu, ichol, bicg, gmres.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Compute the incomplete LU factorization of the sparse square matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nonzeros
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
-- Function File: nonzeros (S)
Return a vector of the nonzero values of the sparse matrix S.
See also: find, nnz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return a vector of the nonzero values of the sparse matrix S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pcg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5539
-- Function File: X = pcg (A, B, TOL, MAXIT, M1, M2, X0, ...)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC, EIGEST] = pcg (...)
Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Gradient iterative method.
The input arguments are
* A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes 'A * X'. In principle, A should be symmetric and positive definite; if 'pcg' finds A not to be positive definite, a warning is printed and the FLAG output will be set.
* B is the right-hand side vector.
* TOL is the required relative tolerance for the residual error, 'B - A * X'. The iteration stops if 'norm (B - A * X)' <= TOL * norm (B). If TOL is omitted or empty then a tolerance of 1e-6 is used.
* MAXIT is the maximum allowable number of iterations; if MAXIT is omitted or empty then a value of 20 is used.
* M = M1 * M2 is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by 'pcg' 'P * X = M \ B', with 'P = M \ A'. Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method. Instead of matrices M1 and M2, the user may pass two functions which return the results of applying the inverse of M1 and M2 to a vector (usually this is the preferred way of using the preconditioner). If M1 is omitted or empty '[]' then no preconditioning is applied. If M2 is omitted, M = M1 will be used as a preconditioner.
* X0 is the initial guess. If X0 is omitted or empty then the function sets X0 to a zero vector by default.
The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to 'pcg'. See the examples below for further details. The output arguments are
* X is the computed approximation to the solution of 'A * X = B'.
* FLAG reports on the convergence. A value of 0 means the solution converged and the tolerance criterion given by TOL is satisfied. A value of 1 means that the MAXIT limit for the iteration count was reached. A value of 3 indicates that the (preconditioned) matrix was found not to be positive definite.
* RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.
* ITER is the actual number of iterations performed.
* RESVEC describes the convergence history of the method. 'RESVEC(i,1)' is the Euclidean norm of the residual, and 'RESVEC(i,2)' is the preconditioned residual norm, after the (I-1)-th iteration, 'I = 1, 2, ..., ITER+1'. The preconditioned residual norm is defined as 'norm (R) ^ 2 = R' * (M \ R)' where 'R = B - A * X', see also the description of M. If EIGEST is not required, only 'RESVEC(:,1)' is returned.
* EIGEST returns the estimate for the smallest 'EIGEST(1)' and largest 'EIGEST(2)' eigenvalues of the preconditioned matrix 'P = M \ A'. In particular, if no preconditioning is used, the estimates for the extreme eigenvalues of A are returned. 'EIGEST(1)' is an overestimate and 'EIGEST(2)' is an underestimate, so that 'EIGEST(2) / EIGEST(1)' is a lower bound for 'cond (P, 2)', which nevertheless in the limit should theoretically be equal to the actual value of the condition number. The method which computes EIGEST works only for symmetric positive definite A and M, and the user is responsible for verifying this assumption.
Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)
n = 10;
A = diag (sparse (1:n));
b = rand (n, 1);
[l, u, p] = ilu (A, struct ("droptol", 1.e-3));
EXAMPLE 1: Simplest use of 'pcg'
x = pcg (A, b)
EXAMPLE 2: 'pcg' with a function which computes 'A * X'
function y = apply_a (x)
y = [1:N]' .* x;
endfunction
x = pcg ("apply_a", b)
EXAMPLE 3: 'pcg' with a preconditioner: L * U
x = pcg (A, b, 1.e-6, 500, l*u)
EXAMPLE 4: 'pcg' with a preconditioner: L * U. Faster than EXAMPLE 3 since lower and upper triangular matrices are easier to invert
x = pcg (A, b, 1.e-6, 500, l, u)
EXAMPLE 5: Preconditioned iteration, with full diagnostics. The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function
function y = apply_m (x)
k = floor (length (x) - 2);
y = x;
y(1:k) = x(1:k) ./ [1:k]';
endfunction
[x, flag, relres, iter, resvec, eigest] = ...
pcg (A, b, [], [], "apply_m");
semilogy (1:iter+1, resvec);
EXAMPLE 6: Finally, a preconditioner which depends on a parameter K.
function y = apply_M (x, varargin)
K = varargin{1};
y = x;
y(1:K) = x(1:K) ./ [1:K]';
endfunction
[x, flag, relres, iter, resvec, eigest] = ...
pcg (A, b, [], [], "apply_m", [], [], 3)
References:
1. C.T. Kelley, 'Iterative Methods for Linear and Nonlinear Equations', SIAM, 1995. (the base PCG algorithm)
2. Y. Saad, 'Iterative Methods for Sparse Linear Systems', PWS 1996. (condition number estimate from PCG) Revised version of this book is available online at <http://www-users.cs.umn.edu/~saad/books.html>
See also: sparse, pcr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Gradient iterative method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pcr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4047
-- Function File: X = pcr (A, B, TOL, MAXIT, M, X0, ...)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC] = pcr (...)
Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Residuals iterative method.
The input arguments are
* A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes 'A * X'. In principle A should be symmetric and non-singular; if 'pcr' finds A to be numerically singular, you will get a warning message and the FLAG output parameter will be set.
* B is the right hand side vector.
* TOL is the required relative tolerance for the residual error, 'B - A * X'. The iteration stops if 'norm (B - A * X) <= TOL * norm (B - A * X0)'. If TOL is empty or is omitted, the function sets 'TOL = 1e-6' by default.
* MAXIT is the maximum allowable number of iterations; if '[]' is supplied for 'maxit', or 'pcr' has less arguments, a default value equal to 20 is used.
* M is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by 'pcr' 'P * X = M \ B', with 'P = M \ A'. Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method. Instead of matrix M, the user may pass a function which returns the results of applying the inverse of M to a vector (usually this is the preferred way of using the preconditioner). If '[]' is supplied for M, or M is omitted, no preconditioning is applied.
* X0 is the initial guess. If X0 is empty or omitted, the function sets X0 to a zero vector by default.
The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to 'pcr'. See the examples below for further details.
The output arguments are
* X is the computed approximation to the solution of 'A * X = B'.
* FLAG reports on the convergence. 'FLAG = 0' means the solution converged and the tolerance criterion given by TOL is satisfied. 'FLAG = 1' means that the MAXIT limit for the iteration count was reached. 'FLAG = 3' reports a 'pcr' breakdown, see [1] for details.
* RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.
* ITER is the actual number of iterations performed.
* RESVEC describes the convergence history of the method, so that 'RESVEC (i)' contains the Euclidean norms of the residual after the (I-1)-th iteration, 'I = 1,2, ..., ITER+1'.
Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)
n = 10;
A = sparse (diag (1:n));
b = rand (N, 1);
EXAMPLE 1: Simplest use of 'pcr'
x = pcr (A, b)
EXAMPLE 2: 'pcr' with a function which computes 'A * X'.
function y = apply_a (x)
y = [1:10]' .* x;
endfunction
x = pcr ("apply_a", b)
EXAMPLE 3: Preconditioned iteration, with full diagnostics. The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function
function y = apply_m (x)
k = floor (length (x) - 2);
y = x;
y(1:k) = x(1:k) ./ [1:k]';
endfunction
[x, flag, relres, iter, resvec] = ...
pcr (A, b, [], [], "apply_m")
semilogy ([1:iter+1], resvec);
EXAMPLE 4: Finally, a preconditioner which depends on a parameter K.
function y = apply_m (x, varargin)
k = varargin{1};
y = x;
y(1:k) = x(1:k) ./ [1:k]';
endfunction
[x, flag, relres, iter, resvec] = ...
pcr (A, b, [], [], "apply_m"', [], 3)
References:
[1] W. Hackbusch, 'Iterative Solution of Large Sparse Systems of Equations', section 9.5.4; Springer, 1994
See also: sparse, pcg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Residuals iterative method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
qmr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2064
-- Function File: X = qmr (A, B, RTOL, MAXIT, M1, M2, X0)
-- Function File: X = qmr (A, B, RTOL, MAXIT, P)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC] = qmr (A, B, ...)
Solve 'A x = b' using the Quasi-Minimal Residual iterative method (without look-ahead).
- RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.
- MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.
- X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.
A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x, "notransp") = A*x' and 'f(x, "transp") = A'*x'.
The preconditioner P is given as 'P = M1 * M2'. Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x, "notransp") = M1 \ x' or 'g(x, "notransp") = M2 \ x' and 'g(x, "transp") = M1' \ x' or 'g(x, "transp") = M2' \ x'.
If called with more than one output parameter
- FLAG indicates the exit status:
- 0: iteration converged to the within the chosen tolerance
- 1: the maximum number of iterations was reached before convergence
- 3: the algorithm reached stagnation
(the value 2 is unused but skipped for compatibility).
- RELRES is the final value of the relative residual.
- ITER is the number of iterations performed.
- RESVEC is a vector containing the residual norms at each iteration.
References:
1. R. Freund and N. Nachtigal, 'QMR: a quasi-minimal residual method for non-Hermitian linear systems', Numerische Mathematik, 1991, 60, pp. 315-339.
2. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhour, R. Pozo, C. Romine, and H. van der Vorst, 'Templates for the solution of linear systems: Building blocks for iterative methods', SIAM, 2nd ed., 1994.
See also: bicg, bicgstab, cgs, gmres, pcg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Solve 'A x = b' using the Quasi-Minimal Residual iterative method (without look-ahead).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
spaugment
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1299
-- Function File: S = spaugment (A, C)
Create the augmented matrix of A.
This is given by
[C * eye(M, M), A;
A', zeros(N, N)]
This is related to the least squares solution of 'A \ B', by
S * [ R / C; x] = [ B, zeros(N, columns(B)) ]
where R is the residual error
R = B - A * X
As the matrix S is symmetric indefinite it can be factorized with 'lu', and the minimum norm solution can therefore be found without the need for a 'qr' factorization. As the residual error will be 'zeros (M, M)' for underdetermined problems, and example can be
m = 11; n = 10; mn = max (m, n);
A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],
[-1, 0, 1], m, n);
x0 = A \ ones (m,1);
s = spaugment (A);
[L, U, P, Q] = lu (s);
x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)])));
x1 = x1(end - n + 1 : end);
To find the solution of an overdetermined problem needs an estimate of the residual error R and so it is more complex to formulate a minimum norm solution using the 'spaugment' function.
In general the left division operator is more stable and faster than using the 'spaugment' function.
See also: mldivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Create the augmented matrix of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
spconvert
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 424
-- Function File: X = spconvert (M)
Convert a simple sparse matrix format easily generated by other programs into Octave's internal sparse format.
The input M is either a 3 or 4 column real matrix, containing the row, column, real, and imaginary parts of the elements of the sparse matrix. An element with a zero real and imaginary part can be used to force a particular matrix size.
See also: sparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Convert a simple sparse matrix format easily generated by other programs into Octave's internal sparse format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spdiags
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1119
-- Function File: B = spdiags (A)
-- Function File: [B, D] = spdiags (A)
-- Function File: B = spdiags (A, D)
-- Function File: A = spdiags (V, D, A)
-- Function File: A = spdiags (V, D, M, N)
A generalization of the function 'diag'.
Called with a single input argument, the nonzero diagonals D of A are extracted.
With two arguments the diagonals to extract are given by the vector D.
The other two forms of 'spdiags' modify the input matrix by replacing the diagonals. They use the columns of V to replace the diagonals represented by the vector D. If the sparse matrix A is defined then the diagonals of this matrix are replaced. Otherwise a matrix of M by N is created with the diagonals given by the columns of V.
Negative values of D represent diagonals below the main diagonal, and positive values of D diagonals above the main diagonal.
For example:
spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
=> 5 10 0 0
1 6 11 0
0 2 7 12
0 0 3 8
0 0 0 4
See also: diag.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
A generalization of the function 'diag'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
speye
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 501
-- Function File: S = speye (M, N)
-- Function File: S = speye (M)
-- Function File: S = speye (SZ)
Return a sparse identity matrix of size MxN.
The implementation is significantly more efficient than 'sparse (eye (M))' as the full matrix is not constructed.
Called with a single argument a square matrix of size M-by-M is created. If called with a single vector argument SZ, this argument is taken to be the size of the matrix to create.
See also: sparse, spdiags, eye.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return a sparse identity matrix of size MxN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
spfun
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 287
-- Function File: Y = spfun (F, S)
Compute 'f(S)' for the nonzero values of S.
This results in a sparse matrix with the same structure as S. The function F can be passed as a string, a function handle, or an inline function.
See also: arrayfun, cellfun, structfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute 'f(S)' for the nonzero values of S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
spones
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
-- Function File: R = spones (S)
Replace the nonzero entries of S with ones.
This creates a sparse matrix with the same structure as S.
See also: sparse, sprand, sprandn, sprandsym, spfun, spy.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Replace the nonzero entries of S with ones.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sprand
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 748
-- Function File: sprand (M, N, D)
-- Function File: sprand (M, N, D, RC)
-- Function File: sprand (S)
Generate a sparse matrix with uniformly distributed random values.
The size of the matrix is MxN with a density of values D. D must be between 0 and 1. Values will be uniformly distributed on the interval (0, 1).
If called with a single matrix argument, a sparse matrix is generated with random values wherever the matrix S is nonzero.
If called with a scalar fourth argument RC, a random sparse matrix with reciprocal condition number RC is generated. If RC is a vector, then it specifies the first singular values of the generated matrix ('length (RC) <= min (M, N)').
See also: sprandn, sprandsym, rand.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Generate a sparse matrix with uniformly distributed random values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sprandn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 763
-- Function File: sprandn (M, N, D)
-- Function File: sprandn (M, N, D, RC)
-- Function File: sprandn (S)
Generate a sparse matrix with normally distributed random values.
The size of the matrix is MxN with a density of values D. D must be between 0 and 1. Values will be normally distributed with a mean of 0 and a variance of 1.
If called with a single matrix argument, a sparse matrix is generated with random values wherever the matrix S is nonzero.
If called with a scalar fourth argument RC, a random sparse matrix with reciprocal condition number RC is generated. If RC is a vector, then it specifies the first singular values of the generated matrix ('length (RC) <= min (M, N)').
See also: sprand, sprandsym, randn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Generate a sparse matrix with normally distributed random values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
sprandsym
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 510
-- Function File: sprandsym (N, D)
-- Function File: sprandsym (S)
Generate a symmetric random sparse matrix.
The size of the matrix will be NxN, with a density of values given by D. D must be between 0 and 1 inclusive. Values will be normally distributed with a mean of zero and a variance of 1.
If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is nonzero in its lower triangular part.
See also: sprand, sprandn, spones, sparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Generate a symmetric random sparse matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spstats
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 571
-- Function File: [COUNT, MEAN, VAR] = spstats (S)
-- Function File: [COUNT, MEAN, VAR] = spstats (S, J)
Return the stats for the nonzero elements of the sparse matrix S.
COUNT is the number of nonzeros in each column, MEAN is the mean of the nonzeros in each column, and VAR is the variance of the nonzeros in each column.
Called with two input arguments, if S is the data and J is the bin number for the data, compute the stats for each bin. In this case, bins can contain data values of zero, whereas with 'spstats (S)' the zeros may disappear.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the stats for the nonzero elements of the sparse matrix S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
spy
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 413
-- Function File: spy (X)
-- Function File: spy (..., MARKERSIZE)
-- Function File: spy (..., LINE_SPEC)
Plot the sparsity pattern of the sparse matrix X.
If the argument MARKERSIZE is given as a scalar value, it is used to determine the point size in the plot.
If the string LINE_SPEC is given it is passed to 'plot' and determines the appearance of the plot.
See also: plot, gplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Plot the sparsity pattern of the sparse matrix X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
svds
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2206
-- Function File: S = svds (A)
-- Function File: S = svds (A, K)
-- Function File: S = svds (A, K, SIGMA)
-- Function File: S = svds (A, K, SIGMA, OPTS)
-- Function File: [U, S, V] = svds (...)
-- Function File: [U, S, V, FLAG] = svds (...)
Find a few singular values of the matrix A.
The singular values are calculated using
[M, N] = size (A);
S = eigs ([sparse(M, M), A;
A', sparse(N, N)])
The eigenvalues returned by 'eigs' correspond to the singular values of A. The number of singular values to calculate is given by K and defaults to 6.
The argument SIGMA specifies which singular values to find. When SIGMA is the string 'L', the default, the largest singular values of A are found. Otherwise, SIGMA must be a real scalar and the singular values closest to SIGMA are found. As a corollary, 'SIGMA = 0' finds the smallest singular values. Note that for relatively small values of SIGMA, there is a chance that the requested number of singular values will not be found. In that case SIGMA should be increased.
OPTS is a structure defining options that 'svds' will pass to 'eigs'. The possible fields of this structure are documented in 'eigs'. By default, 'svds' sets the following three fields:
'tol'
The required convergence tolerance for the singular values. The default value is 1e-10. 'eigs' is passed 'TOL / sqrt(2)'.
'maxit'
The maximum number of iterations. The default is 300.
'disp'
The level of diagnostic printout (0|1|2). If 'disp' is 0 then diagnostics are disabled. The default value is 0.
If more than one output is requested then 'svds' will return an approximation of the singular value decomposition of A
A_approx = U*S*V'
where A_approx is a matrix of size A but only rank K.
FLAG returns 0 if the algorithm has succesfully converged, and 1 otherwise. The test for convergence is
norm (A*V - U*S, 1) <= TOL * norm (A, 1)
'svds' is best for finding only a few singular values from a large sparse matrix. Otherwise, 'svd (full (A))' will likely be more efficient.
See also: svd, eigs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Find a few singular values of the matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
treelayout
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 396
-- Function File: treelayout (TREE)
-- Function File: treelayout (TREE, PERMUTATION)
treelayout lays out a tree or a forest.
The first argument TREE is a vector of predecessors.
The parameter PERMUTATION is an optional postorder permutation.
The complexity of the algorithm is O(n) in terms of time and memory requirements.
See also: etreeplot, gplot, treeplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
treelayout lays out a tree or a forest.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
treeplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 400
-- Function File: treeplot (TREE)
-- Function File: treeplot (TREE, NODE_STYLE, EDGE_STYLE)
Produce a graph of tree or forest.
The first argument is vector of predecessors.
The optional parameters NODE_STYLE and EDGE_STYLE define the output plot style.
The complexity of the algorithm is O(n) in terms of is time and memory requirements.
See also: etreeplot, gplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Produce a graph of tree or forest.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bessel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2031
-- Loadable Function: [J, IERR] = besselj (ALPHA, X, OPT)
-- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
-- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
-- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
-- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
Compute Bessel or Hankel functions of various kinds:
'besselj'
Bessel functions of the first kind. If the argument OPT is supplied, the result is multiplied by 'exp (-abs (imag (x)))'.
'bessely'
Bessel functions of the second kind. If the argument OPT is supplied, the result is multiplied by 'exp (-abs (imag (x)))'.
'besseli'
Modified Bessel functions of the first kind. If the argument OPT is supplied, the result is multiplied by 'exp (-abs (real (x)))'.
'besselk'
Modified Bessel functions of the second kind. If the argument OPT is supplied, the result is multiplied by 'exp (x)'.
'besselh'
Compute Hankel functions of the first (K = 1) or second (K = 2) kind. If the argument OPT is supplied, the result is multiplied by 'exp (-I*X)' for K = 1 or 'exp (I*X)' for K = 2.
If ALPHA is a scalar, the result is the same size as X. If X is a scalar, the result is the same size as ALPHA. If ALPHA is a row vector and X is a column vector, the result is a matrix with 'length (X)' rows and 'length (ALPHA)' columns. Otherwise, ALPHA and X must conform and the result will be the same size.
The value of ALPHA must be real. The value of X may be complex.
If requested, IERR contains the following status information and is the same size as the result.
0. Normal return.
1. Input error, return 'NaN'.
2. Overflow, return 'Inf'.
3. Loss of significance by argument reduction results in less than half of machine accuracy.
4. Complete loss of significance by argument reduction, return 'NaN'.
5. Error--no computation, algorithm termination condition not met, return 'NaN'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
beta
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 489
-- Mapping Function: beta (A, B)
Compute the Beta function for real inputs A and B.
The Beta function definition is
beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
The Beta function can grow quite large and it is often more useful to work with the logarithm of the output rather than the function directly. *Note betaln: XREFbetaln, for computing the logarithm of the Beta function in an efficient manner.
See also: betaln, betainc, betaincinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the Beta function for real inputs A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
betaln
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 467
-- Mapping Function: betaln (A, B)
Compute the natural logarithm of the Beta function for real inputs A and B.
'betaln' is defined as
betaln (a, b) = log (beta (a, b))
and is calculated in a way to reduce the occurrence of underflow.
The Beta function can grow quite large and it is often more useful to work with the logarithm of the output rather than the function directly.
See also: beta, betainc, betaincinv, gammaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute the natural logarithm of the Beta function for real inputs A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ellipke
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1171
-- Function File: K = ellipke (M)
-- Function File: K = ellipke (M, TOL)
-- Function File: [K, E] = ellipke (...)
Compute complete elliptic integrals of the first K(M) and second E(M) kind.
M must be a scalar or real array with -Inf <= M <= 1.
The optional input TOL controls the stopping tolerance of the algorithm and defaults to 'eps (class (M))'. The tolerance can be increased to compute a faster, less accurate approximation.
When called with one output only elliptic integrals of the first kind are returned.
Mathematical Note:
Elliptic integrals of the first kind are defined as
1
/ dt
K (m) = | ------------------------------
/ sqrt ((1 - t^2)*(1 - m^2*t^2))
0
Elliptic integrals of the second kind are defined as
1
/ sqrt (1 - m^2*t^2)
E (m) = | ------------------ dt
/ sqrt (1 - t^2)
0
Reference: Milton Abramowitz and Irene A. Stegun, 'Handbook of Mathematical Functions', Chapter 17, Dover, 1965.
See also: ellipj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute complete elliptic integrals of the first K(M) and second E(M) kind.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 640
-- Function File: expint (X)
Compute the exponential integral:
infinity
/
E_1 (x) = | exp (-t)/t dt
/
x
Note: For compatibility, this functions uses the MATLAB definition of the exponential integral. Most other sources refer to this particular value as E_1 (x), and the exponential integral as
infinity
/
Ei (x) = - | exp (-t)/t dt
/
-x
The two definitions are related, for positive real values of X, by 'E_1 (-x) = -Ei (x) - i*pi'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Compute the exponential integral:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
factor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 529
-- Function File: PF = factor (Q)
-- Function File: [PF, N] = factor (Q)
Return the prime factorization of Q.
The prime factorization is defined as 'prod (PF) == Q' where every element of PF is a prime number. If 'Q == 1', return 1.
With two output arguments, return the unique prime factors PF and their multiplicities. That is, 'prod (PF .^ N) == Q'.
Implementation Note: The input Q must be less than 'bitmax' (9.0072e+15) in order to factor correctly.
See also: gcd, lcm, isprime, primes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return the prime factorization of Q.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
factorial
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 527
-- Function File: factorial (N)
Return the factorial of N where N is a real non-negative integer.
If N is a scalar, this is equivalent to 'prod (1:N)'. For vector or matrix arguments, return the factorial of each element in the array.
For non-integers see the generalized factorial function 'gamma'. Note that the factorial function grows large quite quickly, and even with double precision values overflow will occur if N > 171. For such cases consider 'gammaln'.
See also: prod, gamma, gammaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the factorial of N where N is a real non-negative integer.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isprime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1426
-- Function File: isprime (X)
Return a logical array which is true where the elements of X are prime numbers and false where they are not.
A prime number is conventionally defined as a positive integer greater than 1 (e.g., 2, 3, ...) which is divisible only by itself and 1. Octave extends this definition to include both negative integers and complex values. A negative integer is prime if its positive counterpart is prime. This is equivalent to 'isprime (abs (x))'.
If 'class (X)' is complex, then primality is tested in the domain of Gaussian integers (<http://en.wikipedia.org/wiki/Gaussian_integer>). Some non-complex integers are prime in the ordinary sense, but not in the domain of Gaussian integers. For example, 5 = (1+2i)*(1-2i) shows that 5 is not prime because it has a factor other than itself and 1. Exercise caution when testing complex and real values together in the same matrix.
Examples:
isprime (1:6)
=> [0, 1, 1, 0, 1, 0]
isprime ([i, 2, 3, 5])
=> [0, 0, 1, 0]
Programming Note: 'isprime' is appropriate if the maximum value in X is not too large (< 1e15). For larger values special purpose factorization code should be used.
Compatibility Note: MATLAB does not extend the definition of prime numbers and will produce an error if given negative or complex inputs.
See also: primes, factor, gcd, lcm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return a logical array which is true where the elements of X are prime numbers and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
lcm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 263
-- Mapping Function: lcm (X, Y)
-- Mapping Function: lcm (X, Y, ...)
Compute the least common multiple of X and Y, or of the list of all arguments.
All elements must be numeric and of the same size or scalar.
See also: factor, gcd, isprime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Compute the least common multiple of X and Y, or of the list of all arguments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
legendre
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2306
-- Function File: L = legendre (N, X)
-- Function File: L = legendre (N, X, NORMALIZATION)
Compute the Legendre function of degree N and order M = 0 ... N.
The value N must be a real non-negative integer.
X is a vector with real-valued elements in the range [-1, 1].
The optional argument NORMALIZATION may be one of "unnorm", "sch", or "norm". The default if no normalization is given is "unnorm".
When the optional argument NORMALIZATION is "unnorm", compute the Legendre function of degree N and order M and return all values for M = 0 ... N. The return value has one dimension more than X.
The Legendre Function of degree N and order M:
m m 2 m/2 d^m
P(x) = (-1) * (1-x ) * ---- P(x)
n dx^m n
with Legendre polynomial of degree N:
1 d^n 2 n
P(x) = ------ [----(x - 1) ]
n 2^n n! dx^n
'legendre (3, [-1.0, -0.9, -0.8])' returns the matrix:
x | -1.0 | -0.9 | -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 | 0.00000 | -1.99420 | -1.98000
m=2 | 0.00000 | -2.56500 | -4.32000
m=3 | 0.00000 | -1.24229 | -3.24000
When the optional argument 'normalization' is "sch", compute the Schmidt semi-normalized associated Legendre function. The Schmidt semi-normalized associated Legendre function is related to the unnormalized Legendre functions by the following:
For Legendre functions of degree N and order 0:
0 0
SP(x) = P(x)
n n
For Legendre functions of degree n and order m:
m m m 2(n-m)! 0.5
SP(x) = P(x) * (-1) * [-------]
n n (n+m)!
When the optional argument NORMALIZATION is "norm", compute the fully normalized associated Legendre function. The fully normalized associated Legendre function is related to the unnormalized Legendre functions by the following:
For Legendre functions of degree N and order M
m m m (n+0.5)(n-m)! 0.5
NP(x) = P(x) * (-1) * [-------------]
n n (n+m)!
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the Legendre function of degree N and order M = 0 .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nchoosek
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1338
-- Function File: C = nchoosek (N, K)
-- Function File: C = nchoosek (SET, K)
Compute the binomial coefficient of N or list all possible combinations of a SET of items.
If N is a scalar then calculate the binomial coefficient of N and K which is defined as
/ \
| n | n (n-1) (n-2) ... (n-k+1) n!
| | = ------------------------- = ---------
| k | k! k! (n-k)!
\ /
This is the number of combinations of N items taken in groups of size K.
If the first argument is a vector, SET, then generate all combinations of the elements of SET, taken K at a time, with one row per combination. The result C has K columns and 'nchoosek (length (SET), K)' rows.
For example:
How many ways can three items be grouped into pairs?
nchoosek (3, 2)
=> 3
What are the possible pairs?
nchoosek (1:3, 2)
=> 1 2
1 3
2 3
Programming Note: When calculating the binomial coefficient 'nchoosek' works only for non-negative, integer arguments. Use 'bincoeff' for non-integer and negative scalar arguments, or for computing many binomial coefficients at once with vector inputs for N or K.
See also: bincoeff, perms.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Compute the binomial coefficient of N or list all possible combinations of a SET of items.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nthroot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 397
-- Function File: nthroot (X, N)
Compute the real (non-complex) N-th root of X.
X must have all real entries and N must be a scalar. If N is an even integer and X has negative entries then 'nthroot' aborts and issues an error.
Example:
nthroot (-1, 3)
=> -1
(-1) ^ (1 / 3)
=> 0.50000 - 0.86603i
See also: realsqrt, sqrt, cbrt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Compute the real (non-complex) N-th root of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
perms
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 518
-- Function File: perms (V)
Generate all permutations of V with one row per permutation.
The result has size 'factorial (N) * N', where N is the length of V.
Example
perms ([1, 2, 3])
=>
1 2 3
2 1 3
1 3 2
2 3 1
3 1 2
3 2 1
Programming Note: The maximum length of V should be less than or equal to 10 to limit memory consumption.
See also: permute, randperm, nchoosek.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Generate all permutations of V with one row per permutation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pow2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 223
-- Function File: pow2 (X)
-- Function File: pow2 (F, E)
With one input argument, compute 2 .^ x for each element of X.
With two input arguments, return f .* (2 .^ e).
See also: log2, nextpow2, power.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
With one input argument, compute 2 .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
primes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 578
-- Function File: primes (N)
Return all primes up to N.
The output data class (double, single, uint32, etc.) is the same as the input class of N. The algorithm used is the Sieve of Eratosthenes.
Notes: If you need a specific number of primes you can use the fact that the distance from one prime to the next is, on average, proportional to the logarithm of the prime. Integrating, one finds that there are about k primes less than k*log (5*k).
See also 'list_primes' if you need a specific number N of primes.
See also: list_primes, isprime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return all primes up to N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
reallog
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
-- Function File: reallog (X)
Return the real-valued natural logarithm of each element of X.
If any element results in a complex return value 'reallog' aborts and issues an error.
See also: log, realpow, realsqrt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return the real-valued natural logarithm of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
realpow
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 253
-- Function File: realpow (X, Y)
Compute the real-valued, element-by-element power operator.
This is equivalent to 'X .^ Y', except that 'realpow' reports an error if any return value is complex.
See also: power, reallog, realsqrt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the real-valued, element-by-element power operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
realsqrt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 231
-- Function File: realsqrt (X)
Return the real-valued square root of each element of X.
If any element results in a complex return value 'realsqrt' aborts and issues an error.
See also: sqrt, realpow, reallog.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the real-valued square root of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
gallery
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10741
-- Function File: gallery (NAME)
-- Function File: gallery (NAME, ARGS)
Create interesting matrices for testing.
-- Function File: C = gallery ("cauchy", X)
-- Function File: C = gallery ("cauchy", X, Y)
Create a Cauchy matrix.
-- Function File: C = gallery ("chebspec", N)
-- Function File: C = gallery ("chebspec", N, K)
Create a Chebyshev spectral differentiation matrix.
-- Function File: C = gallery ("chebvand", P)
-- Function File: C = gallery ("chebvand", M, P)
Create a Vandermonde-like matrix for the Chebyshev polynomials.
-- Function File: A = gallery ("chow", N)
-- Function File: A = gallery ("chow", N, ALPHA)
-- Function File: A = gallery ("chow", N, ALPHA, DELTA)
Create a Chow matrix - a singular Toeplitz lower Hessenberg matrix.
-- Function File: C = gallery ("circul", V)
Create a circulant matrix.
-- Function File: A = gallery ("clement", N)
-- Function File: A = gallery ("clement", N, K)
Create a tridiagonal matrix with zero diagonal entries.
-- Function File: C = gallery ("compar", A)
-- Function File: C = gallery ("compar", A, K)
Create a comparison matrix.
-- Function File: A = gallery ("condex", N)
-- Function File: A = gallery ("condex", N, K)
-- Function File: A = gallery ("condex", N, K, THETA)
Create a 'counterexample' matrix to a condition estimator.
-- Function File: A = gallery ("cycol", [M N])
-- Function File: A = gallery ("cycol", N)
-- Function File: A = gallery (..., K)
Create a matrix whose columns repeat cyclically.
-- Function File: [C, D, E] = gallery ("dorr", N)
-- Function File: [C, D, E] = gallery ("dorr", N, THETA)
-- Function File: A = gallery ("dorr", ...)
Create a diagonally dominant, ill-conditioned, tridiagonal matrix.
-- Function File: A = gallery ("dramadah", N)
-- Function File: A = gallery ("dramadah", N, K)
Create a (0, 1) matrix whose inverse has large integer entries.
-- Function File: A = gallery ("fiedler", C)
Create a symmetric Fiedler matrix.
-- Function File: A = gallery ("forsythe", N)
-- Function File: A = gallery ("forsythe", N, ALPHA)
-- Function File: A = gallery ("forsythe", N, ALPHA, LAMBDA)
Create a Forsythe matrix (a perturbed Jordan block).
-- Function File: F = gallery ("frank", N)
-- Function File: F = gallery ("frank", N, K)
Create a Frank matrix (ill-conditioned eigenvalues).
-- Function File: C = gallery ("gcdmat", N)
Create a greatest common divisor matrix.
C is an N-by-N matrix whose values correspond to the greatest common divisor of its coordinate values, i.e., C(i,j) correspond 'gcd (i, j)'.
-- Function File: A = gallery ("gearmat", N)
-- Function File: A = gallery ("gearmat", N, I)
-- Function File: A = gallery ("gearmat", N, I, J)
Create a Gear matrix.
-- Function File: G = gallery ("grcar", N)
-- Function File: G = gallery ("grcar", N, K)
Create a Toeplitz matrix with sensitive eigenvalues.
-- Function File: A = gallery ("hanowa", N)
-- Function File: A = gallery ("hanowa", N, D)
Create a matrix whose eigenvalues lie on a vertical line in the complex plane.
-- Function File: V = gallery ("house", X)
-- Function File: [V, BETA] = gallery ("house", X)
Create a householder matrix.
-- Function File: A = gallery ("integerdata", IMAX, [M N ...], J)
-- Function File: A = gallery ("integerdata", IMAX, M, N, ..., J)
-- Function File: A = gallery ("integerdata", [IMIN, IMAX], [M N ...], J)
-- Function File: A = gallery ("integerdata", [IMIN, IMAX], M, N, ..., J)
-- Function File: A = gallery ("integerdata", ..., "CLASS")
Create a matrix with random integers in the range [1, IMAX]. If IMIN is given then the integers are in the range [IMIN, IMAX].
The second input is a matrix of dimensions describing the size of the output. The dimensions can also be input as comma-separated arguments.
The input J is an integer index in the range [0, 2^32-1]. The values of the output matrix are always exactly the same (reproducibility) for a given size input and J index.
The final optional argument determines the class of the resulting matrix. Possible values for CLASS: "uint8", "uint16", "uint32", "int8", "int16", int32", "single", "double". The default is "double".
-- Function File: A = gallery ("invhess", X)
-- Function File: A = gallery ("invhess", X, Y)
Create the inverse of an upper Hessenberg matrix.
-- Function File: A = gallery ("invol", N)
Create an involutory matrix.
-- Function File: A = gallery ("ipjfact", N)
-- Function File: A = gallery ("ipjfact", N, K)
Create a Hankel matrix with factorial elements.
-- Function File: A = gallery ("jordbloc", N)
-- Function File: A = gallery ("jordbloc", N, LAMBDA)
Create a Jordan block.
-- Function File: U = gallery ("kahan", N)
-- Function File: U = gallery ("kahan", N, THETA)
-- Function File: U = gallery ("kahan", N, THETA, PERT)
Create a Kahan matrix (upper trapezoidal).
-- Function File: A = gallery ("kms", N)
-- Function File: A = gallery ("kms", N, RHO)
Create a Kac-Murdock-Szego Toeplitz matrix.
-- Function File: B = gallery ("krylov", A)
-- Function File: B = gallery ("krylov", A, X)
-- Function File: B = gallery ("krylov", A, X, J)
Create a Krylov matrix.
-- Function File: A = gallery ("lauchli", N)
-- Function File: A = gallery ("lauchli", N, MU)
Create a Lauchli matrix (rectangular).
-- Function File: A = gallery ("lehmer", N)
Create a Lehmer matrix (symmetric positive definite).
-- Function File: T = gallery ("lesp", N)
Create a tridiagonal matrix with real, sensitive eigenvalues.
-- Function File: A = gallery ("lotkin", N)
Create a Lotkin matrix.
-- Function File: A = gallery ("minij", N)
Create a symmetric positive definite matrix MIN(i,j).
-- Function File: A = gallery ("moler", N)
-- Function File: A = gallery ("moler", N, ALPHA)
Create a Moler matrix (symmetric positive definite).
-- Function File: [A, T] = gallery ("neumann", N)
Create a singular matrix from the discrete Neumann problem (sparse).
-- Function File: A = gallery ("normaldata", [M N ...], J)
-- Function File: A = gallery ("normaldata", M, N, ..., J)
-- Function File: A = gallery ("normaldata", ..., "CLASS")
Create a matrix with random samples from the standard normal distribution (mean = 0, std = 1).
The first input is a matrix of dimensions describing the size of the output. The dimensions can also be input as comma-separated arguments.
The input J is an integer index in the range [0, 2^32-1]. The values of the output matrix are always exactly the same (reproducibility) for a given size input and J index.
The final optional argument determines the class of the resulting matrix. Possible values for CLASS: "single", "double". The default is "double".
-- Function File: Q = gallery ("orthog", N)
-- Function File: Q = gallery ("orthog", N, K)
Create orthogonal and nearly orthogonal matrices.
-- Function File: A = gallery ("parter", N)
Create a Parter matrix (a Toeplitz matrix with singular values near pi).
-- Function File: P = gallery ("pei", N)
-- Function File: P = gallery ("pei", N, ALPHA)
Create a Pei matrix.
-- Function File: A = gallery ("Poisson", N)
Create a block tridiagonal matrix from Poisson's equation (sparse).
-- Function File: A = gallery ("prolate", N)
-- Function File: A = gallery ("prolate", N, W)
Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).
-- Function File: H = gallery ("randhess", X)
Create a random, orthogonal upper Hessenberg matrix.
-- Function File: A = gallery ("rando", N)
-- Function File: A = gallery ("rando", N, K)
Create a random matrix with elements -1, 0 or 1.
-- Function File: A = gallery ("randsvd", N)
-- Function File: A = gallery ("randsvd", N, KAPPA)
-- Function File: A = gallery ("randsvd", N, KAPPA, MODE)
-- Function File: A = gallery ("randsvd", N, KAPPA, MODE, KL)
-- Function File: A = gallery ("randsvd", N, KAPPA, MODE, KL, KU)
Create a random matrix with pre-assigned singular values.
-- Function File: A = gallery ("redheff", N)
Create a zero and ones matrix of Redheffer associated with the Riemann hypothesis.
-- Function File: A = gallery ("riemann", N)
Create a matrix associated with the Riemann hypothesis.
-- Function File: A = gallery ("ris", N)
Create a symmetric Hankel matrix.
-- Function File: A = gallery ("smoke", N)
-- Function File: A = gallery ("smoke", N, K)
Create a complex matrix, with a 'smoke ring' pseudospectrum.
-- Function File: T = gallery ("toeppd", N)
-- Function File: T = gallery ("toeppd", N, M)
-- Function File: T = gallery ("toeppd", N, M, W)
-- Function File: T = gallery ("toeppd", N, M, W, THETA)
Create a symmetric positive definite Toeplitz matrix.
-- Function File: P = gallery ("toeppen", N)
-- Function File: P = gallery ("toeppen", N, A)
-- Function File: P = gallery ("toeppen", N, A, B)
-- Function File: P = gallery ("toeppen", N, A, B, C)
-- Function File: P = gallery ("toeppen", N, A, B, C, D)
-- Function File: P = gallery ("toeppen", N, A, B, C, D, E)
Create a pentadiagonal Toeplitz matrix (sparse).
-- Function File: A = gallery ("tridiag", X, Y, Z)
-- Function File: A = gallery ("tridiag", N)
-- Function File: A = gallery ("tridiag", N, C, D, E)
Create a tridiagonal matrix (sparse).
-- Function File: T = gallery ("triw", N)
-- Function File: T = gallery ("triw", N, ALPHA)
-- Function File: T = gallery ("triw", N, ALPHA, K)
Create an upper triangular matrix discussed by Kahan, Golub, and Wilkinson.
-- Function File: A = gallery ("uniformdata", [M N ...], J)
-- Function File: A = gallery ("uniformdata", M, N, ..., J)
-- Function File: A = gallery ("uniformdata", ..., "CLASS")
Create a matrix with random samples from the standard uniform distribution (range [0,1]).
The first input is a matrix of dimensions describing the size of the output. The dimensions can also be input as comma-separated arguments.
The input J is an integer index in the range [0, 2^32-1]. The values of the output matrix are always exactly the same (reproducibility) for a given size input and J index.
The final optional argument determines the class of the resulting matrix. Possible values for CLASS: "single", "double". The default is "double".
-- Function File: A = gallery ("wathen", NX, NY)
-- Function File: A = gallery ("wathen", NX, NY, K)
Create the Wathen matrix.
-- Function File: [A, B] = gallery ("wilk", N)
Create various specific matrices devised/discussed by Wilkinson.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Create interesting matrices for testing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
hadamard
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 660
-- Function File: hadamard (N)
Construct a Hadamard matrix (Hn) of size N-by-N.
The size N must be of the form 2^k * p in which p is one of 1, 12, 20 or 28. The returned matrix is normalized, meaning 'Hn(:,1) == 1' and 'Hn(1,:) == 1'.
Some of the properties of Hadamard matrices are:
* 'kron (Hm, Hn)' is a Hadamard matrix of size M-by-N.
* 'Hn * Hn' = N * eye (N)'.
* The rows of Hn are orthogonal.
* 'det (A) <= abs (det (Hn))' for all A with 'abs (A(i, j)) <= 1'.
* Multiplying any row or column by -1 and the matrix will remain a Hadamard matrix.
See also: compan, hankel, toeplitz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Construct a Hadamard matrix (Hn) of size N-by-N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hankel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 574
-- Function File: hankel (C)
-- Function File: hankel (C, R)
Return the Hankel matrix constructed from the first column C, and (optionally) the last row R.
If the last element of C is not the same as the first element of R, the last element of C is used. If the second argument is omitted, it is assumed to be a vector of zeros with the same size as C.
A Hankel matrix formed from an m-vector C, and an n-vector R, has the elements
H(i,j) = c(i+j-1), i+j-1 <= m;
H(i,j) = r(i+j-m), otherwise
See also: hadamard, toeplitz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return the Hankel matrix constructed from the first column C, and (optionally) the last row R.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hilb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 553
-- Function File: hilb (N)
Return the Hilbert matrix of order N.
The i,j element of a Hilbert matrix is defined as
H(i, j) = 1 / (i + j - 1)
Hilbert matrices are close to being singular which make them difficult to invert with numerical routines. Comparing the condition number of a random matrix 5x5 matrix with that of a Hilbert matrix of order 5 reveals just how difficult the problem is.
cond (rand (5))
=> 14.392
cond (hilb (5))
=> 4.7661e+05
See also: invhilb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the Hilbert matrix of order N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
invhilb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 977
-- Function File: invhilb (N)
Return the inverse of the Hilbert matrix of order N.
This can be computed exactly using
(i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2
A(i,j) = -1 (i+j-1)( )( ) ( )
\ n-j / \ n-i / \ i-2 /
= p(i) p(j) / (i+j-1)
where
k /k+n-1\ /n\
p(k) = -1 ( ) ( )
\ k-1 / \k/
The validity of this formula can easily be checked by expanding the binomial coefficients in both formulas as factorials. It can be derived more directly via the theory of Cauchy matrices. See J. W. Demmel, 'Applied Numerical Linear Algebra', p. 92.
Compare this with the numerical calculation of 'inverse (hilb (n))', which suffers from the ill-conditioning of the Hilbert matrix, and the finite precision of your computer's floating point arithmetic.
See also: hilb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the inverse of the Hilbert matrix of order N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
magic
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 288
-- Function File: magic (N)
Create an N-by-N magic square.
A magic square is an arrangement of the integers '1:n^2' such that the row sums, column sums, and diagonal sums are all equal to the same value.
Note: N must be greater than 2 for the magic square to exist.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Create an N-by-N magic square.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pascal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 651
-- Function File: pascal (N)
-- Function File: pascal (N, T)
Return the Pascal matrix of order N if 'T = 0'.
The default value of T is 0.
When 'T = 1', return the pseudo-lower triangular Cholesky factor of the Pascal matrix (The sign of some columns may be negative). This matrix is its own inverse, that is 'pascal (N, 1) ^ 2 == eye (N)'.
If 'T = -1', return the true Cholesky factor with strictly positive values on the diagonal.
If 'T = 2', return a transposed and permuted version of 'pascal (N, 1)', which is the cube root of the identity matrix. That is, 'pascal (N, 2) ^ 3 == eye (N)'.
See also: chol.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the Pascal matrix of order N if 'T = 0'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rosser
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
-- Function File: rosser ()
Return the Rosser matrix.
This is a difficult test case used to evaluate eigenvalue algorithms.
See also: wilkinson, eig.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Return the Rosser matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
toeplitz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 714
-- Function File: toeplitz (C)
-- Function File: toeplitz (C, R)
Return the Toeplitz matrix constructed from the first column C, and (optionally) the first row R.
If the first element of R is not the same as the first element of C, the first element of C is used. If the second argument is omitted, the first row is taken to be the same as the first column.
A square Toeplitz matrix has the form:
c(0) r(1) r(2) ... r(n)
c(1) c(0) r(1) ... r(n-1)
c(2) c(1) c(0) ... r(n-2)
. . . . .
. . . . .
. . . . .
c(n) c(n-1) c(n-2) ... c(0)
See also: hankel.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return the Toeplitz matrix constructed from the first column C, and (optionally) the first row R.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
vander
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 562
-- Function File: vander (C)
-- Function File: vander (C, N)
Return the Vandermonde matrix whose next to last column is C.
If N is specified, it determines the number of columns; otherwise, N is taken to be equal to the length of C.
A Vandermonde matrix has the form:
c(1)^(n-1) ... c(1)^2 c(1) 1
c(2)^(n-1) ... c(2)^2 c(2) 1
. . . . .
. . . . .
. . . . .
c(n)^(n-1) ... c(n)^2 c(n) 1
See also: polyfit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return the Vandermonde matrix whose next to last column is C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
wilkinson
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
-- Function File: wilkinson (N)
Return the Wilkinson matrix of order N.
Wilkinson matrices are symmetric and tridiagonal with pairs of nearly, but not exactly, equal eigenvalues. They are useful in testing the behavior and performance of eigenvalue solvers.
See also: rosser, eig.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Return the Wilkinson matrix of order N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
center
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 663
-- Function File: center (X)
-- Function File: center (X, DIM)
Center data by subtracting its mean.
If X is a vector, subtract its mean.
If X is a matrix, do the above for each column.
If the optional argument DIM is given, operate along this dimension.
Programming Note: 'center' has obvious application for normalizing statistical data. It is also useful for improving the precision of general numerical calculations. Whenever there is a large value that is common to a batch of data, the mean can be subtracted off, the calculation performed, and then the mean added back to obtain the final answer.
See also: zscore.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Center data by subtracting its mean.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cloglog
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
-- Function File: cloglog (X)
Return the complementary log-log function of X.
The complementary log-log function is defined as
cloglog (x) = - log (- log (X))
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the complementary log-log function of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
corr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 486
-- Function File: corr (X)
-- Function File: corr (X, Y)
Compute matrix of correlation coefficients.
If each row of X and Y is an observation and each column is a variable, then the (I, J)-th entry of 'corr (X, Y)' is the correlation between the I-th variable in X and the J-th variable in Y.
corr (x,y) = cov (x,y) / (std (x) * std (y))
If called with one argument, compute 'corr (X, X)', the correlation between the columns of X.
See also: cov.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute matrix of correlation coefficients.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cov
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1164
-- Function File: cov (X)
-- Function File: cov (X, OPT)
-- Function File: cov (X, Y)
-- Function File: cov (X, Y, OPT)
Compute the covariance matrix.
If each row of X and Y is an observation, and each column is a variable, then the (I, J)-th entry of 'cov (X, Y)' is the covariance between the I-th variable in X and the J-th variable in Y.
cov (x) = 1/N-1 * SUM_i (x(i) - mean(x)) * (y(i) - mean(y))
If called with one argument, compute 'cov (X, X)', the covariance between the columns of X.
The argument OPT determines the type of normalization to use. Valid values are
0:
normalize with N-1, provides the best unbiased estimator of the covariance [default]
1:
normalize with N, this provides the second moment around the mean
Compatibility Note:: Octave always computes the covariance matrix. For two inputs, however, MATLAB will calculate 'cov (X(:), Y(:))' whenever the number of elements in X and Y are equal. This will result in a scalar rather than a matrix output. Code relying on this odd definition will need to be changed when running in Octave.
See also: corr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Compute the covariance matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gls
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 657
-- Function File: [BETA, V, R] = gls (Y, X, O)
Generalized least squares model.
Perform a generalized least squares estimation for the multivariate model y = x*b + e with mean (e) = 0 and cov (vec (e)) = (s^2) o, where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, e is a t by p matrix, and o is a t*p by t*p matrix.
Each row of Y and X is an observation and each column a variable. The return values BETA, V, and R are defined as follows.
BETA
The GLS estimator for b.
V
The GLS estimator for s^2.
R
The matrix of GLS residuals, r = y - x*beta.
See also: ols.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Generalized least squares model.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
histc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 998
-- Function File: N = histc (X, EDGES)
-- Function File: N = histc (X, EDGES, DIM)
-- Function File: [N, IDX] = histc (...)
Compute histogram counts.
When X is a vector, the function counts the number of elements of X that fall in the histogram bins defined by EDGES. This must be a vector of monotonically increasing values that define the edges of the histogram bins. 'N(k)' contains the number of elements in X for which 'EDGES(k) <= X < EDGES(k+1)'. The final element of N contains the number of elements of X exactly equal to the last element of EDGES.
When X is an N-dimensional array, the computation is carried out along dimension DIM. If not specified DIM defaults to the first non-singleton dimension.
When a second output argument is requested an index matrix is also returned. The IDX matrix has the same size as X. Each element of IDX contains the index of the histogram bin in which the corresponding element of X was counted.
See also: hist.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Compute histogram counts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
iqr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
-- Function File: iqr (X)
-- Function File: iqr (X, DIM)
Return the interquartile range, i.e., the difference between the upper and lower quartile of the input data.
If X is a matrix, do the above for first non-singleton dimension of X.
If the optional argument DIM is given, operate along this dimension.
As a measure of dispersion, the interquartile range is less affected by outliers than either 'range' or 'std'.
See also: range, std.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the interquartile range, i.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
kendall
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 720
-- Function File: kendall (X)
-- Function File: kendall (X, Y)
Compute Kendall's TAU.
For two data vectors X, Y of common length N, Kendall's TAU is the correlation of the signs of all rank differences of X and Y; i.e., if both X and Y have distinct entries, then
1
tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
n (n-1) i,j
in which the Q(I) and R(I) are the ranks of X and Y, respectively.
If X and Y are drawn from independent distributions, Kendall's TAU is asymptotically normal with mean 0 and variance '(2 * (2N+5)) / (9 * N * (N-1))'.
'kendall (X)' is equivalent to 'kendall (X, X)'.
See also: ranks, spearman.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Compute Kendall's TAU.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
kurtosis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1191
-- Function File: kurtosis (X)
-- Function File: kurtosis (X, FLAG)
-- Function File: kurtosis (X, FLAG, DIM)
Compute the sample kurtosis of the elements of X.
The sample kurtosis is defined as
mean ((X - mean (X)).^4)
k1 = ------------------------
std (X).^4
The optional argument FLAG controls which normalization is used. If FLAG is equal to 1 (default value, used when FLAG is omitted or empty), return the sample kurtosis as defined above. If FLAG is equal to 0, return the "bias-corrected" kurtosis coefficient instead:
N - 1
k0 = 3 + -------------- * ((N + 1) * k1 - 3 * (N - 1))
(N - 2)(N - 3)
The bias-corrected kurtosis coefficient is obtained by replacing the sample second and fourth central moments by their unbiased versions. It is an unbiased estimate of the population kurtosis for normal populations.
If X is a matrix, or more generally a multi-dimensional array, return the kurtosis along the first non-singleton dimension. If the optional DIM argument is given, operate along this dimension.
See also: var, skewness, moment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the sample kurtosis of the elements of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
logit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 182
-- Function File: logit (P)
Compute the logit for each value of P
The logit is defined as
logit (P) = log (P / (1-P))
See also: probit, logistic_cdf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Compute the logit for each value of P
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lscov
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1272
-- Function File: X = lscov (A, B)
-- Function File: X = lscov (A, B, V)
-- Function File: X = lscov (A, B, V, ALG)
-- Function File: [X, STDX, MSE, S] = lscov (...)
Compute a generalized linear least squares fit.
Estimate X under the model B = AX + W, where the noise W is assumed to follow a normal distribution with covariance matrix {\sigma^2} V.
If the size of the coefficient matrix A is n-by-p, the size of the vector/array of constant terms B must be n-by-k.
The optional input argument V may be a n-by-1 vector of positive weights (inverse variances), or a n-by-n symmetric positive semidefinite matrix representing the covariance of B. If V is not supplied, the ordinary least squares solution is returned.
The ALG input argument, a guidance on solution method to use, is currently ignored.
Besides the least-squares estimate matrix X (p-by-k), the function also returns STDX (p-by-k), the error standard deviation of estimated X; MSE (k-by-1), the estimated data error covariance scale factors (\sigma^2); and S (p-by-p, or p-by-p-by-k if k > 1), the error covariance of X.
Reference: Golub and Van Loan (1996), 'Matrix Computations (3rd Ed.)', Johns Hopkins, Section 5.6.3
See also: ols, gls, lsqnonneg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Compute a generalized linear least squares fit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
mahalanobis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 260
-- Function File: mahalanobis (X, Y)
Return the Mahalanobis' D-square distance between the multivariate samples X and Y.
The data X and Y must have the same number of components (columns), but may have a different number of observations (rows).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return the Mahalanobis' D-square distance between the multivariate samples X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 810
-- Function File: mean (X)
-- Function File: mean (X, DIM)
-- Function File: mean (X, OPT)
-- Function File: mean (X, DIM, OPT)
Compute the mean of the elements of the vector X.
The mean is defined as
mean (x) = SUM_i x(i) / N
If X is a matrix, compute the mean for each column and return them in a row vector.
If the optional argument DIM is given, operate along this dimension.
The optional argument OPT selects the type of mean to compute. The following options are recognized:
"a"
Compute the (ordinary) arithmetic mean. [default]
"g"
Compute the geometric mean.
"h"
Compute the harmonic mean.
Both DIM and OPT are optional. If both are supplied, either may appear first.
See also: median, mode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the mean of the elements of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
meansq
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 407
-- Function File: meansq (X)
-- Function File: meansq (X, DIM)
Compute the mean square of the elements of the vector X.
The mean square is defined as
meansq (x) = 1/N SUM_i x(i)^2
For matrix arguments, return a row vector containing the mean square of each column.
If the optional argument DIM is given, operate along this dimension.
See also: var, std, moment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Compute the mean square of the elements of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
median
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 533
-- Function File: median (X)
-- Function File: median (X, DIM)
Compute the median value of the elements of the vector X.
When the elements of X are sorted, the median is defined as
x(ceil(N/2)) N odd
median (x) =
(x(N/2) + x((N/2)+1))/2 N even
If X is a matrix, compute the median value for each column and return them in a row vector.
If the optional DIM argument is given, operate along this dimension.
See also: mean, mode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Compute the median value of the elements of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 662
-- Function File: mode (X)
-- Function File: mode (X, DIM)
-- Function File: [M, F, C] = mode (...)
Compute the most frequently occurring value in a dataset (mode).
'mode' determines the frequency of values along the first non-singleton dimension and returns the value with the highest frequency. If two, or more, values have the same frequency 'mode' returns the smallest.
If the optional argument DIM is given, operate along this dimension.
The return variable F is the number of occurrences of the mode in the dataset.
The cell array C contains all of the elements with the maximum frequency.
See also: mean, median.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute the most frequently occurring value in a dataset (mode).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
moment
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1120
-- Function File: moment (X, P)
-- Function File: moment (X, P, TYPE)
-- Function File: moment (X, P, DIM)
-- Function File: moment (X, P, TYPE, DIM)
-- Function File: moment (X, P, DIM, TYPE)
Compute the P-th central moment of the vector X.
1/N SUM_i (x(i) - mean(x))^p
If X is a matrix, return the row vector containing the P-th central moment of each column.
If the optional argument DIM is given, operate along this dimension.
The optional string TYPE specifies the type of moment to be computed. Valid options are:
"c"
Central Moment (default).
"a"
"ac"
Absolute Central Moment. The moment about the mean ignoring sign defined as
1/N SUM_i (abs (x(i) - mean(x)))^p
"r"
Raw Moment. The moment about zero defined as
moment (x) = 1/N SUM_i x(i)^p
"ar"
Absolute Raw Moment. The moment about zero ignoring sign defined as
1/N SUM_i ( abs (x(i)) )^p
If both TYPE and DIM are given they may appear in any order.
See also: var, skewness, kurtosis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the P-th central moment of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ols
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 905
-- Function File: [BETA, SIGMA, R] = ols (Y, X)
Ordinary least squares estimation.
OLS applies to the multivariate model y = x*b + e with mean (e) = 0 and cov (vec (e)) = kron (s, I). where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, and e is a t by p matrix.
Each row of Y and X is an observation and each column a variable.
The return values BETA, SIGMA, and R are defined as follows.
BETA
The OLS estimator for b. BETA is calculated directly via 'inv (x'*x) * x' * y' if the matrix 'x'*x' is of full rank. Otherwise, 'BETA = pinv (X) * Y' where 'pinv (X)' denotes the pseudoinverse of X.
SIGMA
The OLS estimator for the matrix S,
SIGMA = (Y-X*BETA)'
* (Y-X*BETA)
/ (T-rank(X))
R
The matrix of OLS residuals, 'R = Y - X*BETA'.
See also: gls, pinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Ordinary least squares estimation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ppplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 837
-- Function File: [P, Y] = ppplot (X, DIST, PARAMS)
Perform a PP-plot (probability plot).
If F is the CDF of the distribution DIST with parameters PARAMS and X a sample vector of length N, the PP-plot graphs ordinate Y(I) = F (I-th largest element of X) versus abscissa P(I) = (I - 0.5)/N. If the sample comes from F, the pairs will approximately follow a straight line.
The default for DIST is the standard normal distribution.
The optional argument PARAMS contains a list of parameters of DIST.
For example, for a probability plot of the uniform distribution on [2,4] and X, use
ppplot (x, "uniform", 2, 4)
DIST can be any string for which a function DIST_CDF that calculates the CDF of distribution DIST exists.
If no output is requested then the data are plotted immediately.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Perform a PP-plot (probability plot).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
prctile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 747
-- Function File: Q = prctile (X)
-- Function File: Q = prctile (X, P)
-- Function File: Q = prctile (X, P, DIM)
For a sample X, compute the quantiles, Q, corresponding to the cumulative probability values, P, in percent.
If X is a matrix, compute the percentiles for each column and return them in a matrix, such that the i-th row of Y contains the P(i)th percentiles of each column of X.
If P is unspecified, return the quantiles for '[0 25 50 75 100]'.
The optional argument DIM determines the dimension along which the percentiles are calculated. If DIM is omitted it defaults to the first non-singleton dimension.
Programming Note: All non-numeric values (NaNs) of X are ignored.
See also: quantile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
For a sample X, compute the quantiles, Q, corresponding to the cumulative probability values, P, in percent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
probit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
-- Function File: probit (P)
Return the probit (the quantile of the standard normal distribution) for each element of P.
See also: logit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Return the probit (the quantile of the standard normal distribution) for each element of P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
qqplot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1150
-- Function File: [Q, S] = qqplot (X)
-- Function File: [Q, S] = qqplot (X, Y)
-- Function File: [Q, S] = qqplot (X, DIST)
-- Function File: [Q, S] = qqplot (X, Y, PARAMS)
-- Function File: qqplot (...)
Perform a QQ-plot (quantile plot).
If F is the CDF of the distribution DIST with parameters PARAMS and G its inverse, and X a sample vector of length N, the QQ-plot graphs ordinate S(I) = I-th largest element of x versus abscissa Q(If) = G((I - 0.5)/N).
If the sample comes from F, except for a transformation of location and scale, the pairs will approximately follow a straight line.
If the second argument is a vector Y the empirical CDF of Y is used as DIST.
The default for DIST is the standard normal distribution. The optional argument PARAMS contains a list of parameters of DIST. For example, for a quantile plot of the uniform distribution on [2,4] and X, use
qqplot (x, "unif", 2, 4)
DIST can be any string for which a function DISTINV or DIST_INV exists that calculates the inverse CDF of distribution DIST.
If no output arguments are given, the data are plotted directly.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Perform a QQ-plot (quantile plot).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
quantile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2809
-- Function File: Q = quantile (X)
-- Function File: Q = quantile (X, P)
-- Function File: Q = quantile (X, P, DIM)
-- Function File: Q = quantile (X, P, DIM, METHOD)
For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P. All non-numeric values (NaNs) of X are ignored.
If X is a matrix, compute the quantiles for each column and return them in a matrix, such that the i-th row of Q contains the P(i)th quantiles of each column of X.
If P is unspecified, return the quantiles for '[0.00 0.25 0.50 0.75 1.00]'. The optional argument DIM determines the dimension along which the quantiles are calculated. If DIM is omitted it defaults to the first non-singleton dimension.
The methods available to calculate sample quantiles are the nine methods used by R (<http://www.r-project.org/>). The default value is METHOD = 5.
Discontinuous sample quantile methods 1, 2, and 3
1. Method 1: Inverse of empirical distribution function.
2. Method 2: Similar to method 1 but with averaging at discontinuities.
3. Method 3: SAS definition: nearest even order statistic.
Continuous sample quantile methods 4 through 9, where p(k) is the linear interpolation function respecting each methods' representative cdf.
4. Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf.
5. Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where the knots are the values midway through the steps of the empirical cdf.
6. Method 6: p(k) = k / (n + 1).
7. Method 7: p(k) = (k - 1) / (n - 1).
8. Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates are approximately median-unbiased regardless of the distribution of X.
9. Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates are approximately unbiased for the expected order statistics if X is normally distributed.
Hyndman and Fan (1996) recommend method 8. Maxima, S, and R (versions prior to 2.0.0) use 7 as their default. Minitab and SPSS use method 6. MATLAB uses method 5.
References:
* Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
* Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American Statistician, 50, 361-365.
* R: A Language and Environment for Statistical Computing; <http://cran.r-project.org/doc/manuals/fullrefman.pdf>.
Examples:
x = randi (1000, [10, 1]); # Create empirical data in range 1-1000
q = quantile (x, [0, 1]); # Return minimum, maximum of distribution
q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution
See also: prctile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
range
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 550
-- Function File: range (X)
-- Function File: range (X, DIM)
Return the range, i.e., the difference between the maximum and the minimum of the input data.
If X is a vector, the range is calculated over the elements of X. If X is a matrix, the range is calculated over each column of X.
If the optional argument DIM is given, operate along this dimension.
The range is a quickly computed measure of the dispersion of a data set, but is less accurate than 'iqr' if there are outlying data points.
See also: iqr, std.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Return the range, i.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ranks
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 233
-- Function File: ranks (X, DIM)
Return the ranks of X along the first non-singleton dimension adjusted for ties.
If the optional argument DIM is given, operate along this dimension.
See also: spearman, kendall.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return the ranks of X along the first non-singleton dimension adjusted for ties.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
run_count
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 315
-- Function File: run_count (X, N)
-- Function File: run_count (X, N, DIM)
Count the upward runs along the first non-singleton dimension of X of length 1, 2, ..., N-1 and greater than or equal to N.
If the optional argument DIM is given then operate along this dimension.
See also: runlength.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Count the upward runs along the first non-singleton dimension of X of length 1, 2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
runlength
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 416
-- Function File: count = runlength (X)
-- Function File: [count, value] = runlength (X)
Find the lengths of all sequences of common values.
COUNT is a vector with the lengths of each repeated value.
The optional output VALUE contains the value that was repeated in the sequence.
runlength ([2, 2, 0, 4, 4, 4, 0, 1, 1, 1, 1])
=> [2, 1, 3, 1, 4]
See also: run_count.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Find the lengths of all sequences of common values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
skewness
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1209
-- Function File: skewness (X)
-- Function File: skewness (X, FLAG)
-- Function File: skewness (X, FLAG, DIM)
Compute the sample skewness of the elements of X.
The sample skewness is defined as
mean ((X - mean (X)).^3)
skewness (X) = ------------------------.
std (X).^3
The optional argument FLAG controls which normalization is used. If FLAG is equal to 1 (default value, used when FLAG is omitted or empty), return the sample skewness as defined above. If FLAG is equal to 0, return the adjusted skewness coefficient instead:
sqrt (N*(N-1)) mean ((X - mean (X)).^3)
skewness (X, 0) = -------------- * ------------------------.
(N - 2) std (X).^3
The adjusted skewness coefficient is obtained by replacing the sample second and third central moments by their bias-corrected versions.
If X is a matrix, or more generally a multi-dimensional array, return the skewness along the first non-singleton dimension. If the optional DIM argument is given, operate along this dimension.
See also: var, kurtosis, moment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the sample skewness of the elements of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
spearman
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
-- Function File: spearman (X)
-- Function File: spearman (X, Y)
Compute Spearman's rank correlation coefficient RHO.
For two data vectors X and Y, Spearman's RHO is the correlation coefficient of the ranks of X and Y.
If X and Y are drawn from independent distributions, RHO has zero mean and variance '1 / (n - 1)', and is asymptotically normally distributed.
'spearman (X)' is equivalent to 'spearman (X, X)'.
See also: ranks, kendall.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute Spearman's rank correlation coefficient RHO.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
statistics
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
-- Function File: statistics (X)
-- Function File: statistics (X, DIM)
Return a vector with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness, and kurtosis of the elements of the vector X.
If X is a matrix, calculate statistics over the first non-singleton dimension.
If the optional argument DIM is given, operate along this dimension.
See also: min, max, median, mean, std, skewness, kurtosis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
Return a vector with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness, and kurtosis of the elements of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
std
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 852
-- Function File: std (X)
-- Function File: std (X, OPT)
-- Function File: std (X, OPT, DIM)
Compute the standard deviation of the elements of the vector X.
The standard deviation is defined as
std (x) = sqrt ( 1/(N-1) SUM_i (x(i) - mean(x))^2 )
where N is the number of elements.
If X is a matrix, compute the standard deviation for each column and return them in a row vector.
The argument OPT determines the type of normalization to use. Valid values are
0:
normalize with N-1, provides the square root of the best unbiased estimator of the variance [default]
1:
normalize with N, this provides the square root of the second moment around the mean
If the optional argument DIM is given, operate along this dimension.
See also: var, range, iqr, mean, median.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the standard deviation of the elements of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
table
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 269
-- Function File: [T, L_X] = table (X)
-- Function File: [T, L_X, L_Y] = table (X, Y)
Create a contingency table T from data vectors.
The L_X and L_Y vectors are the corresponding levels.
Currently, only 1- and 2-dimensional tables are supported.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Create a contingency table T from data vectors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
var
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 816
-- Function File: var (X)
-- Function File: var (X, OPT)
-- Function File: var (X, OPT, DIM)
Compute the variance of the elements of the vector X.
The variance is defined as
var (x) = 1/(N-1) SUM_i (x(i) - mean(x))^2
If X is a matrix, compute the variance for each column and return them in a row vector.
The argument OPT determines the type of normalization to use. Valid values are
0:
normalize with N-1, provides the best unbiased estimator of the variance [default]
1:
normalizes with N, this provides the second moment around the mean
If N==1 the value of OPT is ignored and normalization by N is used.
If the optional argument DIM is given, operate along this dimension.
See also: cov, std, skewness, kurtosis, moment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the variance of the elements of the vector X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zscore
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 780
-- Function File: Z = zscore (X)
-- Function File: Z = zscore (X, OPT)
-- Function File: Z = zscore (X, OPT, DIM)
-- Function File: [Z, MU, SIGMA] = zscore (...)
Compute the Z score of X
If X is a vector, subtract its mean and divide by its standard deviation. If the standard deviation is zero, divide by 1 instead.
The optional parameter OPT determines the normalization to use when computing the standard deviation and has the same definition as the corresponding parameter for 'std'.
If X is a matrix, calculate along the first non-singleton dimension. If the third optional argument DIM is given, operate along this dimension.
The optional outputs MU and SIGMA contain the mean and standard deviation.
See also: mean, std, center.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Compute the Z score of X
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betacdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
-- Function File: betacdf (X, A, B)
For each element of X, compute the cumulative distribution function (CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
For each element of X, compute the cumulative distribution function (CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betainv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 169
-- Function File: betainv (X, A, B)
For each element of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
For each element of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betapdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
-- Function File: betapdf (X, A, B)
For each element of X, compute the probability density function (PDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For each element of X, compute the probability density function (PDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betarnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 685
-- Function File: betarnd (A, B)
-- Function File: betarnd (A, B, R)
-- Function File: betarnd (A, B, R, C, ...)
-- Function File: betarnd (A, B, [SZ])
Return a matrix of random samples from the Beta distribution with parameters A and B.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return a matrix of random samples from the Beta distribution with parameters A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binocdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 247
-- Function File: binocdf (X, N, P)
For each element of X, compute the cumulative distribution function (CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 201
For each element of X, compute the cumulative distribution function (CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binoinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
-- Function File: binoinv (X, N, P)
For each element of X, compute the quantile (the inverse of the CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
For each element of X, compute the quantile (the inverse of the CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binopdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
-- Function File: binopdf (X, N, P)
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binornd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 758
-- Function File: binornd (N, P)
-- Function File: binornd (N, P, R)
-- Function File: binornd (N, P, R, C, ...)
-- Function File: binornd (N, P, [SZ])
Return a matrix of random samples from the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of N and P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 158
Return a matrix of random samples from the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
-- Function File: cauchy_cdf (X)
-- Function File: cauchy_cdf (X, LOCATION, SCALE)
For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.
Default values are LOCATION = 0, SCALE = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 304
-- Function File: cauchy_inv (X)
-- Function File: cauchy_inv (X, LOCATION, SCALE)
For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.
Default values are LOCATION = 0, SCALE = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
-- Function File: cauchy_pdf (X)
-- Function File: cauchy_pdf (X, LOCATION, SCALE)
For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE > 0.
Default values are LOCATION = 0, SCALE = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE > 0.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 765
-- Function File: cauchy_rnd (LOCATION, SCALE)
-- Function File: cauchy_rnd (LOCATION, SCALE, R)
-- Function File: cauchy_rnd (LOCATION, SCALE, R, C, ...)
-- Function File: cauchy_rnd (LOCATION, SCALE, [SZ])
Return a matrix of random samples from the Cauchy distribution with parameters LOCATION and SCALE.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of LOCATION and SCALE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return a matrix of random samples from the Cauchy distribution with parameters LOCATION and SCALE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 179
-- Function File: chi2cdf (X, N)
For each element of X, compute the cumulative distribution function (CDF) at X of the chi-square distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
For each element of X, compute the cumulative distribution function (CDF) at X of the chi-square distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
-- Function File: chi2inv (X, N)
For each element of X, compute the quantile (the inverse of the CDF) at X of the chi-square distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
For each element of X, compute the quantile (the inverse of the CDF) at X of the chi-square distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 175
-- Function File: chi2pdf (X, N)
For each element of X, compute the probability density function (PDF) at X of the chi-square distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
For each element of X, compute the probability density function (PDF) at X of the chi-square distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 668
-- Function File: chi2rnd (N)
-- Function File: chi2rnd (N, R)
-- Function File: chi2rnd (N, R, C, ...)
-- Function File: chi2rnd (N, [SZ])
Return a matrix of random samples from the chi-square distribution with N degrees of freedom.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the size of N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Return a matrix of random samples from the chi-square distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 219
-- Function File: discrete_cdf (X, V, P)
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 168
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 207
-- Function File: discrete_inv (X, V, P)
For each element of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
For each element of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
-- Function File: discrete_pdf (X, V, P)
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 738
-- Function File: discrete_rnd (V, P)
-- Function File: discrete_rnd (V, P, R)
-- Function File: discrete_rnd (V, P, R, C, ...)
-- Function File: discrete_rnd (V, P, [SZ])
Return a matrix of random samples from the univariate distribution which assumes the values in V with probabilities P.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of V and P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
Return a matrix of random samples from the univariate distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 202
-- Function File: empirical_cdf (X, DATA)
For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
-- Function File: empirical_inv (X, DATA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
-- Function File: empirical_pdf (X, DATA)
For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 741
-- Function File: empirical_rnd (DATA)
-- Function File: empirical_rnd (DATA, R)
-- Function File: empirical_rnd (DATA, R, C, ...)
-- Function File: empirical_rnd (DATA, [SZ])
Return a matrix of random samples from the empirical distribution obtained from the univariate sample DATA.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is a random ordering of the sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return a matrix of random samples from the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 229
-- Function File: expcdf (X, LAMBDA)
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.
The arguments can be of common size or scalars.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
-- Function File: expinv (X, LAMBDA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
exppdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
-- Function File: exppdf (X, LAMBDA)
For each element of X, compute the probability density function (PDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For each element of X, compute the probability density function (PDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
exprnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 681
-- Function File: exprnd (LAMBDA)
-- Function File: exprnd (LAMBDA, R)
-- Function File: exprnd (LAMBDA, R, C, ...)
-- Function File: exprnd (LAMBDA, [SZ])
Return a matrix of random samples from the exponential distribution with mean LAMBDA.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the size of LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return a matrix of random samples from the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
-- Function File: fcdf (X, M, N)
For each element of X, compute the cumulative distribution function (CDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
finv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
-- Function File: finv (X, M, N)
For each element of X, compute the quantile (the inverse of the CDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 172
-- Function File: fpdf (X, M, N)
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
frnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 678
-- Function File: frnd (M, N)
-- Function File: frnd (M, N, R)
-- Function File: frnd (M, N, R, C, ...)
-- Function File: frnd (M, N, [SZ])
Return a matrix of random samples from the F distribution with M and N degrees of freedom.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of M and N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return a matrix of random samples from the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gamcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 185
-- Function File: gamcdf (X, A, B)
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with shape parameter A and scale B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with shape parameter A and scale B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gaminv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
-- Function File: gaminv (X, A, B)
For each element of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with shape parameter A and scale B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
For each element of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with shape parameter A and scale B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gampdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
-- Function File: gampdf (X, A, B)
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with shape parameter A and scale B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with shape parameter A and scale B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gamrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 693
-- Function File: gamrnd (A, B)
-- Function File: gamrnd (A, B, R)
-- Function File: gamrnd (A, B, R, C, ...)
-- Function File: gamrnd (A, B, [SZ])
Return a matrix of random samples from the Gamma distribution with shape parameter A and scale B.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a matrix of random samples from the Gamma distribution with shape parameter A and scale B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geocdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
-- Function File: geocdf (X, P)
For each element of X, compute the cumulative distribution function (CDF) at X of the geometric distribution with parameter P.
The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
For each element of X, compute the cumulative distribution function (CDF) at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geoinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 302
-- Function File: geoinv (X, P)
For each element of X, compute the quantile (the inverse of the CDF) at X of the geometric distribution with parameter P.
The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
For each element of X, compute the quantile (the inverse of the CDF) at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geopdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
-- Function File: geopdf (X, P)
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geornd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 793
-- Function File: geornd (P)
-- Function File: geornd (P, R)
-- Function File: geornd (P, R, C, ...)
-- Function File: geornd (P, [SZ])
Return a matrix of random samples from the geometric distribution with parameter P.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the size of P.
The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return a matrix of random samples from the geometric distribution with parameter P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygecdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 454
-- Function File: hygecdf (X, T, M, N)
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N.
This is the probability of obtaining not more than X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.
The parameters T, M, and N must be positive integers with M and N not greater than T.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 119
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygeinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 458
-- Function File: hygeinv (X, T, M, N)
For each element of X, compute the quantile (the inverse of the CDF) at X of the hypergeometric distribution with parameters T, M, and N.
This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.
The parameters T, M, and N must be positive integers with M and N not greater than T.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
For each element of X, compute the quantile (the inverse of the CDF) at X of the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygepdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 436
-- Function File: hygepdf (X, T, M, N)
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N.
This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.
The parameters T, M, and N must be positive integers with M and N not greater than T.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygernd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 807
-- Function File: hygernd (T, M, N)
-- Function File: hygernd (T, M, N, R)
-- Function File: hygernd (T, M, N, R, C, ...)
-- Function File: hygernd (T, M, N, [SZ])
Return a matrix of random samples from the hypergeometric distribution with parameters T, M, and N.
The parameters T, M, and N must be positive integers with M and N not greater than T.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of T, M, and N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Return a matrix of random samples from the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
kolmogorov_smirnov_cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 425
-- Function File: kolmogorov_smirnov_cdf (X, TOL)
Return the cumulative distribution function (CDF) at X of the Kolmogorov-Smirnov distribution.
This is defined as
Inf
Q(x) = SUM (-1)^k exp (-2 k^2 x^2)
k = -Inf
for X > 0.
The optional parameter TOL specifies the precision up to which the series should be evaluated; the default is TOL = 'eps'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return the cumulative distribution function (CDF) at X of the Kolmogorov-Smirnov distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Function File: laplace_cdf (X)
For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
-- Function File: laplace_inv (X)
For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
-- Function File: laplace_pdf (X)
For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 533
-- Function File: laplace_rnd (R)
-- Function File: laplace_rnd (R, C, ...)
-- Function File: laplace_rnd ([SZ])
Return a matrix of random samples from the Laplace distribution.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a matrix of random samples from the Laplace distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
-- Function File: logistic_cdf (X)
For each element of X, compute the cumulative distribution function (CDF) at X of the logistic distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
For each element of X, compute the cumulative distribution function (CDF) at X of the logistic distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
-- Function File: logistic_inv (X)
For each element of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
For each element of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
-- Function File: logistic_pdf (X)
For each element of X, compute the PDF at X of the logistic distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
For each element of X, compute the PDF at X of the logistic distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
-- Function File: logistic_rnd (R)
-- Function File: logistic_rnd (R, C, ...)
-- Function File: logistic_rnd ([SZ])
Return a matrix of random samples from the logistic distribution.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return a matrix of random samples from the logistic distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
logncdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
-- Function File: logncdf (X)
-- Function File: logncdf (X, MU, SIGMA)
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA.
If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.
Default values are MU = 0, SIGMA = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
logninv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 394
-- Function File: logninv (X)
-- Function File: logninv (X, MU, SIGMA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA.
If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.
Default values are MU = 0, SIGMA = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lognpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
-- Function File: lognpdf (X)
-- Function File: lognpdf (X, MU, SIGMA)
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA.
If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.
Default values are MU = 0, SIGMA = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lognrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 720
-- Function File: lognrnd (MU, SIGMA)
-- Function File: lognrnd (MU, SIGMA, R)
-- Function File: lognrnd (MU, SIGMA, R, C, ...)
-- Function File: lognrnd (MU, SIGMA, [SZ])
Return a matrix of random samples from the lognormal distribution with parameters MU and SIGMA.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of MU and SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return a matrix of random samples from the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbincdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 445
-- Function File: nbincdf (X, N, P)
For each element of X, compute the cumulative distribution function (CDF) at X of the negative binomial distribution with parameters N and P.
When N is integer this is the Pascal distribution. When N is extended to real numbers this is the Polya distribution.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
For each element of X, compute the cumulative distribution function (CDF) at X of the negative binomial distribution with parameters N and P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbininv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 440
-- Function File: nbininv (X, N, P)
For each element of X, compute the quantile (the inverse of the CDF) at X of the negative binomial distribution with parameters N and P.
When N is integer this is the Pascal distribution. When N is extended to real numbers this is the Polya distribution.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
For each element of X, compute the quantile (the inverse of the CDF) at X of the negative binomial distribution with parameters N and P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbinpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 441
-- Function File: nbinpdf (X, N, P)
For each element of X, compute the probability density function (PDF) at X of the negative binomial distribution with parameters N and P.
When N is integer this is the Pascal distribution. When N is extended to real numbers this is the Polya distribution.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
For each element of X, compute the probability density function (PDF) at X of the negative binomial distribution with parameters N and P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbinrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 698
-- Function File: nbinrnd (N, P)
-- Function File: nbinrnd (N, P, R)
-- Function File: nbinrnd (N, P, R, C, ...)
-- Function File: nbinrnd (N, P, [SZ])
Return a matrix of random samples from the negative binomial distribution with parameters N and P.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of N and P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return a matrix of random samples from the negative binomial distribution with parameters N and P.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 274
-- Function File: normcdf (X)
-- Function File: normcdf (X, MU, SIGMA)
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.
Default values are MU = 0, SIGMA = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
norminv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 269
-- Function File: norminv (X)
-- Function File: norminv (X, MU, SIGMA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.
Default values are MU = 0, SIGMA = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
-- Function File: normpdf (X)
-- Function File: normpdf (X, MU, SIGMA)
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean MU and standard deviation SIGMA.
Default values are MU = 0, SIGMA = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean MU and standard deviation SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 741
-- Function File: normrnd (MU, SIGMA)
-- Function File: normrnd (MU, SIGMA, R)
-- Function File: normrnd (MU, SIGMA, R, C, ...)
-- Function File: normrnd (MU, SIGMA, [SZ])
Return a matrix of random samples from the normal distribution with parameters mean MU and standard deviation SIGMA.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of MU and SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Return a matrix of random samples from the normal distribution with parameters mean MU and standard deviation SIGMA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poisscdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
-- Function File: poisscdf (X, LAMBDA)
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poissinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 173
-- Function File: poissinv (X, LAMBDA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For each element of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poisspdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
-- Function File: poisspdf (X, LAMBDA)
For each element of X, compute the probability density function (PDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
For each element of X, compute the probability density function (PDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poissrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 690
-- Function File: poissrnd (LAMBDA)
-- Function File: poissrnd (LAMBDA, R)
-- Function File: poissrnd (LAMBDA, R, C, ...)
-- Function File: poissrnd (LAMBDA, [SZ])
Return a matrix of random samples from the Poisson distribution with parameter LAMBDA.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the size of LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return a matrix of random samples from the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_cdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
-- Function File: stdnormal_cdf (X)
For each element of X, compute the cumulative distribution function (CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
For each element of X, compute the cumulative distribution function (CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
-- Function File: stdnormal_inv (X)
For each element of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
For each element of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_pdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 192
-- Function File: stdnormal_pdf (X)
For each element of X, compute the probability density function (PDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_rnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 582
-- Function File: stdnormal_rnd (R)
-- Function File: stdnormal_rnd (R, C, ...)
-- Function File: stdnormal_rnd ([SZ])
Return a matrix of random samples from the standard normal distribution (mean = 0, standard deviation = 1).
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return a matrix of random samples from the standard normal distribution (mean = 0, standard deviation = 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
-- Function File: tcdf (X, N)
For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 276
-- Function File: tinv (X, N)
For each element of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with N degrees of freedom.
This function is analogous to looking in a table for the t-value of a single-tailed distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
For each element of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 173
-- Function File: tpdf (X, N)
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
trnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 657
-- Function File: trnd (N)
-- Function File: trnd (N, R)
-- Function File: trnd (N, R, C, ...)
-- Function File: trnd (N, [SZ])
Return a matrix of random samples from the t (Student) distribution with N degrees of freedom.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the size of N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return a matrix of random samples from the t (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 762
-- Function File: unidrnd (N)
-- Function File: unidrnd (N, R)
-- Function File: unidrnd (N, R, C, ...)
-- Function File: unidrnd (N, [SZ])
Return a matrix of random samples from the discrete uniform distribution which assumes the integer values 1-N with equal probability.
N may be a scalar or a multi-dimensional array.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the size of N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Return a matrix of random samples from the discrete uniform distribution which assumes the integer values 1-N with equal probability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 217
-- Function File: unidcdf (X, N)
For each element of X, compute the cumulative distribution function (CDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
For each element of X, compute the cumulative distribution function (CDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 214
-- Function File: unidinv (X, N)
For each element of X, compute the quantile (the inverse of the CDF) at X of the discrete uniform distribution which assumes the integer values 1-N with equal probability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
For each element of X, compute the quantile (the inverse of the CDF) at X of the discrete uniform distribution which assumes the integer values 1-N with equal probability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 369
-- Function File: unidpdf (X, N)
For each element of X, compute the probability density function (PDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.
Warning: The underlying implementation uses the double class and will only be accurate for N <= 'bitmax' (2^{53} - 1 on IEEE-754 compatible systems).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
For each element of X, compute the probability density function (PDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 674
-- Function File: unifrnd (A, B)
-- Function File: unifrnd (A, B, R)
-- Function File: unifrnd (A, B, R, C, ...)
-- Function File: unifrnd (A, B, [SZ])
Return a matrix of random samples from the uniform distribution on [A, B].
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return a matrix of random samples from the uniform distribution on [A, B].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 246
-- Function File: unifcdf (X)
-- Function File: unifcdf (X, A, B)
For each element of X, compute the cumulative distribution function (CDF) at X of the uniform distribution on the interval [A, B].
Default values are A = 0, B = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
For each element of X, compute the cumulative distribution function (CDF) at X of the uniform distribution on the interval [A, B].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 241
-- Function File: unifinv (X)
-- Function File: unifinv (X, A, B)
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on the interval [A, B].
Default values are A = 0, B = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on the interval [A, B].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
-- Function File: unifpdf (X)
-- Function File: unifpdf (X, A, B)
For each element of X, compute the probability density function (PDF) at X of the uniform distribution on the interval [A, B].
Default values are A = 0, B = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
For each element of X, compute the probability density function (PDF) at X of the uniform distribution on the interval [A, B].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblcdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 385
-- Function File: wblcdf (X)
-- Function File: wblcdf (X, SCALE)
-- Function File: wblcdf (X, SCALE, SHAPE)
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.
This is defined as
1 - exp (-(x/scale)^shape)
for X >= 0.
Default values are SCALE = 1, SHAPE = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 299
-- Function File: wblinv (X)
-- Function File: wblinv (X, SCALE)
-- Function File: wblinv (X, SCALE, SHAPE)
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.
Default values are SCALE = 1, SHAPE = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblpdf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 414
-- Function File: wblpdf (X)
-- Function File: wblpdf (X, SCALE)
-- Function File: wblpdf (X, SCALE, SHAPE)
Compute the probability density function (PDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.
This is given by
shape * scale^(-shape) * x^(shape-1) * exp (-(x/scale)^shape)
for X >= 0.
Default values are SCALE = 1, SHAPE = 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Compute the probability density function (PDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 732
-- Function File: wblrnd (SCALE, SHAPE)
-- Function File: wblrnd (SCALE, SHAPE, R)
-- Function File: wblrnd (SCALE, SHAPE, R, C, ...)
-- Function File: wblrnd (SCALE, SHAPE, [SZ])
Return a matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE.
When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions SZ.
If no size arguments are given then the result matrix is the common size of SCALE and SHAPE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Return a matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
wienrnd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 438
-- Function File: wienrnd (T, D, N)
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].
If D is omitted, D = 1 is used. The first column of the return matrix contains time, the remaining columns contain the Wiener process.
The optional parameter N defines the number of summands used for simulating the process over an interval of length 1. If N is omitted, N = 1000 is used.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
logistic_regression
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1609
-- Function File: [THETA, BETA, DEV, DL, D2L, P] = logistic_regression (Y, X, PRINT, THETA, BETA)
Perform ordinal logistic regression.
Suppose Y takes values in K ordered categories, and let 'gamma_i (X)' be the cumulative probability that Y falls in one of the first I categories given the covariate X. Then
[theta, beta] = logistic_regression (y, x)
fits the model
logit (gamma_i (x)) = theta_i - beta' * x, i = 1 ... k-1
The number of ordinal categories, K, is taken to be the number of distinct values of 'round (Y)'. If K equals 2, Y is binary and the model is ordinary logistic regression. The matrix X is assumed to have full column rank.
Given Y only, 'theta = logistic_regression (y)' fits the model with baseline logit odds only.
The full form is
[theta, beta, dev, dl, d2l, gamma]
= logistic_regression (y, x, print, theta, beta)
in which all output arguments and all input arguments except Y are optional.
Setting PRINT to 1 requests summary information about the fitted model to be displayed. Setting PRINT to 2 requests information about convergence at each iteration. Other values request no information to be displayed. The input arguments THETA and BETA give initial estimates for THETA and BETA.
The returned value DEV holds minus twice the log-likelihood.
The returned values DL and D2L are the vector of first and the matrix of second derivatives of the log-likelihood with respect to THETA and BETA.
P holds estimates for the conditional distribution of Y given X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Perform ordinal logistic regression.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
anova
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 986
-- Function File: [PVAL, F, DF_B, DF_W] = anova (Y, G)
Perform a one-way analysis of variance (ANOVA).
The goal is to test whether the population means of data taken from K different groups are all equal.
Data may be given in a single vector Y with groups specified by a corresponding vector of group labels G (e.g., numbers from 1 to K). This is the general form which does not impose any restriction on the number of data in each group or the group labels.
If Y is a matrix and G is omitted, each column of Y is treated as a group. This form is only appropriate for balanced ANOVA in which the numbers of samples from each group are all equal.
Under the null of constant means, the statistic F follows an F distribution with DF_B and DF_W degrees of freedom.
The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.
If no output argument is given, the standard one-way ANOVA table is printed.
See also: manova.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Perform a one-way analysis of variance (ANOVA).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
bartlett_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
-- Function File: [PVAL, CHISQ, DF] = bartlett_test (X1, ...)
Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, ..., XK, where K > 1.
Under the null of equal variances, the test statistic CHISQ approximately follows a chi-square distribution with DF degrees of freedom.
The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
chisquare_test_homogeneity
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 586
-- Function File: [PVAL, CHISQ, DF] = chisquare_test_homogeneity (X, Y, C)
Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.
For large samples, the test statistic CHISQ approximately follows a chisquare distribution with DF = 'length (C)' degrees of freedom.
The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
chisquare_test_independence
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
-- Function File: [PVAL, CHISQ, DF] = chisquare_test_independence (X)
Perform a chi-square test for independence based on the contingency table X.
Under the null hypothesis of independence, CHISQ approximately has a chi-square distribution with DF degrees of freedom.
The p-value (1 minus the CDF of this distribution at chisq) of the test is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Perform a chi-square test for independence based on the contingency table X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cor_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1327
-- Function File: cor_test (X, Y, ALT, METHOD)
Test whether two samples X and Y come from uncorrelated populations.
The optional argument string ALT describes the alternative hypothesis, and can be "!=" or "<>" (nonzero), ">" (greater than 0), or "<" (less than 0). The default is the two-sided case.
The optional argument string METHOD specifies which correlation coefficient to use for testing. If METHOD is "pearson" (default), the (usual) Pearson's produt moment correlation coefficient is used. In this case, the data should come from a bivariate normal distribution. Otherwise, the other two methods offer nonparametric alternatives. If METHOD is "kendall", then Kendall's rank correlation tau is used. If METHOD is "spearman", then Spearman's rank correlation rho is used. Only the first character is necessary.
The output is a structure with the following elements:
PVAL
The p-value of the test.
STAT
The value of the test statistic.
DIST
The distribution of the test statistic.
PARAMS
The parameters of the null distribution of the test statistic.
ALTERNATIVE
The alternative hypothesis.
METHOD
The method used for testing.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Test whether two samples X and Y come from uncorrelated populations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
f_test_regression
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 491
-- Function File: [PVAL, F, DF_NUM, DF_DEN] = f_test_regression (Y, X, RR, R)
Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.
Under the null, the test statistic F follows an F distribution with DF_NUM and DF_DEN degrees of freedom.
The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.
If not given explicitly, R = 0.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
hotelling_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 540
-- Function File: [PVAL, TSQ] = hotelling_test (X, M)
For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that 'mean (X) == M'.
Hotelling's T^2 is returned in TSQ. Under the null, (n-p) T^2 / (p(n-1)) has an F distribution with p and n-p degrees of freedom, where n and p are the numbers of samples and variables, respectively.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that 'mean (X) == M'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
hotelling_test_2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 656
-- Function File: [PVAL, TSQ] = hotelling_test_2 (X, Y)
For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis 'mean (X) == mean (Y)'.
Hotelling's two-sample T^2 is returned in TSQ. Under the null,
(n_x+n_y-p-1) T^2 / (p(n_x+n_y-2))
has an F distribution with p and n_x+n_y-p-1 degrees of freedom, where n_x and n_y are the sample sizes and p is the number of variables.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 203
For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis 'mean (X) == mean (Y)'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
kolmogorov_smirnov_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1281
-- Function File: [PVAL, KS] = kolmogorov_smirnov_test (X, DIST, PARAMS, ALT)
Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution DIST.
if F and G are the CDFs corresponding to the sample and dist, respectively, then the null is that F == G.
The optional argument PARAMS contains a list of parameters of DIST. For example, to test whether a sample X comes from a uniform distribution on [2,4], use
kolmogorov_smirnov_test (x, "unif", 2, 4)
DIST can be any string for which a function DISTCDF that calculates the CDF of distribution DIST exists.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative F != G. In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution. If ALT is ">", the one-sided alternative F > G is considered. Similarly for "<", the one-sided alternative F > G is considered. In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution DIST.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
kolmogorov_smirnov_test_2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1102
-- Function File: [PVAL, KS, D] = kolmogorov_smirnov_test_2 (X, Y, ALT)
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution.
If F and G are the CDFs corresponding to the X and Y samples, respectively, then the null is that F == G.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative F != G. In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution. If ALT is ">", the one-sided alternative F > G is considered. Similarly for "<", the one-sided alternative F < G is considered. In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution. The default is the two-sided case.
The p-value of the test is returned in PVAL.
The third returned value, D, is the test statistic, the maximum vertical distance between the two cumulative distribution functions.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
kruskal_wallis_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1083
-- Function File: [PVAL, K, DF] = kruskal_wallis_test (X1, ...)
Perform a Kruskal-Wallis one-factor analysis of variance.
Suppose a variable is observed for K > 1 different groups, and let X1, ..., XK be the corresponding data vectors.
Under the null hypothesis that the ranks in the pooled sample are not affected by the group memberships, the test statistic K is approximately chi-square with DF = K - 1 degrees of freedom.
If the data contains ties (some value appears more than once) K is divided by
1 - SUM_TIES / (N^3 - N)
where SUM_TIES is the sum of T^2 - T over each group of ties where T is the number of ties in the group and N is the total number of values in the input data. For more info on this adjustment see William H. Kruskal and W. Allen Wallis, 'Use of Ranks in One-Criterion Variance Analysis', Journal of the American Statistical Association, Vol. 47, No. 260 (Dec 1952).
The p-value (1 minus the CDF of this distribution at K) is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Perform a Kruskal-Wallis one-factor analysis of variance.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
manova
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 641
-- Function File: manova (X, G)
Perform a one-way multivariate analysis of variance (MANOVA).
The goal is to test whether the p-dimensional population means of data taken from K different groups are all equal. All data are assumed drawn independently from p-dimensional normal distributions with the same covariance matrix.
The data matrix is given by X. As usual, rows are observations and columns are variables. The vector G specifies the corresponding group labels (e.g., numbers from 1 to K).
The LR test statistic (Wilks' Lambda) and approximate p-values are computed and displayed.
See also: anova.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Perform a one-way multivariate analysis of variance (MANOVA).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
mcnemar_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 524
-- Function File: [PVAL, CHISQ, DF] = mcnemar_test (X)
For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.
Under the null, CHISQ is approximately distributed as chisquare with DF degrees of freedom.
The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
prop_test_2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 817
-- Function File: [PVAL, Z] = prop_test_2 (X1, N1, X2, N2, ALT)
If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same.
Under the null, the test statistic Z approximately follows a standard normal distribution.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative P1 != P2. If ALT is ">", the one-sided alternative P1 > P2 is used. Similarly for "<", the one-sided alternative P1 < P2 is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
run_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
-- Function File: [PVAL, CHISQ] = run_test (X)
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X.
'run_test' can be used to decide whether X contains independent data.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
sign_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 902
-- Function File: [PVAL, B, N] = sign_test (X, Y, ALT)
For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2.
Under the null, the test statistic B roughly follows a binomial distribution with parameters 'N = sum (X != Y)' and P = 1/2.
With the optional argument 'alt', the alternative of interest can be selected. If ALT is "!=" or "<>", the null hypothesis is tested against the two-sided alternative PROB (X < Y) != 1/2. If ALT is ">", the one-sided alternative PROB (X > Y) > 1/2 ("x is stochastically greater than y") is considered. Similarly for "<", the one-sided alternative PROB (X > Y) < 1/2 ("x is stochastically less than y") is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
t_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 810
-- Function File: [PVAL, T, DF] = t_test (X, M, ALT)
For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis 'mean (X) == M'.
Under the null, the test statistic T follows a Student distribution with 'DF = length (X) - 1' degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != M'. If ALT is ">", the one-sided alternative 'mean (X) > M' is considered. Similarly for "<", the one-sided alternative 'mean (X) < M' is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis 'mean (X) == M'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
t_test_2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 836
-- Function File: [PVAL, T, DF] = t_test_2 (X, Y, ALT)
For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means.
Under the null, the test statistic T follows a Student distribution with DF degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != mean (Y)'. If ALT is ">", the one-sided alternative 'mean (X) > mean (Y)' is used. Similarly for "<", the one-sided alternative 'mean (X) < mean (Y)' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
t_test_regression
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 812
-- Function File: [PVAL, T, DF] = t_test_regression (Y, X, RR, R, ALT)
Perform a t test for the null hypothesis 'RR * B = R' in a classical normal regression model 'Y = X * B + E'.
Under the null, the test statistic T follows a T distribution with DF degrees of freedom.
If R is omitted, a value of 0 is assumed.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'RR * B != R'. If ALT is ">", the one-sided alternative 'RR * B > R' is used. Similarly for "<", the one-sided alternative 'RR * B < R' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Perform a t test for the null hypothesis 'RR * B = R' in a classical normal regression model 'Y = X * B + E'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
u_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 844
-- Function File: [PVAL, Z] = u_test (X, Y, ALT)
For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y).
Under the null, the test statistic Z approximately follows a standard normal distribution. Note that this test is equivalent to the Wilcoxon rank-sum test.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative PROB (X > Y) != 1/2. If ALT is ">", the one-sided alternative PROB (X > Y) > 1/2 is considered. Similarly for "<", the one-sided alternative PROB (X > Y) < 1/2 is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
var_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 840
-- Function File: [PVAL, F, DF_NUM, DF_DEN] = var_test (X, Y, ALT)
For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances.
Under the null, the test statistic F follows an F-distribution with DF_NUM and DF_DEN degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'var (X) != var (Y)'. If ALT is ">", the one-sided alternative 'var (X) > var (Y)' is used. Similarly for "<", the one-sided alternative 'var (X) > var (Y)' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
welch_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 850
-- Function File: [PVAL, T, DF] = welch_test (X, Y, ALT)
For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.
Under the null, the test statistic T approximately follows a Student distribution with DF degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != M'. If ALT is ">", the one-sided alternative mean(x) > M is considered. Similarly for "<", the one-sided alternative mean(x) < M is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
wilcoxon_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 907
-- Function File: [PVAL, Z] = wilcoxon_test (X, Y, ALT)
For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2.
Under the null, the test statistic Z approximately follows a standard normal distribution when N > 25.
*Caution:* This function assumes a normal distribution for Z and thus is invalid for N <= 25.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative PROB (X > Y) != 1/2. If alt is ">", the one-sided alternative PROB (X > Y) > 1/2 is considered. Similarly for "<", the one-sided alternative PROB (X > Y) < 1/2 is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
z_test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
-- Function File: [PVAL, Z] = z_test (X, M, V, ALT)
Perform a Z-test of the null hypothesis 'mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V.
Under the null, the test statistic Z follows a standard normal distribution.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != M'. If ALT is ">", the one-sided alternative 'mean (X) > M' is considered. Similarly for "<", the one-sided alternative 'mean (X) < M' is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed along with some information.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Perform a Z-test of the null hypothesis 'mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
z_test_2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 839
-- Function File: [PVAL, Z] = z_test_2 (X, Y, V_X, V_Y, ALT)
For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means.
Under the null, the test statistic Z follows a standard normal distribution.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != mean (Y)'. If alt is ">", the one-sided alternative 'mean (X) > mean (Y)' is used. Similarly for "<", the one-sided alternative 'mean (X) < mean (Y)' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed along with some information.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
base2dec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 676
-- Function File: base2dec (S, BASE)
Convert S from a string of digits in base BASE to a decimal integer (base 10).
base2dec ("11120", 3)
=> 123
If S is a string matrix, return a column vector with one value per row of S. If a row contains invalid symbols then the corresponding value will be NaN.
If S is a cell array of strings, return a column vector with one value per cell element in S.
If BASE is a string, the characters of BASE are used as the symbols for the digits of S. Space (' ') may not be used as a symbol.
base2dec ("yyyzx", "xyz")
=> 123
See also: dec2base, bin2dec, hex2dec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Convert S from a string of digits in base BASE to a decimal integer (base 10).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bin2dec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 631
-- Function File: bin2dec (S)
Return the decimal number corresponding to the binary number represented by the string S.
For example:
bin2dec ("1110")
=> 14
Spaces are ignored during conversion and may be used to make the binary number more readable.
bin2dec ("1000 0001")
=> 129
If S is a string matrix, return a column vector with one converted number per row of S; Invalid rows evaluate to NaN.
If S is a cell array of strings, return a column vector with one converted number per cell element in S.
See also: dec2bin, base2dec, hex2dec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the decimal number corresponding to the binary number represented by the string S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
blanks
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 383
-- Function File: blanks (N)
Return a string of N blanks.
For example:
blanks (10);
whos ans
=>
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x10 10 char
See also: repmat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Return a string of N blanks.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cstrcat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 401
-- Function File: cstrcat (S1, S2, ...)
Return a string containing all the arguments concatenated horizontally with trailing white space preserved.
For example:
cstrcat ("ab ", "cd")
=> "ab cd"
s = [ "ab"; "cde" ];
cstrcat (s, s, s)
=> "ab ab ab "
"cdecdecde"
See also: strcat, char, strvcat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return a string containing all the arguments concatenated horizontally with trailing white space preserved.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
deblank
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 432
-- Function File: deblank (S)
Remove trailing whitespace and nulls from S.
If S is a matrix, DEBLANK trims each row to the length of longest string. If S is a cell array of strings, operate recursively on each string element.
Examples:
deblank (" abc ")
=> " abc"
deblank ([" abc "; " def "])
=> [" abc " ; " def"]
See also: strtrim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Remove trailing whitespace and nulls from S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dec2base
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 716
-- Function File: dec2base (D, BASE)
-- Function File: dec2base (D, BASE, LEN)
Return a string of symbols in base BASE corresponding to the non-negative integer D.
dec2base (123, 3)
=> "11120"
If D is a matrix or cell array, return a string matrix with one row per element in D, padded with leading zeros to the width of the largest value.
If BASE is a string then the characters of BASE are used as the symbols for the digits of D. Space (' ') may not be used as a symbol.
dec2base (123, "aei")
=> "eeeia"
The optional third argument, LEN, specifies the minimum number of digits in the result.
See also: base2dec, dec2bin, dec2hex.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return a string of symbols in base BASE corresponding to the non-negative integer D.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dec2bin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 503
-- Function File: dec2bin (D, LEN)
Return a binary number corresponding to the non-negative integer D, as a string of ones and zeros.
For example:
dec2bin (14)
=> "1110"
If D is a matrix or cell array, return a string matrix with one row per element in D, padded with leading zeros to the width of the largest value.
The optional second argument, LEN, specifies the minimum number of digits in the result.
See also: bin2dec, dec2base, dec2hex.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return a binary number corresponding to the non-negative integer D, as a string of ones and zeros.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dec2hex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 480
-- Function File: dec2hex (D, LEN)
Return the hexadecimal string corresponding to the non-negative integer D.
For example:
dec2hex (2748)
=> "ABC"
If D is a matrix or cell array, return a string matrix with one row per element in D, padded with leading zeros to the width of the largest value.
The optional second argument, LEN, specifies the minimum number of digits in the result.
See also: hex2dec, dec2base, dec2bin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return the hexadecimal string corresponding to the non-negative integer D.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findstr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 637
-- Function File: findstr (S, T)
-- Function File: findstr (S, T, OVERLAP)
Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts.
If the optional argument OVERLAP is true (default), the returned vector can include overlapping positions. For example:
findstr ("ababab", "a")
=> [1, 3, 5];
findstr ("abababa", "aba", 0)
=> [1, 5]
*Caution:* 'findstr' is scheduled for deprecation. Use 'strfind' in all new code.
See also: strfind, strmatch, strcmp, strncmp, strcmpi, strncmpi, find.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hex2dec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 524
-- Function File: hex2dec (S)
Return the integer corresponding to the hexadecimal number represented by the string S.
For example:
hex2dec ("12B")
=> 299
hex2dec ("12b")
=> 299
If S is a string matrix, return a column vector with one converted number per row of S; Invalid rows evaluate to NaN.
If S is a cell array of strings, return a column vector with one converted number per cell element in S.
See also: dec2hex, base2dec, bin2dec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Return the integer corresponding to the hexadecimal number represented by the string S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
index
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 477
-- Function File: index (S, T)
-- Function File: index (S, T, DIRECTION)
Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found.
S may also be a string array or cell array of strings.
For example:
index ("Teststring", "t")
=> 4
If DIRECTION is "first", return the first element found. If DIRECTION is "last", return the last element found.
See also: find, rindex.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isletter
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 264
-- Function File: isletter (S)
Return a logical array which is true where the elements of S are letters and false where they are not.
This is an alias for the 'isalpha' function.
See also: isalpha, isdigit, ispunct, isspace, iscntrl, isalnum.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Return a logical array which is true where the elements of S are letters and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isstrprop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1427
-- Function File: isstrprop (STR, PROP)
Test character string properties.
For example:
isstrprop ("abc123", "alpha")
=> [1, 1, 1, 0, 0, 0]
If STR is a cell array, 'isstrpop' is applied recursively to each element of the cell array.
Numeric arrays are converted to character strings.
The second argument PROP must be one of
"alpha"
True for characters that are alphabetic (letters).
"alnum"
"alphanum"
True for characters that are alphabetic or digits.
"lower"
True for lowercase letters.
"upper"
True for uppercase letters.
"digit"
True for decimal digits (0-9).
"xdigit"
True for hexadecimal digits (a-fA-F0-9).
"space"
"wspace"
True for whitespace characters (space, formfeed, newline, carriage return, tab, vertical tab).
"punct"
True for punctuation characters (printing characters except space or letter or digit).
"cntrl"
True for control characters.
"graph"
"graphic"
True for printing characters except space.
"print"
True for printing characters including space.
"ascii"
True for characters that are in the range of ASCII encoding.
See also: isalpha, isalnum, islower, isupper, isdigit, isxdigit, isspace, ispunct, iscntrl, isgraph, isprint, isascii.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Test character string properties.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
mat2str
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1198
-- Function File: S = mat2str (X, N)
-- Function File: S = mat2str (X, N, "class")
Format real, complex, and logical matrices as strings.
The returned string may be used to reconstruct the original matrix by using the 'eval' function.
The precision of the values is given by N. If N is a scalar then both real and imaginary parts of the matrix are printed to the same precision. Otherwise 'N(1)' defines the precision of the real part and 'N(2)' defines the precision of the imaginary part. The default for N is 15.
If the argument "class" is given then the class of X is included in the string in such a way that 'eval' will result in the construction of a matrix of the same class.
mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
=> "[-0.3333+0.14i;0.3333-0.14i]"
mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
=> "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"
mat2str (int16 ([1 -1]), "class")
=> "int16([1 -1])"
mat2str (logical (eye (2)))
=> "[true false;false true]"
isequal (x, eval (mat2str (x)))
=> 1
See also: sprintf, num2str, int2str.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Format real, complex, and logical matrices as strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ostrsplit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 897
-- Function File: [CSTR] = ostrsplit (S, SEP)
-- Function File: [CSTR] = ostrsplit (S, SEP, STRIP_EMPTY)
Split the string S using one or more separators SEP and return a cell array of strings.
Consecutive separators and separators at boundaries result in empty strings, unless STRIP_EMPTY is true. The default value of STRIP_EMPTY is false.
2-D character arrays are split at separators and at the original column boundaries.
Example:
ostrsplit ("a,b,c", ",")
=>
{
[1,1] = a
[1,2] = b
[1,3] = c
}
ostrsplit (["a,b" ; "cde"], ",")
=>
{
[1,1] = a
[1,2] = b
[1,3] = cde
}
See also: strsplit, strtok.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Split the string S using one or more separators SEP and return a cell array of strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
regexptranslate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 788
-- Function File: regexptranslate (OP, S)
Translate a string for use in a regular expression.
This may include either wildcard replacement or special character escaping.
The behavior is controlled by OP which can take the following values
"wildcard"
The wildcard characters '.', '*', and '?' are replaced with wildcards that are appropriate for a regular expression. For example:
regexptranslate ("wildcard", "*.m")
=> ".*\.m"
"escape"
The characters '$.?[]', that have special meaning for regular expressions are escaped so that they are treated literally. For example:
regexptranslate ("escape", "12.5")
=> "12\.5"
See also: regexp, regexpi, regexprep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Translate a string for use in a regular expression.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rindex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 419
-- Function File: rindex (S, T)
Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found.
S may also be a string array or cell array of strings.
For example:
rindex ("Teststring", "t")
=> 6
The 'rindex' function is equivalent to 'index' with DIRECTION set to "last".
See also: find, index.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
str2num
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 774
-- Function File: X = str2num (S)
-- Function File: [X, STATE] = str2num (S)
Convert the string (or character array) S to a number (or an array).
Examples:
str2num ("3.141596")
=> 3.141596
str2num (["1, 2, 3"; "4, 5, 6"])
=> 1 2 3
4 5 6
The optional second output, STATE, is logically true when the conversion is successful. If the conversion fails the numeric output, X, is empty and STATE is false.
*Caution:* As 'str2num' uses the 'eval' function to do the conversion, 'str2num' will execute any code contained in the string S. Use 'str2double' for a safer and faster conversion.
For cell array of strings use 'str2double'.
See also: str2double, eval.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Convert the string (or character array) S to a number (or an array).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strcat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1215
-- Function File: strcat (S1, S2, ...)
Return a string containing all the arguments concatenated horizontally.
If the arguments are cell strings, 'strcat' returns a cell string with the individual cells concatenated. For numerical input, each element is converted to the corresponding ASCII character. Trailing white space for any character string input is eliminated before the strings are concatenated. Note that cell string values do *not* have whitespace trimmed.
For example:
strcat ("|", " leading space is preserved", "|")
=> | leading space is preserved|
strcat ("|", "trailing space is eliminated ", "|")
=> |trailing space is eliminated|
strcat ("homogeneous space |", " ", "| is also eliminated")
=> homogeneous space || is also eliminated
s = [ "ab"; "cde" ];
strcat (s, s, s)
=>
"ababab "
"cdecdecde"
s = { "ab"; "cd " };
strcat (s, s, s)
=>
{
[1,1] = ababab
[2,1] = cd cd cd
}
See also: cstrcat, char, strvcat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Return a string containing all the arguments concatenated horizontally.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strchr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 459
-- Function File: IDX = strchr (STR, CHARS)
-- Function File: IDX = strchr (STR, CHARS, N)
-- Function File: IDX = strchr (STR, CHARS, N, DIRECTION)
-- Function File: [I, J] = strchr (...)
Search for the string STR for occurrences of characters from the set CHARS.
The return value(s), as well as the N and DIRECTION arguments behave identically as in 'find'.
This will be faster than using regexp in most cases.
See also: find.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Search for the string STR for occurrences of characters from the set CHARS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strjoin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 724
-- Function File: STR = strjoin (CSTR)
-- Function File: STR = strjoin (CSTR, DELIMITER)
Join the elements of the cell string array, CSTR, into a single string.
If no DELIMITER is specified, the elements of CSTR are separated by a space.
If DELIMITER is specified as a string, the cell string array is joined using the string. Escape sequences are supported.
If DELIMITER is a cell string array whose length is one less than CSTR, then the elements of CSTR are joined by interleaving the cell string elements of DELIMITER. Escape sequences are not supported.
strjoin ({'Octave','Scilab','Lush','Yorick'}, '*')
=> 'Octave*Scilab*Lush*Yorick'
See also: strsplit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Join the elements of the cell string array, CSTR, into a single string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strjust
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 551
-- Function File: strjust (S)
-- Function File: strjust (S, POS)
Return the text, S, justified according to POS, which may be "left", "center", or "right".
If POS is omitted it defaults to "right".
Null characters are replaced by spaces. All other character data are treated as non-white space.
Example:
strjust (["a"; "ab"; "abc"; "abcd"])
=>
" a"
" ab"
" abc"
"abcd"
See also: deblank, strrep, strtrim, untabify.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return the text, S, justified according to POS, which may be "left", "center", or "right".
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strmatch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 909
-- Function File: strmatch (S, A)
-- Function File: strmatch (S, A, "exact")
Return indices of entries of A which begin with the string S.
The second argument A must be a string, character matrix, or a cell array of strings.
If the third argument "exact" is not given, then S only needs to match A up to the length of S. Trailing spaces and nulls in S and A are ignored when matching.
For example:
strmatch ("apple", "apple juice")
=> 1
strmatch ("apple", ["apple "; "apple juice"; "an apple"])
=> [1; 2]
strmatch ("apple", ["apple "; "apple juice"; "an apple"], "exact")
=> [1]
*Caution:* 'strmatch' is scheduled for deprecation. Use 'strncmp' (normal case), or 'strcmp' ("exact" case), or 'regexp' in all new code.
See also: strfind, findstr, strcmp, strncmp, strcmpi, strncmpi, find.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return indices of entries of A which begin with the string S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strsplit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3167
-- Function File: [CSTR] = strsplit (STR)
-- Function File: [CSTR] = strsplit (STR, DEL)
-- Function File: [CSTR] = strsplit (..., NAME, VALUE)
-- Function File: [CSTR, MATCHES] = strsplit (...)
Split the string STR using the delimiters specified by DEL and return a cell string array of substrings.
If a delimiter is not specified the string is split at whitespace '{" ", "\f", "\n", "\r", "\t", "\v"}'. Otherwise, the delimiter, DEL must be a string or cell array of strings. By default, consecutive delimiters in the input string S are collapsed into one resulting in a single split.
Supported NAME/VALUE pair arguments are:
* COLLAPSEDELIMITERS which may take the value of 'true' (default) or 'false'.
* DELIMITERTYPE which may take the value of "simple" (default) or "regularexpression". A simple delimiter matches the text exactly as written. Otherwise, the syntax for regular expressions outlined in 'regexp' is used.
The optional second output, MATCHES, returns the delimiters which were matched in the original string.
Examples with simple delimiters:
strsplit ("a b c")
=>
{
[1,1] = a
[1,2] = b
[1,3] = c
}
strsplit ("a,b,c", ",")
=>
{
[1,1] = a
[1,2] = b
[1,3] = c
}
strsplit ("a foo b,bar c", {" ", ",", "foo", "bar"})
=>
{
[1,1] = a
[1,2] = b
[1,3] = c
}
strsplit ("a,,b, c", {",", " "}, "collapsedelimiters", false)
=>
{
[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = c
}
Examples with regularexpression delimiters:
strsplit ("a foo b,bar c", ',|\s|foo|bar', "delimitertype", "regularexpression")
=>
{
[1,1] = a
[1,2] = b
[1,3] = c
}
strsplit ("a,,b, c", '[, ]', "collapsedelimiters", false, "delimitertype", "regularexpression")
=>
{
[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = c
}
strsplit ("a,\t,b, c", {',', '\s'}, "delimitertype", "regularexpression")
=>
{
[1,1] = a
[1,2] = b
[1,3] = c
}
strsplit ("a,\t,b, c", {',', ' ', '\t'}, "collapsedelimiters", false)
=>
{
[1,1] = a
[1,2] =
[1,3] =
[1,4] = b
[1,5] =
[1,6] = c
}
See also: ostrsplit, strjoin, strtok, regexp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Split the string STR using the delimiters specified by DEL and return a cell string array of substrings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strtok
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
-- Function File: [TOK, REM] = strtok (STR)
-- Function File: [TOK, REM] = strtok (STR, DELIM)
Find all characters in the string STR up to, but not including, the first character which is in the string DELIM.
STR may also be a cell array of strings in which case the function executes on every individual string and returns a cell array of tokens and remainders.
Leading delimiters are ignored. If DELIM is not specified, whitespace is assumed.
If REM is requested, it contains the remainder of the string, starting at the first delimiter.
Examples:
strtok ("this is the life")
=> "this"
[tok, rem] = strtok ("14*27+31", "+-*/")
=>
tok = 14
rem = *27+31
See also: index, strsplit, strchr, isspace.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Find all characters in the string STR up to, but not including, the first character which is in the string DELIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strtrim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 432
-- Function File: strtrim (S)
Remove leading and trailing whitespace from S.
If S is a matrix, STRTRIM trims each row to the length of longest string. If S is a cell array of strings, operate recursively on each string element.
For example:
strtrim (" abc ")
=> "abc"
strtrim ([" abc "; " def "])
=> ["abc " ; " def"]
See also: deblank.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Remove leading and trailing whitespace from S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strtrunc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
-- Function File: strtrunc (S, N)
Truncate the character string S to length N.
If S is a character matrix, then the number of columns is adjusted.
If S is a cell array of strings, then the operation is performed on each cell element and the new cell array is returned.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Truncate the character string S to length N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
substr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 788
-- Function File: substr (S, OFFSET)
-- Function File: substr (S, OFFSET, LEN)
Return the substring of S which starts at character number OFFSET and is LEN characters long.
Position numbering for offsets begins with 1. If OFFSET is negative, extraction starts that far from the end of the string.
If LEN is omitted, the substring extends to the end of S. A negative value for LEN extracts to within LEN characters of the end of the string
Examples:
substr ("This is a test string", 6, 9)
=> "is a test"
substr ("This is a test string", -11)
=> "test string"
substr ("This is a test string", -11, -7)
=> "test"
This function is patterned after the equivalent function in Perl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Return the substring of S which starts at character number OFFSET and is LEN characters long.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
untabify
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 939
-- Function File: untabify (T)
-- Function File: untabify (T, TW)
-- Function File: untabify (T, TW, DEBLANK)
Replace TAB characters in T with spaces.
The input, T, may be either a 2-D character array, or a cell array of character strings. The output is the same class as the input.
The tab width is specified by TW, and defaults to eight.
If the optional argument DEBLANK is true, then the spaces will be removed from the end of the character data.
The following example reads a file and writes an untabified version of the same file with trailing spaces stripped.
fid = fopen ("tabbed_script.m");
text = char (fread (fid, "uchar")');
fclose (fid);
fid = fopen ("untabified_script.m", "w");
text = untabify (strsplit (text, "\n"), 8, true);
fprintf (fid, "%s\n", text{:});
fclose (fid);
See also: strjust, strsplit, deblank.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Replace TAB characters in T with spaces.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
validatestring
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1425
-- Function File: VALIDSTR = validatestring (STR, STRARRAY)
-- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME)
-- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME, VARNAME)
-- Function File: VALIDSTR = validatestring (..., POSITION)
Verify that STR is an element, or substring of an element, in STRARRAY.
When STR is a character string to be tested, and STRARRAY is a cellstr of valid values, then VALIDSTR will be the validated form of STR where validation is defined as STR being a member or substring of VALIDSTR. This is useful for both verifying and expanding short options, such as "r", to their longer forms, such as "red". If STR is a substring of VALIDSTR, and there are multiple matches, the shortest match will be returned if all matches are substrings of each other. Otherwise, an error will be raised because the expansion of STR is ambiguous. All comparisons are case insensitive.
The additional inputs FUNCNAME, VARNAME, and POSITION are optional and will make any generated validation error message more specific.
Examples:
validatestring ("r", {"red", "green", "blue"})
=> "red"
validatestring ("b", {"red", "green", "blue", "black"})
=> error: validatestring: multiple unique matches were found for 'b':
blue, black
See also: strcmp, strcmpi, validateattributes, inputParser.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Verify that STR is an element, or substring of an element, in STRARRAY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
assert
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1664
-- Function File: assert (COND)
-- Function File: assert (COND, ERRMSG)
-- Function File: assert (COND, ERRMSG, ...)
-- Function File: assert (COND, MSG_ID, ERRMSG, ...)
-- Function File: assert (OBSERVED, EXPECTED)
-- Function File: assert (OBSERVED, EXPECTED, TOL)
Produce an error if the specified condition is not met.
'assert' can be called in three different ways.
'assert (COND)'
'assert (COND, ERRMSG)'
'assert (COND, ERRMSG, ...)'
'assert (COND, MSG_ID, ERRMSG, ...)'
Called with a single argument COND, 'assert' produces an error if COND is false (numeric zero).
Any additional arguments are passed to the 'error' function for processing.
'assert (OBSERVED, EXPECTED)'
Produce an error if observed is not the same as expected.
Note that OBSERVED and EXPECTED can be scalars, vectors, matrices, strings, cell arrays, or structures.
'assert (OBSERVED, EXPECTED, TOL)'
Produce an error if observed is not the same as expected but equality comparison for numeric data uses a tolerance TOL.
If TOL is positive then it is an absolute tolerance which will produce an error if 'abs (OBSERVED - EXPECTED) > abs (TOL)'.
If TOL is negative then it is a relative tolerance which will produce an error if 'abs (OBSERVED - EXPECTED) > abs (TOL * EXPECTED)'.
If EXPECTED is zero TOL will always be interpreted as an absolute tolerance.
If TOL is not scalar its dimensions must agree with those of OBSERVED and EXPECTED and tests are performed on an element-by-element basis.
See also: fail, test, error, isequal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Produce an error if the specified condition is not met.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
demo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2601
-- Command: demo NAME
-- Command: demo NAME N
-- Function File: demo ("NAME")
-- Function File: demo ("NAME", N)
Run example code block N associated with the function NAME.
If N is not specified, all examples are run.
The preferred location for example code blocks is embedded within the script m-file immediately following the code that it exercises. Alternatively, the examples may be stored in a file with the same name but no extension located on Octave's load path. To separate examples from regular script code all lines are prefixed by '%!'. Each example must also be introduced by the keyword "demo" flush left to the prefix with no intervening spaces. The remainder of the example can contain arbitrary Octave code. For example:
%!demo
%! t = 0:0.01:2*pi;
%! x = sin (t);
%! plot (t, x);
%! title ("one cycle of a sine wave");
%! #-------------------------------------------------
%! # the figure window shows one cycle of a sine wave
Note that the code is displayed before it is executed so that a simple comment at the end suffices for labeling what is being shown. For plots, labeling can also be done with 'title' or 'text'. It is generally *not* necessary to use 'disp' or 'printf' within the demo.
Demos are run in a stand-alone function environment with no access to external variables. This means that every demo must have separate initialization code. Alternatively, all demos can be combined into a single large demo with the code
%! input ("Press <enter> to continue: ", "s");
between the sections, but this usage is discouraged. Other techniques to avoid multiple initialization blocks include using multiple plots with a new 'figure' command between each plot, or using 'subplot' to put multiple plots in the same window.
Finally, because 'demo' evaluates within a function context it is not possible to define new functions within the code. Anonymous functions make a good substitute in most instances. If function blocks *must* be used then the code 'eval (example ("function", n))' will allow Octave to see them. This has its own problems, however, as 'eval' only evaluates one line or statement at a time. In this case the function declaration must be wrapped with "if 1 <demo stuff> endif" where "if" is on the same line as "demo". For example:
%!demo if 1
%! function y = f(x)
%! y = x;
%! endfunction
%! f(3)
%! endif
See also: rundemos, example, test.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Run example code block N associated with the function NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
-- Command: example NAME
-- Command: example NAME N
-- Function File: example ("NAME")
-- Function File: example ("NAME", N)
-- Function File: [S, IDX] = example (...)
Display the code for example N associated with the function NAME, but do not run it.
If N is not specified, all examples are displayed.
When called with output arguments, the examples are returned in the form of a string S, with IDX indicating the ending position of the various examples.
See 'demo' for a complete explanation.
See also: demo, test.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Display the code for example N associated with the function NAME, but do not run it.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fail
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1113
-- Function File: fail (CODE)
-- Function File: fail (CODE, PATTERN)
-- Function File: fail (CODE, "warning")
-- Function File: fail (CODE, "warning", PATTERN)
Return true if CODE fails with an error message matching PATTERN, otherwise produce an error.
CODE must be in the form of a string that is passed to the Octave interpreter via the 'evalin' function, i.e., a (quoted) string constant or a string variable.
Note that if CODE runs successfully, rather than failing, the error printed is:
expected error <.> but got none
If called with two arguments, the return value will be true only if CODE fails with an error message containing PATTERN (case sensitive). If the code fails with a different error than the one specified in PATTERN then the message produced is:
expected <PATTERN>
but got <text of actual error>
The angle brackets are not part of the output.
When called with the "warning" option 'fail' will produce an error if executing the code produces no warning.
See also: assert, error.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Return true if CODE fails with an error message matching PATTERN, otherwise produce an error.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rundemos
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 411
-- Function File: rundemos ()
-- Function File: rundemos (DIRECTORY)
Execute built-in demos for all m-files in the specified DIRECTORY.
Demo blocks in any C++ source files ('*.cc') will also be executed for use with dynamically linked oct-file functions.
If no directory is specified, operate on all directories in Octave's search path for functions.
See also: demo, runtests, path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Execute built-in demos for all m-files in the specified DIRECTORY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
runtests
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 411
-- Function File: runtests ()
-- Function File: runtests (DIRECTORY)
Execute built-in tests for all m-files in the specified DIRECTORY.
Test blocks in any C++ source files ('*.cc') will also be executed for use with dynamically linked oct-file functions.
If no directory is specified, operate on all directories in Octave's search path for functions.
See also: rundemos, test, path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Execute built-in tests for all m-files in the specified DIRECTORY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
speed
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4552
-- Function File: speed (F, INIT, MAX_N, F2, TOL)
-- Function File: [ORDER, N, T_F, T_F2] = speed (...)
Determine the execution time of an expression (F) for various input values (N).
The N are log-spaced from 1 to MAX_N. For each N, an initialization expression (INIT) is computed to create any data needed for the test. If a second expression (F2) is given then the execution times of the two expressions are compared. When called without output arguments the results are printed to stdout and displayed graphically.
'F'
The code expression to evaluate.
'MAX_N'
The maximum test length to run. The default value is 100. Alternatively, use '[min_n, max_n]' or specify the N exactly with '[n1, n2, ..., nk]'.
'INIT'
Initialization expression for function argument values. Use K for the test number and N for the size of the test. This should compute values for all variables used by F. Note that INIT will be evaluated first for k = 0, so things which are constant throughout the test series can be computed once. The default value is 'X = randn (N, 1)'.
'F2'
An alternative expression to evaluate, so that the speed of two expressions can be directly compared. The default is '[]'.
'TOL'
Tolerance used to compare the results of expression F and expression F2. If TOL is positive, the tolerance is an absolute one. If TOL is negative, the tolerance is a relative one. The default is 'eps'. If TOL is 'Inf', then no comparison will be made.
'ORDER'
The time complexity of the expression O(a*n^p). This is a structure with fields 'a' and 'p'.
'N'
The values N for which the expression was calculated *AND* the execution time was greater than zero.
'T_F'
The nonzero execution times recorded for the expression F in seconds.
'T_F2'
The nonzero execution times recorded for the expression F2 in seconds. If required, the mean time ratio is simply 'mean (T_f ./ T_f2)'.
The slope of the execution time graph shows the approximate power of the asymptotic running time O(n^p). This power is plotted for the region over which it is approximated (the latter half of the graph). The estimated power is not very accurate, but should be sufficient to determine the general order of an algorithm. It should indicate if, for example, the implementation is unexpectedly O(n^2) rather than O(n) because it extends a vector each time through the loop rather than pre-allocating storage. In the current version of Octave, the following is not the expected O(n).
speed ("for i = 1:n, y{i} = x(i); endfor", "", [1000, 10000])
But it is if you preallocate the cell array 'y':
speed ("for i = 1:n, y{i} = x(i); endfor", ...
"x = rand (n, 1); y = cell (size (x));", [1000, 10000])
An attempt is made to approximate the cost of individual operations, but it is wildly inaccurate. You can improve the stability somewhat by doing more work for each 'n'. For example:
speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])
When comparing two different expressions (F, F2), the slope of the line on the speedup ratio graph should be larger than 1 if the new expression is faster. Better algorithms have a shallow slope. Generally, vectorizing an algorithm will not change the slope of the execution time graph, but will shift it relative to the original. For example:
speed ("sum (x)", "", [10000, 100000], ...
"v = 0; for i = 1:length (x), v += x(i); endfor")
The following is a more complex example. If there was an original version of 'xcorr' using for loops and a second version using an FFT, then one could compare the run speed for various lags as follows, or for a fixed lag with varying vector lengths as follows:
speed ("xcorr (x, n)", "x = rand (128, 1);", 100,
"xcorr_orig (x, n)", -100*eps)
speed ("xcorr (x, 15)", "x = rand (20+n, 1);", 100,
"xcorr_orig (x, n)", -100*eps)
Assuming one of the two versions is in xcorr_orig, this would compare their speed and their output values. Note that the FFT version is not exact, so one must specify an acceptable tolerance on the comparison '100*eps'. In this case, the comparison should be computed relatively, as 'abs ((X - Y) ./ Y)' rather than absolutely as 'abs (X - Y)'.
Type 'example ("speed")' to see some real examples or 'demo ("speed")' to run them.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Determine the execution time of an expression (F) for various input values (N).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
test
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3696
-- Command: test NAME
-- Command: test NAME quiet|normal|verbose
-- Function File: test ("NAME", "quiet|normal|verbose", FID)
-- Function File: test ("NAME", "quiet|normal|verbose", FNAME)
-- Function File: SUCCESS = test (...)
-- Function File: [N, NMAX, NXFAIL, NSKIP] = test (...)
-- Function File: [CODE, IDX] = test ("NAME", "grabdemo")
-- Function File: test ([], "explain", FID)
-- Function File: test ([], "explain", FNAME)
Perform built-in self-tests from the first file in the loadpath matching NAME.
'test' can be called in either command or functional form. The exact operation of test is determined by a combination of mode (interactive or batch), reporting level ("quiet", "normal", "verbose"), and whether a logfile or summary output variable is used.
The default mode when 'test' is called from the command line is interactive. In this mode, tests will be run until the first error is encountered, or all tests complete successfully. In batch mode, all tests are run regardless of any failures, and the results are collected for reporting. Tests which require user interaction, i.e., demo blocks, are never run in batch mode.
Batch mode is enabled by either 1) specifying a logfile using the third argument FNAME or FID, or 2) requesting an output argument such as SUCCESS, N, etc.
The optional second argument determines the amount of output to generate and which types of tests to run. The default value is "normal". Requesting an output argument will suppress printing the final summary message and any intermediate warnings, unless verbose reporting is enabled.
"quiet"
Print a summary message when all tests pass, or print an error with the results of the first bad test when a failure occurs. Don't run tests which require user interaction.
"normal"
Display warning messages about skipped tests or failing xtests during test execution. Print a summary message when all tests pass, or print an error with the results of the first bad test when a failure occurs. Don't run tests which require user interaction.
"verbose"
Display tests before execution. Print all warning messages. In interactive mode, run all tests including those which require user interaction.
The optional third input argument specifies a logfile where results of the tests should be written. The logfile may be a character string (FNAME) or an open file descriptor ID (FID). To enable batch processing, but still print the results to the screen, use 'stdout' for FID.
When called with just a single output argument SUCCESS, 'test' returns true if all of the tests were successful. If called with more than one output argument then the number of successful tests (N), the total number of tests in the file (NMAX), the number of xtest failures (NXFAIL), and the number of skipped tests (NSKIP are returned.
Example
test sind
=>
PASSES 5 out of 5 tests
[n, nmax] = test ("sind")
=>
n = 5
nmax = 5
Additional Calling Syntaxes
If the second argument is the string "grabdemo", the contents of any built-in demo blocks are extracted but not executed. The text for all code blocks is concatenated and returned as CODE with IDX being a vector of positions of the ends of each demo block. For an easier way to extract demo blocks from files, *Note example: XREFexample.
If the second argument is "explain" then NAME is ignored and an explanation of the line markers used in 'test' output reports is written to the file specified by FNAME or FID.
See also: assert, fail, demo, example, error.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Perform built-in self-tests from the first file in the loadpath matching NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
addtodate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 247
-- Function File: D = addtodate (D, Q, F)
Add Q amount of time (with units F) to the serial datenum, D.
F must be one of "year", "month", "day", "hour", "minute", "second", or "millisecond".
See also: datenum, datevec, etime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Add Q amount of time (with units F) to the serial datenum, D.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
asctime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 332
-- Function File: asctime (TM_STRUCT)
Convert a time structure to a string using the following format: "ddd mmm mm HH:MM:SS yyyy".
For example:
asctime (localtime (time ()))
=> "Mon Feb 17 01:15:06 1997"
This is equivalent to 'ctime (time ())'.
See also: ctime, localtime, time.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Convert a time structure to a string using the following format: "ddd mmm mm HH:MM:SS yyyy".
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
calendar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 558
-- Function File: C = calendar ()
-- Function File: C = calendar (D)
-- Function File: C = calendar (Y, M)
-- Function File: calendar (...)
Return the current monthly calendar in a 6x7 matrix.
If D is specified, return the calendar for the month containing the date D, which must be a serial date number or a date string.
If Y and M are specified, return the calendar for year Y and month M.
If no output arguments are specified, print the calendar on the screen instead of returning a matrix.
See also: datenum, datestr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the current monthly calendar in a 6x7 matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
clock
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 527
-- Function File: clock ()
Return the current local date and time as a date vector.
The date vector contains the following fields: current year, month (1-12), day (1-31), hour (0-23), minute (0-59), and second (0-61). The seconds field has a fractional part after the decimal point for extended accuracy.
For example:
fix (clock ())
=> [ 1993, 8, 20, 4, 56, 1 ]
'clock' is more accurate on systems that have the 'gettimeofday' function.
See also: now, date, datevec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the current local date and time as a date vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ctime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
-- Function File: ctime (T)
Convert a value returned from 'time' (or any other non-negative integer), to the local time and return a string of the same form as 'asctime'.
The function 'ctime (time)' is equivalent to 'asctime (localtime (time))'. For example:
ctime (time ())
=> "Mon Feb 17 01:15:06 1997"
See also: asctime, time, localtime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
Convert a value returned from 'time' (or any other non-negative integer), to the local time and return a string of the same form as 'asctime'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
date
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 221
-- Function File: date ()
Return the current date as a character string in the form DD-MMM-YYYY.
For example:
date ()
=> "20-Aug-1993"
See also: now, clock, datestr, localtime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Return the current date as a character string in the form DD-MMM-YYYY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
datenum
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2453
-- Function File: DAYS = datenum (DATEVEC)
-- Function File: DAYS = datenum (YEAR, MONTH, DAY)
-- Function File: DAYS = datenum (YEAR, MONTH, DAY, HOUR)
-- Function File: DAYS = datenum (YEAR, MONTH, DAY, HOUR, MINUTE)
-- Function File: DAYS = datenum (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND)
-- Function File: DAYS = datenum ("datestr")
-- Function File: DAYS = datenum ("datestr", F)
-- Function File: DAYS = datenum ("datestr", P)
-- Function File: [DAYS, SECS] = datenum (...)
Return the date/time input as a serial day number, with Jan 1, 0000 defined as day 1.
The integer part, 'floor (DAYS)' counts the number of complete days in the date input.
The fractional part, 'rem (DAYS, 1)' corresponds to the time on the given day.
The input may be a date vector (see 'datevec'), datestr (see 'datestr'), or directly specified as input.
When processing input datestrings, F is the format string used to interpret date strings (see 'datestr'). If no format F is specified, then a relatively slow search is performed through various formats. It is always preferable to specify the format string F if it is known. Formats which do not specify a particular time component will have the value set to zero. Formats which do not specify a date will default to January 1st of the current year.
P is the year at the start of the century to which two-digit years will be referenced. If not specified, it defaults to the current year minus 50.
The optional output SECS holds the time on the specified day with greater precision than DAYS.
Notes:
* Years can be negative and/or fractional.
* Months below 1 are considered to be January.
* Days of the month start at 1.
* Days beyond the end of the month go into subsequent months.
* Days before the beginning of the month go to the previous month.
* Days can be fractional.
*Caution:* this function does not attempt to handle Julian calendars so dates before October 15, 1582 are wrong by as much as eleven days. Also, be aware that only Roman Catholic countries adopted the calendar in 1582. It took until 1924 for it to be adopted everywhere. See the Wikipedia entry on the Gregorian calendar for more details.
*Warning:* leap seconds are ignored. A table of leap seconds is available on the Wikipedia entry for leap seconds.
See also: datestr, datevec, now, clock, date.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return the date/time input as a serial day number, with Jan 1, 0000 defined as day 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
datestr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37213
-- Function File: STR = datestr (DATE)
-- Function File: STR = datestr (DATE, F)
-- Function File: STR = datestr (DATE, F, P)
Format the given date/time according to the format 'f' and return the result in STR.
DATE is a serial date number (see 'datenum') or a date vector (see 'datevec'). The value of DATE may also be a string or cell array of strings.
F can be an integer which corresponds to one of the codes in the table below, or a date format string.
P is the year at the start of the century in which two-digit years are to be interpreted in. If not specified, it defaults to the current year minus 50.
For example, the date 730736.65149 (2000-09-07 15:38:09.0934) would be formatted as follows:
Code Format Example
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
0 dd-mmm-yyyy HH:MM:SS 07-Sep-2000 15:38:09
1 dd-mmm-yyyy 07-Sep-2000
2 mm/dd/yy 09/07/00
3 mmm Sep
4 m S
5 mm 09
6 mm/dd 09/07
7 dd 07
8 ddd Thu
9 d T
10 yyyy 2000
11 yy 00
12 mmmyy Sep00
13 HH:MM:SS 15:38:09
14 HH:MM:SS PM 03:38:09 PM
15 HH:MM 15:38
16 HH:MM PM 03:38 PM
17 QQ-YY Q3-00
18 QQ Q3
19 dd/mm 07/09
20 dd/mm/yy 07/09/00
21 mmm.dd,yyyy HH:MM:SS Sep.07,2000 15:38:08
22 mmm.dd,yyyy Sep.07,2000
23 mm/dd/yyyy 09/07/2000
24 dd/mm/yyyy 07/09/2000
25 yy/mm/dd 00/09/07
26 yyyy/mm/dd 2000/09/07
27 QQ-YYYY Q3-2000
28 mmmyyyy Sep2000
29 yyyy-mm-dd 2000-09-07
30 yyyymmddTHHMMSS 20000907T153808
31 yyyy-mm-dd HH:MM:SS 2000-09-07 15:38:08
If F is a format string, the following symbols are recognized:
Symbol Meaning Example
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
yyyy Full year 2005
yy Two-digit year 05
mmmm Full month name December
mmm Abbreviated month name Dec
mm Numeric month number (padded with zeros) 01, 08, 12
m First letter of month name (capitalized) D
dddd Full weekday name Sunday
ddd Abbreviated weekday name Sun
dd Numeric day of month (padded with zeros) 11
d First letter of weekday name (capitalized) S
HH Hour of day, padded with zeros if PM is set 09:00
and not padded with zeros otherwise 9:00 AM
MM Minute of hour (padded with zeros) 10:05
SS Second of minute (padded with zeros) 10:05:03
FFF Milliseconds of second (padded with zeros) 10:05:03.012
AM Use 12-hour time format 11:30 AM
PM Use 12-hour time format 11:30 PM
If F is not specified or is '-1', then use 0, 1 or 16, depending on whether the date portion or the time portion of DATE is empty.
If P is nor specified, it defaults to the current year minus 50.
If a matrix or cell array of dates is given, a column vector of date strings is returned.
See also: datenum, datevec, date, now, clock.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Format the given date/time according to the format 'f' and return the result in STR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
datevec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1102
-- Function File: V = datevec (DATE)
-- Function File: V = datevec (DATE, F)
-- Function File: V = datevec (DATE, P)
-- Function File: V = datevec (DATE, F, P)
-- Function File: [Y, M, D, H, MI, S] = datevec (...)
Convert a serial date number (see 'datenum') or date string (see 'datestr') into a date vector.
A date vector is a row vector with six members, representing the year, month, day, hour, minute, and seconds respectively.
F is the format string used to interpret date strings (see 'datestr'). If DATE is a string, but no format is specified, then a relatively slow search is performed through various formats. It is always preferable to specify the format string F if it is known. Formats which do not specify a particular time component will have the value set to zero. Formats which do not specify a date will default to January 1st of the current year.
P is the year at the start of the century to which two-digit years will be referenced. If not specified, it defaults to the current year minus 50.
See also: datenum, datestr, clock, now, date.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Convert a serial date number (see 'datenum') or date string (see 'datestr') into a date vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
eomday
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 163
-- Function File: E = eomday (Y, M)
Return the last day of the month M for the year Y.
See also: weekday, datenum, datevec, is_leap_year, calendar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return the last day of the month M for the year Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
etime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 417
-- Function File: etime (T2, T1)
Return the difference in seconds between two time values returned from 'clock' (T2 - T1).
For example:
t0 = clock ();
# many computations later...
elapsed_time = etime (clock (), t0);
will set the variable 'elapsed_time' to the number of seconds since the variable 't0' was set.
See also: tic, toc, clock, cputime, addtodate.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the difference in seconds between two time values returned from 'clock' (T2 - T1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
is_leap_year
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 318
-- Function File: is_leap_year ()
-- Function File: is_leap_year (YEAR)
Return true if YEAR is a leap year and false otherwise.
If no year is specified, 'is_leap_year' uses the current year.
For example:
is_leap_year (2000)
=> 1
See also: weekday, eomday, calendar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return true if YEAR is a leap year and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
now
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 330
-- Function File: t = now ()
Return the current local date/time as a serial day number (see 'datenum').
The integral part, 'floor (now)' corresponds to the number of days between today and Jan 1, 0000.
The fractional part, 'rem (now, 1)' corresponds to the current time.
See also: clock, date, datenum.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return the current local date/time as a serial day number (see 'datenum').
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
weekday
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2619
-- Function File: [N, S] = weekday (D)
-- Function File: [N, S] = weekday (D, FORMAT)
Return the day of the week as a number in N and as a string in S.
The days of the week are numbered 1-7 with the first day being Sunday.
D is a serial date number or a date string.
If the string FORMAT is not present or is equal to "short" then S will contain the abbreviated name of the weekday. If FORMAT is "long" then S will contain the full name.
Table of return values based on FORMAT:
N "short" "long"
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1 Sun Sunday
2 Mon Monday
3 Tue Tuesday
4 Wed Wednesday
5 Thu Thursday
6 Fri Friday
7 Sat Saturday
See also: eomday, is_leap_year, calendar, datenum, datevec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the day of the week as a number in N and as a string in S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
gnuplot_binary
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 465
-- Loadable Function: [PROG, ARGS] = gnuplot_binary ()
-- Loadable Function: [OLD_PROG, OLD_ARGS] = gnuplot_binary (NEW_PROG, ARG1, ...)
Query or set the name of the program invoked by the plot command when the graphics toolkit is set to "gnuplot".
Additional arguments to pass to the external plotting program may also be given. The default value is "gnuplot" with no additional arguments. *Note Installation::.
See also: graphics_toolkit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the name of the program invoked by the plot command when the graphics toolkit is set to "gnuplot".
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
isguirunning
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
-- Built-in Function: isguirunning ()
Return true if Octave is running in GUI mode and false otherwise.
See also: have_window_system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return true if Octave is running in GUI mode and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
argv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 508
-- Built-in Function: argv ()
Return the command line arguments passed to Octave.
For example, if you invoked Octave using the command
octave --no-line-editing --silent
'argv' would return a cell array of strings with the elements '--no-line-editing' and '--silent'.
If you write an executable Octave script, 'argv' will return the list of arguments passed to the script. *Note Executable Octave Programs::, for an example of how to create an executable Octave script.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return the command line arguments passed to Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
program_invocation_name
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 414
-- Built-in Function: program_invocation_name ()
Return the name that was typed at the shell prompt to run Octave.
If executing a script from the command line (e.g., 'octave foo.m') or using an executable Octave script, the program name is set to the name of the script. *Note Executable Octave Programs::, for an example of how to create an executable Octave script.
See also: program_name.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the name that was typed at the shell prompt to run Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
program_name
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
-- Built-in Function: program_name ()
Return the last component of the value returned by 'program_invocation_name'.
See also: program_invocation_name.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return the last component of the value returned by 'program_invocation_name'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
sparse_auto_mutate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 793
-- Built-in Function: VAL = sparse_auto_mutate ()
-- Built-in Function: OLD_VAL = sparse_auto_mutate (NEW_VAL)
-- Built-in Function: sparse_auto_mutate (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to full matrices to save memory.
For example:
s = speye (3);
sparse_auto_mutate (false);
s(:, 1) = 1;
typeinfo (s)
=> sparse matrix
sparse_auto_mutate (true);
s(1, :) = 1;
typeinfo (s)
=> matrix
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to full matrices to save memory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
logical
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 404
-- Built-in Function: logical (X)
Convert the numeric object X to logical type.
Any nonzero values will be converted to true (1) while zero values will be converted to false (0). The non-numeric value NaN cannot be converted and will produce an error.
Compatibility Note: Octave accepts complex values as input, whereas MATLAB issues an error.
See also: double, single, char.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Convert the numeric object X to logical type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
iscell
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
-- Built-in Function: iscell (X)
Return true if X is a cell array object.
See also: ismatrix, isstruct, iscellstr, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return true if X is a cell array object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cell
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 465
-- Built-in Function: cell (N)
-- Built-in Function: cell (M, N)
-- Built-in Function: cell (M, N, K, ...)
-- Built-in Function: cell ([M N ...])
Create a new cell array object.
If invoked with a single scalar integer argument, return a square NxN cell array. If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with the given dimensions.
See also: cellstr, mat2cell, num2cell, struct2cell.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Create a new cell array object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
iscellstr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
-- Built-in Function: iscellstr (CELL)
Return true if every element of the cell array CELL is a character string.
See also: ischar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return true if every element of the cell array CELL is a character string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cellstr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 344
-- Built-in Function: CSTR = cellstr (STRMAT)
Create a new cell array object from the elements of the string array STRMAT.
Each row of STRMAT becomes an element of CSTR. Any trailing spaces in a row are deleted before conversion.
To convert back from a cellstr to a character array use 'char'.
See also: cell, char.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Create a new cell array object from the elements of the string array STRMAT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
struct2cell
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 820
-- Built-in Function: C = struct2cell (S)
Create a new cell array from the objects stored in the struct object.
If F is the number of fields in the structure, the resulting cell array will have a dimension vector corresponding to '[F size(S)]'. For example:
s = struct ("name", {"Peter", "Hannah", "Robert"},
"age", {23, 16, 3});
c = struct2cell (s)
=> c = {2x1x3 Cell Array}
c(1,1,:)(:)
=>
{
[1,1] = Peter
[2,1] = Hannah
[3,1] = Robert
}
c(2,1,:)(:)
=>
{
[1,1] = 23
[2,1] = 16
[3,1] = 3
}
See also: cell2struct, fieldnames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Create a new cell array from the objects stored in the struct object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
class
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 355
-- Function File: CLASSNAME = class (OBJ)
-- Function File: class (S, ID)
-- Function File: class (S, ID, P, ...)
Return the class of the object OBJ, or create a class with fields from structure S and name (string) ID.
Additional arguments name a list of parent classes from which the new class is derived.
See also: typeinfo, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Return the class of the object OBJ, or create a class with fields from structure S and name (string) ID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
isa
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 632
-- Function File: isa (OBJ, CLASSNAME)
Return true if OBJ is an object from the class CLASSNAME.
CLASSNAME may also be one of the following class categories:
"float"
Floating point value comprising classes "double" and "single".
"integer"
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.
"numeric"
Numeric value comprising either a floating point or integer value.
If CLASSNAME is a cell array of string, a logical array of the same size is returned, containing true for each class to which OBJ belongs to.
See also: class, typeinfo.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return true if OBJ is an object from the class CLASSNAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isobject
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
-- Built-in Function: isobject (X)
Return true if X is a class object.
See also: class, typeinfo, isa, ismethod, isprop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return true if X is a class object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ismethod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
-- Built-in Function: ismethod (OBJ, METHOD)
Return true if OBJ is a class object and the string METHOD is a method of this class.
See also: isprop, isobject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return true if OBJ is a class object and the string METHOD is a method of this class.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
superiorto
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
-- Built-in Function: superiorto (CLASS_NAME, ...)
When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME.
More that one such class can be specified in a single call. This function may only be called from a class constructor.
See also: inferiorto.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
inferiorto
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
-- Built-in Function: inferiorto (CLASS_NAME, ...)
When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME.
More that one such class can be specified in a single call. This function may only be called from a class constructor.
See also: superiorto.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
metaclass
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
-- Built-in Function: metaclass (obj)
Returns the meta.class object corresponding to the class of OBJ.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
Returns the meta.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
functions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1126
-- Built-in Function: S = functions (FCN_HANDLE)
Return a structure containing information about the function handle FCN_HANDLE.
The structure S always contains these three fields:
function
The function name. For an anonymous function (no name) this will be the actual function definition.
type
Type of the function.
anonymous
The function is anonymous.
private
The function is private.
overloaded
The function overloads an existing function.
simple
The function is a built-in or m-file function.
subfunction
The function is a subfunction within an m-file.
file
The m-file that will be called to perform the function. This field is empty for anonymous and built-in functions.
In addition, some function types may return more information in additional fields.
*Warning:* 'functions' is provided for debugging purposes only. It's behavior may change in the future and programs should not depend on a particular output.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return a structure containing information about the function handle FCN_HANDLE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
func2str
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 188
-- Built-in Function: func2str (FCN_HANDLE)
Return a string containing the name of the function referenced by the function handle FCN_HANDLE.
See also: str2func, functions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a string containing the name of the function referenced by the function handle FCN_HANDLE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
str2func
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 305
-- Built-in Function: str2func (FCN_NAME)
-- Built-in Function: str2func (FCN_NAME, "global")
Return a function handle constructed from the string FCN_NAME.
If the optional "global" argument is passed, locally visible functions are ignored in the lookup.
See also: func2str, inline.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return a function handle constructed from the string FCN_NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
is_function_handle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
-- Built-in Function: is_function_handle (X)
Return true if X is a function handle.
See also: isa, typeinfo, class, functions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return true if X is a function handle.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
inline
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1206
-- Built-in Function: inline (STR)
-- Built-in Function: inline (STR, ARG1, ...)
-- Built-in Function: inline (STR, N)
Create an inline function from the character string STR.
If called with a single argument, the arguments of the generated function are extracted from the function itself. The generated function arguments will then be in alphabetical order. It should be noted that i and j are ignored as arguments due to the ambiguity between their use as a variable or their use as an built-in constant. All arguments followed by a parenthesis are considered to be functions. If no arguments are found, a function taking a single argument named 'x' will be created.
If the second and subsequent arguments are character strings, they are the names of the arguments of the function.
If the second argument is an integer N, the arguments are "x", "P1", ..., "PN".
Programming Note: The use of 'inline' is discouraged and it may be removed from a future version of Octave. The preferred way to create functions from strings is through the use of anonymous functions (*note Anonymous Functions::) or 'str2func'.
See also: argnames, formula, vectorize, str2func.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Create an inline function from the character string STR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
formula
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 223
-- Built-in Function: formula (FUN)
Return a character string representing the inline function FUN.
Note that 'char (FUN)' is equivalent to 'formula (FUN)'.
See also: char, argnames, inline, vectorize.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a character string representing the inline function FUN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
argnames
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
-- Built-in Function: argnames (FUN)
Return a cell array of character strings containing the names of the arguments of the inline function FUN.
See also: inline, formula, vectorize.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Return a cell array of character strings containing the names of the arguments of the inline function FUN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
vectorize
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 501
-- Built-in Function: vectorize (FUN)
Create a vectorized version of the inline function FUN by replacing all occurrences of '*', '/', etc., with '.*', './', etc.
This may be useful, for example, when using inline functions with numerical integration or optimization where a vector-valued function is expected.
fcn = vectorize (inline ("x^2 - 1"))
=> fcn = f(x) = x.^2 - 1
quadv (fcn, 0, 3)
=> 6
See also: inline, formula, argnames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Create a vectorized version of the inline function FUN by replacing all occurrences of '*', '/', etc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
single
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
-- Built-in Function: single (X)
Convert X to single precision type.
See also: double.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Convert X to single precision type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javaObject
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 528
-- Built-in Function: JOBJ = javaObject (CLASSNAME)
-- Built-in Function: JOBJ = javaObject (CLASSNAME, ARG1, ...)
Create a Java object of class CLASSSNAME, by calling the class constructor with the arguments ARG1, ...
The first example below creates an uninitialized object, while the second example supplies an initial argument to the constructor.
x = javaObject ("java.lang.StringBuffer")
x = javaObject ("java.lang.StringBuffer", "Initial string")
See also: javaMethod, javaArray.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Create a Java object of class CLASSSNAME, by calling the class constructor with the arguments ARG1, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javaMethod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 696
-- Built-in Function: RET = javaMethod (METHODNAME, OBJ)
-- Built-in Function: RET = javaMethod (METHODNAME, OBJ, ARG1, ...)
Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, ....
For static methods, OBJ can be a string representing the fully qualified name of the corresponding class.
When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax. For instance, the two following statements are equivalent
ret = javaMethod ("method1", x, 1.0, "a string")
ret = x.method1 (1.0, "a string")
'javaMethod' returns the result of the method invocation.
See also: methods, javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java2mat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
-- Built-in Function: java2mat (JAVAOBJ)
Undocumented internal function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Undocumented internal function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
java_matrix_autoconversion
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 628
-- Built-in Function: VAL = java_matrix_autoconversion ()
-- Built-in Function: OLD_VAL = java_matrix_autoconversion (NEW_VAL)
-- Built-in Function: java_matrix_autoconversion (NEW_VAL, "local")
Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices.
The default value is false.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: java_unsigned_autoconversion, debug_java.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
java_unsigned_autoconversion
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 760
-- Built-in Function: VAL = java_unsigned_autoconversion ()
-- Built-in Function: OLD_VAL = java_unsigned_autoconversion (NEW_VAL)
-- Built-in Function: java_unsigned_autoconversion (NEW_VAL, "local")
Query or set the internal variable that controls how integer classes are converted when 'java_matrix_autoconversion' is enabled.
When enabled, Java arrays of class Byte or Integer are converted to matrices of class uint8 or uint32 respectively. The default value is true.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: java_matrix_autoconversion, debug_java.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
Query or set the internal variable that controls how integer classes are converted when 'java_matrix_autoconversion' is enabled.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
debug_java
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 608
-- Built-in Function: VAL = debug_java ()
-- Built-in Function: OLD_VAL = debug_java (NEW_VAL)
-- Built-in Function: debug_java (NEW_VAL, "local")
Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: java_matrix_autoconversion, java_unsigned_autoconversion.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 162
Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isjava
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
-- Built-in Function: isjava (X)
Return true if X is a Java object.
See also: class, typeinfo, isa, javaObject.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return true if X is a Java object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isnull
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 544
-- Built-in Function: isnull (X)
Return true if X is a special null matrix, string, or single quoted string.
Indexed assignment with such a value on the right-hand side should delete array elements. This function should be used when overloading indexed assignment for user-defined classes instead of 'isempty', to distinguish the cases:
'A(I) = []'
This should delete elements if 'I' is nonempty.
'X = []; A(I) = X'
This should give an error if 'I' is nonempty.
See also: isempty, isindex.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return true if X is a special null matrix, string, or single quoted string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
onCleanup
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 495
-- Built-in Function: OBJ = onCleanup (FUNCTION)
Create a special object that executes a given function upon destruction.
If the object is copied to multiple variables (or cell or struct array elements) or returned from a function, FUNCTION will be executed after clearing the last copy of the object. Note that if multiple local onCleanup variables are created, the order in which they are called is unspecified. For similar functionality *Note The unwind_protect Statement::.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Create a special object that executes a given function upon destruction.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
allow_noninteger_range_as_index
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 710
-- Built-in Function: VAL = allow_noninteger_range_as_index ()
-- Built-in Function: OLD_VAL = allow_noninteger_range_as_index (NEW_VAL)
-- Built-in Function: allow_noninteger_range_as_index (NEW_VAL, "local")
Query or set the internal variable that controls whether non-integer ranges are allowed as indices.
This might be useful for MATLAB compatibility; however, it is still not entirely compatible because MATLAB treats the range expression differently in different contexts.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Query or set the internal variable that controls whether non-integer ranges are allowed as indices.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
double
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
-- Built-in Function: double (X)
Convert X to double precision type.
See also: single.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Convert X to double precision type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
struct
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1899
-- Built-in Function: S = struct ()
-- Built-in Function: S = struct (FIELD1, VALUE1, FIELD2, VALUE2, ...)
-- Built-in Function: S = struct (OBJ)
Create a scalar or array structure and initialize its values.
The FIELD1, FIELD2, ... variables are strings specifying the names of the fields and the VALUE1, VALUE2, ... variables can be of any type.
If the values are cell arrays, create a structure array and initialize its values. The dimensions of each cell array of values must match. Singleton cells and non-cell values are repeated so that they fill the entire array. If the cells are empty, create an empty structure array with the specified field names.
If the argument is an object, return the underlying struct.
Observe that the syntax is optimized for struct *arrays*. Consider the following examples:
struct ("foo", 1)
=> scalar structure containing the fields:
foo = 1
struct ("foo", {})
=> 0x0 struct array containing the fields:
foo
struct ("foo", { {} })
=> scalar structure containing the fields:
foo = {}(0x0)
struct ("foo", {1, 2, 3})
=> 1x3 struct array containing the fields:
foo
The first case is an ordinary scalar struct--one field, one value. The second produces an empty struct array with one field and no values, since being passed an empty cell array of struct array values. When the value is a cell array containing a single entry, this becomes a scalar struct with that single entry as the value of the field. That single entry happens to be an empty cell array.
Finally, if the value is a non-scalar cell array, then 'struct' produces a struct *array*.
See also: cell2struct, fieldnames, getfield, setfield, rmfield, isfield, orderfields, isstruct, structfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Create a scalar or array structure and initialize its values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isstruct
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
-- Built-in Function: isstruct (X)
Return true if X is a structure or a structure array.
See also: ismatrix, iscell, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if X is a structure or a structure array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isfield
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 289
-- Built-in Function: isfield (X, "NAME")
-- Built-in Function: isfield (X, NAME)
Return true if the X is a structure and it includes an element named NAME.
If NAME is a cell array of strings then a logical array of equal dimension is returned.
See also: fieldnames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return true if the X is a structure and it includes an element named NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
numfields
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
-- Built-in Function: numfields (S)
Return the number of fields of the structure S.
See also: fieldnames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the number of fields of the structure S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
cell2struct
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 665
-- Built-in Function: cell2struct (CELL, FIELDS)
-- Built-in Function: cell2struct (CELL, FIELDS, DIM)
Convert CELL to a structure.
The number of fields in FIELDS must match the number of elements in CELL along dimension DIM, that is 'numel (FIELDS) == size (CELL, DIM)'. If DIM is omitted, a value of 1 is assumed.
A = cell2struct ({"Peter", "Hannah", "Robert";
185, 170, 168},
{"Name","Height"}, 1);
A(1)
=>
{
Name = Peter
Height = 185
}
See also: struct2cell, cell2mat, struct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Convert CELL to a structure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rmfield
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
-- Built-in Function: SOUT = rmfield (S, "F")
-- Built-in Function: SOUT = rmfield (S, F)
Return a _copy_ of the structure (array) S with the field F removed.
If F is a cell array of strings or a character array, remove each of the named fields.
See also: orderfields, fieldnames, isfield.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return a _copy_ of the structure (array) S with the field F removed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
struct_levels_to_print
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 545
-- Built-in Function: VAL = struct_levels_to_print ()
-- Built-in Function: OLD_VAL = struct_levels_to_print (NEW_VAL)
-- Built-in Function: struct_levels_to_print (NEW_VAL, "local")
Query or set the internal variable that specifies the number of structure levels to display.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: print_struct_array_contents.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Query or set the internal variable that specifies the number of structure levels to display.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
print_struct_array_contents
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 807
-- Built-in Function: VAL = print_struct_array_contents ()
-- Built-in Function: OLD_VAL = print_struct_array_contents (NEW_VAL)
-- Built-in Function: print_struct_array_contents (NEW_VAL, "local")
Query or set the internal variable that specifies whether to print struct array contents.
If true, values of struct array elements are printed. This variable does not affect scalar structures whose elements are always printed. In both cases, however, printing will be limited to the number of levels specified by STRUCT_LEVELS_TO_PRINT.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: struct_levels_to_print.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Query or set the internal variable that specifies whether to print struct array contents.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
typeinfo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 272
-- Built-in Function: typeinfo ()
-- Built-in Function: typeinfo (EXPR)
Return the type of the expression EXPR, as a string.
If EXPR is omitted, return a cell array of strings containing all the currently installed data types.
See also: class, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the type of the expression EXPR, as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nargin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
-- Built-in Function: nargin ()
-- Built-in Function: nargin (FCN)
Report the number of input arguments to a function.
Called from within a function, return the number of arguments passed to the function. At the top level, return the number of command line arguments passed to Octave.
If called with the optional argument FCN--a function name or handle-- return the declared number of arguments that the function can accept.
If the last argument to FCN is VARARGIN the returned value is negative. For example, the function 'union' for sets is declared as
function [y, ia, ib] = union (a, b, varargin)
and
nargin ("union")
=> -3
Programming Note: 'nargin' does not work on built-in functions.
See also: nargout, narginchk, varargin, inputname.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Report the number of input arguments to a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nargout
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1162
-- Built-in Function: nargout ()
-- Built-in Function: nargout (FCN)
Report the number of output arguments from a function.
Called from within a function, return the number of values the caller expects to receive. At the top level, 'nargout' with no argument is undefined and will produce an error.
If called with the optional argument FCN--a function name or handle--return the number of declared output values that the function can produce.
If the final output argument is VARARGOUT the returned value is negative.
For example,
f ()
will cause 'nargout' to return 0 inside the function 'f' and
[s, t] = f ()
will cause 'nargout' to return 2 inside the function 'f'.
In the second usage,
nargout (@histc) % or nargout ("histc")
will return 2, because 'histc' has two outputs, whereas
nargout (@imread)
will return -2, because 'imread' has two outputs and the second is VARARGOUT.
Programming Note. 'nargout' does not work for built-in functions and returns -1 for all anonymous functions.
See also: nargin, varargout, isargout, nthargout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Report the number of output arguments from a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
optimize_subsasgn_calls
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 609
-- Built-in Function: VAL = optimize_subsasgn_calls ()
-- Built-in Function: OLD_VAL = optimize_subsasgn_calls (NEW_VAL)
-- Built-in Function: optimize_subsasgn_calls (NEW_VAL, "local")
Query or set the internal flag for subsasgn method call optimizations.
If true, Octave will attempt to eliminate the redundant copying when calling the subsasgn method of a user-defined class.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Query or set the internal flag for subsasgn method call optimizations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isargout
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 696
-- Built-in Function: isargout (K)
Within a function, return a logical value indicating whether the argument K will be assigned to a variable on output.
If the result is false, the argument has been ignored during the function call through the use of the tilde (~) special output argument. Functions can use 'isargout' to avoid performing unnecessary calculations for outputs which are unwanted.
If K is outside the range '1:max (nargout)', the function returns false. K can also be an array, in which case the function works element-by-element and a logical array is returned. At the top level, 'isargout' returns an error.
See also: nargout, varargout, nthargout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Within a function, return a logical value indicating whether the argument K will be assigned to a variable on output.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sizeof
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
-- Built-in Function: sizeof (VAL)
Return the size of VAL in bytes.
See also: whos.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return the size of VAL in bytes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
subsref
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 930
-- Built-in Function: subsref (VAL, IDX)
Perform the subscripted element selection operation according to the subscript specified by IDX.
The subscript IDX is expected to be a structure array with fields 'type' and 'subs'. Valid values for 'type' are '"()"', '"{}"', and '"."'. The 'subs' field may be either '":"' or a cell array of index values.
The following example shows how to extract the first two columns of a matrix
val = magic (3)
=> val = [ 8 1 6
3 5 7
4 9 2 ]
idx.type = "()";
idx.subs = {":", 1:2};
subsref (val, idx)
=> [ 8 1
3 5
4 9 ]
Note that this is the same as writing 'val(:,1:2)'.
If IDX is an empty structure array with fields 'type' and 'subs', return VAL.
See also: subsasgn, substruct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Perform the subscripted element selection operation according to the subscript specified by IDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
subsasgn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 857
-- Built-in Function: subsasgn (VAL, IDX, RHS)
Perform the subscripted assignment operation according to the subscript specified by IDX.
The subscript IDX is expected to be a structure array with fields 'type' and 'subs'. Valid values for 'type' are '"()"', '"{}"', and '"."'. The 'subs' field may be either '":"' or a cell array of index values.
The following example shows how to set the two first columns of a 3-by-3 matrix to zero.
val = magic (3);
idx.type = "()";
idx.subs = {":", 1:2};
subsasgn (val, idx, 0)
=> [ 0 0 6
0 0 7
0 0 2 ]
Note that this is the same as writing 'val(:,1:2) = 0'.
If IDX is an empty structure array with fields 'type' and 'subs', return RHS.
See also: subsref, substruct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Perform the subscripted assignment operation according to the subscript specified by IDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
is_sq_string
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
-- Built-in Function: is_sq_string (X)
Return true if X is a single-quoted character string.
See also: is_dq_string, ischar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if X is a single-quoted character string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
is_dq_string
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
-- Built-in Function: is_dq_string (X)
Return true if X is a double-quoted character string.
See also: is_sq_string, ischar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if X is a double-quoted character string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
disable_permutation_matrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 719
-- Built-in Function: VAL = disable_permutation_matrix ()
-- Built-in Function: OLD_VAL = disable_permutation_matrix (NEW_VAL)
-- Built-in Function: disable_permutation_matrix (NEW_VAL, "local")
Query or set the internal variable that controls whether permutation matrices are stored in a special space-efficient format.
The default value is true. If this option is disabled Octave will store permutation matrices as full matrices.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: disable_range, disable_diagonal_matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Query or set the internal variable that controls whether permutation matrices are stored in a special space-efficient format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
disable_diagonal_matrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 707
-- Built-in Function: VAL = disable_diagonal_matrix ()
-- Built-in Function: OLD_VAL = disable_diagonal_matrix (NEW_VAL)
-- Built-in Function: disable_diagonal_matrix (NEW_VAL, "local")
Query or set the internal variable that controls whether diagonal matrices are stored in a special space-efficient format.
The default value is true. If this option is disabled Octave will store diagonal matrices as full matrices.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: disable_range, disable_permutation_matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
Query or set the internal variable that controls whether diagonal matrices are stored in a special space-efficient format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
disable_range
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 665
-- Built-in Function: VAL = disable_range ()
-- Built-in Function: OLD_VAL = disable_range (NEW_VAL)
-- Built-in Function: disable_range (NEW_VAL, "local")
Query or set the internal variable that controls whether ranges are stored in a special space-efficient format.
The default value is true. If this option is disabled Octave will store ranges as full matrices.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: disable_diagonal_matrix, disable_permutation_matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that controls whether ranges are stored in a special space-efficient format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
int16
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
-- Built-in Function: int16 (X)
Convert X to 16-bit integer type.
See also: int8, uint8, uint16, int32, uint32, int64, uint64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Convert X to 16-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
int32
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
-- Built-in Function: int32 (X)
Convert X to 32-bit integer type.
See also: int8, uint8, int16, uint16, uint32, int64, uint64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Convert X to 32-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
int64
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
-- Built-in Function: int64 (X)
Convert X to 64-bit integer type.
See also: int8, uint8, int16, uint16, int32, uint32, uint64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Convert X to 64-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
int8
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
-- Built-in Function: int8 (X)
Convert X to 8-bit integer type.
See also: uint8, int16, uint16, int32, uint32, int64, uint64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Convert X to 8-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uint16
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Built-in Function: uint16 (X)
Convert X to unsigned 16-bit integer type.
See also: int8, uint8, int16, int32, uint32, int64, uint64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Convert X to unsigned 16-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uint32
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Built-in Function: uint32 (X)
Convert X to unsigned 32-bit integer type.
See also: int8, uint8, int16, uint16, int32, int64, uint64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Convert X to unsigned 32-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uint64
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Built-in Function: uint64 (X)
Convert X to unsigned 64-bit integer type.
See also: int8, uint8, int16, uint16, int32, uint32, int64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Convert X to unsigned 64-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
uint8
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
-- Built-in Function: uint8 (X)
Convert X to unsigned 8-bit integer type.
See also: int8, int16, uint16, int32, uint32, int64, uint64.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Convert X to unsigned 8-bit integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
end
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
-- Built-in Function: end
The magic index "end" refers to the last valid entry in an indexing operation.
Example:
X = [ 1 2 3
4 5 6 ];
X(1,end)
=> 3
X(end,1)
=> 4
X(end,end)
=> 6
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
The magic index "end" refers to the last valid entry in an indexing operation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
do_braindead_shortcircuit_evaluation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 901
-- Built-in Function: VAL = do_braindead_shortcircuit_evaluation ()
-- Built-in Function: OLD_VAL = do_braindead_shortcircuit_evaluation (NEW_VAL)
-- Built-in Function: do_braindead_shortcircuit_evaluation (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will do short-circuit evaluation of '|' and '&' operators inside the conditions of if or while statements.
This feature is only provided for compatibility with MATLAB and should not be used unless you are porting old code that relies on this feature.
To obtain short-circuit behavior for logical expressions in new programs, you should always use the '&&' and '||' operators.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
Query or set the internal variable that controls whether Octave will do short-circuit evaluation of '|' and '&' operators inside the conditions of if or while statements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
max_recursion_depth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 589
-- Built-in Function: VAL = max_recursion_depth ()
-- Built-in Function: OLD_VAL = max_recursion_depth (NEW_VAL)
-- Built-in Function: max_recursion_depth (NEW_VAL, "local")
Query or set the internal limit on the number of times a function may be called recursively.
If the limit is exceeded, an error message is printed and control returns to the top level.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Query or set the internal limit on the number of times a function may be called recursively.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
silent_functions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 659
-- Built-in Function: VAL = silent_functions ()
-- Built-in Function: OLD_VAL = silent_functions (NEW_VAL)
-- Built-in Function: silent_functions (NEW_VAL, "local")
Query or set the internal variable that controls whether internal output from a function is suppressed.
If this option is disabled, Octave will display the results produced by evaluating expressions within a function body that are not terminated with a semicolon.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Query or set the internal variable that controls whether internal output from a function is suppressed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
string_fill_char
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 750
-- Built-in Function: VAL = string_fill_char ()
-- Built-in Function: OLD_VAL = string_fill_char (NEW_VAL)
-- Built-in Function: string_fill_char (NEW_VAL, "local")
Query or set the internal variable used to pad all rows of a character matrix to the same length.
The value must be a single character and the default is " " (a single space). For example:
string_fill_char ("X");
[ "these"; "are"; "strings" ]
=> "theseXX"
"areXXXX"
"strings"
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Query or set the internal variable used to pad all rows of a character matrix to the same length.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
iskeyword
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 213
-- Built-in Function: iskeyword ()
-- Built-in Function: iskeyword (NAME)
Return true if NAME is an Octave keyword.
If NAME is omitted, return a list of keywords.
See also: isvarname, exist.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Return true if NAME is an Octave keyword.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
balance
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1510
-- Built-in Function: AA = balance (A)
-- Built-in Function: AA = balance (A, OPT)
-- Built-in Function: [DD, AA] = balance (A, OPT)
-- Built-in Function: [D, P, AA] = balance (A, OPT)
-- Built-in Function: [CC, DD, AA, BB] = balance (A, B, OPT)
Balance the matrix A to reduce numerical errors in future calculations.
Compute 'AA = DD \ A * DD' in which AA is a matrix whose row and column norms are roughly equal in magnitude, and 'DD = P * D', in which P is a permutation matrix and D is a diagonal matrix of powers of two. This allows the equilibration to be computed without round-off. Results of eigenvalue calculation are typically improved by balancing first.
If two output values are requested, 'balance' returns the diagonal D and the permutation P separately as vectors. In this case, 'DD = eye(n)(:,P) * diag (D)', where n is the matrix size.
If four output values are requested, compute 'AA = CC*A*DD' and 'BB = CC*B*DD', in which AA and BB have nonzero elements of approximately the same magnitude and CC and DD are permuted diagonal matrices as in DD for the algebraic eigenvalue problem.
The eigenvalue balancing option OPT may be one of:
"noperm", "S"
Scale only; do not permute.
"noscal", "P"
Permute only; do not scale.
Algebraic eigenvalue balancing uses standard LAPACK routines.
Generalized eigenvalue problem balancing uses Ward's algorithm (SIAM Journal on Scientific and Statistical Computing, 1981).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Balance the matrix A to reduce numerical errors in future calculations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besselj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2038
-- Built-in Function: [J, IERR] = besselj (ALPHA, X, OPT)
-- Built-in Function: [Y, IERR] = bessely (ALPHA, X, OPT)
-- Built-in Function: [I, IERR] = besseli (ALPHA, X, OPT)
-- Built-in Function: [K, IERR] = besselk (ALPHA, X, OPT)
-- Built-in Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
Compute Bessel or Hankel functions of various kinds:
'besselj'
Bessel functions of the first kind. If the argument OPT is 1 or true, the result is multiplied by 'exp (-abs (imag (X)))'.
'bessely'
Bessel functions of the second kind. If the argument OPT is 1 or true, the result is multiplied by 'exp (-abs (imag (X)))'.
'besseli'
Modified Bessel functions of the first kind. If the argument OPT is 1 or true, the result is multiplied by 'exp (-abs (real (X)))'.
'besselk'
Modified Bessel functions of the second kind. If the argument OPT is 1 or true, the result is multiplied by 'exp (X)'.
'besselh'
Compute Hankel functions of the first (K = 1) or second (K = 2) kind. If the argument OPT is 1 or true, the result is multiplied by 'exp (-I*X)' for K = 1 or 'exp (I*X)' for K = 2.
If ALPHA is a scalar, the result is the same size as X. If X is a scalar, the result is the same size as ALPHA. If ALPHA is a row vector and X is a column vector, the result is a matrix with 'length (X)' rows and 'length (ALPHA)' columns. Otherwise, ALPHA and X must conform and the result will be the same size.
The value of ALPHA must be real. The value of X may be complex.
If requested, IERR contains the following status information and is the same size as the result.
0. Normal return.
1. Input error, return 'NaN'.
2. Overflow, return 'Inf'.
3. Loss of significance by argument reduction results in less than half of machine accuracy.
4. Complete loss of significance by argument reduction, return 'NaN'.
5. Error--no computation, algorithm termination condition not met, return 'NaN'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bessely
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
-- Built-in Function: [Y, IERR] = bessely (ALPHA, X, OPT)
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besseli
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
-- Built-in Function: [I, IERR] = besseli (ALPHA, X, OPT)
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besselk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
-- Built-in Function: [K, IERR] = besselk (ALPHA, X, OPT)
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besselh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
-- Built-in Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
airy
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1082
-- Built-in Function: [A, IERR] = airy (K, Z, OPT)
Compute Airy functions of the first and second kind, and their derivatives.
K Function Scale factor (if "opt" is supplied)
--- -------- ---------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z * sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z * sqrt (Z))))
The function call 'airy (Z)' is equivalent to 'airy (0, Z)'.
The result is the same size as Z.
If requested, IERR contains the following status information and is the same size as the result.
0. Normal return.
1. Input error, return 'NaN'.
2. Overflow, return 'Inf'.
3. Loss of significance by argument reduction results in less than half of machine accuracy.
4. Complete loss of significance by argument reduction, return 'NaN'.
5. Error--no computation, algorithm termination condition not met, return 'NaN'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute Airy functions of the first and second kind, and their derivatives.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betainc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 587
-- Mapping Function: betainc (X, A, B)
Compute the regularized incomplete Beta function.
The regularized incomplete Beta function is defined by
x
1 /
betainc (x, a, b) = ----------- | t^(a-1) (1-t)^(b-1) dt.
beta (a, b) /
t=0
If X has more than one component, both A and B must be scalars. If X is a scalar, A and B must be of compatible dimensions.
See also: betaincinv, beta, betaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the regularized incomplete Beta function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
betaincinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
-- Mapping Function: betaincinv (Y, A, B)
Compute the inverse of the incomplete Beta function.
The inverse is the value X such that
Y == betainc (X, A, B)
See also: betainc, beta, betaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the inverse of the incomplete Beta function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitand
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
-- Built-in Function: bitand (X, Y)
Return the bitwise AND of non-negative integers.
X, Y must be in the range [0,bitmax]
See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the bitwise AND of non-negative integers.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
bitor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
-- Built-in Function: bitor (X, Y)
Return the bitwise OR of non-negative integers.
X, Y must be in the range [0,bitmax]
See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the bitwise OR of non-negative integers.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitxor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
-- Built-in Function: bitxor (X, Y)
Return the bitwise XOR of non-negative integers.
X, Y must be in the range [0,bitmax]
See also: bitand, bitor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the bitwise XOR of non-negative integers.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bitshift
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 574
-- Built-in Function: bitshift (A, K)
-- Built-in Function: bitshift (A, K, N)
Return a K bit shift of N-digit unsigned integers in A.
A positive K leads to a left shift; A negative value to a right shift.
If N is omitted it defaults to log2(bitmax)+1. N must be in the range [1,log2(bitmax)+1] usually [1,33].
bitshift (eye (3), 1)
=>
2 0 0
0 2 0
0 0 2
bitshift (10, [-2, -1, 0, 1, 2])
=> 2 5 10 20 40
See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return a K bit shift of N-digit unsigned integers in A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitmax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 423
-- Built-in Function: bitmax ()
-- Built-in Function: bitmax ("double")
-- Built-in Function: bitmax ("single")
Return the largest integer that can be represented within a floating point value.
The default class is "double", but "single" is a valid option. On IEEE-754 compatible systems, 'bitmax' is 2^{53} - 1 for "double" and 2^{24} -1 for "single".
See also: flintmax, intmax, realmax, realmin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Return the largest integer that can be represented within a floating point value.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
flintmax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
-- Built-in Function: flintmax ()
-- Built-in Function: flintmax ("double")
-- Built-in Function: flintmax ("single")
Return the largest integer that can be represented consecutively in a floating point value.
The default class is "double", but "single" is a valid option. On IEEE-754 compatible systems, 'flintmax' is 2^53 for "double" and 2^24 for "single".
See also: bitmax, intmax, realmax, realmin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Return the largest integer that can be represented consecutively in a floating point value.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
intmax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 612
-- Built-in Function: intmax (TYPE)
Return the largest integer that can be represented in an integer type.
The variable TYPE can be
'int8'
signed 8-bit integer.
'int16'
signed 16-bit integer.
'int32'
signed 32-bit integer.
'int64'
signed 64-bit integer.
'uint8'
unsigned 8-bit integer.
'uint16'
unsigned 16-bit integer.
'uint32'
unsigned 32-bit integer.
'uint64'
unsigned 64-bit integer.
The default for TYPE is 'int32'.
See also: intmin, flintmax, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Return the largest integer that can be represented in an integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
intmin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 613
-- Built-in Function: intmin (TYPE)
Return the smallest integer that can be represented in an integer type.
The variable TYPE can be
'int8'
signed 8-bit integer.
'int16'
signed 16-bit integer.
'int32'
signed 32-bit integer.
'int64'
signed 64-bit integer.
'uint8'
unsigned 8-bit integer.
'uint16'
unsigned 16-bit integer.
'uint32'
unsigned 32-bit integer.
'uint64'
unsigned 64-bit integer.
The default for TYPE is 'int32'.
See also: intmax, flintmax, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Return the smallest integer that can be represented in an integer type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sizemax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 362
-- Built-in Function: sizemax ()
Return the largest value allowed for the size of an array.
If Octave is compiled with 64-bit indexing, the result is of class int64, otherwise it is of class int32. The maximum array size is slightly smaller than the maximum value allowable for the relevant class as reported by 'intmax'.
See also: intmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the largest value allowed for the size of an array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bsxfun
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 713
-- Built-in Function: bsxfun (F, A, B)
The binary singleton expansion function performs broadcasting, that is, it applies a binary function F element-by-element to two array arguments A and B, and expands as necessary singleton dimensions in either input argument.
F is a function handle, inline function, or string containing the name of the function to evaluate. The function F must be capable of accepting two column-vector arguments of equal length, or one column vector argument and a scalar.
The dimensions of A and B must be equal or singleton. The singleton dimensions of the arrays will be expanded to the same dimensionality as the other array.
See also: arrayfun, cellfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 225
The binary singleton expansion function performs broadcasting, that is, it applies a binary function F element-by-element to two array arguments A and B, and expands as necessary singleton dimensions in either input argument.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cellfun
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4007
-- Built-in Function: cellfun (NAME, C)
-- Built-in Function: cellfun ("size", C, K)
-- Built-in Function: cellfun ("isclass", C, CLASS)
-- Built-in Function: cellfun (FUNC, C)
-- Built-in Function: cellfun (FUNC, C, D)
-- Built-in Function: [A, ...] = cellfun (...)
-- Built-in Function: cellfun (..., "ErrorHandler", ERRFUNC)
-- Built-in Function: cellfun (..., "UniformOutput", VAL)
Evaluate the function named NAME on the elements of the cell array C.
Elements in C are passed on to the named function individually. The function NAME can be one of the functions
'isempty'
Return 1 for empty elements.
'islogical'
Return 1 for logical elements.
'isnumeric'
Return 1 for numeric elements.
'isreal'
Return 1 for real elements.
'length'
Return a vector of the lengths of cell elements.
'ndims'
Return the number of dimensions of each element.
'numel'
'prodofsize'
Return the number of elements contained within each cell element. The number is the product of the dimensions of the object at each cell element.
'size'
Return the size along the K-th dimension.
'isclass'
Return 1 for elements of CLASS.
Additionally, 'cellfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string). The function can take one or more arguments, with the inputs arguments given by C, D, etc. Equally the function can return one or more output arguments. For example:
cellfun ("atan2", {1, 0}, {0, 1})
=> [ 1.57080 0.00000 ]
The number of output arguments of 'cellfun' matches the number of output arguments of the function. The outputs of the function will be collected into the output arguments of 'cellfun' like this:
function [a, b] = twoouts (x)
a = x;
b = x*x;
endfunction
[aa, bb] = cellfun (@twoouts, {1, 2, 3})
=>
aa =
1 2 3
bb =
1 4 9
Note that per default the output argument(s) are arrays of the same size as the input arguments. Input arguments that are singleton (1x1) cells will be automatically expanded to the size of the other arguments.
If the parameter "UniformOutput" is set to true (the default), then the function must return scalars which will be concatenated into the return array(s). If "UniformOutput" is false, the outputs are concatenated into a cell array (or cell arrays). For example:
cellfun ("tolower", {"Foo", "Bar", "FooBar"},
"UniformOutput", false)
=> {"foo", "bar", "foobar"}
Given the parameter "ErrorHandler", then ERRFUNC defines a function to call in case FUNC generates an error. The form of the function is
function [...] = errfunc (S, ...)
where there is an additional input argument to ERRFUNC relative to FUNC, given by S. This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error. For example:
function y = foo (s, x), y = NaN; endfunction
cellfun ("factorial", {-1,2}, "ErrorHandler", @foo)
=> [NaN 2]
Use 'cellfun' intelligently. The 'cellfun' function is a useful tool for avoiding loops. It is often used with anonymous function handles; however, calling an anonymous function involves an overhead quite comparable to the overhead of an m-file function. Passing a handle to a built-in function is faster, because the interpreter is not involved in the internal loop. For example:
a = {...}
v = cellfun (@(x) det (x), a); # compute determinants
v = cellfun (@det, a); # faster
See also: arrayfun, structfun, spfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Evaluate the function named NAME on the elements of the cell array C.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arrayfun
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3349
-- Function File: arrayfun (FUNC, A)
-- Function File: X = arrayfun (FUNC, A)
-- Function File: X = arrayfun (FUNC, A, B, ...)
-- Function File: [X, Y, ...] = arrayfun (FUNC, A, ...)
-- Function File: arrayfun (..., "UniformOutput", VAL)
-- Function File: arrayfun (..., "ErrorHandler", ERRFUNC)
Execute a function on each element of an array.
This is useful for functions that do not accept array arguments. If the function does accept array arguments it is better to call the function directly.
The first input argument FUNC can be a string, a function handle, an inline function, or an anonymous function. The input argument A can be a logic array, a numeric array, a string array, a structure array, or a cell array. By a call of the function 'arrayfun' all elements of A are passed on to the named function FUNC individually.
The named function can also take more than two input arguments, with the input arguments given as third input argument B, fourth input argument C, ... If given more than one array input argument then all input arguments must have the same sizes, for example:
arrayfun (@atan2, [1, 0], [0, 1])
=> [ 1.5708 0.0000 ]
If the parameter VAL after a further string input argument "UniformOutput" is set 'true' (the default), then the named function FUNC must return a single element which then will be concatenated into the return value and is of type matrix. Otherwise, if that parameter is set to 'false', then the outputs are concatenated in a cell array. For example:
arrayfun (@(x,y) x:y, "abc", "def", "UniformOutput", false)
=>
{
[1,1] = abcd
[1,2] = bcde
[1,3] = cdef
}
If more than one output arguments are given then the named function must return the number of return values that also are expected, for example:
[A, B, C] = arrayfun (@find, [10; 0], "UniformOutput", false)
=>
A =
{
[1,1] = 1
[2,1] = [](0x0)
}
B =
{
[1,1] = 1
[2,1] = [](0x0)
}
C =
{
[1,1] = 10
[2,1] = [](0x0)
}
If the parameter ERRFUNC after a further string input argument "ErrorHandler" is another string, a function handle, an inline function, or an anonymous function, then ERRFUNC defines a function to call in the case that FUNC generates an error. The definition of the function must be of the form
function [...] = errfunc (S, ...)
where there is an additional input argument to ERRFUNC relative to FUNC, given by S. This is a structure with the elements "identifier", "message", and "index" giving, respectively, the error identifier, the error message, and the index of the array elements that caused the error. The size of the output argument of ERRFUNC must have the same size as the output argument of FUNC, otherwise a real error is thrown. For example:
function y = ferr (s, x), y = "MyString"; endfunction
arrayfun (@str2num, [1234],
"UniformOutput", false, "ErrorHandler", @ferr)
=>
{
[1,1] = MyString
}
See also: spfun, cellfun, structfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Execute a function on each element of an array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
num2cell
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 732
-- Built-in Function: C = num2cell (A)
-- Built-in Function: C = num2cell (A, DIM)
Convert the numeric matrix A to a cell array.
If DIM is defined, the value C is of dimension 1 in this dimension and the elements of A are placed into C in slices. For example:
num2cell ([1,2;3,4])
=>
{
[1,1] = 1
[2,1] = 3
[1,2] = 2
[2,2] = 4
}
num2cell ([1,2;3,4],1)
=>
{
[1,1] =
1
3
[1,2] =
2
4
}
See also: mat2cell.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Convert the numeric matrix A to a cell array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
mat2cell
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 984
-- Built-in Function: C = mat2cell (A, M, N)
-- Built-in Function: C = mat2cell (A, D1, D2, ...)
-- Built-in Function: C = mat2cell (A, R)
Convert the matrix A to a cell array.
If A is 2-D, then it is required that 'sum (M) == size (A, 1)' and 'sum (N) == size (A, 2)'. Similarly, if A is multi-dimensional and the number of dimensional arguments is equal to the dimensions of A, then it is required that 'sum (DI) == size (A, i)'.
Given a single dimensional argument R, the other dimensional arguments are assumed to equal 'size (A,I)'.
An example of the use of mat2cell is
mat2cell (reshape (1:16,4,4), [3,1], [3,1])
=>
{
[1,1] =
1 5 9
2 6 10
3 7 11
[2,1] =
4 8 12
[1,2] =
13
14
15
[2,2] = 16
}
See also: num2cell, cell2mat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert the matrix A to a cell array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cellslices
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 619
-- Built-in Function: SL = cellslices (X, LB, UB, DIM)
Given an array X, this function produces a cell array of slices from the array determined by the index vectors LB, UB, for lower and upper bounds, respectively.
In other words, it is equivalent to the following code:
n = length (lb);
sl = cell (1, n);
for i = 1:length (lb)
sl{i} = x(:,...,lb(i):ub(i),...,:);
endfor
The position of the index is determined by DIM. If not specified, slicing is done along the first non-singleton dimension.
See also: cell2mat, cellindexmat, cellfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
Given an array X, this function produces a cell array of slices from the array determined by the index vectors LB, UB, for lower and upper bounds, respectively.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
cellindexmat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 325
-- Built-in Function: Y = cellindexmat (X, VARARGIN)
Perform indexing of matrices in a cell array.
Given a cell array of matrices X, this function computes
Y = cell (size (X));
for i = 1:numel (X)
Y{i} = X{i}(varargin{:});
endfor
See also: cellslices, cellfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Perform indexing of matrices in a cell array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
colloc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 276
-- Built-in Function: [R, AMAT, BMAT, Q] = colloc (N, "left", "right")
Compute derivative and integral weight matrices for orthogonal collocation.
Reference: J. Villadsen, M. L. Michelsen, 'Solution of Differential Equation Models by Polynomial Approximation'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute derivative and integral weight matrices for orthogonal collocation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
conv2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 881
-- Built-in Function: conv2 (A, B)
-- Built-in Function: conv2 (V1, V2, M)
-- Built-in Function: conv2 (..., SHAPE)
Return the 2-D convolution of A and B.
The size of the result is determined by the optional SHAPE argument which takes the following values
SHAPE = "full"
Return the full convolution. (default)
SHAPE = "same"
Return the central part of the convolution with the same size as A. The central part of the convolution begins at the indices 'floor ([size(B)/2] + 1)'.
SHAPE = "valid"
Return only the parts which do not include zero-padded edges. The size of the result is 'max (size (A) - size (B) + 1, 0)'.
When the third argument is a matrix, return the convolution of the matrix M by the vector V1 in the column direction and by the vector V2 in the row direction.
See also: conv, convn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return the 2-D convolution of A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
convn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 679
-- Built-in Function: C = convn (A, B)
-- Built-in Function: C = convn (A, B, SHAPE)
Return the n-D convolution of A and B.
The size of the result is determined by the optional SHAPE argument which takes the following values
SHAPE = "full"
Return the full convolution. (default)
SHAPE = "same"
Return central part of the convolution with the same size as A. The central part of the convolution begins at the indices 'floor ([size(B)/2] + 1)'.
SHAPE = "valid"
Return only the parts which do not include zero-padded edges. The size of the result is 'max (size (A) - size (B) + 1, 0)'.
See also: conv2, conv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return the n-D convolution of A and B.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
daspk_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5813
-- Built-in Function: daspk_options ()
-- Built-in Function: val = daspk_options (OPT)
-- Built-in Function: daspk_options (OPT, VAL)
Query or set options for the function 'daspk'.
When called with no arguments, the names of all available options and their current values are displayed.
Given one argument, return the value of the option OPT.
When called with two arguments, 'daspk_options' sets the option OPT to value VAL.
Options include
'"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.
'"relative tolerance"'
Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.
The local error test applied at each integration step is
abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(i)
'"compute consistent initial condition"'
Denoting the differential variables in the state vector by 'Y_d' and the algebraic variables by 'Y_a', 'ddaspk' can solve one of two initialization problems:
1. Given Y_d, calculate Y_a and Y'_d
2. Given Y', calculate Y.
In either case, initial values for the given components are input, and initial guesses for the unknown components must also be provided as input. Set this option to 1 to solve the first problem, or 2 to solve the second (the default is 0, so you must provide a set of initial conditions that are consistent).
If this option is set to a nonzero value, you must also set the "algebraic variables" option to declare which variables in the problem are algebraic.
'"use initial condition heuristics"'
Set to a nonzero value to use the initial condition heuristics options described below.
'"initial condition heuristics"'
A vector of the following parameters that can be used to control the initial condition calculation.
'MXNIT'
Maximum number of Newton iterations (default is 5).
'MXNJ'
Maximum number of Jacobian evaluations (default is 6).
'MXNH'
Maximum number of values of the artificial stepsize parameter to be tried if the "compute consistent initial condition" option has been set to 1 (default is 5).
Note that the maximum total number of Newton iterations allowed is 'MXNIT*MXNJ*MXNH' if the "compute consistent initial condition" option has been set to 1 and 'MXNIT*MXNJ' if it is set to 2.
'LSOFF'
Set to a nonzero value to disable the linesearch algorithm (default is 0).
'STPTOL'
Minimum scaled step in linesearch algorithm (default is eps^(2/3)).
'EPINIT'
Swing factor in the Newton iteration convergence test. The test is applied to the residual vector, premultiplied by the approximate Jacobian. For convergence, the weighted RMS norm of this vector (scaled by the error weights) must be less than 'EPINIT*EPCON', where 'EPCON' = 0.33 is the analogous test constant used in the time steps. The default is 'EPINIT' = 0.01.
'"print initial condition info"'
Set this option to a nonzero value to display detailed information about the initial condition calculation (default is 0).
'"exclude algebraic variables from error test"'
Set to a nonzero value to exclude algebraic variables from the error test. You must also set the "algebraic variables" option to declare which variables in the problem are algebraic (default is 0).
'"algebraic variables"'
A vector of the same length as the state vector. A nonzero element indicates that the corresponding element of the state vector is an algebraic variable (i.e., its derivative does not appear explicitly in the equation set).
This option is required by the "compute consistent initial condition" and "exclude algebraic variables from error test" options.
'"enforce inequality constraints"'
Set to one of the following values to enforce the inequality constraints specified by the "inequality constraint types" option (default is 0).
1. To have constraint checking only in the initial condition calculation.
2. To enforce constraint checking during the integration.
3. To enforce both options 1 and 2.
'"inequality constraint types"'
A vector of the same length as the state specifying the type of inequality constraint. Each element of the vector corresponds to an element of the state and should be assigned one of the following codes
-2
Less than zero.
-1
Less than or equal to zero.
0
Not constrained.
1
Greater than or equal to zero.
2
Greater than zero.
This option only has an effect if the "enforce inequality constraints" option is nonzero.
'"initial step size"'
Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize (default is computed automatically).
'"maximum order"'
Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive (default is 5).
'"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions (default is not specified).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'daspk'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
daspk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2449
-- Built-in Function: [X, XDOT, ISTATE, MSG] = daspk (FCN, X_0, XDOT_0, T, T_CRIT)
Solve the set of differential-algebraic equations
0 = f (x, xdot, t)
with
x(t_0) = x_0, xdot(t_0) = xdot_0
The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T. The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations. It must have the form
RES = f (X, XDOT, T)
in which X, XDOT, and RES are vectors, and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian
df df
jac = -- + c ------
dx d xdot
The modified Jacobian function must have the form
JAC = j (X, XDOT, T, C)
The second and third arguments to 'daspk' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be consistent. If they are not consistent, you must use the 'daspk_options' function to provide additional information so that 'daspk' can compute a consistent starting point.
The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASPK).
If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.
You can use the function 'daspk_options' to set optional parameters for 'daspk'.
See also: dassl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
dasrt_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1748
-- Built-in Function: dasrt_options ()
-- Built-in Function: val = dasrt_options (OPT)
-- Built-in Function: dasrt_options (OPT, VAL)
Query or set options for the function 'dasrt'.
When called with no arguments, the names of all available options and their current values are displayed.
Given one argument, return the value of the option OPT.
When called with two arguments, 'dasrt_options' sets the option OPT to value VAL.
Options include
'"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.
'"relative tolerance"'
Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.
The local error test applied at each integration step is
abs (local error in x(i)) <= ...
rtol(i) * abs (Y(i)) + atol(i)
'"initial step size"'
Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.
'"maximum order"'
Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive.
'"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions.
'"step limit"'
Maximum number of integration steps to attempt on a single call to the underlying Fortran code.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'dasrt'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dasrt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4148
-- Built-in Function: [X, XDOT, T_OUT, ISTAT, MSG] = dasrt (FCN, [], X_0, XDOT_0, T)
-- Built-in Function: ... = dasrt (FCN, G, X_0, XDOT_0, T)
-- Built-in Function: ... = dasrt (FCN, [], X_0, XDOT_0, T, T_CRIT)
-- Built-in Function: ... = dasrt (FCN, G, X_0, XDOT_0, T, T_CRIT)
Solve the set of differential-algebraic equations
0 = f (x, xdot, t)
with
x(t_0) = x_0, xdot(t_0) = xdot_0
with functional stopping criteria (root solving).
The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T_OUT. The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.
The vector T provides an upper limit on the length of the integration. If the stopping condition is met, the vector T_OUT will be shorter than T, and the final element of T_OUT will be the point at which the stopping condition was met, and may not correspond to any element of the vector T.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations. It must have the form
RES = f (X, XDOT, T)
in which X, XDOT, and RES are vectors, and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian
df df
jac = -- + c ------
dx d xdot
The modified Jacobian function must have the form
JAC = j (X, XDOT, T, C)
The optional second argument names a function that defines the constraint functions whose roots are desired during the integration. This function must have the form
G_OUT = g (X, T)
and return a vector of the constraint function values. If the value of any of the constraint functions changes sign, DASRT will attempt to stop the integration at the point of the sign change.
If the name of the constraint function is omitted, 'dasrt' solves the same problem as 'daspk' or 'dassl'.
Note that because of numerical errors in the constraint functions due to round-off and integration error, DASRT may return false roots, or return the same root at two or more nearly equal values of T. If such false roots are suspected, the user should consider smaller error tolerances or higher precision in the evaluation of the constraint functions.
If a root of some constraint function defines the end of the problem, the input to DASRT should nevertheless allow integration to a point slightly past that root, so that DASRT can locate the root by interpolation.
The third and fourth arguments to 'dasrt' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be consistent. In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.
The sixth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).
If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.
You can use the function 'dasrt_options' to set optional parameters for 'dasrt'.
See also: dasrt_options, daspk, dasrt, lsode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
dassl_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2356
-- Built-in Function: dassl_options ()
-- Built-in Function: val = dassl_options (OPT)
-- Built-in Function: dassl_options (OPT, VAL)
Query or set options for the function 'dassl'.
When called with no arguments, the names of all available options and their current values are displayed.
Given one argument, return the value of the option OPT.
When called with two arguments, 'dassl_options' sets the option OPT to value VAL.
Options include
'"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.
'"relative tolerance"'
Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.
The local error test applied at each integration step is
abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(i)
'"compute consistent initial condition"'
If nonzero, 'dassl' will attempt to compute a consistent set of initial conditions. This is generally not reliable, so it is best to provide a consistent set and leave this option set to zero.
'"enforce nonnegativity constraints"'
If you know that the solutions to your equations will always be non-negative, it may help to set this parameter to a nonzero value. However, it is probably best to try leaving this option set to zero first, and only setting it to a nonzero value if that doesn't work very well.
'"initial step size"'
Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.
'"maximum order"'
Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive.
'"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions (default is not specified).
'"step limit"'
Maximum number of integration steps to attempt on a single call to the underlying Fortran code.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'dassl'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dassl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2483
-- Built-in Function: [X, XDOT, ISTATE, MSG] = dassl (FCN, X_0, XDOT_0, T, T_CRIT)
Solve the set of differential-algebraic equations
0 = f (x, xdot, t)
with
x(t_0) = x_0, xdot(t_0) = xdot_0
The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T. The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations. It must have the form
RES = f (X, XDOT, T)
in which X, XDOT, and RES are vectors, and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian
df df
jac = -- + c ------
dx d xdot
The modified Jacobian function must have the form
JAC = j (X, XDOT, T, C)
The second and third arguments to 'dassl' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be consistent. In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.
The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).
If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.
You can use the function 'dassl_options' to set optional parameters for 'dassl'.
See also: daspk, dasrt, lsode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
all
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 517
-- Built-in Function: all (X)
-- Built-in Function: all (X, DIM)
For a vector argument, return true (logical 1) if all elements of the vector are nonzero.
For a matrix argument, return a row vector of logical ones and zeros with each element indicating whether all of the elements of the corresponding column of the matrix are nonzero. For example:
all ([2, 3; 1, 0])
=> [ 1, 0 ]
If the optional argument DIM is supplied, work along dimension DIM.
See also: any.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
For a vector argument, return true (logical 1) if all elements of the vector are nonzero.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
any
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 584
-- Built-in Function: any (X)
-- Built-in Function: any (X, DIM)
For a vector argument, return true (logical 1) if any element of the vector is nonzero.
For a matrix argument, return a row vector of logical ones and zeros with each element indicating whether any of the elements of the corresponding column of the matrix are nonzero. For example:
any (eye (2, 4))
=> [ 1, 1, 0, 0 ]
If the optional argument DIM is supplied, work along dimension DIM. For example:
any (eye (2, 4), 2)
=> [ 1; 1 ]
See also: all.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
For a vector argument, return true (logical 1) if any element of the vector is nonzero.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
atan2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 193
-- Mapping Function: atan2 (Y, X)
Compute atan (Y / X) for corresponding elements of Y and X.
Y and X must match in size and orientation.
See also: tan, tand, tanh, atanh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute atan (Y / X) for corresponding elements of Y and X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
hypot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 510
-- Built-in Function: hypot (X, Y)
-- Built-in Function: hypot (X, Y, Z, ...)
Compute the element-by-element square root of the sum of the squares of X and Y.
This is equivalent to 'sqrt (X.^2 + Y.^2)', but is calculated in a manner that avoids overflows for large values of X or Y.
'hypot' can also be called with more than 2 arguments; in this case, the arguments are accumulated from left to right:
hypot (hypot (X, Y), Z)
hypot (hypot (hypot (X, Y), Z), W), etc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the element-by-element square root of the sum of the squares of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
log2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 329
-- Mapping Function: log2 (X)
-- Mapping Function: [F, E] = log2 (X)
Compute the base-2 logarithm of each element of X.
If called with two output arguments, split X into binary mantissa and exponent so that '1/2 <= abs(f) < 1' and E is an integer. If 'x = 0', 'f = e = 0'.
See also: pow2, log, log10, exp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the base-2 logarithm of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
rem
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 319
-- Mapping Function: rem (X, Y)
Return the remainder of the division 'X / Y'.
The remainder is computed using the expression
x - y .* fix (x ./ y)
An error message is printed if the dimensions of the arguments do not agree, or if either of the arguments is complex.
See also: mod.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the remainder of the division 'X / Y'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
mod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 499
-- Mapping Function: mod (X, Y)
Compute the modulo of X and Y.
Conceptually this is given by
x - y .* floor (x ./ y)
and is written such that the correct modulus is returned for integer types. This function handles negative values correctly. That is, 'mod (-1, 3)' is 2, not -1, as 'rem (-1, 3)' returns. 'mod (X, 0)' returns X.
An error results if the dimensions of the arguments do not agree, or if either of the arguments is complex.
See also: rem.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Compute the modulo of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cumprod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 240
-- Built-in Function: cumprod (X)
-- Built-in Function: cumprod (X, DIM)
Cumulative product of elements along dimension DIM.
If DIM is omitted, it defaults to the first non-singleton dimension.
See also: prod, cumsum.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Cumulative product of elements along dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cumsum
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 466
-- Built-in Function: cumsum (X)
-- Built-in Function: cumsum (X, DIM)
-- Built-in Function: cumsum (..., "native")
-- Built-in Function: cumsum (..., "double")
-- Built-in Function: cumsum (..., "extra")
Cumulative sum of elements along dimension DIM.
If DIM is omitted, it defaults to the first non-singleton dimension.
See 'sum' for an explanation of the optional parameters "native", "double", and "extra".
See also: sum, cumprod.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Cumulative sum of elements along dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
diag
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 898
-- Built-in Function: M = diag (V)
-- Built-in Function: M = diag (V, K)
-- Built-in Function: M = diag (V, M, N)
-- Built-in Function: V = diag (M)
-- Built-in Function: V = diag (M, K)
Return a diagonal matrix with vector V on diagonal K.
The second argument is optional. If it is positive, the vector is placed on the K-th superdiagonal. If it is negative, it is placed on the -K-th subdiagonal. The default value of K is 0, and the vector is placed on the main diagonal. For example:
diag ([1, 2, 3], 1)
=> 0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0
The 3-input form returns a diagonal matrix with vector V on the main diagonal and the resulting matrix being of size M rows x N columns.
Given a matrix argument, instead of a vector, 'diag' extracts the K-th diagonal of the matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return a diagonal matrix with vector V on diagonal K.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
prod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
-- Built-in Function: prod (X)
-- Built-in Function: prod (X, DIM)
-- Built-in Function: prod (..., "native")
-- Built-in Function: prod (..., "double")
Product of elements along dimension DIM.
If DIM is omitted, it defaults to the first non-singleton dimension.
The optional "type" input determines the class of the variable used for calculations. If the argument "native" is given, then the operation is performed in the same type as the original argument, rather than the default double type.
For example:
prod ([true, true])
=> 1
prod ([true, true], "native")
=> true
On the contrary, if "double" is given, the operation is performed in double precision even for single precision inputs.
See also: cumprod, sum.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Product of elements along dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
horzcat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 355
-- Built-in Function: horzcat (ARRAY1, ARRAY2, ..., ARRAYN)
Return the horizontal concatenation of N-D array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 2.
Arrays may also be concatenated horizontally using the syntax for creating new matrices. For example:
HCAT = [ ARRAY1, ARRAY2, ... ]
See also: cat, vertcat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return the horizontal concatenation of N-D array objects, ARRAY1, ARRAY2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vertcat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 351
-- Built-in Function: vertcat (ARRAY1, ARRAY2, ..., ARRAYN)
Return the vertical concatenation of N-D array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 1.
Arrays may also be concatenated vertically using the syntax for creating new matrices. For example:
VCAT = [ ARRAY1; ARRAY2; ... ]
See also: cat, horzcat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Return the vertical concatenation of N-D array objects, ARRAY1, ARRAY2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 780
-- Built-in Function: cat (DIM, ARRAY1, ARRAY2, ..., ARRAYN)
Return the concatenation of N-D array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension DIM.
A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
=> 1 1 0 0
1 1 0 0
Alternatively, we can concatenate A and B along the second dimension in the following way:
[A, B]
DIM can be larger than the dimensions of the N-D array objects and the result will thus have DIM dimensions as the following example shows:
cat (4, ones (2, 2), zeros (2, 2))
=> ans(:,:,1,1) =
1 1
1 1
ans(:,:,1,2) =
0 0
0 0
See also: horzcat, vertcat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return the concatenation of N-D array objects, ARRAY1, ARRAY2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
permute
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 696
-- Built-in Function: permute (A, PERM)
Return the generalized transpose for an N-D array object A.
The permutation vector PERM must contain the elements '1:ndims (A)' (in any order, but each element must appear only once).
The Nth dimension of A gets remapped to dimension 'PERM(N)'. For example:
X = zeros ([2, 3, 5, 7]);
size (X)
=> 2 3 5 7
size (permute (X, [2, 1, 3, 4]))
=> 3 2 5 7
size (permute (X, [1, 3, 4, 2]))
=> 2 5 7 3
## The identity permutation
size (permute (X, [1, 2, 3, 4]))
=> 2 3 5 7
See also: ipermute.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Return the generalized transpose for an N-D array object A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ipermute
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 218
-- Built-in Function: ipermute (A, IPERM)
The inverse of the 'permute' function.
The expression
ipermute (permute (A, perm), perm)
returns the original array A.
See also: permute.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
The inverse of the 'permute' function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
length
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 350
-- Built-in Function: length (A)
Return the length of the object A.
The length is 0 for empty objects, 1 for scalars, and the number of elements for vectors. For matrix objects, the length is the number of rows or columns, whichever is greater (this odd definition is used for compatibility with MATLAB).
See also: numel, size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the length of the object A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ndims
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 280
-- Built-in Function: ndims (A)
Return the number of dimensions of A.
For any array, the result will always be greater than or equal to 2. Trailing singleton dimensions are not counted.
ndims (ones (4, 1, 2, 1))
=> 3
See also: size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the number of dimensions of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
numel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 655
-- Built-in Function: numel (A)
-- Built-in Function: numel (A, IDX1, IDX2, ...)
Return the number of elements in the object A.
Optionally, if indices IDX1, IDX2, ... are supplied, return the number of elements that would result from the indexing
A(IDX1, IDX2, ...)
Note that the indices do not have to be numerical. For example,
A = 1;
B = ones (2, 3);
numel (A, B)
will return 6, as this is the number of ways to index with B.
This method is also called when an object appears as lvalue with cs-list indexing, i.e., 'object{...}' or 'object(...).field'.
See also: size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Return the number of elements in the object A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
size
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 797
-- Built-in Function: size (A)
-- Built-in Function: size (A, DIM)
Return the number of rows and columns of A.
With one input argument and one output argument, the result is returned in a row vector. If there are multiple output arguments, the number of rows is assigned to the first, and the number of columns to the second, etc. For example:
size ([1, 2; 3, 4; 5, 6])
=> [ 3, 2 ]
[nr, nc] = size ([1, 2; 3, 4; 5, 6])
=> nr = 3
=> nc = 2
If given a second argument, 'size' will return the size of the corresponding dimension. For example,
size ([1, 2; 3, 4; 5, 6], 2)
=> 2
returns the number of columns in the given matrix.
See also: numel, ndims, length, rows, columns.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return the number of rows and columns of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
size_equal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 262
-- Built-in Function: size_equal (A, B, ...)
Return true if the dimensions of all arguments agree.
Trailing singleton dimensions are ignored. When called with a single or no argument 'size_equal' returns true.
See also: size, numel, ndims.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if the dimensions of all arguments agree.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
nnz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
-- Built-in Function: N = nnz (A)
Return the number of nonzero elements in A.
See also: nzmax, nonzeros, find.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return the number of nonzero elements in A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
nzmax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 363
-- Built-in Function: N = nzmax (SM)
Return the amount of storage allocated to the sparse matrix SM.
Note that Octave tends to crop unused memory at the first opportunity for sparse objects. Thus, in general the value of 'nzmax' will be the same as 'nnz' except for some cases of user-created sparse objects.
See also: nnz, spalloc, sparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the amount of storage allocated to the sparse matrix SM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rows
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
-- Built-in Function: rows (A)
Return the number of rows of A.
See also: columns, size, length, numel, isscalar, isvector, ismatrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Return the number of rows of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
columns
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Built-in Function: columns (A)
Return the number of columns of A.
See also: rows, size, length, numel, isscalar, isvector, ismatrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the number of columns of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sum
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1058
-- Built-in Function: sum (X)
-- Built-in Function: sum (X, DIM)
-- Built-in Function: sum (..., "native")
-- Built-in Function: sum (..., "double")
-- Built-in Function: sum (..., "extra")
Sum of elements along dimension DIM.
If DIM is omitted, it defaults to the first non-singleton dimension.
The optional "type" input determines the class of the variable used for calculations. If the argument "native" is given, then the operation is performed in the same type as the original argument, rather than the default double type.
For example:
sum ([true, true])
=> 2
sum ([true, true], "native")
=> true
On the contrary, if "double" is given, the sum is performed in double precision even for single precision inputs.
For double precision inputs, the "extra" option will use a more accurate algorithm than straightforward summation. For single precision inputs, "extra" is the same as "double". Otherwise, "extra" has no effect.
See also: cumsum, sumsq, prod.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Sum of elements along dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sumsq
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
-- Built-in Function: sumsq (X)
-- Built-in Function: sumsq (X, DIM)
Sum of squares of elements along dimension DIM.
If DIM is omitted, it defaults to the first non-singleton dimension.
This function is conceptually equivalent to computing
sum (x .* conj (x), dim)
but it uses less memory and avoids calling 'conj' if X is real.
See also: sum, prod.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Sum of squares of elements along dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
islogical
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
-- Built-in Function: islogical (X)
-- Built-in Function: isbool (X)
Return true if X is a logical object.
See also: isfloat, isinteger, ischar, isnumeric, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return true if X is a logical object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isinteger
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
-- Built-in Function: isinteger (X)
Return true if X is an integer object (int8, uint8, int16, etc.).
Note that 'isinteger (14)' is false because numeric constants in Octave are double precision floating point values.
See also: isfloat, ischar, islogical, isnumeric, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return true if X is an integer object (int8, uint8, int16, etc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
iscomplex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
-- Built-in Function: iscomplex (X)
Return true if X is a complex-valued numeric object.
See also: isreal, isnumeric, islogical, ischar, isfloat, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return true if X is a complex-valued numeric object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isfloat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
-- Built-in Function: isfloat (X)
Return true if X is a floating-point numeric object.
Objects of class double or single are floating-point objects.
See also: isinteger, ischar, islogical, isnumeric, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return true if X is a floating-point numeric object.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
complex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 469
-- Built-in Function: complex (X)
-- Built-in Function: complex (RE, IM)
Return a complex value from real arguments.
With 1 real argument X, return the complex result 'X + 0i'.
With 2 real arguments, return the complex result 'RE + IM'. 'complex' can often be more convenient than expressions such as 'a + i*b'. For example:
complex ([1, 2], [3, 4])
=> [ 1 + 3i 2 + 4i ]
See also: real, imag, iscomplex, abs, arg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return a complex value from real arguments.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isreal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
-- Built-in Function: isreal (X)
Return true if X is a non-complex matrix or scalar.
For compatibility with MATLAB, this includes logical and character matrices.
See also: iscomplex, isnumeric, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return true if X is a non-complex matrix or scalar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isempty
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
-- Built-in Function: isempty (A)
Return true if A is an empty matrix (any one of its dimensions is zero).
See also: isnull, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return true if A is an empty matrix (any one of its dimensions is zero).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isnumeric
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 291
-- Built-in Function: isnumeric (X)
Return true if X is a numeric object, i.e., an integer, real, or complex array.
Logical and character arrays are not considered to be numeric.
See also: isinteger, isfloat, isreal, iscomplex, islogical, ischar, iscell, isstruct, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return true if X is a numeric object, i.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isscalar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
-- Built-in Function: isscalar (X)
Return true if X is a scalar.
See also: isvector, ismatrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Return true if X is a scalar.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isvector
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 268
-- Function File: isvector (X)
Return true if X is a vector.
A vector is a 2-D array where one of the dimensions is equal to 1. As a consequence a 1x1 array, or scalar, is also a vector.
See also: isscalar, ismatrix, size, rows, columns, length.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Return true if X is a vector.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isrow
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Function File: isrow (X)
Return true if X is a row vector 1xN with non-negative N.
See also: iscolumn, isscalar, isvector, ismatrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return true if X is a row vector 1xN with non-negative N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
iscolumn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 154
-- Function File: iscolumn (X)
Return true if X is a column vector Nx1 with non-negative N.
See also: isrow, isscalar, isvector, ismatrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return true if X is a column vector Nx1 with non-negative N.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ismatrix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
-- Built-in Function: ismatrix (A)
Return true if A is a 2-D array.
See also: isscalar, isvector, iscell, isstruct, issparse, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return true if A is a 2-D array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
issquare
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
-- Function File: issquare (X)
Return true if X is a square matrix.
See also: isscalar, isvector, ismatrix, size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return true if X is a square matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ones
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 788
-- Built-in Function: ones (N)
-- Built-in Function: ones (M, N)
-- Built-in Function: ones (M, N, K, ...)
-- Built-in Function: ones ([M N ...])
-- Built-in Function: ones (..., CLASS)
Return a matrix or N-dimensional array whose elements are all 1.
If invoked with a single scalar integer argument N, return a square NxN matrix.
If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with the given dimensions.
To create a constant matrix whose values are all the same use an expression such as
val_matrix = val * ones (m, n)
The optional argument CLASS specifies the class of the return array and defaults to double. For example:
val = ones (m,n, "uint8")
See also: zeros.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
zeros
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 659
-- Built-in Function: zeros (N)
-- Built-in Function: zeros (M, N)
-- Built-in Function: zeros (M, N, K, ...)
-- Built-in Function: zeros ([M N ...])
-- Built-in Function: zeros (..., CLASS)
Return a matrix or N-dimensional array whose elements are all 0.
If invoked with a single scalar integer argument, return a square NxN matrix.
If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with the given dimensions.
The optional argument CLASS specifies the class of the return array and defaults to double. For example:
val = zeros (m,n, "uint8")
See also: ones.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 0.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
Inf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1040
-- Built-in Function: Inf
-- Built-in Function: Inf (N)
-- Built-in Function: Inf (N, M)
-- Built-in Function: Inf (N, M, K, ...)
-- Built-in Function: Inf (..., CLASS)
Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.
Infinity is produced when results are too large to be represented using the IEEE floating point format for numbers. Two common examples which produce infinity are division by zero and overflow.
[ 1/0 e^800 ]
=> Inf Inf
When called with no arguments, return a scalar with the value 'Inf'.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: isinf, NaN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
NaN
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1232
-- Built-in Function: NaN
-- Built-in Function: NaN (N)
-- Built-in Function: NaN (N, M)
-- Built-in Function: NaN (N, M, K, ...)
-- Built-in Function: NaN (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number).
NaN is the result of operations which do not produce a well defined numerical result. Common operations which produce a NaN are arithmetic with infinity (Inf - Inf), zero divided by zero (0/0), and any operation involving another NaN value (5 + NaN).
Note that NaN always compares not equal to NaN (NaN != NaN). This behavior is specified by the IEEE standard for floating point arithmetic. To find NaN values, use the 'isnan' function.
When called with no arguments, return a scalar with the value 'NaN'.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: isnan, Inf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
e
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 829
-- Built-in Function: e
-- Built-in Function: e (N)
-- Built-in Function: e (N, M)
-- Built-in Function: e (N, M, K, ...)
-- Built-in Function: e (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms.
The constant 'e' satisfies the equation 'log' (e) = 1.
When called with no arguments, return a scalar with the value e.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: log, exp, pi, I.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
eps
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1094
-- Built-in Function: eps
-- Built-in Function: eps (X)
-- Built-in Function: eps (N, M)
-- Built-in Function: eps (N, M, K, ...)
-- Built-in Function: eps (..., CLASS)
Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision.
More precisely, 'eps' is the relative spacing between any two adjacent numbers in the machine's floating point system. This number is obviously system dependent. On machines that support IEEE floating point arithmetic, 'eps' is approximately 2.2204e-16 for double precision and 1.1921e-07 for single precision.
When called with no arguments, return a scalar with the value 'eps (1.0)'.
Given a single argument X, return the distance between X and the next largest value.
When called with more than one argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: realmax, realmin, intmax, bitmax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
pi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 852
-- Built-in Function: pi
-- Built-in Function: pi (N)
-- Built-in Function: pi (N, M)
-- Built-in Function: pi (N, M, K, ...)
-- Built-in Function: pi (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter.
Internally, 'pi' is computed as '4.0 * atan (1.0)'.
When called with no arguments, return a scalar with the value of pi.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: e, I.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
realmax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1054
-- Built-in Function: realmax
-- Built-in Function: realmax (N)
-- Built-in Function: realmax (N, M)
-- Built-in Function: realmax (N, M, K, ...)
-- Built-in Function: realmax (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the largest floating point number that is representable.
The actual value is system dependent. On machines that support IEEE floating point arithmetic, 'realmax' is approximately 1.7977e+308 for double precision and 3.4028e+38 for single precision.
When called with no arguments, return a scalar with the value 'realmax ("double")'.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: realmin, intmax, bitmax, eps.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the largest floating point number that is representable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
realmin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1058
-- Built-in Function: realmin
-- Built-in Function: realmin (N)
-- Built-in Function: realmin (N, M)
-- Built-in Function: realmin (N, M, K, ...)
-- Built-in Function: realmin (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable.
The actual value is system dependent. On machines that support IEEE floating point arithmetic, 'realmin' is approximately 2.2251e-308 for double precision and 1.1755e-38 for single precision.
When called with no arguments, return a scalar with the value 'realmin ("double")'.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: realmax, intmin, eps.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
I
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 930
-- Built-in Function: I
-- Built-in Function: I (N)
-- Built-in Function: I (N, M)
-- Built-in Function: I (N, M, K, ...)
-- Built-in Function: I (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as 'sqrt (-1)'.
I, and its equivalents i, j, and J, are functions so any of the names may be reused for other purposes (such as i for a counter variable).
When called with no arguments, return a scalar with the value i.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: e, pi, log, exp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as 'sqrt (-1)'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
NA
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 895
-- Built-in Function: NA
-- Built-in Function: NA (N)
-- Built-in Function: NA (N, M)
-- Built-in Function: NA (N, M, K, ...)
-- Built-in Function: NA (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.
Note that NA always compares not equal to NA (NA != NA). To find NA values, use the 'isna' function.
When called with no arguments, return a scalar with the value 'NA'.
When called with a single argument, return a square matrix with the dimension specified.
When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument CLASS specifies the return type and may be either "double" or "single".
See also: isna.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
false
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 448
-- Built-in Function: false (X)
-- Built-in Function: false (N, M)
-- Built-in Function: false (N, M, K, ...)
Return a matrix or N-dimensional array whose elements are all logical 0.
If invoked with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with given dimensions.
See also: true.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 0.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
true
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
-- Built-in Function: true (X)
-- Built-in Function: true (N, M)
-- Built-in Function: true (N, M, K, ...)
Return a matrix or N-dimensional array whose elements are all logical 1.
If invoked with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with given dimensions.
See also: false.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
eye
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1116
-- Built-in Function: eye (N)
-- Built-in Function: eye (M, N)
-- Built-in Function: eye ([M N])
-- Built-in Function: eye (..., CLASS)
Return an identity matrix.
If invoked with a single scalar argument N, return a square NxN identity matrix.
If supplied two scalar arguments (M, N), 'eye' takes them to be the number of rows and columns. If given a vector with two elements, 'eye' uses the values of the elements as the number of rows and columns, respectively. For example:
eye (3)
=> 1 0 0
0 1 0
0 0 1
The following expressions all produce the same result:
eye (2)
==
eye (2, 2)
==
eye (size ([1, 2; 3, 4]))
The optional argument CLASS, allows 'eye' to return an array of the specified type, like
val = zeros (n,m, "uint8")
Calling 'eye' with no arguments is equivalent to calling it with an argument of 1. Any negative dimensions are treated as zero. These odd definitions are for compatibility with MATLAB.
See also: speye, ones, zeros.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return an identity matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linspace
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 751
-- Built-in Function: linspace (BASE, LIMIT)
-- Built-in Function: linspace (BASE, LIMIT, N)
Return a row vector with N linearly spaced elements between BASE and LIMIT.
If the number of elements is greater than one, then the endpoints BASE and LIMIT are always included in the range. If BASE is greater than LIMIT, the elements are stored in decreasing order. If the number of points is not specified, a value of 100 is used.
The 'linspace' function always returns a row vector if both BASE and LIMIT are scalars. If one, or both, of them are column vectors, 'linspace' returns a matrix.
For compatibility with MATLAB, return the second argument (LIMIT) if fewer than two values are requested.
See also: logspace.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return a row vector with N linearly spaced elements between BASE and LIMIT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
resize
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1190
-- Built-in Function: resize (X, M)
-- Built-in Function: resize (X, M, N, ...)
-- Built-in Function: resize (X, [M N ...])
Resize X cutting off elements as necessary.
In the result, element with certain indices is equal to the corresponding element of X if the indices are within the bounds of X; otherwise, the element is set to zero.
In other words, the statement
y = resize (x, dv)
is equivalent to the following code:
y = zeros (dv, class (x));
sz = min (dv, size (x));
for i = 1:length (sz)
idx{i} = 1:sz(i);
endfor
y(idx{:}) = x(idx{:});
but is performed more efficiently.
If only M is supplied, and it is a scalar, the dimension of the result is M-by-M. If M, N, ... are all scalars, then the dimensions of the result are M-by-N-by-.... If given a vector as input, then the dimensions of the result are given by the elements of that vector.
An object can be resized to more dimensions than it has; in such case the missing dimensions are assumed to be 1. Resizing an object to fewer dimensions is not possible.
See also: reshape, postpad, prepad, cat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Resize X cutting off elements as necessary.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
reshape
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 980
-- Built-in Function: reshape (A, M, N, ...)
-- Built-in Function: reshape (A, [M N ...])
-- Built-in Function: reshape (A, ..., [], ...)
-- Built-in Function: reshape (A, SIZE)
Return a matrix with the specified dimensions (M, N, ...) whose elements are taken from the matrix A.
The elements of the matrix are accessed in column-major order (like Fortran arrays are stored).
The following code demonstrates reshaping a 1x4 row vector into a 2x2 square matrix.
reshape ([1, 2, 3, 4], 2, 2)
=> 1 3
2 4
Note that the total number of elements in the original matrix ('prod (size (A))') must match the total number of elements in the new matrix ('prod ([M N ...])').
A single dimension of the return matrix may be left unspecified and Octave will determine its size automatically. An empty matrix ([]) is used to flag the unspecified dimension.
See also: resize, vec, postpad, cat, squeeze.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return a matrix with the specified dimensions (M, N, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
vec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
-- Built-in Function: V = vec (X)
-- Built-in Function: V = vec (X, DIM)
Return the vector obtained by stacking the columns of the matrix X one above the other.
Without DIM this is equivalent to 'X(:)'.
If DIM is supplied, the dimensions of V are set to DIM with all elements along the last dimension. This is equivalent to 'shiftdim (X(:), 1-DIM)'.
See also: vech, resize, cat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Return the vector obtained by stacking the columns of the matrix X one above the other.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
squeeze
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
-- Built-in Function: squeeze (X)
Remove singleton dimensions from X and return the result.
Note that for compatibility with MATLAB, all objects have a minimum of two dimensions and row vectors are left unchanged.
See also: reshape.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Remove singleton dimensions from X and return the result.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
full
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 169
-- Built-in Function: FM = full (SM)
Return a full storage matrix from a sparse, diagonal, or permutation matrix, or a range.
See also: sparse, issparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Return a full storage matrix from a sparse, diagonal, or permutation matrix, or a range.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
norm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1332
-- Built-in Function: norm (A)
-- Built-in Function: norm (A, P)
-- Built-in Function: norm (A, P, OPT)
Compute the p-norm of the matrix A.
If the second argument is missing, 'p = 2' is assumed.
If A is a matrix (or sparse matrix):
P = '1'
1-norm, the largest column sum of the absolute values of A.
P = '2'
Largest singular value of A.
P = 'Inf' or "inf"
Infinity norm, the largest row sum of the absolute values of A.
P = "fro"
Frobenius norm of A, 'sqrt (sum (diag (A' * A)))'.
other P, 'P > 1'
maximum 'norm (A*x, p)' such that 'norm (x, p) == 1'
If A is a vector or a scalar:
P = 'Inf' or "inf"
'max (abs (A))'.
P = '-Inf'
'min (abs (A))'.
P = "fro"
Frobenius norm of A, 'sqrt (sumsq (abs (A)))'.
P = 0
Hamming norm - the number of nonzero elements.
other P, 'P > 1'
p-norm of A, '(sum (abs (A) .^ P)) ^ (1/P)'.
other P 'P < 1'
the p-pseudonorm defined as above.
If OPT is the value "rows", treat each row as a vector and compute its norm. The result is returned as a column vector. Similarly, if OPT is "columns" or "cols" then compute the norms of each column and return a row vector.
See also: cond, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Compute the p-norm of the matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
not
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
-- Built-in Function: Z = not (X)
Return the logical NOT of X.
This function is equivalent to the operator syntax '! x'.
See also: and, or, xor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Return the logical NOT of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
uplus
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
-- Built-in Function: uplus (X)
This function and + x are equivalent.
See also: uminus, plus, minus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
This function and + x are equivalent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uminus
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
-- Built-in Function: uminus (X)
This function and - x are equivalent.
See also: uplus, minus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
This function and - x are equivalent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
transpose
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
-- Built-in Function: transpose (X)
Return the transpose of X.
This function and x.' are equivalent.
See also: ctranspose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return the transpose of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ctranspose
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
-- Built-in Function: ctranspose (X)
Return the complex conjugate transpose of X.
This function and x' are equivalent.
See also: transpose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the complex conjugate transpose of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
plus
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 328
-- Built-in Function: plus (X, Y)
-- Built-in Function: plus (X1, X2, ...)
This function and x + y are equivalent.
If more arguments are given, the summation is applied cumulatively from left to right:
(...((x1 + x2) + x3) + ...)
At least one argument is required.
See also: minus, uplus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function and x + y are equivalent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
minus
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
-- Built-in Function: minus (X, Y)
This function and x - y are equivalent.
See also: plus, uminus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function and x - y are equivalent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mtimes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 433
-- Built-in Function: mtimes (X, Y)
-- Built-in Function: mtimes (X1, X2, ...)
Return the matrix multiplication product of inputs.
This function and x * y are equivalent. If more arguments are given, the multiplication is applied cumulatively from left to right:
(...((x1 * x2) * x3) * ...)
At least one argument is required.
See also: times, plus, minus, rdivide, mrdivide, mldivide, mpower.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return the matrix multiplication product of inputs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
mrdivide
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
-- Built-in Function: mrdivide (X, Y)
Return the matrix right division of X and Y.
This function and x / y are equivalent.
See also: mldivide, rdivide, plus, minus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the matrix right division of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mpower
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
-- Built-in Function: mpower (X, Y)
Return the matrix power operation of X raised to the Y power.
This function and x ^ y are equivalent.
See also: power, mtimes, plus, minus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return the matrix power operation of X raised to the Y power.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
mldivide
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
-- Built-in Function: mldivide (X, Y)
Return the matrix left division of X and Y.
This function and x \ y are equivalent.
See also: mrdivide, ldivide, rdivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return the matrix left division of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
lt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
-- Built-in Function: lt (X, Y)
This function is equivalent to 'x < y'.
See also: le, eq, ge, gt, ne.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function is equivalent to 'x < y'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
le
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
-- Built-in Function: le (X, Y)
This function is equivalent to 'x <= y'.
See also: eq, ge, gt, ne, lt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
This function is equivalent to 'x <= y'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
eq
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
-- Built-in Function: eq (X, Y)
Return true if the two inputs are equal.
This function is equivalent to 'x == y'.
See also: ne, isequal, le, ge, gt, ne, lt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return true if the two inputs are equal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
ge
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
-- Built-in Function: ge (X, Y)
This function is equivalent to 'x >= y'.
See also: le, eq, gt, ne, lt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
This function is equivalent to 'x >= y'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
gt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
-- Built-in Function: gt (X, Y)
This function is equivalent to 'x > y'.
See also: le, eq, ge, ne, lt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function is equivalent to 'x > y'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
ne
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
-- Built-in Function: ne (X, Y)
Return true if the two inputs are not equal.
This function is equivalent to 'x != y'.
See also: eq, isequal, le, ge, lt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return true if the two inputs are not equal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
times
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 407
-- Built-in Function: times (X, Y)
-- Built-in Function: times (X1, X2, ...)
Return the element-by-element multiplication product of inputs.
This function and x .* y are equivalent. If more arguments are given, the multiplication is applied cumulatively from left to right:
(...((x1 .* x2) .* x3) .* ...)
At least one argument is required.
See also: mtimes, rdivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the element-by-element multiplication product of inputs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rdivide
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
-- Built-in Function: rdivide (X, Y)
Return the element-by-element right division of X and Y.
This function and x ./ y are equivalent.
See also: ldivide, mrdivide, times, plus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the element-by-element right division of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
power
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 405
-- Built-in Function: power (X, Y)
Return the element-by-element operation of X raised to the Y power.
This function and x .^ y are equivalent.
If several complex results are possible, returns the one with smallest non-negative argument (angle). Use 'realpow', 'realsqrt', 'cbrt', or 'nthroot' if a real result is preferred.
See also: mpower, realpow, realsqrt, cbrt, nthroot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Return the element-by-element operation of X raised to the Y power.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ldivide
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
-- Built-in Function: ldivide (X, Y)
Return the element-by-element left division of X and Y.
This function and x .\ y are equivalent.
See also: rdivide, mldivide, times, plus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return the element-by-element left division of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
and
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 401
-- Built-in Function: Z = and (X, Y)
-- Built-in Function: Z = and (X1, X2, ...)
Return the logical AND of X and Y.
This function is equivalent to the operator syntax 'x & y'. If more than two arguments are given, the logical AND is applied cumulatively from left to right:
(...((x1 & x2) & x3) & ...)
At least one argument is required.
See also: or, not, xor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the logical AND of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
or
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 398
-- Built-in Function: Z = or (X, Y)
-- Built-in Function: Z = or (X1, X2, ...)
Return the logical OR of X and Y.
This function is equivalent to the operator syntax 'x | y'. If more than two arguments are given, the logical OR is applied cumulatively from left to right:
(...((x1 | x2) | x3) | ...)
At least one argument is required.
See also: and, not, xor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Return the logical OR of X and Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
colon
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 315
-- Built-in Function: R = colon (BASE, LIMIT)
-- Built-in Function: R = colon (BASE, INCREMENT, LIMIT)
Return the result of the colon expression corresponding to BASE, LIMIT, and optionally, INCREMENT.
This function is equivalent to the operator syntax 'base : limit' or 'base : increment : limit'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return the result of the colon expression corresponding to BASE, LIMIT, and optionally, INCREMENT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
tic
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1163
-- Built-in Function: tic ()
-- Built-in Function: ID = tic ()
-- Built-in Function: toc ()
-- Built-in Function: toc (ID)
-- Built-in Function: VAL = toc (...)
Set or check a wall-clock timer.
Calling 'tic' without an output argument sets the internal timer state. Subsequent calls to 'toc' return the number of seconds since the timer was set. For example,
tic ();
# many computations later...
elapsed_time = toc ();
will set the variable 'elapsed_time' to the number of seconds since the most recent call to the function 'tic'.
If called with one output argument, 'tic' returns a scalar of type 'uint64' that may be later passed to 'toc'.
id = tic; sleep (5); toc (id)
=> 5.0010
Calling 'tic' and 'toc' this way allows nested timing calls.
If you are more interested in the CPU time that your process used, you should use the 'cputime' function instead. The 'tic' and 'toc' functions report the actual wall clock time that elapsed between the calls. This may include time spent processing other jobs or doing nothing at all.
See also: toc, cputime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Set or check a wall-clock timer.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
toc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
-- Built-in Function: toc ()
-- Built-in Function: toc (ID)
-- Built-in Function: VAL = toc (...)
See also: tic, cputime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
See also: tic, cputime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cputime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 694
-- Built-in Function: [TOTAL, USER, SYSTEM] = cputime ();
Return the CPU time used by your Octave session.
The first output is the total time spent executing your process and is equal to the sum of second and third outputs, which are the number of CPU seconds spent executing in user mode and the number of CPU seconds spent executing in system mode, respectively.
If your system does not have a way to report CPU time usage, 'cputime' returns 0 for each of its output values.
Note that because Octave used some CPU time to start, it is reasonable to check to see if 'cputime' works by checking to see if the total CPU time used is nonzero.
See also: tic, toc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the CPU time used by your Octave session.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sort
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1822
-- Built-in Function: [S, I] = sort (X)
-- Built-in Function: [S, I] = sort (X, DIM)
-- Built-in Function: [S, I] = sort (X, MODE)
-- Built-in Function: [S, I] = sort (X, DIM, MODE)
Return a copy of X with the elements arranged in increasing order.
For matrices, 'sort' orders the elements within columns
For example:
sort ([1, 2; 2, 3; 3, 1])
=> 1 1
2 2
3 3
If the optional argument DIM is given, then the matrix is sorted along the dimension defined by DIM. The optional argument 'mode' defines the order in which the values will be sorted. Valid values of 'mode' are "ascend" or "descend".
The 'sort' function may also be used to produce a matrix containing the original row indices of the elements in the sorted matrix. For example:
[s, i] = sort ([1, 2; 2, 3; 3, 1])
=> s = 1 1
2 2
3 3
=> i = 1 3
2 1
3 2
For equal elements, the indices are such that equal elements are listed in the order in which they appeared in the original list.
Sorting of complex entries is done first by magnitude ('abs (Z)') and for any ties by phase angle ('angle (z)'). For example:
sort ([1+i; 1; 1-i])
=> 1 + 0i
1 - 1i
1 + 1i
NaN values are treated as being greater than any other value and are sorted to the end of the list.
The 'sort' function may also be used to sort strings and cell arrays of strings, in which case ASCII dictionary order (uppercase 'A' precedes lowercase 'a') of the strings is used.
The algorithm used in 'sort' is optimized for the sorting of partially ordered lists.
See also: sortrows, issorted.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Return a copy of X with the elements arranged in increasing order.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
issorted
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 573
-- Built-in Function: issorted (A)
-- Built-in Function: issorted (A, MODE)
-- Built-in Function: issorted (A, "rows", MODE)
Return true if the array is sorted according to MODE, which may be either "ascending", "descending", or "either".
By default, MODE is "ascending". NaNs are treated in the same manner as 'sort'.
If the optional argument "rows" is supplied, check whether the array is sorted by rows as output by the function 'sortrows' (with no options).
This function does not support sparse matrices.
See also: sort, sortrows.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Return true if the array is sorted according to MODE, which may be either "ascending", "descending", or "either".
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
nth_element
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 870
-- Built-in Function: nth_element (X, N)
-- Built-in Function: nth_element (X, N, DIM)
Select the n-th smallest element of a vector, using the ordering defined by 'sort'.
The result is equivalent to 'sort(X)(N)'.
N can also be a contiguous range, either ascending 'l:u' or descending 'u:-1:l', in which case a range of elements is returned.
If X is an array, 'nth_element' operates along the dimension defined by DIM, or the first non-singleton dimension if DIM is not given.
Programming Note: nth_element encapsulates the C++ standard library algorithms nth_element and partial_sort. On average, the complexity of the operation is O(M*log(K)), where 'M = size (X, DIM)' and 'K = length (N)'. This function is intended for cases where the ratio K/M is small; otherwise, it may be better to use 'sort'.
See also: sort, min, max.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Select the n-th smallest element of a vector, using the ordering defined by 'sort'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
merge
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 817
-- Built-in Function: merge (MASK, TVAL, FVAL)
-- Built-in Function: ifelse (MASK, TVAL, FVAL)
Merge elements of TRUE_VAL and FALSE_VAL, depending on the value of MASK.
If MASK is a logical scalar, the other two arguments can be arbitrary values. Otherwise, MASK must be a logical array, and TVAL, FVAL should be arrays of matching class, or cell arrays. In the scalar mask case, TVAL is returned if MASK is true, otherwise FVAL is returned.
In the array mask case, both TVAL and FVAL must be either scalars or arrays with dimensions equal to MASK. The result is constructed as follows:
result(mask) = tval(mask);
result(! mask) = fval(! mask);
MASK can also be arbitrary numeric type, in which case it is first converted to logical.
See also: logical, diff.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Merge elements of TRUE_VAL and FALSE_VAL, depending on the value of MASK.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
diff
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 945
-- Built-in Function: diff (X)
-- Built-in Function: diff (X, K)
-- Built-in Function: diff (X, K, DIM)
If X is a vector of length n, 'diff (X)' is the vector of first differences X(2) - X(1), ..., X(n) - X(n-1).
If X is a matrix, 'diff (X)' is the matrix of column differences along the first non-singleton dimension.
The second argument is optional. If supplied, 'diff (X, K)', where K is a non-negative integer, returns the K-th differences. It is possible that K is larger than the first non-singleton dimension of the matrix. In this case, 'diff' continues to take the differences along the next non-singleton dimension.
The dimension along which to take the difference can be explicitly stated with the optional variable DIM. In this case the K-th order differences are calculated along this dimension. In the case where K exceeds 'size (X, DIM)' an empty matrix is returned.
See also: sort, merge.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
If X is a vector of length n, 'diff (X)' is the vector of first differences X(2) - X(1), .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
repelems
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 705
-- Built-in Function: repelems (X, R)
Construct a vector of repeated elements from X.
R is a 2xN integer matrix specifying which elements to repeat and how often to repeat each element. Entries in the first row, R(1,j), select an element to repeat. The corresponding entry in the second row, R(2,j), specifies the repeat count. If X is a matrix then the columns of X are imagined to be stacked on top of each other for purposes of the selection index. A row vector is always returned.
Conceptually the result is calculated as follows:
y = [];
for i = 1:columns (R)
y = [y, X(R(1,i)*ones(1, R(2,i)))];
endfor
See also: repmat, cat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Construct a vector of repeated elements from X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
base64_encode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
-- Built-in Function: S = base64_encode (X)
Encode a double matrix or array X into the base64 format string S.
See also: base64_decode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Encode a double matrix or array X into the base64 format string S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
base64_decode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
-- Built-in Function: X = base64_decode (S)
-- Built-in Function: X = base64_decode (S, DIMS)
Decode the double matrix or array X from the base64 encoded string S.
The optional input parameter DIMS should be a vector containing the dimensions of the decoded array.
See also: base64_encode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Decode the double matrix or array X from the base64 encoded string S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbstop
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1260
-- Command: dbstop FUNC
-- Command: dbstop FUNC LINE
-- Command: dbstop FUNC LINE1 LINE2 ...
-- Command: dbstop LINE ...
-- Built-in Function: RLINE = dbstop ("FUNC")
-- Built-in Function: RLINE = dbstop ("FUNC", LINE)
-- Built-in Function: RLINE = dbstop ("FUNC", LINE1, LINE2, ...)
-- Built-in Function: dbstop ("FUNC", [LINE1, ...])
-- Built-in Function: dbstop (LINE, ...)
Set a breakpoint at line number LINE in function FUNC.
Arguments are
FUNC
Function name as a string variable. When already in debug mode this argument can be omitted and the current function will be used.
LINE
Line number where the breakpoint should be set. Multiple lines may be given as separate arguments or as a vector.
When called with a single argument FUNC, the breakpoint is set at the first executable line in the named function.
The optional output RLINE is the real line number where the breakpoint was set. This can differ from the specified line if the line is not executable. For example, if a breakpoint attempted on a blank line then Octave will set the real breakpoint at the next executable line.
See also: dbclear, dbstatus, dbstep, debug_on_error, debug_on_warning, debug_on_interrupt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Set a breakpoint at line number LINE in function FUNC.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dbclear
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1108
-- Command: dbclear FUNC
-- Command: dbclear FUNC LINE
-- Command: dbclear FUNC LINE1 LINE2 ...
-- Command: dbclear LINE ...
-- Command: dbclear all
-- Built-in Function: dbclear ("FUNC")
-- Built-in Function: dbclear ("FUNC", LINE)
-- Built-in Function: dbclear ("FUNC", LINE1, LINE2, ...)
-- Built-in Function: dbclear ("FUNC", [LINE1, ...])
-- Built-in Function: dbclear (LINE, ...)
-- Built-in Function: dbclear ("all")
Delete a breakpoint at line number LINE in the function FUNC.
Arguments are
FUNC
Function name as a string variable. When already in debug mode this argument can be omitted and the current function will be used.
LINE
Line number from which to remove a breakpoint. Multiple lines may be given as separate arguments or as a vector.
When called without a line number specification all breakpoints in the named function are cleared.
If the requested line is not a breakpoint no action is performed.
The special keyword "all" will clear all breakpoints from all files.
See also: dbstop, dbstatus, dbwhere.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Delete a breakpoint at line number LINE in the function FUNC.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dbstatus
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
-- Built-in Function: dbstatus ()
-- Built-in Function: BRK_LIST = dbstatus ()
-- Built-in Function: BRK_LIST = dbstatus ("FUNC")
Report the location of active breakpoints.
When called with no input or output arguments, print the list of all functions with breakpoints and the line numbers where those breakpoints are set.
If a function name FUNC is specified then only report breakpoints for the named function.
The optional return argument BRK_LIST is a struct array with the following fields.
name
The name of the function with a breakpoint.
file
The name of the m-file where the function code is located.
line
A line number, or vector of line numbers, with a breakpoint.
Note: When 'dbstatus' is called from the debug prompt within a function, the list of breakpoints is automatically trimmed to the breakpoints in the current function.
See also: dbclear, dbwhere.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Report the location of active breakpoints.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dbwhere
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
-- Command: dbwhere
In debugging mode, report the current file and line number where execution is stopped.
See also: dbstatus, dbcont, dbstep, dbup.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
In debugging mode, report the current file and line number where execution is stopped.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbtype
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 706
-- Command: dbtype
-- Command: dbtype LINENO
-- Command: dbtype STARTL:ENDL
-- Command: dbtype STARTL:END
-- Command: dbtype FUNC
-- Command: dbtype FUNC LINENO
-- Command: dbtype FUNC STARTL:ENDL
-- Command: dbtype FUNC STARTL:END
Display a script file with line numbers.
When called with no arguments in debugging mode, display the script file currently being debugged.
An optional range specification can be used to list only a portion of the file. The special keyword "end" is a valid line number specification for the last line of the file.
When called with the name of a function, list that script file with line numbers.
See also: dbwhere, dbstatus, dbstop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Display a script file with line numbers.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dblist
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 247
-- Command: dblist
-- Command: dblist N
In debugging mode, list N lines of the function being debugged centered around the current line to be executed.
If unspecified N defaults to 10 (+/- 5 lines)
See also: dbwhere, dbtype.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
In debugging mode, list N lines of the function being debugged centered around the current line to be executed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dbstack
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1065
-- Command: dbstack
-- Command: dbstack N
-- Command: dbstack -COMPLETENAMES
-- Built-in Function: [STACK, IDX] = dbstack (...)
Display or return current debugging function stack information.
With optional argument N, omit the N innermost stack frames.
Although accepted, the argument -COMPLETENAMES is silently ignored. Octave always returns absolute file names.
The arguments N and -COMPLETENAMES can be both specified in any order.
The optional return argument STACK is a struct array with the following fields:
file
The name of the m-file where the function code is located.
name
The name of the function with a breakpoint.
line
The line number of an active breakpoint.
column
The column number of the line where the breakpoint begins.
scope
Undocumented.
context
Undocumented.
The return argument IDX specifies which element of the STACK struct array is currently active.
See also: dbup, dbdown, dbwhere, dbstatus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Display or return current debugging function stack information.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dbup
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
-- Command: dbup
-- Command: dbup N
In debugging mode, move up the execution stack N frames.
If N is omitted, move up one frame.
See also: dbstack, dbdown.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
In debugging mode, move up the execution stack N frames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbdown
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
-- Command: dbdown
-- Command: dbdown N
In debugging mode, move down the execution stack N frames.
If N is omitted, move down one frame.
See also: dbstack, dbup.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
In debugging mode, move down the execution stack N frames.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbstep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 614
-- Command: dbstep
-- Command: dbstep N
-- Command: dbstep in
-- Command: dbstep out
-- Command: dbnext ...
In debugging mode, execute the next N lines of code.
If N is omitted, execute the next single line of code. If the next line of code is itself defined in terms of an m-file remain in the existing function.
Using 'dbstep in' will cause execution of the next line to step into any m-files defined on the next line.
Using 'dbstep out' will cause execution to continue until the current function returns.
'dbnext' is an alias for 'dbstep'.
See also: dbcont, dbquit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
In debugging mode, execute the next N lines of code.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbcont
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
-- Command: dbcont
Leave command-line debugging mode and continue code execution normally.
See also: dbstep, dbquit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Leave command-line debugging mode and continue code execution normally.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbquit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
-- Command: dbquit
Quit debugging mode immediately without further code execution and return to the Octave prompt.
See also: dbcont, dbstep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Quit debugging mode immediately without further code execution and return to the Octave prompt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
isdebugmode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
-- Built-in Function: isdebugmode ()
Return true if in debugging mode, otherwise false.
See also: dbwhere, dbstack, dbstatus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if in debugging mode, otherwise false.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
EDITOR
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 644
-- Built-in Function: VAL = EDITOR ()
-- Built-in Function: OLD_VAL = EDITOR (NEW_VAL)
-- Built-in Function: EDITOR (NEW_VAL, "local")
Query or set the internal variable that specifies the default text editor.
The default value is taken from the environment variable 'EDITOR' when Octave starts. If the environment variable is not initialized, 'EDITOR' will be set to "emacs".
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: edit, edit_history.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Query or set the internal variable that specifies the default text editor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
EXEC_PATH
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 727
-- Built-in Function: VAL = EXEC_PATH ()
-- Built-in Function: OLD_VAL = EXEC_PATH (NEW_VAL)
-- Built-in Function: EXEC_PATH (NEW_VAL, "local")
Query or set the internal variable that specifies a colon separated list of directories to append to the shell PATH when executing external programs.
The initial value of is taken from the environment variable 'OCTAVE_EXEC_PATH', but that value can be overridden by the command line argument '--exec-path PATH'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: IMAGE_PATH, OCTAVE_HOME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
Query or set the internal variable that specifies a colon separated list of directories to append to the shell PATH when executing external programs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
IMAGE_PATH
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 535
-- Built-in Function: VAL = IMAGE_PATH ()
-- Built-in Function: OLD_VAL = IMAGE_PATH (NEW_VAL)
-- Built-in Function: IMAGE_PATH (NEW_VAL, "local")
Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: EXEC_PATH, OCTAVE_HOME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
OCTAVE_HOME
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
-- Built-in Function: OCTAVE_HOME ()
Return the name of the top-level Octave installation directory.
See also: EXEC_PATH, IMAGE_PATH.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the name of the top-level Octave installation directory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
OCTAVE_VERSION
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
-- Built-in Function: OCTAVE_VERSION ()
Return the version number of Octave as a string.
See also: ver, version.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the version number of Octave as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
det
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 507
-- Built-in Function: det (A)
-- Built-in Function: [D, RCOND] = det (A)
Compute the determinant of A.
Return an estimate of the reciprocal condition number if requested.
Programming Notes: Routines from LAPACK are used for full matrices and code from UMFPACK is used for sparse matrices.
The determinant should not be used to check a matrix for singularity. For that, use any of the condition number functions: 'cond', 'condest', 'rcond'.
See also: cond, condest, rcond.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Compute the determinant of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
cd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 736
-- Command: cd DIR
-- Command: cd
-- Built-in Function: OLD_DIR = cd (DIR)
-- Command: chdir ...
Change the current working directory to DIR.
If DIR is omitted, the current directory is changed to the user's home directory ("~").
For example,
cd ~/octave
changes the current working directory to '~/octave'. If the directory does not exist, an error message is printed and the working directory is not changed.
'chdir' is an alias for 'cd' and can be used in all of the same calling formats.
Compatibility Note: When called with no arguments, MATLAB prints the present working directory rather than changing to the user's home directory.
See also: pwd, mkdir, rmdir, dir, ls.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Change the current working directory to DIR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pwd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
-- Built-in Function: pwd ()
-- Built-in Function: DIR = pwd ()
Return the current working directory.
See also: cd, dir, ls, mkdir, rmdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the current working directory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
readdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 416
-- Built-in Function: FILES = readdir (DIR)
-- Built-in Function: [FILES, ERR, MSG] = readdir (DIR)
Return the names of files in the directory DIR as a cell array of strings.
If an error occurs, return an empty cell array in FILES. If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: ls, dir, glob, what.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return the names of files in the directory DIR as a cell array of strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
mkdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 594
-- Built-in Function: mkdir DIR
-- Built-in Function: mkdir (PARENT, DIR)
-- Built-in Function: [STATUS, MSG, MSGID] = mkdir (...)
Create a directory named DIR in the directory PARENT.
If no PARENT directory is specified the present working directory is used.
If successful, STATUS is 1, and MSG, MSGID are empty character strings (""). Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.
When creating a directory permissions will be set to '0777 - UMASK'.
See also: rmdir, pwd, cd, umask.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Create a directory named DIR in the directory PARENT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rmdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 541
-- Built-in Function: rmdir DIR
-- Built-in Function: rmdir (DIR, "s")
-- Built-in Function: [STATUS, MSG, MSGID] = rmdir (...)
Remove the directory named DIR.
If the optional second parameter is supplied with value "s", recursively remove all subdirectories as well.
If successful, STATUS is 1, and MSG, MSGID are empty character strings (""). Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.
See also: mkdir, confirm_recursive_rmdir, pwd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Remove the directory named DIR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
link
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
-- Built-in Function: link OLD NEW
-- Built-in Function: [ERR, MSG] = link (OLD, NEW)
Create a new link (also known as a hard link) to an existing file.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: symlink, unlink, readlink, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Create a new link (also known as a hard link) to an existing file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
symlink
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 343
-- Built-in Function: symlink OLD NEW
-- Built-in Function: [ERR, MSG] = symlink (OLD, NEW)
Create a symbolic link NEW which contains the string OLD.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: link, unlink, readlink, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Create a symbolic link NEW which contains the string OLD.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
readlink
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 406
-- Built-in Function: readlink SYMLINK
-- Built-in Function: [RESULT, ERR, MSG] = readlink (SYMLINK)
Read the value of the symbolic link SYMLINK.
If successful, RESULT contains the contents of the symbolic link SYMLINK, ERR is 0, and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: lstat, symlink, link, unlink, delete.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Read the value of the symbolic link SYMLINK.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rename
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 317
-- Built-in Function: rename OLD NEW
-- Built-in Function: [ERR, MSG] = rename (OLD, NEW)
Change the name of file OLD to NEW.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: movefile, copyfile, ls, dir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Change the name of file OLD to NEW.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
glob
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1182
-- Built-in Function: glob (PATTERN)
Given an array of pattern strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match.
The pattern strings are interpreted as filename globbing patterns (as they are used by Unix shells).
Within a pattern
'*'
matches any string, including the null string,
'?'
matches any single character, and
'[...]'
matches any of the enclosed characters.
Tilde expansion is performed on each of the patterns before looking for matching file names. For example:
ls
=>
file1 file2 file3 myfile1 myfile1b
glob ("*file1")
=>
{
[1,1] = file1
[2,1] = myfile1
}
glob ("myfile?")
=>
{
[1,1] = myfile1
}
glob ("file[12]")
=>
{
[1,1] = file1
[2,1] = file2
}
See also: ls, dir, readdir, what.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 182
Given an array of pattern strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
filesep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 434
-- Built-in Function: filesep ()
-- Built-in Function: filesep ("all")
Return the system-dependent character used to separate directory names.
If "all" is given, the function returns all valid file separators in the form of a string. The list of file separators is system-dependent. It is '/' (forward slash) under UNIX or Mac OS X, '/' and '\' (forward and backward slashes) under Windows.
See also: pathsep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Return the system-dependent character used to separate directory names.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
pathsep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
-- Built-in Function: VAL = pathsep ()
-- Built-in Function: OLD_VAL = pathsep (NEW_VAL)
Query or set the character used to separate directories in a path.
See also: filesep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Query or set the character used to separate directories in a path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
confirm_recursive_rmdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 569
-- Built-in Function: VAL = confirm_recursive_rmdir ()
-- Built-in Function: OLD_VAL = confirm_recursive_rmdir (NEW_VAL)
-- Built-in Function: confirm_recursive_rmdir (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: rmdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dlmread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1298
-- Built-in Function: DATA = dlmread (FILE)
-- Built-in Function: DATA = dlmread (FILE, SEP)
-- Built-in Function: DATA = dlmread (FILE, SEP, R0, C0)
-- Built-in Function: DATA = dlmread (FILE, SEP, RANGE)
-- Built-in Function: DATA = dlmread (..., "emptyvalue", EMPTYVAL)
Read the matrix DATA from a text file which uses the delimiter SEP between data values.
If SEP is not defined the separator between fields is determined from the file itself.
Given two scalar arguments R0 and C0, these define the starting row and column of the data to be read. These values are indexed from zero, such that the first row corresponds to an index of zero.
The RANGE parameter may be a 4-element vector containing the upper left and lower right corner '[R0,C0,R1,C1]' where the lowest index value is zero. Alternatively, a spreadsheet style range such as "A2..Q15" or "T1:AA5" can be used. The lowest alphabetical index 'A' refers to the first column. The lowest row index is 1.
FILE should be a file name or file id given by 'fopen'. In the latter case, the file is read until end of file is reached.
The "emptyvalue" option may be used to specify the value used to fill empty fields. The default is zero.
See also: csvread, textscan, textread, dlmwrite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Read the matrix DATA from a text file which uses the delimiter SEP between data values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
dot
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 495
-- Built-in Function: dot (X, Y, DIM)
Compute the dot product of two vectors.
If X and Y are matrices, calculate the dot products along the first non-singleton dimension.
If the optional argument DIM is given, calculate the dot products along this dimension.
This is equivalent to 'sum (conj (X) .* Y, DIM)', but avoids forming a temporary array and is faster. When X and Y are column vectors, the result is equivalent to 'X' * Y'.
See also: cross, divergence.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Compute the dot product of two vectors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
blkmm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 406
-- Built-in Function: blkmm (A, B)
Compute products of matrix blocks.
The blocks are given as 2-dimensional subarrays of the arrays A, B. The size of A must have the form '[m,k,...]' and size of B must be '[k,n,...]'. The result is then of size '[m,n,...]' and is computed as follows:
for i = 1:prod (size (A)(3:end))
C(:,:,i) = A(:,:,i) * B(:,:,i)
endfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Compute products of matrix blocks.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
eig
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
-- Built-in Function: LAMBDA = eig (A)
-- Built-in Function: LAMBDA = eig (A, B)
-- Built-in Function: [V, LAMBDA] = eig (A)
-- Built-in Function: [V, LAMBDA] = eig (A, B)
Compute the eigenvalues (and optionally the eigenvectors) of a matrix or a pair of matrices
The algorithm used depends on whether there are one or two input matrices, if they are real or complex, and if they are symmetric (Hermitian if complex) or non-symmetric.
The eigenvalues returned by 'eig' are not ordered.
See also: eigs, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Compute the eigenvalues (and optionally the eigenvectors) of a matrix or a pair of matrices
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ellipj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
-- Built-in Function: [SN, CN, DN, ERR] = ellipj (U, M)
-- Built-in Function: [SN, CN, DN, ERR] = ellipj (U, M, TOL)
Compute the Jacobi elliptic functions SN, CN, and DN of complex argument U and real parameter M.
If M is a scalar, the results are the same size as U. If U is a scalar, the results are the same size as M. If U is a column vector and M is a row vector, the results are matrices with 'length (U)' rows and 'length (M)' columns. Otherwise, U and M must conform in size and the results will be the same size as the inputs.
The value of U may be complex. The value of M must be 0 <= M <= 1.
The optional input TOL is currently ignored (MATLAB uses this to allow faster, less accurate approximation).
If requested, ERR contains the following status information and is the same size as the result.
0. Normal return.
1. Error--no computation, algorithm termination condition not met, return 'NaN'.
Reference: Milton Abramowitz and Irene A Stegun, 'Handbook of Mathematical Functions', Chapter 16 (Sections 16.4, 16.13, and 16.15), Dover, 1965.
See also: ellipke.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Compute the Jacobi elliptic functions SN, CN, and DN of complex argument U and real parameter M.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rethrow
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 367
-- Built-in Function: rethrow (ERR)
Reissue a previous error as defined by ERR.
ERR is a structure that must contain at least the "message" and "identifier" fields. ERR can also contain a field "stack" that gives information on the assumed location of the error. Typically ERR is returned from 'lasterror'.
See also: lasterror, lasterr, error.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Reissue a previous error as defined by ERR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
error
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2695
-- Built-in Function: error (TEMPLATE, ...)
-- Built-in Function: error (ID, TEMPLATE, ...)
Display an error message and stop m-file execution.
Format the optional arguments under the control of the template string TEMPLATE using the same rules as the 'printf' family of functions (*note Formatted Output::) and print the resulting message on the 'stderr' stream. The message is prefixed by the character string 'error: '.
Calling 'error' also sets Octave's internal error state such that control will return to the top level without evaluating any further commands. This is useful for aborting from functions or scripts.
If the error message does not end with a newline character, Octave will print a traceback of all the function calls leading to the error. For example, given the following function definitions:
function f () g (); end
function g () h (); end
function h () nargin == 1 || error ("nargin != 1"); end
calling the function 'f' will result in a list of messages that can help you to quickly locate the exact location of the error:
f ()
error: nargin != 1
error: called from:
error: error at line -1, column -1
error: h at line 1, column 27
error: g at line 1, column 15
error: f at line 1, column 15
If the error message ends in a newline character, Octave will print the message but will not display any traceback messages as it returns control to the top level. For example, modifying the error message in the previous example to end in a newline causes Octave to only print a single message:
function h () nargin == 1 || error ("nargin != 1\n"); end
f ()
error: nargin != 1
A null string ("") input to 'error' will be ignored and the code will continue running as if the statement were a NOP. This is for compatibility with MATLAB. It also makes it possible to write code such as
err_msg = "";
if (CONDITION 1)
err_msg = "CONDITION 1 found";
elseif (CONDITION2)
err_msg = "CONDITION 2 found";
...
endif
error (err_msg);
which will only stop execution if an error has been found.
Implementation Note: For compatibility with MATLAB, escape sequences in TEMPLATE (e.g., "\n" => newline) are processed regardless of whether TEMPLATE has been defined with single quotes, as long as there are two or more input arguments. To disable escape sequence expansion use a second backslash before the sequence (e.g., "\\n") or use the 'regexptranslate' function.
See also: warning, lasterror.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Display an error message and stop m-file execution.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
warning
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2733
-- Built-in Function: warning (TEMPLATE, ...)
-- Built-in Function: warning (ID, TEMPLATE, ...)
-- Built-in Function: warning ("on", ID)
-- Built-in Function: warning ("off", ID)
-- Built-in Function: warning ("query", ID)
-- Built-in Function: warning ("error", ID)
-- Built-in Function: warning (STATE, "backtrace")
-- Built-in Function: warning (STATE, ID, "local")
Display a warning message or control the behavior of Octave's warning system.
Format the optional arguments under the control of the template string TEMPLATE using the same rules as the 'printf' family of functions (*note Formatted Output::) and print the resulting message on the 'stderr' stream. The message is prefixed by the character string 'warning: '. You should use this function when you want to notify the user of an unusual condition, but only when it makes sense for your program to go on.
The optional message identifier allows users to enable or disable warnings tagged by ID. A message identifier is of the form "NAMESPACE:WARNING-NAME". Octave's own warnings use the "Octave" namespace (*note XREFwarning_ids::). The special identifier "all" may be used to set the state of all warnings.
If the first argument is "on" or "off", set the state of a particular warning using the identifier ID. If the first argument is "query", query the state of this warning instead. If the identifier is omitted, a value of "all" is assumed. If you set the state of a warning to "error", the warning named by ID is handled as if it were an error instead. So, for example, the following handles all warnings as errors:
warning ("error");
If the state is "on" or "off" and the third argument is "backtrace", then a stack trace is printed along with the warning message when warnings occur inside function calls. This option is enabled by default.
If the state is "on", "off", or "error" and the third argument is "local", then the warning state will be set temporarily, until the end of the current function. Changes to warning states that are set locally affect the current function and all functions called from the current scope. The previous warning state is restored on return from the current function. The "local" option is ignored if used in the top-level workspace.
Implementation Note: For compatibility with MATLAB, escape sequences in TEMPLATE (e.g., "\n" => newline) are processed regardless of whether TEMPLATE has been defined with single quotes, as long as there are two or more input arguments. To disable escape sequence expansion use a second backslash before the sequence (e.g., "\\n") or use the 'regexptranslate' function.
See also: warning_ids, lastwarn, error.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Display a warning message or control the behavior of Octave's warning system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
lasterror
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1374
-- Built-in Function: LASTERR = lasterror ()
-- Built-in Function: lasterror (ERR)
-- Built-in Function: lasterror ("reset")
Query or set the last error message structure.
When called without arguments, return a structure containing the last error message and other information related to this error. The elements of the structure are:
'message'
The text of the last error message
'identifier'
The message identifier of this error message
'stack'
A structure containing information on where the message occurred. This may be an empty structure if the information cannot be obtained. The fields of the structure are:
'file'
The name of the file where the error occurred
'name'
The name of function in which the error occurred
'line'
The line number at which the error occurred
'column'
An optional field with the column number at which the error occurred
The last error structure may be set by passing a scalar structure, ERR, as input. Any fields of ERR that match those above are set while any unspecified fields are initialized with default values.
If 'lasterror' is called with the argument "reset", all fields are set to their default values.
See also: lasterr, error, lastwarn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set the last error message structure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lasterr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 440
-- Built-in Function: [MSG, MSGID] = lasterr ()
-- Built-in Function: lasterr (MSG)
-- Built-in Function: lasterr (MSG, MSGID)
Query or set the last error message.
When called without input arguments, return the last error message and message identifier.
With one argument, set the last error message to MSG.
With two arguments, also set the last message identifier.
See also: lasterror, error, lastwarn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Query or set the last error message.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
lastwarn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 450
-- Built-in Function: [MSG, MSGID] = lastwarn ()
-- Built-in Function: lastwarn (MSG)
-- Built-in Function: lastwarn (MSG, MSGID)
Query or set the last warning message.
When called without input arguments, return the last warning message and message identifier.
With one argument, set the last warning message to MSG.
With two arguments, also set the last message identifier.
See also: warning, lasterror, lasterr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Query or set the last warning message.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
beep_on_error
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 513
-- Built-in Function: VAL = beep_on_error ()
-- Built-in Function: OLD_VAL = beep_on_error (NEW_VAL)
-- Built-in Function: beep_on_error (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
debug_on_error
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 681
-- Built-in Function: VAL = debug_on_error ()
-- Built-in Function: OLD_VAL = debug_on_error (NEW_VAL)
-- Built-in Function: debug_on_error (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered.
This will also inhibit printing of the normal traceback message (you will only see the top-level error message).
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: debug_on_warning, debug_on_interrupt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
debug_on_warning
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 567
-- Built-in Function: VAL = debug_on_warning ()
-- Built-in Function: OLD_VAL = debug_on_warning (NEW_VAL)
-- Built-in Function: debug_on_warning (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: debug_on_error, debug_on_interrupt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
fft
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 919
-- Built-in Function: fft (X)
-- Built-in Function: fft (X, N)
-- Built-in Function: fft (X, N, DIM)
Compute the discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
The FFT is calculated along the first non-singleton dimension of the array. Thus if X is a matrix, 'fft (X)' computes the FFT for each column of X.
If called with two arguments, N is expected to be an integer specifying the number of elements of X to use, or an empty matrix to specify that its value should be ignored. If N is larger than the dimension along which the FFT is calculated, then X is resized and padded with zeros. Otherwise, if N is smaller than the dimension along which the FFT is calculated, then X is truncated.
If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the FFT is performed
See also: ifft, fft2, fftn, fftw.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Compute the discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ifft
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 971
-- Built-in Function: ifft (X)
-- Built-in Function: ifft (X, N)
-- Built-in Function: ifft (X, N, DIM)
Compute the inverse discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
The inverse FFT is calculated along the first non-singleton dimension of the array. Thus if X is a matrix, 'fft (X)' computes the inverse FFT for each column of X.
If called with two arguments, N is expected to be an integer specifying the number of elements of X to use, or an empty matrix to specify that its value should be ignored. If N is larger than the dimension along which the inverse FFT is calculated, then X is resized and padded with zeros. Otherwise, if N is smaller than the dimension along which the inverse FFT is calculated, then X is truncated.
If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the inverse FFT is performed
See also: fft, ifft2, ifftn, fftw.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Compute the inverse discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fft2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
-- Built-in Function: fft2 (A)
-- Built-in Function: fft2 (A, M, N)
Compute the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
The optional arguments M and N may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros.
If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately.
See also: ifft2, fft, fftn, fftw.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Compute the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ifft2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 525
-- Built-in Function: ifft2 (A)
-- Built-in Function: ifft2 (A, M, N)
Compute the inverse two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
The optional arguments M and N may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros.
If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately
See also: fft2, ifft, ifftn, fftw.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Compute the inverse two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fftn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 581
-- Built-in Function: fftn (A)
-- Built-in Function: fftn (A, SIZE)
Compute the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the FFT. Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros.
See also: ifftn, fft, fft2, fftw.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Compute the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ifftn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 600
-- Built-in Function: ifftn (A)
-- Built-in Function: ifftn (A, SIZE)
Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the inverse FFT. Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros.
See also: fftn, ifft, ifft2, fftw.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fclose
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 583
-- Built-in Function: fclose (FID)
-- Built-in Function: fclose ("all")
-- Built-in Function: STATUS = fclose ("all")
Close the file specified by the file descriptor FID.
If successful, 'fclose' returns 0, otherwise, it returns -1. The second form of the 'fclose' call closes all open files except 'stdout', 'stderr', and 'stdin'.
Programming Note: When using "all" the file descriptors associated with gnuplot will also be closed. This will prevent further plotting with gnuplot until Octave is closed and restarted.
See also: fopen, fflush, freport.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Close the file specified by the file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fclear
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
-- Built-in Function: fclear (FID)
Clear the stream state for the file specified by the file descriptor FID.
See also: ferror, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Clear the stream state for the file specified by the file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fflush
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 437
-- Built-in Function: fflush (FID)
Flush output to file descriptor FID.
'fflush' returns 0 on success and an OS dependent error value (-1 on Unix) on error.
Programming Note: Flushing is useful for ensuring that all pending output makes it to the screen before some other event occurs. For example, it is always a good idea to flush the standard output stream before calling 'input'.
See also: fopen, fclose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Flush output to file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fgetl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 540
-- Built-in Function: STR = fgetl (FID)
-- Built-in Function: STR = fgetl (FID, LEN)
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.
The characters read, excluding the possible trailing newline, are returned as a string.
If LEN is omitted, 'fgetl' reads until the next newline character.
If there are no more characters to read, 'fgetl' returns -1.
To read a line and return the terminating newline see 'fgets'.
See also: fgets, fscanf, fread, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fgets
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 548
-- Built-in Function: STR = fgets (FID)
-- Built-in Function: STR = fgets (FID, LEN)
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.
The characters read, including the possible trailing newline, are returned as a string.
If LEN is omitted, 'fgets' reads until the next newline character.
If there are no more characters to read, 'fgets' returns -1.
To read a line and discard the terminating newline see 'fgetl'.
See also: fputs, fgetl, fscanf, fread, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fskipl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 688
-- Built-in Function: NLINES = fskipl (FID)
-- Built-in Function: NLINES = fskipl (FID, COUNT)
-- Built-in Function: NLINES = fskipl (FID, Inf)
Read and skip COUNT lines from the file specified by the file descriptor FID.
'fskipl' discards characters until an end-of-line is encountered exactly COUNT-times, or until the end-of-file marker is found.
If COUNT is omitted, it defaults to 1. COUNT may also be 'Inf', in which case lines are skipped until the end of the file. This form is suitable for counting the number of lines in a file.
Returns the number of lines skipped (end-of-line sequences encountered).
See also: fgetl, fgets, fscanf, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Read and skip COUNT lines from the file specified by the file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fopen
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3409
-- Built-in Function: FID = fopen (NAME)
-- Built-in Function: FID = fopen (NAME, MODE)
-- Built-in Function: FID = fopen (NAME, MODE, ARCH)
-- Built-in Function: [FID, MSG] = fopen (...)
-- Built-in Function: FID_LIST = fopen ("all")
-- Built-in Function: [FILE, MODE, ARCH] = fopen (FID)
Open a file for low-level I/O or query open files and file descriptors.
The first form of the 'fopen' function opens the named file with the specified mode (read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE little endian, etc.), and returns an integer value that may be used to refer to the file later. If an error occurs, FID is set to -1 and MSG contains the corresponding system error message. The MODE is a one or two character string that specifies whether the file is to be opened for reading, writing, or both.
The second form of the 'fopen' function returns a vector of file ids corresponding to all the currently open files, excluding the 'stdin', 'stdout', and 'stderr' streams.
The third form of the 'fopen' function returns information about the open file given its file id.
For example,
myfile = fopen ("splat.dat", "r", "ieee-le");
opens the file 'splat.dat' for reading. If necessary, binary numeric values will be read assuming they are stored in IEEE format with the least significant bit first, and then converted to the native representation.
Opening a file that is already open simply opens it again and returns a separate file id. It is not an error to open a file several times, though writing to the same file through several different file ids may produce unexpected results.
The possible values 'mode' may have are
'r' (default)
Open a file for reading.
'w'
Open a file for writing. The previous contents are discarded.
'a'
Open or create a file for writing at the end of the file.
'r+'
Open an existing file for reading and writing.
'w+'
Open a file for reading or writing. The previous contents are discarded.
'a+'
Open or create a file for reading or writing at the end of the file.
Append a "t" to the mode string to open the file in text mode or a "b" to open in binary mode. On Windows and Macintosh systems, text mode reading and writing automatically converts linefeeds to the appropriate line end character for the system (carriage-return linefeed on Windows, carriage-return on Macintosh). The default when no mode is specified is binary mode.
Additionally, you may append a "z" to the mode string to open a gzipped file for reading or writing. For this to be successful, you must also open the file in binary mode.
The parameter ARCH is a string specifying the default data format for the file. Valid values for ARCH are:
'native (default)'
The format of the current machine.
'ieee-be'
IEEE big endian format.
'ieee-le'
IEEE little endian format.
however, conversions are currently only supported for 'native' 'ieee-be', and 'ieee-le' formats.
When opening a new file that does not yet exist, permissions will be set to '0666 - UMASK'.
See also: fclose, fgets, fgetl, fscanf, fread, fputs, fdisp, fprintf, fwrite, fskipl, fseek, frewind, ftell, feof, ferror, fclear, fflush, freport, umask.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Open a file for low-level I/O or query open files and file descriptors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
freport
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
-- Built-in Function: freport ()
Print a list of which files have been opened, and whether they are open for reading, writing, or both.
For example:
freport ()
-| number mode arch name
-| ------ ---- ---- ----
-| 0 r ieee-le stdin
-| 1 w ieee-le stdout
-| 2 w ieee-le stderr
-| 3 r ieee-le myfile
See also: fopen, fclose, is_valid_file_id.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Print a list of which files have been opened, and whether they are open for reading, writing, or both.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
frewind
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
-- Built-in Function: frewind (FID)
-- Built-in Function: STATUS = frewind (FID)
Move the file pointer to the beginning of the file specified by file descriptor FID.
'frewind' returns 0 for success, and -1 if an error is encountered. It is equivalent to 'fseek (FID, 0, SEEK_SET)'.
See also: fseek, ftell, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Move the file pointer to the beginning of the file specified by file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fseek
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 691
-- Built-in Function: fseek (FID, OFFSET)
-- Built-in Function: fseek (FID, OFFSET, ORIGIN)
-- Built-in Function: STATUS = fseek (...)
Set the file pointer to the location OFFSET within the file FID.
The pointer is positioned OFFSET characters from the ORIGIN, which may be one of the predefined variables 'SEEK_CUR' (current position), 'SEEK_SET' (beginning), or 'SEEK_END' (end of file) or strings "cof", "bof" or "eof". If ORIGIN is omitted, 'SEEK_SET' is assumed. OFFSET may be positive, negative, or zero but not all combinations of ORIGIN and OFFSET can be realized.
'fseek' returns 0 on success and -1 on error.
See also: fskipl, frewind, ftell, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Set the file pointer to the location OFFSET within the file FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ftell
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 227
-- Built-in Function: POS = ftell (FID)
Return the position of the file pointer as the number of characters from the beginning of the file specified by file descriptor FID.
See also: fseek, frewind, feof, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Return the position of the file pointer as the number of characters from the beginning of the file specified by file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fprintf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 730
-- Built-in Function: fprintf (FID, TEMPLATE, ...)
-- Built-in Function: fprintf (TEMPLATE, ...)
-- Built-in Function: NUMBYTES = fprintf (...)
This function is equivalent to 'printf', except that the output is written to the file descriptor FID instead of 'stdout'.
If FID is omitted, the output is written to 'stdout' making the function exactly equivalent to 'printf'.
The optional output returns the number of bytes written to the file.
Implementation Note: For compatibility with MATLAB, escape sequences in the template string (e.g., "\n" => newline) are expanded even when the template string is defined with single quotes.
See also: fputs, fdisp, fwrite, fscanf, printf, sprintf, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
This function is equivalent to 'printf', except that the output is written to the file descriptor FID instead of 'stdout'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
printf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 563
-- Built-in Function: printf (TEMPLATE, ...)
Print optional arguments under the control of the template string TEMPLATE to the stream 'stdout' and return the number of characters printed.
See the Formatted Output section of the GNU Octave manual for a complete description of the syntax of the template string.
Implementation Note: For compatibility with MATLAB, escape sequences in the template string (e.g., "\n" => newline) are expanded even when the template string is defined with single quotes.
See also: fprintf, sprintf, scanf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
Print optional arguments under the control of the template string TEMPLATE to the stream 'stdout' and return the number of characters printed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fputs
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
-- Built-in Function: fputs (FID, STRING)
-- Built-in Function: STATUS = fputs (FID, STRING)
Write the string STRING to the file with file descriptor FID.
The string is written to the file with no additional formatting. Use 'fdisp' instead to automatically append a newline character appropriate for the local machine.
Return a non-negative number on success or EOF on error.
See also: fdisp, fprintf, fwrite, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Write the string STRING to the file with file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
puts
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 394
-- Built-in Function: puts (STRING)
-- Built-in Function: STATUS = puts (STRING)
Write a string to the standard output with no formatting.
The string is written verbatim to the standard output. Use 'disp' to automatically append a newline character appropriate for the local machine.
Return a non-negative number on success and EOF on error.
See also: fputs, disp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Write a string to the standard output with no formatting.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sprintf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 574
-- Built-in Function: sprintf (TEMPLATE, ...)
This is like 'printf', except that the output is returned as a string.
Unlike the C library function, which requires you to provide a suitably sized string as an argument, Octave's 'sprintf' function returns the string, automatically sized to hold all of the items converted.
Implementation Note: For compatibility with MATLAB, escape sequences in the template string (e.g., "\n" => newline) are expanded even when the template string is defined with single quotes.
See also: printf, fprintf, sscanf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
This is like 'printf', except that the output is returned as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fscanf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1634
-- Built-in Function: [VAL, COUNT, ERRMSG] = fscanf (FID, TEMPLATE, SIZE)
-- Built-in Function: [V1, V2, ..., COUNT, ERRMSG] = fscanf (FID, TEMPLATE, "C")
In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.
The optional argument SIZE specifies the amount of data to read and may be one of
'Inf'
Read as much as possible, returning a column vector.
'NR'
Read up to NR elements, returning a column vector.
'[NR, Inf]'
Read as much as possible, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
'[NR, NC]'
Read up to 'NR * NC' elements, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
If SIZE is omitted, a value of 'Inf' is assumed.
A string is returned if TEMPLATE specifies only character conversions.
The number of items successfully read is returned in COUNT.
If an error occurs, ERRMSG contains a system-dependent error message.
In the second form, read from FID according to TEMPLATE, with each conversion specifier in TEMPLATE corresponding to a single scalar return value. This form is more "C-like", and also compatible with previous versions of Octave. The number of successful conversions is returned in COUNT
See the Formatted Input section of the GNU Octave manual for a complete description of the syntax of the template string.
See also: fgets, fgetl, fread, scanf, sscanf, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sscanf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 514
-- Built-in Function: [VAL, COUNT, ERRMSG, POS] = sscanf (STRING, TEMPLATE, SIZE)
-- Built-in Function: [V1, V2, ..., COUNT, ERRMSG] = sscanf (STRING, TEMPLATE, "C")
This is like 'fscanf', except that the characters are taken from the string STRING instead of from a stream.
Reaching the end of the string is treated as an end-of-file condition. In addition to the values returned by 'fscanf', the index of the next character to be read is returned in POS.
See also: fscanf, scanf, sprintf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
This is like 'fscanf', except that the characters are taken from the string STRING instead of from a stream.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
scanf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 327
-- Built-in Function: [VAL, COUNT, ERRMSG] = scanf (TEMPLATE, SIZE)
-- Built-in Function: [V1, V2, ..., COUNT, ERRMSG]] = scanf (TEMPLATE, "C")
This is equivalent to calling 'fscanf' with FID = 'stdin'.
It is currently not useful to call 'scanf' in interactive programs.
See also: fscanf, sscanf, printf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
This is equivalent to calling 'fscanf' with FID = 'stdin'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4274
-- Built-in Function: VAL = fread (FID)
-- Built-in Function: VAL = fread (FID, SIZE)
-- Built-in Function: VAL = fread (FID, SIZE, PRECISION)
-- Built-in Function: VAL = fread (FID, SIZE, PRECISION, SKIP)
-- Built-in Function: VAL = fread (FID, SIZE, PRECISION, SKIP, ARCH)
-- Built-in Function: [VAL, COUNT] = fread (...)
Read binary data from the file specified by the file descriptor FID.
The optional argument SIZE specifies the amount of data to read and may be one of
'Inf'
Read as much as possible, returning a column vector.
'NR'
Read up to NR elements, returning a column vector.
'[NR, Inf]'
Read as much as possible, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
'[NR, NC]'
Read up to 'NR * NC' elements, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
If SIZE is omitted, a value of 'Inf' is assumed.
The optional argument PRECISION is a string specifying the type of data to read and may be one of
"schar"
"signed char"
Signed character.
"uchar"
"unsigned char"
Unsigned character.
"int8"
"integer*1"
8-bit signed integer.
"int16"
"integer*2"
16-bit signed integer.
"int32"
"integer*4"
32-bit signed integer.
"int64"
"integer*8"
64-bit signed integer.
"uint8"
8-bit unsigned integer.
"uint16"
16-bit unsigned integer.
"uint32"
32-bit unsigned integer.
"uint64"
64-bit unsigned integer.
"single"
"float32"
"real*4"
32-bit floating point number.
"double"
"float64"
"real*8"
64-bit floating point number.
"char"
"char*1"
Single character.
"short"
Short integer (size is platform dependent).
"int"
Integer (size is platform dependent).
"long"
Long integer (size is platform dependent).
"ushort"
"unsigned short"
Unsigned short integer (size is platform dependent).
"uint"
"unsigned int"
Unsigned integer (size is platform dependent).
"ulong"
"unsigned long"
Unsigned long integer (size is platform dependent).
"float"
Single precision floating point number (size is platform dependent).
The default precision is "uchar".
The PRECISION argument may also specify an optional repeat count. For example, '32*single' causes 'fread' to read a block of 32 single precision floating point numbers. Reading in blocks is useful in combination with the SKIP argument.
The PRECISION argument may also specify a type conversion. For example, 'int16=>int32' causes 'fread' to read 16-bit integer values and return an array of 32-bit integer values. By default, 'fread' returns a double precision array. The special form '*TYPE' is shorthand for 'TYPE=>TYPE'.
The conversion and repeat counts may be combined. For example, the specification '32*single=>single' causes 'fread' to read blocks of single precision floating point values and return an array of single precision values instead of the default array of double precision values.
The optional argument SKIP specifies the number of bytes to skip after each element (or block of elements) is read. If it is not specified, a value of 0 is assumed. If the final block read is not complete, the final skip is omitted. For example,
fread (f, 10, "3*single=>single", 8)
will omit the final 8-byte skip because the last read will not be a complete block of 3 values.
The optional argument ARCH is a string specifying the data format for the file. Valid values are
"native"
The format of the current machine.
"ieee-be"
IEEE big endian.
"ieee-le"
IEEE little endian.
The output argument VAL contains the data read from the file. The optional return value COUNT contains the number of elements read.
See also: fwrite, fgets, fgetl, fscanf, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Read binary data from the file specified by the file descriptor FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fwrite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 826
-- Built-in Function: fwrite (FID, DATA)
-- Built-in Function: fwrite (FID, DATA, PRECISION)
-- Built-in Function: fwrite (FID, DATA, PRECISION, SKIP)
-- Built-in Function: fwrite (FID, DATA, PRECISION, SKIP, ARCH)
-- Built-in Function: COUNT = fwrite (...)
Write data in binary form to the file specified by the file descriptor FID, returning the number of values COUNT successfully written to the file.
The argument DATA is a matrix of values that are to be written to the file. The values are extracted in column-major order.
The remaining arguments PRECISION, SKIP, and ARCH are optional, and are interpreted as described for 'fread'.
The behavior of 'fwrite' is undefined if the values in DATA are too large to fit in the specified precision.
See also: fread, fputs, fprintf, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
Write data in binary form to the file specified by the file descriptor FID, returning the number of values COUNT successfully written to the file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
feof
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 393
-- Built-in Function: STATUS = feof (FID)
Return 1 if an end-of-file condition has been encountered for the file specified by file descriptor FID and 0 otherwise.
Note that 'feof' will only return 1 if the end of the file has already been encountered, not if the next read operation will result in an end-of-file condition.
See also: fread, frewind, fseek, fclear, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
Return 1 if an end-of-file condition has been encountered for the file specified by file descriptor FID and 0 otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ferror
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 763
-- Built-in Function: MSG = ferror (FID)
-- Built-in Function: [MSG, ERR] = ferror (FID)
-- Built-in Function: [DOTS] = ferror (FID, "clear")
Query the error status of the stream specified by file descriptor FID
If an error condition exists then return a string MSG describing the error. Otherwise, return an empty string "".
The second input "clear" is optional. If supplied, the error state on the stream will be cleared.
The optional second output is a numeric indication of the error status. ERR is 1 if an error condition has been encountered and 0 otherwise.
Note that 'ferror' indicates if an error has already occurred, not whether the next operation will result in an error condition.
See also: fclear, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Query the error status of the stream specified by file descriptor FID
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
popen
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 887
-- Built-in Function: FID = popen (COMMAND, MODE)
Start a process and create a pipe.
The name of the command to run is given by COMMAND. The argument MODE may be
'"r"'
The pipe will be connected to the standard output of the process, and open for reading.
'"w"'
The pipe will be connected to the standard input of the process, and open for writing.
The file identifier corresponding to the input or output stream of the process is returned in FID.
For example:
fid = popen ("ls -ltr / | tail -3", "r");
while (ischar (s = fgets (fid)))
fputs (stdout, s);
endwhile
-| drwxr-xr-x 33 root root 3072 Feb 15 13:28 etc
-| drwxr-xr-x 3 root root 1024 Feb 15 13:28 lib
-| drwxrwxrwt 15 root root 2048 Feb 17 14:53 tmp
See also: popen2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Start a process and create a pipe.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pclose
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
-- Built-in Function: pclose (FID)
Close a file identifier that was opened by 'popen'.
The function 'fclose' may also be used for the same purpose.
See also: fclose, popen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Close a file identifier that was opened by 'popen'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
tempname
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 733
-- Built-in Function: FNAME = tempname ()
-- Built-in Function: FNAME = tempname (DIR)
-- Built-in Function: FNAME = tempname (DIR, PREFIX)
Return a unique temporary file name as a string.
If PREFIX is omitted, a value of "oct-" is used.
If DIR is also omitted, the default directory for temporary files ('P_tmpdir') is used. If DIR is provided, it must exist, otherwise the default directory for temporary files is used.
Programming Note: Because the named file is not opened by 'tempname', it is possible, though relatively unlikely, that it will not be available by the time your program attempts to open it. If this is a concern, see 'tmpfile'.
See also: mkstemp, tempdir, P_tmpdir, tmpfile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return a unique temporary file name as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tmpfile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 464
-- Built-in Function: [FID, MSG] = tmpfile ()
Return the file ID corresponding to a new temporary file with a unique name.
The file is opened in binary read/write ("w+b") mode and will be deleted automatically when it is closed or when Octave exits.
If successful, FID is a valid file ID and MSG is an empty string. Otherwise, FID is -1 and MSG contains a system-dependent error message.
See also: tempname, mkstemp, tempdir, P_tmpdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Return the file ID corresponding to a new temporary file with a unique name.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
mkstemp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 999
-- Built-in Function: [FID, NAME, MSG] = mkstemp ("TEMPLATE")
-- Built-in Function: [FID, NAME, MSG] = mkstemp ("TEMPLATE", DELETE)
Return the file descriptor FID corresponding to a new temporary file with a unique name created from TEMPLATE.
The last six characters of TEMPLATE must be "XXXXXX" and these are replaced with a string that makes the filename unique. The file is then created with mode read/write and permissions that are system dependent (on GNU/Linux systems, the permissions will be 0600 for versions of glibc 2.0.7 and later). The file is opened in binary mode and with the 'O_EXCL' flag.
If the optional argument DELETE is supplied and is true, the file will be deleted automatically when Octave exits.
If successful, FID is a valid file ID, NAME is the name of the file, and MSG is an empty string. Otherwise, FID is -1, NAME is empty, and MSG contains a system-dependent error message.
See also: tempname, tempdir, P_tmpdir, tmpfile, fopen.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Return the file descriptor FID corresponding to a new temporary file with a unique name created from TEMPLATE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
umask
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
-- Built-in Function: umask (MASK)
Set the permission mask for file creation.
The parameter MASK is an integer, interpreted as an octal number.
If successful, returns the previous value of the mask (as an integer to be interpreted as an octal number); otherwise an error message is printed.
The permission mask is a UNIX concept used when creating new objects on a file system such as files, directories, or named FIFOs. The object to be created has base permissions in an octal number MODE which are modified according to the octal value of MASK. The final permissions for the new object are 'MODE - MASK'.
See also: fopen, mkdir, mkfifo.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Set the permission mask for file creation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
P_tmpdir
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 402
-- Built-in Function: P_tmpdir ()
Return the name of the host system's *default* directory for temporary files.
Programming Note: The value returned by 'P_tmpdir' is always the default location. This value may not agree with that returned from 'tempdir' if the user has overridden the default with the 'TMPDIR' environment variable.
See also: tempdir, tempname, mkstemp, tmpfile.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return the name of the host system's *default* directory for temporary files.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
SEEK_SET
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
-- Built-in Function: SEEK_SET ()
-- Built-in Function: SEEK_CUR ()
-- Built-in Function: SEEK_END ()
Return the numerical value to pass to 'fseek' to perform one of the following actions:
'SEEK_SET'
Position file relative to the beginning.
'SEEK_CUR'
Position file relative to the current position.
'SEEK_END'
Position file relative to the end.
See also: fseek.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Return the numerical value to pass to 'fseek' to perform one of the following actions:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
SEEK_CUR
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 188
-- Built-in Function: SEEK_CUR ()
Return the numerical value to pass to 'fseek' to position the file pointer relative to the current position.
See also: SEEK_SET, SEEK_END.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return the numerical value to pass to 'fseek' to position the file pointer relative to the current position.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
SEEK_END
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 187
-- Built-in Function: SEEK_END ()
Return the numerical value to pass to 'fseek' to position the file pointer relative to the end of the file.
See also: SEEK_SET, SEEK_CUR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return the numerical value to pass to 'fseek' to position the file pointer relative to the end of the file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
stdin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 244
-- Built-in Function: stdin ()
Return the numeric value corresponding to the standard input stream.
When Octave is used interactively, stdin is filtered through the command line editing functions.
See also: stdout, stderr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard input stream.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
stdout
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 224
-- Built-in Function: stdout ()
Return the numeric value corresponding to the standard output stream.
Data written to the standard output is normally filtered through the pager.
See also: stdin, stderr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return the numeric value corresponding to the standard output stream.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
stderr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 267
-- Built-in Function: stderr ()
Return the numeric value corresponding to the standard error stream.
Even if paging is turned on, the standard error is not sent to the pager. It is useful for error messages and prompts.
See also: stdin, stdout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard error stream.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
filter
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1623
-- Built-in Function: Y = filter (B, A, X)
-- Built-in Function: [Y, SF] = filter (B, A, X, SI)
-- Built-in Function: [Y, SF] = filter (B, A, X, [], DIM)
-- Built-in Function: [Y, SF] = filter (B, A, X, SI, DIM)
Apply a 1-D digital filter to the data X.
'filter' returns the solution to the following linear, time-invariant difference equation:
N M
SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x)
k=0 k=0
where N=length(a)-1 and M=length(b)-1. The result is calculated over the first non-singleton dimension of X or over DIM if supplied.
An equivalent form of the equation is:
N M
y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x)
k=1 k=0
where c = a/a(1) and d = b/a(1).
If the fourth argument SI is provided, it is taken as the initial state of the system and the final state is returned as SF. The state vector is a column vector whose length is equal to the length of the longest coefficient vector minus one. If SI is not supplied, the initial state vector is set to all zeros.
In terms of the Z Transform, Y is the result of passing the discrete-time signal X through a system characterized by the following rational system function:
M
SUM d(k+1) z^(-k)
k=0
H(z) = ---------------------
N
1 + SUM c(k+1) z^(-k)
k=1
See also: filter2, fftfilt, freqz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Apply a 1-D digital filter to the data X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
find
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1687
-- Built-in Function: IDX = find (X)
-- Built-in Function: IDX = find (X, N)
-- Built-in Function: IDX = find (X, N, DIRECTION)
-- Built-in Function: [i, j] = find (...)
-- Built-in Function: [i, j, v] = find (...)
Return a vector of indices of nonzero elements of a matrix, as a row if X is a row vector or as a column otherwise.
To obtain a single index for each matrix element, Octave pretends that the columns of a matrix form one long vector (like Fortran arrays are stored). For example:
find (eye (2))
=> [ 1; 4 ]
If two inputs are given, N indicates the maximum number of elements to find from the beginning of the matrix or vector.
If three inputs are given, DIRECTION should be one of "first" or "last", requesting only the first or last N indices, respectively. However, the indices are always returned in ascending order.
If two outputs are requested, 'find' returns the row and column indices of nonzero elements of a matrix. For example:
[i, j] = find (2 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
If three outputs are requested, 'find' also returns a vector containing the nonzero values. For example:
[i, j, v] = find (3 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
=> v = [ 3; 3 ]
Note that this function is particularly useful for sparse matrices, as it extracts the nonzero elements as vectors, which can then be used to create the original matrix. For example:
sz = size (a);
[i, j, v] = find (a);
b = sparse (i, j, v, sz(1), sz(2));
See also: nonzeros.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Return a vector of indices of nonzero elements of a matrix, as a row if X is a row vector or as a column otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gammainc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1090
-- Mapping Function: gammainc (X, A)
-- Mapping Function: gammainc (X, A, "lower")
-- Mapping Function: gammainc (X, A, "upper")
Compute the normalized incomplete gamma function.
This is defined as
x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
with the limiting value of 1 as X approaches infinity. The standard notation is P(a,x), e.g., Abramowitz and Stegun (6.5.1).
If A is scalar, then 'gammainc (X, A)' is returned for each element of X and vice versa.
If neither X nor A is scalar, the sizes of X and A must agree, and 'gammainc' is applied element-by-element.
By default the incomplete gamma function integrated from 0 to X is computed. If "upper" is given then the complementary function integrated from X to infinity is calculated. It should be noted that
gammainc (X, A) == 1 - gammainc (X, A, "upper")
See also: gamma, gammaln.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the normalized incomplete gamma function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gcd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
-- Built-in Function: G = gcd (A1, A2, ...)
-- Built-in Function: [G, V1, ...] = gcd (A1, A2, ...)
Compute the greatest common divisor of A1, A2, ....
If more than one argument is given then all arguments must be the same size or scalar. In this case the greatest common divisor is calculated for each element individually. All elements must be ordinary or Gaussian (complex) integers. Note that for Gaussian integers, the gcd is only unique up to a phase factor (multiplication by 1, -1, i, or -i), so an arbitrary greatest common divisor among the four possible is returned.
Optional return arguments V1, ..., contain integer vectors such that,
G = V1 .* A1 + V2 .* A2 + ...
Example code:
gcd ([15, 9], [20, 18])
=> 5 9
See also: lcm, factor, isprime.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the greatest common divisor of A1, A2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getgrent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 225
-- Built-in Function: GRP_STRUCT = getgrent ()
Return an entry from the group database, opening it if necessary.
Once the end of data has been reached, 'getgrent' returns 0.
See also: setgrent, endgrent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return an entry from the group database, opening it if necessary.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getgrgid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 232
-- Built-in Function: GRP_STRUCT = getgrgid (GID).
Return the first entry from the group database with the group ID GID.
If the group ID does not exist in the database, 'getgrgid' returns 0.
See also: getgrnam.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return the first entry from the group database with the group ID GID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getgrnam
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 237
-- Built-in Function: GRP_STRUCT = getgrnam (NAME)
Return the first entry from the group database with the group name NAME.
If the group name does not exist in the database, 'getgrnam' returns 0.
See also: getgrgid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return the first entry from the group database with the group name NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setgrent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
-- Built-in Function: setgrent ()
Return the internal pointer to the beginning of the group database.
See also: getgrent, endgrent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Return the internal pointer to the beginning of the group database.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
endgrent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
-- Built-in Function: endgrent ()
Close the group database.
See also: getgrent, setgrent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Close the group database.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getpwent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
-- Built-in Function: PW_STRUCT = getpwent ()
Return a structure containing an entry from the password database, opening it if necessary.
Once the end of the data has been reached, 'getpwent' returns 0.
See also: setpwent, endpwent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Return a structure containing an entry from the password database, opening it if necessary.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getpwuid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 255
-- Built-in Function: PW_STRUCT = getpwuid (UID).
Return a structure containing the first entry from the password database with the user ID UID.
If the user ID does not exist in the database, 'getpwuid' returns 0.
See also: getpwnam.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return a structure containing the first entry from the password database with the user ID UID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getpwnam
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 261
-- Built-in Function: PW_STRUCT = getpwnam (NAME)
Return a structure containing the first entry from the password database with the user name NAME.
If the user name does not exist in the database, 'getpwname' returns 0.
See also: getpwuid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a structure containing the first entry from the password database with the user name NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setpwent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
-- Built-in Function: setpwent ()
Return the internal pointer to the beginning of the password database.
See also: getpwent, endpwent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Return the internal pointer to the beginning of the password database.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
endpwent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
-- Built-in Function: endpwent ()
Close the password database.
See also: getpwent, setpwent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Close the password database.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
getrusage
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1362
-- Built-in Function: getrusage ()
Return a structure containing a number of statistics about the current Octave process.
Not all fields are available on all systems. If it is not possible to get CPU time statistics, the CPU time slots are set to zero. Other missing data are replaced by NaN. The list of possible fields is:
'idrss'
Unshared data size.
'inblock'
Number of block input operations.
'isrss'
Unshared stack size.
'ixrss'
Shared memory size.
'majflt'
Number of major page faults.
'maxrss'
Maximum data size.
'minflt'
Number of minor page faults.
'msgrcv'
Number of messages received.
'msgsnd'
Number of messages sent.
'nivcsw'
Number of involuntary context switches.
'nsignals'
Number of signals received.
'nswap'
Number of swaps.
'nvcsw'
Number of voluntary context switches.
'oublock'
Number of block output operations.
'stime'
A structure containing the system CPU time used. The structure has the elements 'sec' (seconds) 'usec' (microseconds).
'utime'
A structure containing the user CPU time used. The structure has the elements 'sec' (seconds) 'usec' (microseconds).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return a structure containing a number of statistics about the current Octave process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
givens
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 536
-- Built-in Function: G = givens (X, Y)
-- Built-in Function: [C, S] = givens (X, Y)
Compute the Givens rotation matrix G.
The Givens matrix is a 2 by 2 orthogonal matrix
'G = [C S; -S' C]'
such that
'G [X; Y] = [*; 0]'
with X and Y scalars.
If two output arguments are requested, return the factors C and S rather than the Givens rotation matrix.
For example:
givens (1, 1)
=> 0.70711 0.70711
-0.70711 0.70711
See also: planerot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute the Givens rotation matrix G.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ishandle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
-- Built-in Function: ishandle (H)
Return true if H is a graphics handle and false otherwise.
H may also be a matrix of handles in which case a logical array is returned that is true where the elements of H are graphics handles and false where they are not.
See also: isaxes, isfigure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
reset
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
-- Built-in Function: reset (H)
Reset the properties of the graphic object H to their default values.
For figures, the properties "position", "units", "windowstyle", and "paperunits" are not affected. For axes, the properties "position" and "units" are not affected.
The input H may also be a vector of graphic handles in which case each individual object will be reset.
See also: cla, clf, newplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Reset the properties of the graphic object H to their default values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
set
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2297
-- Built-in Function: set (H, PROPERTY, VALUE, ...)
-- Built-in Function: set (H, PROPERTIES, VALUES)
-- Built-in Function: set (H, PV)
-- Built-in Function: VALUE_LIST = set (H, PROPERTY)
-- Built-in Function: ALL_VALUE_LIST = set (H)
Set named property values for the graphics handle (or vector of graphics handles) H.
There are three ways to give the property names and values:
* as a comma separated list of PROPERTY, VALUE pairs
Here, each PROPERTY is a string containing the property name, each VALUE is a value of the appropriate type for the property.
* as a cell array of strings PROPERTIES containing property names and a cell array VALUES containing property values.
In this case, the number of columns of VALUES must match the number of elements in PROPERTIES. The first column of VALUES contains values for the first entry in PROPERTIES, etc. The number of rows of VALUES must be 1 or match the number of elements of H. In the first case, each handle in H will be assigned the same values. In the latter case, the first handle in H will be assigned the values from the first row of VALUES and so on.
* as a structure array PV
Here, the field names of PV represent the property names, and the field values give the property values. In contrast to the previous case, all elements of PV will be set in all handles in H independent of the dimensions of PV.
'set' is also used to query the list of values a named property will take. 'CLIST = set (H, "property")' will return the list of possible values for "property" in the cell list CLIST. If no output variable is used then the list is formatted and printed to the screen.
If no property is specified ('SLIST = set (H)') then a structure SLIST is returned where the fieldnames are the properties of the object H and the fields are the list of possible values for each property. If no output variable is used then the list is formatted and printed to the screen.
For example,
hf = figure ();
set (hf, "paperorientation")
=> paperorientation: [ landscape | {portrait} | rotated ]
shows the paperorientation property can take three values with the default being "portrait".
See also: get.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Set named property values for the graphics handle (or vector of graphics handles) H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
get
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
-- Built-in Function: VAL = get (H)
-- Built-in Function: VAL = get (H, P)
Return the value of the named property P from the graphics handle H.
If P is omitted, return the complete property list for H.
If H is a vector, return a cell array including the property values or lists respectively.
See also: set.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return the value of the named property P from the graphics handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
available_graphics_toolkits
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
-- Built-in Function: available_graphics_toolkits ()
Return a cell array of registered graphics toolkits.
See also: graphics_toolkit, register_graphics_toolkit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return a cell array of registered graphics toolkits.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
register_graphics_toolkit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 159
-- Built-in Function: register_graphics_toolkit (TOOLKIT)
List TOOLKIT as an available graphics toolkit.
See also: available_graphics_toolkits.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
List TOOLKIT as an available graphics toolkit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
loaded_graphics_toolkits
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
-- Built-in Function: loaded_graphics_toolkits ()
Return a cell array of the currently loaded graphics toolkits.
See also: available_graphics_toolkits.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return a cell array of the currently loaded graphics toolkits.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
drawnow
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 492
-- Built-in Function: drawnow ()
-- Built-in Function: drawnow ("expose")
-- Built-in Function: drawnow (TERM, FILE, MONO, DEBUG_FILE)
Update figure windows and their children.
The event queue is flushed and any callbacks generated are executed.
With the optional argument "expose", only graphic objects are updated and no other events or callbacks are processed.
The third calling form of 'drawnow' is for debugging and is undocumented.
See also: refresh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Update figure windows and their children.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
addlistener
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1134
-- Built-in Function: addlistener (H, PROP, FCN)
Register FCN as listener for the property PROP of the graphics object H.
Property listeners are executed (in order of registration) when the property is set. The new value is already available when the listeners are executed.
PROP must be a string naming a valid property in H.
FCN can be a function handle, a string or a cell array whose first element is a function handle. If FCN is a function handle, the corresponding function should accept at least 2 arguments, that will be set to the object handle and the empty matrix respectively. If FCN is a string, it must be any valid octave expression. If FCN is a cell array, the first element must be a function handle with the same signature as described above. The next elements of the cell array are passed as additional arguments to the function.
Example:
function my_listener (h, dummy, p1)
fprintf ("my_listener called with p1=%s\n", p1);
endfunction
addlistener (gcf, "position", {@my_listener, "my string"})
See also: addproperty, hggroup.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Register FCN as listener for the property PROP of the graphics object H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
dellistener
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 635
-- Built-in Function: dellistener (H, PROP, FCN)
Remove the registration of FCN as a listener for the property PROP of the graphics object H.
The function FCN must be the same variable (not just the same value), as was passed to the original call to 'addlistener'.
If FCN is not defined then all listener functions of PROP are removed.
Example:
function my_listener (h, dummy, p1)
fprintf ("my_listener called with p1=%s\n", p1);
endfunction
c = {@my_listener, "my string"};
addlistener (gcf, "position", c);
dellistener (gcf, "position", c);
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Remove the registration of FCN as a listener for the property PROP of the graphics object H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
addproperty
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2448
-- Built-in Function: addproperty (NAME, H, TYPE)
-- Built-in Function: addproperty (NAME, H, TYPE, ARG, ...)
Create a new property named NAME in graphics object H.
TYPE determines the type of the property to create. ARGS usually contains the default value of the property, but additional arguments might be given, depending on the type of the property.
The supported property types are:
'string'
A string property. ARG contains the default string value.
'any'
An un-typed property. This kind of property can hold any octave value. ARGS contains the default value.
'radio'
A string property with a limited set of accepted values. The first argument must be a string with all accepted values separated by a vertical bar ('|'). The default value can be marked by enclosing it with a '{' '}' pair. The default value may also be given as an optional second string argument.
'boolean'
A boolean property. This property type is equivalent to a radio property with "on|off" as accepted values. ARG contains the default property value.
'double'
A scalar double property. ARG contains the default value.
'handle'
A handle property. This kind of property holds the handle of a graphics object. ARG contains the default handle value. When no default value is given, the property is initialized to the empty matrix.
'data'
A data (matrix) property. ARG contains the default data value. When no default value is given, the data is initialized to the empty matrix.
'color'
A color property. ARG contains the default color value. When no default color is given, the property is set to black. An optional second string argument may be given to specify an additional set of accepted string values (like a radio property).
TYPE may also be the concatenation of a core object type and a valid property name for that object type. The property created then has the same characteristics as the referenced property (type, possible values, hidden state...). This allows one to clone an existing property into the graphics object H.
Examples:
addproperty ("my_property", gcf, "string", "a string value");
addproperty ("my_radio", gcf, "radio", "val_1|val_2|{val_3}");
addproperty ("my_style", gcf, "linelinestyle", "--");
See also: addlistener, hggroup.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Create a new property named NAME in graphics object H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
waitfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1833
-- Built-in Function: waitfor (H)
-- Built-in Function: waitfor (H, PROP)
-- Built-in Function: waitfor (H, PROP, VALUE)
-- Built-in Function: waitfor (..., "timeout", TIMEOUT)
Suspend the execution of the current program until a condition is satisfied on the graphics handle H.
While the program is suspended graphics events are still processed normally, allowing callbacks to modify the state of graphics objects. This function is reentrant and can be called from a callback, while another 'waitfor' call is pending at the top-level.
In the first form, program execution is suspended until the graphics object H is destroyed. If the graphics handle is invalid, the function returns immediately.
In the second form, execution is suspended until the graphics object is destroyed or the property named PROP is modified. If the graphics handle is invalid or the property does not exist, the function returns immediately.
In the third form, execution is suspended until the graphics object is destroyed or the property named PROP is set to VALUE. The function 'isequal' is used to compare property values. If the graphics handle is invalid, the property does not exist or the property is already set to VALUE, the function returns immediately.
An optional timeout can be specified using the property 'timeout'. This timeout value is the number of seconds to wait for the condition to be true. TIMEOUT must be at least 1. If a smaller value is specified, a warning is issued and a value of 1 is used instead. If the timeout value is not an integer, it is truncated towards 0.
To define a condition on a property named 'timeout', use the string '\timeout' instead.
In all cases, typing CTRL-C stops program execution immediately.
See also: waitforbuttonpress, isequal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Suspend the execution of the current program until a condition is satisfied on the graphics handle H.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
built_in_docstrings_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 834
-- Built-in Function: VAL = built_in_docstrings_file ()
-- Built-in Function: OLD_VAL = built_in_docstrings_file (NEW_VAL)
-- Built-in Function: built_in_docstrings_file (NEW_VAL, "local")
Query or set the internal variable that specifies the name of the file containing docstrings for built-in Octave functions.
The default value is 'OCTAVE-HOME/share/octave/VERSION/etc/built-in-docstrings', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number. The default value may be overridden by the environment variable 'OCTAVE_BUILT_IN_DOCSTRINGS_FILE', or the command line argument '--built-in-docstrings-file FNAME'.
Note: This variable is only used when Octave is initializing itself. Modifying it during a running session of Octave will have no effect.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Query or set the internal variable that specifies the name of the file containing docstrings for built-in Octave functions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
get_help_text
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
-- Built-in Function: [TEXT, FORMAT] = get_help_text (NAME)
Return the raw help text of function NAME.
The raw help text is returned in TEXT and the format in FORMAT The format is a string which is one of "texinfo", "html", or "plain text".
See also: get_help_text_from_file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return the raw help text of function NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
get_help_text_from_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 301
-- Built-in Function: [TEXT, FORMAT] = get_help_text_from_file (FNAME)
Return the raw help text from the file FNAME.
The raw help text is returned in TEXT and the format in FORMAT The format is a string which is one of "texinfo", "html", or "plain text".
See also: get_help_text.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the raw help text from the file FNAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
doc_cache_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1007
-- Built-in Function: VAL = doc_cache_file ()
-- Built-in Function: OLD_VAL = doc_cache_file (NEW_VAL)
-- Built-in Function: doc_cache_file (NEW_VAL, "local")
Query or set the internal variable that specifies the name of the Octave documentation cache file.
A cache file significantly improves the performance of the 'lookfor' command. The default value is 'OCTAVE-HOME/share/octave/VERSION/etc/doc-cache', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number. The default value may be overridden by the environment variable 'OCTAVE_DOC_CACHE_FILE', or the command line argument '--doc-cache-file FNAME'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: doc_cache_create, lookfor, info_program, doc, help, makeinfo_program.
See also: lookfor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Query or set the internal variable that specifies the name of the Octave documentation cache file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
texi_macros_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 941
-- Built-in Function: VAL = texi_macros_file ()
-- Built-in Function: OLD_VAL = texi_macros_file (NEW_VAL)
-- Built-in Function: texi_macros_file (NEW_VAL, "local")
Query or set the internal variable that specifies the name of the file containing Texinfo macros that are prepended to documentation strings before they are passed to makeinfo.
The default value is 'OCTAVE-HOME/share/octave/VERSION/etc/macros.texi', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number. The default value may be overridden by the environment variable 'OCTAVE_TEXI_MACROS_FILE', or the command line argument '--texi-macros-file FNAME'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: makeinfo_program.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
Query or set the internal variable that specifies the name of the file containing Texinfo macros that are prepended to documentation strings before they are passed to makeinfo.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
info_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 776
-- Built-in Function: VAL = info_file ()
-- Built-in Function: OLD_VAL = info_file (NEW_VAL)
-- Built-in Function: info_file (NEW_VAL, "local")
Query or set the internal variable that specifies the name of the Octave info file.
The default value is 'OCTAVE-HOME/info/octave.info', in which OCTAVE-HOME is the root directory of the Octave installation. The default value may be overridden by the environment variable 'OCTAVE_INFO_FILE', or the command line argument '--info-file FNAME'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: info_program, doc, help, makeinfo_program.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Query or set the internal variable that specifies the name of the Octave info file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
info_program
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 912
-- Built-in Function: VAL = info_program ()
-- Built-in Function: OLD_VAL = info_program (NEW_VAL)
-- Built-in Function: info_program (NEW_VAL, "local")
Query or set the internal variable that specifies the name of the info program to run.
The default value is 'OCTAVE-HOME/libexec/octave/VERSION/exec/ARCH/info' in which OCTAVE-HOME is the root directory of the Octave installation, VERSION is the Octave version number, and ARCH is the system type (for example, 'i686-pc-linux-gnu'). The default value may be overridden by the environment variable 'OCTAVE_INFO_PROGRAM', or the command line argument '--info-program NAME'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: info_file, doc, help, makeinfo_program.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Query or set the internal variable that specifies the name of the info program to run.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
makeinfo_program
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 645
-- Built-in Function: VAL = makeinfo_program ()
-- Built-in Function: OLD_VAL = makeinfo_program (NEW_VAL)
-- Built-in Function: makeinfo_program (NEW_VAL, "local")
Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands.
The default value is 'makeinfo'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: texi_macros_file, info_file, info_program, doc, help.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
suppress_verbose_help_message
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 620
-- Built-in Function: VAL = suppress_verbose_help_message ()
-- Built-in Function: OLD_VAL = suppress_verbose_help_message (NEW_VAL)
-- Built-in Function: suppress_verbose_help_message (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the 'help' command and usage messages for built-in commands.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the 'help' command and usage messages for built-in commands.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hess
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 606
-- Built-in Function: H = hess (A)
-- Built-in Function: [P, H] = hess (A)
Compute the Hessenberg decomposition of the matrix A.
The Hessenberg decomposition is 'P * H * P' = A' where P is a square unitary matrix ('P' * P = I', using complex-conjugate transposition) and H is upper Hessenberg ('H(i, j) = 0 forall i >= j+1)'.
The Hessenberg decomposition is usually used as the first step in an eigenvalue computation, but has other applications as well (see Golub, Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979).
See also: eig, chol, lu, qr, qz, schur, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the Hessenberg decomposition of the matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hex2num
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 818
-- Built-in Function: N = hex2num (S)
-- Built-in Function: N = hex2num (S, CLASS)
Typecast the 16 character hexadecimal character string to an IEEE 754 double precision number.
If fewer than 16 characters are given the strings are right padded with '0' characters.
Given a string matrix, 'hex2num' treats each row as a separate number.
hex2num (["4005bf0a8b145769"; "4024000000000000"])
=> [2.7183; 10.000]
The optional argument CLASS can be passed as the string "single" to specify that the given string should be interpreted as a single precision number. In this case, S should be an 8 character hexadecimal string. For example:
hex2num (["402df854"; "41200000"], "single")
=> [2.7183; 10.000]
See also: num2hex, hex2dec, dec2hex.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Typecast the 16 character hexadecimal character string to an IEEE 754 double precision number.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
num2hex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 670
-- Built-in Function: S = num2hex (N)
Typecast a double or single precision number or vector to a 8 or 16 character hexadecimal string of the IEEE 754 representation of the number.
For example:
num2hex ([-1, 1, e, Inf])
=> "bff0000000000000
3ff0000000000000
4005bf0a8b145769
7ff0000000000000"
If the argument N is a single precision number or vector, the returned string has a length of 8. For example:
num2hex (single ([-1, 1, e, Inf]))
=> "bf800000
3f800000
402df854
7f800000"
See also: hex2num, hex2dec, dec2hex.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
Typecast a double or single precision number or vector to a 8 or 16 character hexadecimal string of the IEEE 754 representation of the number.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
input
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1093
-- Built-in Function: ANS = input (PROMPT)
-- Built-in Function: ANS = input (PROMPT, "s")
Print PROMPT and wait for user input.
For example,
input ("Pick a number, any number! ")
prints the prompt
Pick a number, any number!
and waits for the user to enter a value. The string entered by the user is evaluated as an expression, so it may be a literal constant, a variable name, or any other valid Octave code.
The number of return arguments, their size, and their class depend on the expression entered.
If you are only interested in getting a literal string value, you can call 'input' with the character string "s" as the second argument. This tells Octave to return the string entered by the user directly, without evaluating it first.
Because there may be output waiting to be displayed by the pager, it is a good idea to always call 'fflush (stdout)' before calling 'input'. This will ensure that all pending output is written to the screen before your prompt.
See also: yes_or_no, kbhit, pause, menu, listdlg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Print PROMPT and wait for user input.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
yes_or_no
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 455
-- Built-in Function: ANS = yes_or_no ("PROMPT")
Ask the user a yes-or-no question.
Return logical true if the answer is yes or false if the answer is no.
Takes one argument, PROMPT, which is the string to display when asking the question. PROMPT should end in a space; 'yes-or-no' adds the string '(yes or no) ' to it. The user must confirm the answer with <RET> and can edit it until it has been confirmed.
See also: input.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Ask the user a yes-or-no question.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
keyboard
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 676
-- Built-in Function: keyboard ()
-- Built-in Function: keyboard ("PROMPT")
Stop m-file execution and enter debug mode.
When the 'keyboard' function is executed, Octave prints a prompt and waits for user input. The input strings are then evaluated and the results are printed. This makes it possible to examine the values of variables within a function, and to assign new values if necessary. To leave the prompt and return to normal execution type 'return' or 'dbcont'. The 'keyboard' function does not return an exit status.
If 'keyboard' is invoked without arguments, a default prompt of 'debug> ' is used.
See also: dbstop, dbcont, dbquit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Stop m-file execution and enter debug mode.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
echo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 654
-- Command: echo
-- Command: echo on
-- Command: echo off
-- Command: echo on all
-- Command: echo off all
Control whether commands are displayed as they are executed.
Valid options are:
'on'
Enable echoing of commands as they are executed in script files.
'off'
Disable echoing of commands as they are executed in script files.
'on all'
Enable echoing of commands as they are executed in script files and functions.
'off all'
Disable echoing of commands as they are executed in script files and functions.
With no arguments, 'echo' toggles the current echo state.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Control whether commands are displayed as they are executed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
completion_matches
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
-- Built-in Function: completion_matches (HINT)
Generate possible completions given HINT.
This function is provided for the benefit of programs like Emacs which might be controlling Octave and handling user input. The current command number is not incremented when this function is called. This is a feature, not a bug.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Generate possible completions given HINT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
readline_read_init_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
-- Built-in Function: readline_read_init_file (FILE)
Read the readline library initialization file FILE.
If FILE is omitted, read the default initialization file (normally '~/.inputrc').
*Note (readline)Readline Init File::, for details.
See also: readline_re_read_init_file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Read the readline library initialization file FILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
readline_re_read_init_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 228
-- Built-in Function: readline_re_read_init_file ()
Re-read the last readline library initialization file that was read.
*Note (readline)Readline Init File::, for details.
See also: readline_read_init_file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Re-read the last readline library initialization file that was read.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
add_input_event_hook
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 539
-- Built-in Function: ID = add_input_event_hook (FCN)
-- Built-in Function: ID = add_input_event_hook (FCN, DATA)
Add the named function or function handle FCN to the list of functions to call periodically when Octave is waiting for input.
The function should have the form
FCN (DATA)
If DATA is omitted, Octave calls the function without any arguments.
The returned identifier may be used to remove the function handle from the list of input hook functions.
See also: remove_input_event_hook.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Add the named function or function handle FCN to the list of functions to call periodically when Octave is waiting for input.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
remove_input_event_hook
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
-- Built-in Function: remove_input_event_hook (NAME)
-- Built-in Function: remove_input_event_hook (FCN_ID)
Remove the named function or function handle with the given identifier from the list of functions to call periodically when Octave is waiting for input.
See also: add_input_event_hook.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Remove the named function or function handle with the given identifier from the list of functions to call periodically when Octave is waiting for input.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
PS1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1147
-- Built-in Function: VAL = PS1 ()
-- Built-in Function: OLD_VAL = PS1 (NEW_VAL)
-- Built-in Function: PS1 (NEW_VAL, "local")
Query or set the primary prompt string.
When executing interactively, Octave displays the primary prompt when it is ready to read a command.
The default value of the primary prompt string is "octave:\#> ". To change it, use a command like
PS1 ("\\u@\\H> ")
which will result in the prompt 'boris@kremvax> ' for the user 'boris' logged in on the host 'kremvax.kgb.su'. Note that two backslashes are required to enter a backslash into a double-quoted character string. *Note Strings::.
You can also use ANSI escape sequences if your terminal supports them. This can be useful for coloring the prompt. For example,
PS1 ("\\[\\033[01;31m\\]\\s:\\#> \\[\\033[0m\\]")
will give the default Octave prompt a red coloring.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: PS2, PS4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Query or set the primary prompt string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
PS2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 737
-- Built-in Function: VAL = PS2 ()
-- Built-in Function: OLD_VAL = PS2 (NEW_VAL)
-- Built-in Function: PS2 (NEW_VAL, "local")
Query or set the secondary prompt string.
The secondary prompt is printed when Octave is expecting additional input to complete a command. For example, if you are typing a 'for' loop that spans several lines, Octave will print the secondary prompt at the beginning of each line after the first. The default value of the secondary prompt string is "> ".
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: PS1, PS4.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Query or set the secondary prompt string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
PS4
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 612
-- Built-in Function: VAL = PS4 ()
-- Built-in Function: OLD_VAL = PS4 (NEW_VAL)
-- Built-in Function: PS4 (NEW_VAL, "local")
Query or set the character string used to prefix output produced when echoing commands is enabled.
The default value is "+ ". *Note Diary and Echo Commands::, for a description of echoing commands.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: echo, echo_executing_commands, PS1, PS2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Query or set the character string used to prefix output produced when echoing commands is enabled.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
completion_append_char
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 566
-- Built-in Function: VAL = completion_append_char ()
-- Built-in Function: OLD_VAL = completion_append_char (NEW_VAL)
-- Built-in Function: completion_append_char (NEW_VAL, "local")
Query or set the internal character variable that is appended to successful command-line completion attempts.
The default value is " " (a single space).
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Query or set the internal character variable that is appended to successful command-line completion attempts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
echo_executing_commands
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 928
-- Built-in Function: VAL = echo_executing_commands ()
-- Built-in Function: OLD_VAL = echo_executing_commands (NEW_VAL)
-- Built-in Function: echo_executing_commands (NEW_VAL, "local")
Query or set the internal variable that controls the echo state.
It may be the sum of the following values:
1
Echo commands read from script files.
2
Echo commands from functions.
4
Echo commands read from command line.
More than one state can be active at once. For example, a value of 3 is equivalent to the command 'echo on all'.
The value of 'echo_executing_commands' may be set by the 'echo' command or the command line option '--echo-commands'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Query or set the internal variable that controls the echo state.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
filemarker
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1033
-- Built-in Function: VAL = filemarker ()
-- Built-in Function: OLD_VAL = filemarker (NEW_VAL)
-- Built-in Function: filemarker (NEW_VAL, "local")
Query or set the character used to separate the filename from the subfunction names contained within the file.
By default this is the character '>'. This can be used in a generic manner to interact with subfunctions. For example,
help (["myfunc", filemarker, "mysubfunc"])
returns the help string associated with the subfunction 'mysubfunc' located in the file 'myfunc.m'.
'filemarker' is also useful during debugging for placing breakpoints within subfunctions or nested functions. For example,
dbstop (["myfunc", filemarker, "mysubfunc"])
will set a breakpoint at the first line of the subfunction 'mysubfunc'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Query or set the character used to separate the filename from the subfunction names contained within the file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 725
-- Built-in Function: X = inv (A)
-- Built-in Function: [X, RCOND] = inv (A)
Compute the inverse of the square matrix A.
Return an estimate of the reciprocal condition number if requested, otherwise warn of an ill-conditioned matrix if the reciprocal condition number is small.
In general it is best to avoid calculating the inverse of a matrix directly. For example, it is both faster and more accurate to solve systems of equations (A*x = b) with 'Y = A \ b', rather than 'Y = inv (A) * b'.
If called with a sparse matrix, then in general X will be a full matrix requiring significantly more storage. Avoid forming the inverse of a sparse matrix if possible.
See also: ldivide, rdivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute the inverse of the square matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
inverse
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
-- Built-in Function: X = inverse (A)
-- Built-in Function: [X, RCOND] = inverse (A)
Compute the inverse of the square matrix A.
This is an alias for 'inv'.
See also: inv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute the inverse of the square matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
kron
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 564
-- Built-in Function: kron (A, B)
-- Built-in Function: kron (A1, A2, ...)
Form the Kronecker product of two or more matrices.
This is defined block by block as
x = [ a(i,j)*b ]
For example:
kron (1:4, ones (3, 1))
=> 1 2 3 4
1 2 3 4
1 2 3 4
If there are more than two input arguments A1, A2, ..., AN the Kronecker product is computed as
kron (kron (A1, A2), ..., AN)
Since the Kronecker product is associative, this is well-defined.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Form the Kronecker product of two or more matrices.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
genpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 267
-- Built-in Function: genpath (DIR)
-- Built-in Function: genpath (DIR, SKIP, ...)
Return a path constructed from DIR and all its subdirectories.
If additional string parameters are given, the resulting path will exclude directories with those names.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return a path constructed from DIR and all its subdirectories.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rehash
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
-- Built-in Function: rehash ()
Reinitialize Octave's load path directory cache.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Reinitialize Octave's load path directory cache.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
command_line_path
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
-- Built-in Function: command_line_path (...)
Return the command line path variable.
See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return the command line path variable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
restoredefaultpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 187
-- Built-in Function: restoredefaultpath (...)
Restore Octave's path to its initial state at startup.
See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Restore Octave's path to its initial state at startup.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
path
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 551
-- Built-in Function: path (...)
Modify or display Octave's load path.
If NARGIN and NARGOUT are zero, display the elements of Octave's load path in an easy to read format.
If NARGIN is zero and nargout is greater than zero, return the current load path.
If NARGIN is greater than zero, concatenate the arguments, separating them with 'pathsep'. Set the internal search path to the result and return it.
No checks are made for duplicate elements.
See also: addpath, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Modify or display Octave's load path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
addpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 618
-- Built-in Function: addpath (DIR1, ...)
-- Built-in Function: addpath (DIR1, ..., OPTION)
Add named directories to the function search path.
If OPTION is "-begin" or 0 (the default), prepend the directory name to the current path. If OPTION is "-end" or 1, append the directory name to the current path. Directories added to the path must exist.
In addition to accepting individual directory arguments, lists of directory names separated by 'pathsep' are also accepted. For example:
addpath ("dir1:/dir2:~/dir3")
See also: path, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Add named directories to the function search path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rmpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 358
-- Built-in Function: rmpath (DIR1, ...)
Remove DIR1, ... from the current function search path.
In addition to accepting individual directory arguments, lists of directory names separated by 'pathsep' are also accepted. For example:
rmpath ("dir1:/dir2:~/dir3")
See also: path, addpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
Remove DIR1, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
load
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3607
-- Command: load file
-- Command: load options file
-- Command: load options file v1 v2 ...
-- Command: S = load ("options", "file", "v1", "v2", ...)
-- Command: load file options
-- Command: load file options v1 v2 ...
-- Command: S = load ("file", "options", "v1", "v2", ...)
Load the named variables V1, V2, ..., from the file FILE.
If no variables are specified then all variables found in the file will be loaded. As with 'save', the list of variables to extract can be full names or use a pattern syntax. The format of the file is automatically detected but may be overridden by supplying the appropriate option.
If load is invoked using the functional form
load ("-option1", ..., "file", "v1", ...)
then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.
If a variable that is not marked as global is loaded from a file when a global symbol with the same name already exists, it is loaded in the global symbol table. Also, if a variable is marked as global in a file and a local symbol exists, the local symbol is moved to the global symbol table and given the value from the file.
If invoked with a single output argument, Octave returns data instead of inserting variables in the symbol table. If the data file contains only numbers (TAB- or space-delimited columns), a matrix of values is returned. Otherwise, 'load' returns a structure with members corresponding to the names of the variables in the file.
The 'load' command can read data stored in Octave's text and binary formats, and MATLAB's binary format. If compiled with zlib support, it can also load gzip-compressed files. It will automatically detect the type of file and do conversion from different floating point formats (currently only IEEE big and little endian, though other formats may be added in the future).
Valid options for 'load' are listed in the following table.
'-force'
This option is accepted for backward compatibility but is ignored. Octave now overwrites variables currently in memory with those of the same name found in the file.
'-ascii'
Force Octave to assume the file contains columns of numbers in text format without any header or other information. Data in the file will be loaded as a single numeric matrix with the name of the variable derived from the name of the file.
'-binary'
Force Octave to assume the file is in Octave's binary format.
'-hdf5'
Force Octave to assume the file is in HDF5 format. (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.) Note that Octave can read HDF5 files not created by itself, but may skip some datasets in formats that it cannot support. This format is only available if Octave was built with a link to the HDF5 libraries.
'-import'
This option is accepted for backward compatibility but is ignored. Octave can now support multi-dimensional HDF data and automatically modifies variable names if they are invalid Octave identifiers.
'-mat'
'-mat-binary'
'-6'
'-v6'
'-7'
'-v7'
Force Octave to assume the file is in MATLAB's version 6 or 7 binary format.
'-mat4-binary'
'-4'
'-v4'
'-V4'
Force Octave to assume the file is in the binary format written by MATLAB version 4.
'-text'
Force Octave to assume the file is in Octave's text format.
See also: save, dlmwrite, csvwrite, fwrite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Load the named variables V1, V2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
save
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4067
-- Command: save file
-- Command: save options file
-- Command: save options file V1 V2 ...
-- Command: save options file -struct STRUCT F1 F2 ...
-- Command: save '"-"' V1 V2 ...
-- Built-in Function: S = save ('"-"' V1 V2 ...)
Save the named variables V1, V2, ..., in the file FILE.
The special filename '-' may be used to return the content of the variables as a string. If no variable names are listed, Octave saves all the variables in the current scope. Otherwise, full variable names or pattern syntax can be used to specify the variables to save. If the '-struct' modifier is used, fields F1 F2 ... of the scalar structure STRUCT are saved as if they were variables with corresponding names. Valid options for the 'save' command are listed in the following table. Options that modify the output format override the format specified by 'save_default_options'.
If save is invoked using the functional form
save ("-option1", ..., "file", "v1", ...)
then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.
If called with a filename of "-", write the output to stdout if nargout is 0, otherwise return the output in a character string.
'-append'
Append to the destination instead of overwriting.
'-ascii'
Save a single matrix in a text file without header or any other information.
'-binary'
Save the data in Octave's binary data format.
'-float-binary'
Save the data in Octave's binary data format but only using single precision. Only use this format if you know that all the values to be saved can be represented in single precision.
'-hdf5'
Save the data in HDF5 format. (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.) This format is only available if Octave was built with a link to the HDF5 libraries.
'-float-hdf5'
Save the data in HDF5 format but only using single precision. Only use this format if you know that all the values to be saved can be represented in single precision.
'-V7'
'-v7'
'-7'
'-mat7-binary'
Save the data in MATLAB's v7 binary data format.
'-V6'
'-v6'
'-6'
'-mat'
'-mat-binary'
Save the data in MATLAB's v6 binary data format.
'-V4'
'-v4'
'-4'
'-mat4-binary'
Save the data in the binary format written by MATLAB version 4.
'-text'
Save the data in Octave's text data format. (default).
'-zip'
'-z'
Use the gzip algorithm to compress the file. This works equally on files that are compressed with gzip outside of octave, and gzip can equally be used to convert the files for backward compatibility. This option is only available if Octave was built with a link to the zlib libraries.
The list of variables to save may use wildcard patterns containing the following special characters:
'?'
Match any single character.
'*'
Match zero or more characters.
'[ LIST ]'
Match the list of characters specified by LIST. If the first character is '!' or '^', match all characters except those specified by LIST. For example, the pattern '[a-zA-Z]' will match all lower and uppercase alphabetic characters.
Wildcards may also be used in the field name specifications when using the '-struct' modifier (but not in the struct name itself).
Except when using the MATLAB binary data file format or the '-ascii' format, saving global variables also saves the global status of the variable. If the variable is restored at a later time using 'load', it will be restored as a global variable.
The command
save -binary data a b*
saves the variable 'a' and all variables beginning with 'b' to the file 'data' in Octave's binary format.
See also: load, save_default_options, save_header_format_string, dlmread, csvread, fread.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Save the named variables V1, V2, .
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
crash_dumps_octave_core
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 695
-- Built-in Function: VAL = crash_dumps_octave_core ()
-- Built-in Function: OLD_VAL = crash_dumps_octave_core (NEW_VAL)
-- Built-in Function: crash_dumps_octave_core (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it crashes or receives a hangup, terminate or similar signal.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: octave_core_file_limit, octave_core_file_name, octave_core_file_options.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 195
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it crashes or receives a hangup, terminate or similar signal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
save_default_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 633
-- Built-in Function: VAL = save_default_options ()
-- Built-in Function: OLD_VAL = save_default_options (NEW_VAL)
-- Built-in Function: save_default_options (NEW_VAL, "local")
Query or set the internal variable that specifies the default options for the 'save' command, and defines the default format.
Typical values include "-ascii", "-text -zip". The default value is '-text'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: save.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Query or set the internal variable that specifies the default options for the 'save' command, and defines the default format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
octave_core_file_limit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1019
-- Built-in Function: VAL = octave_core_file_limit ()
-- Built-in Function: OLD_VAL = octave_core_file_limit (NEW_VAL)
-- Built-in Function: octave_core_file_limit (NEW_VAL, "local")
Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME).
If OCTAVE_CORE_FILE_OPTIONS flags specify a binary format, then OCTAVE_CORE_FILE_LIMIT will be approximately the maximum size of the file. If a text file format is used, then the file could be much larger than the limit. The default value is -1 (unlimited)
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 256
Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
octave_core_file_name
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 679
-- Built-in Function: VAL = octave_core_file_name ()
-- Built-in Function: OLD_VAL = octave_core_file_name (NEW_VAL)
-- Built-in Function: octave_core_file_name (NEW_VAL, "local")
Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts.
The default value is "octave-workspace"
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
octave_core_file_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 778
-- Built-in Function: VAL = octave_core_file_options ()
-- Built-in Function: OLD_VAL = octave_core_file_options (NEW_VAL)
-- Built-in Function: octave_core_file_options (NEW_VAL, "local")
Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts.
The value of 'octave_core_file_options' should follow the same format as the options for the 'save' function. The default value is Octave's binary format.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_limit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
save_header_format_string
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
-- Built-in Function: VAL = save_header_format_string ()
-- Built-in Function: OLD_VAL = save_header_format_string (NEW_VAL)
-- Built-in Function: save_header_format_string (NEW_VAL, "local")
Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave.
The format string is passed to 'strftime' and should begin with the character '#' and contain no newline characters. If the value of 'save_header_format_string' is the empty string, the header comment is omitted from text-format data files. The default value is
"# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: strftime, save.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lookup
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1575
-- Built-in Function: IDX = lookup (TABLE, Y)
-- Built-in Function: IDX = lookup (TABLE, Y, OPT)
Lookup values in a sorted table.
This function is usually used as a prelude to interpolation.
If table is increasing and 'idx = lookup (table, y)', then 'table(idx(i)) <= y(i) < table(idx(i+1))' for all 'y(i)' within the table. If 'y(i) < table(1)' then 'idx(i)' is 0. If 'y(i) >= table(end)' or 'isnan (y(i))' then 'idx(i)' is 'n'.
If the table is decreasing, then the tests are reversed. For non-strictly monotonic tables, empty intervals are always skipped. The result is undefined if TABLE is not monotonic, or if TABLE contains a NaN.
The complexity of the lookup is O(M*log(N)) where N is the size of TABLE and M is the size of Y. In the special case when Y is also sorted, the complexity is O(min(M*log(N),M+N)).
TABLE and Y can also be cell arrays of strings (or Y can be a single string). In this case, string lookup is performed using lexicographical comparison.
If OPTS is specified, it must be a string with letters indicating additional options.
'm'
'table(idx(i)) == val(i)' if 'val(i)' occurs in table; otherwise, 'idx(i)' is zero.
'b'
'idx(i)' is a logical 1 or 0, indicating whether 'val(i)' is contained in table or not.
'l'
For numeric lookups the leftmost subinterval shall be extended to infinity (i.e., all indices at least 1)
'r'
For numeric lookups the rightmost subinterval shall be extended to infinity (i.e., all indices at most n-1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Lookup values in a sorted table.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
save_precision
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 495
-- Built-in Function: VAL = save_precision ()
-- Built-in Function: OLD_VAL = save_precision (NEW_VAL)
-- Built-in Function: save_precision (NEW_VAL, "local")
Query or set the internal variable that specifies the number of digits to keep when saving data in text format.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that specifies the number of digits to keep when saving data in text format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
lsode_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2056
-- Built-in Function: lsode_options ()
-- Built-in Function: val = lsode_options (OPT)
-- Built-in Function: lsode_options (OPT, VAL)
Query or set options for the function 'lsode'.
When called with no arguments, the names of all available options and their current values are displayed.
Given one argument, return the value of the option OPT.
When called with two arguments, 'lsode_options' sets the option OPT to value VAL.
Options include
'"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector.
'"relative tolerance"'
Relative tolerance parameter. Unlike the absolute tolerance, this parameter may only be a scalar.
The local error test applied at each integration step is
abs (local error in x(i)) <= ...
rtol * abs (y(i)) + atol(i)
'"integration method"'
A string specifying the method of integration to use to solve the ODE system. Valid values are
"adams"
"non-stiff"
No Jacobian used (even if it is available).
"bdf"
"stiff"
Use stiff backward differentiation formula (BDF) method. If a function to compute the Jacobian is not supplied, 'lsode' will compute a finite difference approximation of the Jacobian matrix.
'"initial step size"'
The step size to be attempted on the first step (default is determined automatically).
'"maximum order"'
Restrict the maximum order of the solution method. If using the Adams method, this option must be between 1 and 12. Otherwise, it must be between 1 and 5, inclusive.
'"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions (default is not specified).
'"minimum step size"'
The minimum absolute step size allowed (default is 0).
'"step limit"'
Maximum number of steps allowed (default is 100000).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'lsode'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lsode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2725
-- Built-in Function: [X, ISTATE, MSG] = lsode (FCN, X_0, T)
-- Built-in Function: [X, ISTATE, MSG] = lsode (FCN, X_0, T, T_CRIT)
Ordinary Differential Equation (ODE) solver.
The set of differential equations to solve is
dx
-- = f (x, t)
dt
with
x(t_0) = x_0
The solution is returned in the matrix X, with each row corresponding to an element of the vector T. The first element of T should be t_0 and should correspond to the initial state of the system X_0, so that the first row of the output is X_0.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of right hand sides for the set of equations. The function must have the form
XDOT = f (X, T)
in which XDOT and X are vectors and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the Jacobian of f. The Jacobian function must have the form
JAC = j (X, T)
in which JAC is the matrix of partial derivatives
| df_1 df_1 df_1 |
| ---- ---- ... ---- |
| dx_1 dx_2 dx_N |
| |
| df_2 df_2 df_2 |
| ---- ---- ... ---- |
df_i | dx_1 dx_2 dx_N |
jac = ---- = | |
dx_j | . . . . |
| . . . . |
| . . . . |
| |
| df_N df_N df_N |
| ---- ---- ... ---- |
| dx_1 dx_2 dx_N |
The second and third arguments specify the initial state of the system, x_0, and the initial value of the independent variable t_0.
The fourth argument is optional, and may be used to specify a set of times that the ODE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be 2 (consistent with the Fortran version of LSODE).
If the computation is not successful, ISTATE will be something other than 2 and MSG will contain additional information.
You can use the function 'lsode_options' to set optional parameters for 'lsode'.
See also: daspk, dassl, dasrt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Ordinary Differential Equation (ODE) solver.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
lu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2495
-- Built-in Function: [L, U] = lu (A)
-- Built-in Function: [L, U, P] = lu (A)
-- Built-in Function: [L, U, P, Q] = lu (S)
-- Built-in Function: [L, U, P, Q, R] = lu (S)
-- Built-in Function: [...] = lu (S, THRES)
-- Built-in Function: Y = lu (...)
-- Built-in Function: [...] = lu (..., "vector")
Compute the LU decomposition of A.
If A is full subroutines from LAPACK are used and if A is sparse then UMFPACK is used.
The result is returned in a permuted form, according to the optional return value P. For example, given the matrix 'a = [1, 2; 3, 4]',
[l, u, p] = lu (A)
returns
l =
1.00000 0.00000
0.33333 1.00000
u =
3.00000 4.00000
0.00000 0.66667
p =
0 1
1 0
The matrix is not required to be square.
When called with two or three output arguments and a spare input matrix, 'lu' does not attempt to perform sparsity preserving column permutations. Called with a fourth output argument, the sparsity preserving column transformation Q is returned, such that 'P * A * Q = L * U'.
Called with a fifth output argument and a sparse input matrix, 'lu' attempts to use a scaling factor R on the input matrix such that 'P * (R \ A) * Q = L * U'. This typically leads to a sparser and more stable factorization.
An additional input argument THRES, that defines the pivoting threshold can be given. THRES can be a scalar, in which case it defines the UMFPACK pivoting tolerance for both symmetric and unsymmetric cases. If THRES is a 2-element vector, then the first element defines the pivoting tolerance for the unsymmetric UMFPACK pivoting strategy and the second for the symmetric strategy. By default, the values defined by 'spparms' are used ([0.1, 0.001]).
Given the string argument "vector", 'lu' returns the values of P and Q as vector values, such that for full matrix, 'A (P,:) = L * U', and 'R(P,:) * A (:, Q) = L * U'.
With two output arguments, returns the permuted forms of the upper and lower triangular matrices, such that 'A = L * U'. With one output argument Y, then the matrix returned by the LAPACK routines is returned. If the input matrix is sparse then the matrix L is embedded into U to give a return value similar to the full case. For both full and sparse matrices, 'lu' loses the permutation information.
See also: luupdate, ilu, chol, hess, qr, qz, schur, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Compute the LU decomposition of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
luupdate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1181
-- Built-in Function: [L, U] = luupdate (L, U, X, Y)
-- Built-in Function: [L, U, P] = luupdate (L, U, P, X, Y)
Given an LU factorization of a real or complex matrix A = L*U, L lower unit trapezoidal and U upper trapezoidal, return the LU factorization of A + X*Y.', where X and Y are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).
Optionally, row-pivoted updating can be used by supplying a row permutation (pivoting) matrix P; in that case, an updated permutation matrix is returned. Note that if L, U, P is a pivoted LU factorization as obtained by 'lu':
[L, U, P] = lu (A);
then a factorization of A+X*Y.' can be obtained either as
[L1, U1] = lu (L, U, P*X, Y)
or
[L1, U1, P1] = lu (L, U, P, X, Y)
The first form uses the unpivoted algorithm, which is faster, but less stable. The second form uses a slower pivoted algorithm, which is more stable.
The matrix case is done as a sequence of rank-1 updates; thus, for large enough k, it will be both faster and more accurate to recompute the factorization from scratch.
See also: lu, cholupdate, qrupdate.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Given an LU factorization of a real or complex matrix A = L*U, L lower unit trapezoidal and U upper trapezoidal, return the LU factorization of A + X*Y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
abs
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
-- Mapping Function: abs (Z)
Compute the magnitude of Z.
The magnitude is defined as |Z| = 'sqrt (x^2 + y^2)'.
For example:
abs (3 + 4i)
=> 5
See also: arg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the magnitude of Z.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
acos
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
-- Mapping Function: acos (X)
Compute the inverse cosine in radians for each element of X.
See also: cos, acosd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse cosine in radians for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acosh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
-- Mapping Function: acosh (X)
Compute the inverse hyperbolic cosine for each element of X.
See also: cosh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse hyperbolic cosine for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
angle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
-- Mapping Function: angle (Z)
See 'arg'.
See also: arg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
See 'arg'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
arg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 262
-- Mapping Function: arg (Z)
-- Mapping Function: angle (Z)
Compute the argument, i.e., angle of Z.
This is defined as, THETA = 'atan2 (Y, X)', in radians.
For example:
arg (3 + 4i)
=> 0.92730
See also: abs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Compute the argument, i.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
asin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
-- Mapping Function: asin (X)
Compute the inverse sine in radians for each element of X.
See also: sin, asind.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the inverse sine in radians for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asinh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
-- Mapping Function: asinh (X)
Compute the inverse hyperbolic sine for each element of X.
See also: sinh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the inverse hyperbolic sine for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
atan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
-- Mapping Function: atan (X)
Compute the inverse tangent in radians for each element of X.
See also: tan, atand.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse tangent in radians for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
atanh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
-- Mapping Function: atanh (X)
Compute the inverse hyperbolic tangent for each element of X.
See also: tanh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse hyperbolic tangent for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cbrt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
-- Mapping Function: cbrt (X)
Compute the real cube root of each element of X.
Unlike 'X^(1/3)', the result will be negative if X is negative.
See also: nthroot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the real cube root of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ceil
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
-- Mapping Function: ceil (X)
Return the smallest integer not less than X.
This is equivalent to rounding towards positive infinity.
If X is complex, return 'ceil (real (X)) + ceil (imag (X)) * I'.
ceil ([-2.7, 2.7])
=> -2 3
See also: floor, round, fix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the smallest integer not less than X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
conj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
-- Mapping Function: conj (Z)
Return the complex conjugate of Z.
The complex conjugate is defined as 'conj (Z)' = X - IY.
See also: real, imag.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the complex conjugate of Z.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cos
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
-- Mapping Function: cos (X)
Compute the cosine for each element of X in radians.
See also: acos, cosd, cosh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the cosine for each element of X in radians.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cosh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
-- Mapping Function: cosh (X)
Compute the hyperbolic cosine for each element of X.
See also: acosh, sinh, tanh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the hyperbolic cosine for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
erf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
-- Mapping Function: erf (Z)
Compute the error function.
The error function is defined as
z
2 /
erf (z) = --------- * | e^(-t^2) dt
sqrt (pi) /
t=0
See also: erfc, erfcx, erfi, dawson, erfinv, erfcinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the error function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
erfinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 212
-- Mapping Function: erfinv (X)
Compute the inverse error function.
The inverse error function is defined such that
erf (Y) == X
See also: erf, erfc, erfcx, erfi, dawson, erfcinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Compute the inverse error function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
erfcinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 241
-- Mapping Function: erfcinv (X)
Compute the inverse complementary error function.
The inverse complementary error function is defined such that
erfc (Y) == X
See also: erfc, erf, erfcx, erfi, dawson, erfinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the inverse complementary error function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
erfc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
-- Mapping Function: erfc (Z)
Compute the complementary error function.
The complementary error function is defined as '1 - erf (Z)'.
See also: erfcinv, erfcx, erfi, dawson, erf, erfinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Compute the complementary error function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
erfcx
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 239
-- Mapping Function: erfcx (Z)
Compute the scaled complementary error function.
The scaled complementary error function is defined as
exp (z^2) * erfc (z)
See also: erfc, erf, erfi, dawson, erfinv, erfcinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the scaled complementary error function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
erfi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 211
-- Mapping Function: erfi (Z)
Compute the imaginary error function.
The imaginary error function is defined as
-i * erf (i*z)
See also: erfc, erf, erfcx, dawson, erfinv, erfcinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute the imaginary error function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dawson
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
-- Mapping Function: dawson (Z)
Compute the Dawson (scaled imaginary error) function.
The Dawson function is defined as
(sqrt (pi) / 2) * exp (-z^2) * erfi (z)
See also: erfc, erf, erfcx, erfi, erfinv, erfcinv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the Dawson (scaled imaginary error) function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
exp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
-- Mapping Function: exp (X)
Compute 'e^x' for each element of X.
To compute the matrix exponential, see *note Linear Algebra::.
See also: log.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Compute 'e^x' for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
expm1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
-- Mapping Function: expm1 (X)
Compute 'exp (X) - 1' accurately in the neighborhood of zero.
See also: exp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute 'exp (X) - 1' accurately in the neighborhood of zero.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isfinite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 281
-- Mapping Function: isfinite (X)
Return a logical array which is true where the elements of X are finite values and false where they are not.
For example:
isfinite ([13, Inf, NA, NaN])
=> [ 1, 0, 0, 0 ]
See also: isinf, isnan, isna.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return a logical array which is true where the elements of X are finite values and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
fix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
-- Mapping Function: fix (X)
Truncate fractional portion of X and return the integer portion.
This is equivalent to rounding towards zero. If X is complex, return 'fix (real (X)) + fix (imag (X)) * I'.
fix ([-2.7, 2.7])
=> -2 2
See also: ceil, floor, round.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Truncate fractional portion of X and return the integer portion.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
floor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 310
-- Mapping Function: floor (X)
Return the largest integer not greater than X.
This is equivalent to rounding towards negative infinity. If X is complex, return 'floor (real (X)) + floor (imag (X)) * I'.
floor ([-2.7, 2.7])
=> -3 2
See also: ceil, round, fix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Return the largest integer not greater than X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gamma
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 597
-- Mapping Function: gamma (Z)
Compute the Gamma function.
The Gamma function is defined as
infinity
/
gamma (z) = | t^(z-1) exp (-t) dt.
/
t=0
Programming Note: The gamma function can grow quite large even for small input values. In many cases it may be preferable to use the natural logarithm of the gamma function ('gammaln') in calculations to minimize loss of precision. The final result is then 'exp (RESULT_USING_GAMMALN).'
See also: gammainc, gammaln, factorial.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the Gamma function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
imag
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
-- Mapping Function: imag (Z)
Return the imaginary part of Z as a real number.
See also: real, conj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the imaginary part of Z as a real number.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isalnum
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 275
-- Mapping Function: isalnum (S)
Return a logical array which is true where the elements of S are letters or digits and false where they are not.
This is equivalent to ('isalpha (S) | isdigit (S)').
See also: isalpha, isdigit, ispunct, isspace, iscntrl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return a logical array which is true where the elements of S are letters or digits and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isalpha
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 283
-- Mapping Function: isalpha (S)
Return a logical array which is true where the elements of S are letters and false where they are not.
This is equivalent to ('islower (S) | isupper (S)').
See also: isdigit, ispunct, isspace, iscntrl, isalnum, islower, isupper.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Return a logical array which is true where the elements of S are letters and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isascii
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
-- Mapping Function: isascii (S)
Return a logical array which is true where the elements of S are ASCII characters (in the range 0 to 127 decimal) and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Return a logical array which is true where the elements of S are ASCII characters (in the range 0 to 127 decimal) and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
iscntrl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
-- Mapping Function: iscntrl (S)
Return a logical array which is true where the elements of S are control characters and false where they are not.
See also: ispunct, isspace, isalpha, isdigit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Return a logical array which is true where the elements of S are control characters and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isdigit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 230
-- Mapping Function: isdigit (S)
Return a logical array which is true where the elements of S are decimal digits (0-9) and false where they are not.
See also: isxdigit, isalpha, isletter, ispunct, isspace, iscntrl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Return a logical array which is true where the elements of S are decimal digits (0-9) and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isinf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 274
-- Mapping Function: isinf (X)
Return a logical array which is true where the elements of X are infinite and false where they are not.
For example:
isinf ([13, Inf, NA, NaN])
=> [ 0, 1, 0, 0 ]
See also: isfinite, isnan, isna.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Return a logical array which is true where the elements of X are infinite and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isgraph
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 213
-- Mapping Function: isgraph (S)
Return a logical array which is true where the elements of S are printable characters (but not the space character) and false where they are not.
See also: isprint.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
Return a logical array which is true where the elements of S are printable characters (but not the space character) and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
islower
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
-- Mapping Function: islower (S)
Return a logical array which is true where the elements of S are lowercase letters and false where they are not.
See also: isupper, isalpha, isletter, isalnum.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return a logical array which is true where the elements of S are lowercase letters and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
isna
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 283
-- Mapping Function: isna (X)
Return a logical array which is true where the elements of X are NA (missing) values and false where they are not.
For example:
isna ([13, Inf, NA, NaN])
=> [ 0, 0, 1, 0 ]
See also: isnan, isinf, isfinite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Return a logical array which is true where the elements of X are NA (missing) values and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isnan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 319
-- Mapping Function: isnan (X)
Return a logical array which is true where the elements of X are NaN values and false where they are not.
NA values are also considered NaN values. For example:
isnan ([13, Inf, NA, NaN])
=> [ 0, 0, 1, 1 ]
See also: isna, isinf, isfinite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Return a logical array which is true where the elements of X are NaN values and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isprint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
-- Mapping Function: isprint (S)
Return a logical array which is true where the elements of S are printable characters (including the space character) and false where they are not.
See also: isgraph.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
Return a logical array which is true where the elements of S are printable characters (including the space character) and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ispunct
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 212
-- Mapping Function: ispunct (S)
Return a logical array which is true where the elements of S are punctuation characters and false where they are not.
See also: isalpha, isdigit, isspace, iscntrl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Return a logical array which is true where the elements of S are punctuation characters and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isspace
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 278
-- Mapping Function: isspace (S)
Return a logical array which is true where the elements of S are whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab) and false where they are not.
See also: iscntrl, ispunct, isalpha, isdigit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
Return a logical array which is true where the elements of S are whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab) and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isupper
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
-- Mapping Function: isupper (S)
Return a logical array which is true where the elements of S are uppercase letters and false where they are not.
See also: islower, isalpha, isletter, isalnum.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return a logical array which is true where the elements of S are uppercase letters and false where they are not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isxdigit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
-- Mapping Function: isxdigit (S)
Return a logical array which is true where the elements of S are hexadecimal digits (0-9 and a-fA-F).
See also: isdigit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Return a logical array which is true where the elements of S are hexadecimal digits (0-9 and a-fA-F).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lgamma
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
-- Mapping Function: gammaln (X)
-- Mapping Function: lgamma (X)
Return the natural logarithm of the gamma function of X.
See also: gamma, gammainc.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the natural logarithm of the gamma function of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
log
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
-- Mapping Function: log (X)
Compute the natural logarithm, 'ln (X)', for each element of X.
To compute the matrix logarithm, see *note Linear Algebra::.
See also: exp, log1p, log2, log10, logspace.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the natural logarithm, 'ln (X)', for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
log10
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
-- Mapping Function: log10 (X)
Compute the base-10 logarithm of each element of X.
See also: log, log2, logspace, exp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Compute the base-10 logarithm of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
log1p
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
-- Mapping Function: log1p (X)
Compute 'log (1 + X)' accurately in the neighborhood of zero.
See also: log, exp, expm1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute 'log (1 + X)' accurately in the neighborhood of zero.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
real
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
-- Mapping Function: real (Z)
Return the real part of Z.
See also: imag, conj.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return the real part of Z.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
round
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 320
-- Mapping Function: round (X)
Return the integer nearest to X.
If X is complex, return 'round (real (X)) + round (imag (X)) * I'. If there are two nearest integers, return the one further away from zero.
round ([-2.7, 2.7])
=> -3 3
See also: ceil, floor, fix, roundb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return the integer nearest to X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
roundb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 249
-- Mapping Function: roundb (X)
Return the integer nearest to X. If there are two nearest integers, return the even one (banker's rounding).
If X is complex, return 'roundb (real (X)) + roundb (imag (X)) * I'.
See also: round.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return the integer nearest to X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sign
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
-- Mapping Function: sign (X)
Compute the "signum" function.
This is defined as
-1, x < 0;
sign (x) = 0, x = 0;
1, x > 0.
For complex arguments, 'sign' returns 'x ./ abs (X)'.
Note that 'sign (-0.0)' is 0. Although IEEE 754 floating point allows zero to be signed, 0.0 and -0.0 compare equal. If you must test whether zero is signed, use the 'signbit' function.
See also: signbit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Compute the "signum" function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
signbit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 526
-- Mapping Function: signbit (X)
Return logical true if the value of X has its sign bit set and false otherwise.
This behavior is consistent with the other logical functions. See *note Logical Values::. The behavior differs from the C language function which returns nonzero if the sign bit is set.
This is not the same as 'x < 0.0', because IEEE 754 floating point allows zero to be signed. The comparison '-0.0 < 0.0' is false, but 'signbit (-0.0)' will return a nonzero value.
See also: sign.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return logical true if the value of X has its sign bit set and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
-- Mapping Function: sin (X)
Compute the sine for each element of X in radians.
See also: asin, sind, sinh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the sine for each element of X in radians.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sinh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
-- Mapping Function: sinh (X)
Compute the hyperbolic sine for each element of X.
See also: asinh, cosh, tanh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the hyperbolic sine for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sqrt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
-- Mapping Function: sqrt (X)
Compute the square root of each element of X.
If X is negative, a complex result is returned.
To compute the matrix square root, see *note Linear Algebra::.
See also: realsqrt, nthroot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Compute the square root of each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
tan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
-- Mapping Function: tan (Z)
Compute the tangent for each element of X in radians.
See also: atan, tand, tanh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the tangent for each element of X in radians.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tanh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
-- Mapping Function: tanh (X)
Compute hyperbolic tangent for each element of X.
See also: atanh, sinh, cosh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute hyperbolic tangent for each element of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
toascii
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 200
-- Mapping Function: toascii (S)
Return ASCII representation of S in a matrix.
For example:
toascii ("ASCII")
=> [ 65, 83, 67, 73, 73 ]
See also: char.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return ASCII representation of S in a matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tolower
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 359
-- Mapping Function: tolower (S)
-- Mapping Function: lower (S)
Return a copy of the string or cell string S, with each uppercase character replaced by the corresponding lowercase one; non-alphabetic characters are left unchanged.
For example:
tolower ("MiXeD cAsE 123")
=> "mixed case 123"
See also: toupper.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
Return a copy of the string or cell string S, with each uppercase character replaced by the corresponding lowercase one; non-alphabetic characters are left unchanged.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
toupper
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 359
-- Mapping Function: toupper (S)
-- Mapping Function: upper (S)
Return a copy of the string or cell string S, with each lowercase character replaced by the corresponding uppercase one; non-alphabetic characters are left unchanged.
For example:
toupper ("MiXeD cAsE 123")
=> "MIXED CASE 123"
See also: tolower.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
Return a copy of the string or cell string S, with each lowercase character replaced by the corresponding uppercase one; non-alphabetic characters are left unchanged.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
matrix_type
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3158
-- Built-in Function: TYPE = matrix_type (A)
-- Built-in Function: TYPE = matrix_type (A, "nocompute")
-- Built-in Function: A = matrix_type (A, TYPE)
-- Built-in Function: A = matrix_type (A, "upper", PERM)
-- Built-in Function: A = matrix_type (A, "lower", PERM)
-- Built-in Function: A = matrix_type (A, "banded", NL, NU)
Identify the matrix type or mark a matrix as a particular type.
This allows more rapid solutions of linear equations involving A to be performed.
Called with a single argument, 'matrix_type' returns the type of the matrix and caches it for future use.
Called with more than one argument, 'matrix_type' allows the type of the matrix to be defined.
If the option "nocompute" is given, the function will not attempt to guess the type if it is still unknown. This is useful for debugging purposes.
The possible matrix types depend on whether the matrix is full or sparse, and can be one of the following
"unknown"
Remove any previously cached matrix type, and mark type as unknown.
"full"
Mark the matrix as full.
"positive definite"
Probable full positive definite matrix.
"diagonal"
Diagonal matrix. (Sparse matrices only)
"permuted diagonal"
Permuted Diagonal matrix. The permutation does not need to be specifically indicated, as the structure of the matrix explicitly gives this. (Sparse matrices only)
"upper"
Upper triangular. If the optional third argument PERM is given, the matrix is assumed to be a permuted upper triangular with the permutations defined by the vector PERM.
"lower"
Lower triangular. If the optional third argument PERM is given, the matrix is assumed to be a permuted lower triangular with the permutations defined by the vector PERM.
"banded"
"banded positive definite"
Banded matrix with the band size of NL below the diagonal and NU above it. If NL and NU are 1, then the matrix is tridiagonal and treated with specialized code. In addition the matrix can be marked as probably a positive definite. (Sparse matrices only)
"singular"
The matrix is assumed to be singular and will be treated with a minimum norm solution.
Note that the matrix type will be discovered automatically on the first attempt to solve a linear equation involving A. Therefore 'matrix_type' is only useful to give Octave hints of the matrix type. Incorrectly defining the matrix type will result in incorrect results from solutions of linear equations; it is entirely *the responsibility of the user* to correctly identify the matrix type.
Also, the test for positive definiteness is a low-cost test for a Hermitian matrix with a real positive diagonal. This does not guarantee that the matrix is positive definite, but only that it is a probable candidate. When such a matrix is factorized, a Cholesky factorization is first attempted, and if that fails the matrix is then treated with an LU factorization. Once the matrix has been factorized, 'matrix_type' will return the correct classification of the matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Identify the matrix type or mark a matrix as a particular type.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
min
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1538
-- Built-in Function: min (X)
-- Built-in Function: min (X, [], DIM)
-- Built-in Function: [W, IW] = min (X)
-- Built-in Function: min (X, Y)
Find minimum values in the array X.
For a vector argument, return the minimum value. For a matrix argument, return a row vector with the minimum value of each column. For a multi-dimensional array, 'min' operates along the first non-singleton dimension.
If the optional third argument DIM is present then operate along this dimension. In this case the second argument is ignored and should be set to the empty matrix.
For two matrices (or a matrix and a scalar), return the pairwise minimum.
Thus,
min (min (X))
returns the smallest element of the 2-D matrix X, and
min (2:5, pi)
=> 2.0000 3.0000 3.1416 3.1416
compares each element of the range '2:5' with 'pi', and returns a row vector of the minimum values.
For complex arguments, the magnitude of the elements are used for comparison. If the magnitudes are identical, then the results are ordered by phase angle in the range (-pi, pi]. Hence,
min ([-1 i 1 -i])
=> -i
because all entries have magnitude 1, but -i has the smallest phase angle with value -pi/2.
If called with one input and two output arguments, 'min' also returns the first index of the minimum value(s). Thus,
[x, ix] = min ([1, 3, 0, 2, 0])
=> x = 0
ix = 3
See also: max, cummin, cummax.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Find minimum values in the array X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
max
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1533
-- Built-in Function: max (X)
-- Built-in Function: max (X, [], DIM)
-- Built-in Function: [W, IW] = max (X)
-- Built-in Function: max (X, Y)
Find maximum values in the array X.
For a vector argument, return the maximum value. For a matrix argument, return a row vector with the maximum value of each column. For a multi-dimensional array, 'max' operates along the first non-singleton dimension.
If the optional third argument DIM is present then operate along this dimension. In this case the second argument is ignored and should be set to the empty matrix.
For two matrices (or a matrix and a scalar), return the pairwise maximum.
Thus,
max (max (X))
returns the largest element of the 2-D matrix X, and
max (2:5, pi)
=> 3.1416 3.1416 4.0000 5.0000
compares each element of the range '2:5' with 'pi', and returns a row vector of the maximum values.
For complex arguments, the magnitude of the elements are used for comparison. If the magnitudes are identical, then the results are ordered by phase angle in the range (-pi, pi]. Hence,
max ([-1 i 1 -i])
=> -1
because all entries have magnitude 1, but -1 has the largest phase angle with value pi.
If called with one input and two output arguments, 'max' also returns the first index of the maximum value(s). Thus,
[x, ix] = max ([1, 3, 5, 2, 5])
=> x = 5
ix = 3
See also: min, cummax, cummin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Find maximum values in the array X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cummin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 577
-- Built-in Function: cummin (X)
-- Built-in Function: cummin (X, DIM)
-- Built-in Function: [W, IW] = cummin (X)
Return the cumulative minimum values along dimension DIM.
If DIM is unspecified it defaults to column-wise operation. For example:
cummin ([5 4 6 2 3 1])
=> 5 4 4 2 2 1
If called with two output arguments the index of the minimum value is also returned.
[w, iw] = cummin ([5 4 6 2 3 1])
=>
w = 5 4 4 2 2 1
iw = 1 2 2 4 4 6
See also: cummax, min, max.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return the cumulative minimum values along dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cummax
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 579
-- Built-in Function: cummax (X)
-- Built-in Function: cummax (X, DIM)
-- Built-in Function: [W, IW] = cummax (...)
Return the cumulative maximum values along dimension DIM.
If DIM is unspecified it defaults to column-wise operation. For example:
cummax ([1 3 2 6 4 5])
=> 1 3 3 6 6 6
If called with two output arguments the index of the maximum value is also returned.
[w, iw] = cummax ([1 3 2 6 4 5])
=>
w = 1 3 3 6 6 6
iw = 1 2 2 4 4 4
See also: cummin, max, min.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return the cumulative maximum values along dimension DIM.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
md5sum
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
-- Built-in Function: md5sum (FILE)
-- Built-in Function: md5sum (STR, OPT)
Calculate the MD5 sum of the file FILE.
If the second parameter OPT exists and is true, then calculate the MD5 sum of the string STR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Calculate the MD5 sum of the file FILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mgorth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 326
-- Built-in Function: [Y, H] = mgorth (X, V)
Orthogonalize a given column vector X with respect to a set of orthonormal vectors comprising the columns of V using the modified Gram-Schmidt method.
On exit, Y is a unit vector such that:
norm (Y) = 1
V' * Y = 0
X = [V, Y]*H'
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Orthogonalize a given column vector X with respect to a set of orthonormal vectors comprising the columns of V using the modified Gram-Schmidt method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
nproc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 462
-- Built-in Function: nproc ()
-- Built-in Function: nproc (QUERY)
Return the current number of available processors.
If called with the optional argument QUERY, modify how processors are counted as follows:
'all'
total number of processors.
'current'
processors available to the current process.
'overridable'
same as 'current', but overridable through the 'OMP_NUM_THREADS' environment variable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return the current number of available processors.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
edit_history
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1287
-- Command: edit_history
-- Command: edit_history CMD_NUMBER
-- Command: edit_history FIRST LAST
Edit the history list using the editor named by the variable 'EDITOR'.
The commands to be edited are first copied to a temporary file. When you exit the editor, Octave executes the commands that remain in the file. It is often more convenient to use 'edit_history' to define functions rather than attempting to enter them directly on the command line. The block of commands is executed as soon as you exit the editor. To avoid executing any commands, simply delete all the lines from the buffer before leaving the editor.
When invoked with no arguments, edit the previously executed command; With one argument, edit the specified command CMD_NUMBER; With two arguments, edit the list of commands between FIRST and LAST. Command number specifiers may also be negative where -1 refers to the most recently executed command. The following are equivalent and edit the most recently executed command.
edit_history
edit_history -1
When using ranges, specifying a larger number for the first command than the last command reverses the list of commands before they are placed in the buffer to be edited.
See also: run_history, history.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Edit the history list using the editor named by the variable 'EDITOR'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
history
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1191
-- Command: history
-- Command: history OPT1 ...
-- Built-in Function: H = history ()
-- Built-in Function: H = history (OPT1, ...)
If invoked with no arguments, 'history' displays a list of commands that you have executed.
Valid options are:
'N'
'-N'
Display only the most recent N lines of history.
'-c'
Clear the history list.
'-q'
Don't number the displayed lines of history. This is useful for cutting and pasting commands using the X Window System.
'-r FILE'
Read the file FILE, appending its contents to the current history list. If the name is omitted, use the default history file (normally '~/.octave_hist').
'-w FILE'
Write the current history to the file FILE. If the name is omitted, use the default history file (normally '~/.octave_hist').
For example, to display the five most recent commands that you have typed without displaying line numbers, use the command 'history -q 5'.
If invoked with a single output argument, the history will be saved to that argument as a cell string and will not be output to screen.
See also: edit_history, run_history.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
If invoked with no arguments, 'history' displays a list of commands that you have executed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
run_history
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 967
-- Command: run_history
-- Command: run_history CMD_NUMBER
-- Command: run_history FIRST LAST
Run commands from the history list.
When invoked with no arguments, run the previously executed command;
With one argument, run the specified command CMD_NUMBER;
With two arguments, run the list of commands between FIRST and LAST. Command number specifiers may also be negative where -1 refers to the most recently executed command. For example, the command
run_history
OR
run_history -1
executes the most recent command again. The command
run_history 13 169
executes commands 13 through 169.
Specifying a larger number for the first command than the last command reverses the list of commands before executing them. For example:
disp (1)
disp (2)
run_history -1 -2
=>
2
1
See also: edit_history, history.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Run commands from the history list.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
history_control
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1154
-- Built-in Function: VAL = history_control ()
-- Built-in Function: OLD_VAL = history_control (NEW_VAL)
Query or set the internal variable that specifies how commands are saved to the history list.
The default value is an empty character string, but may be overridden by the environment variable 'OCTAVE_HISTCONTROL'.
The value of 'history_control' is a colon-separated list of values controlling how commands are saved on the history list. If the list of values includes 'ignorespace', lines which begin with a space character are not saved in the history list. A value of 'ignoredups' causes lines matching the previous history entry to not be saved. A value of 'ignoreboth' is shorthand for 'ignorespace' and 'ignoredups'. A value of 'erasedups' causes all previous lines matching the current line to be removed from the history list before that line is saved. Any value not in the above list is ignored. If 'history_control' is the empty string, all commands are saved on the history list, subject to the value of 'history_save'.
See also: history_file, history_size, history_timestamp_format_string, history_save.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Query or set the internal variable that specifies how commands are saved to the history list.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
history_size
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
-- Built-in Function: VAL = history_size ()
-- Built-in Function: OLD_VAL = history_size (NEW_VAL)
Query or set the internal variable that specifies how many entries to store in the history file.
The default value is '1000', but may be overridden by the environment variable 'OCTAVE_HISTSIZE'.
See also: history_file, history_timestamp_format_string, history_save.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Query or set the internal variable that specifies how many entries to store in the history file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
history_file
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 402
-- Built-in Function: VAL = history_file ()
-- Built-in Function: OLD_VAL = history_file (NEW_VAL)
Query or set the internal variable that specifies the name of the file used to store command history.
The default value is '~/.octave_hist', but may be overridden by the environment variable 'OCTAVE_HISTFILE'.
See also: history_size, history_save, history_timestamp_format_string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Query or set the internal variable that specifies the name of the file used to store command history.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
history_timestamp_format_string
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 784
-- Built-in Function: VAL = history_timestamp_format_string ()
-- Built-in Function: OLD_VAL = history_timestamp_format_string (NEW_VAL)
-- Built-in Function: history_timestamp_format_string (NEW_VAL, "local")
Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits.
The format string is passed to 'strftime'. The default value is
"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: strftime, history_file, history_size, history_save.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
history_save
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 596
-- Built-in Function: VAL = history_save ()
-- Built-in Function: OLD_VAL = history_save (NEW_VAL)
-- Built-in Function: history_save (NEW_VAL, "local")
Query or set the internal variable that controls whether commands entered on the command line are saved in the history file.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: history_control, history_file, history_size, history_timestamp_format_string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
Query or set the internal variable that controls whether commands entered on the command line are saved in the history file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ordschur
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 834
-- Loadable Function: [UR, SR] = ordschur (U, S, SELECT)
Reorders the real Schur factorization (U,S) obtained with the 'schur' function, so that selected eigenvalues appear in the upper left diagonal blocks of the quasi triangular Schur matrix.
The logical vector SELECT specifies the selected eigenvalues as they appear along S's diagonal.
For example, given the matrix 'A = [1, 2; 3, 4]', and its Schur decomposition
[U, S] = schur (A)
which returns
U =
-0.82456 -0.56577
0.56577 -0.82456
S =
-0.37228 -1.00000
0.00000 5.37228
It is possible to reorder the decomposition so that the positive eigenvalue is in the upper left corner, by doing:
[U, S] = ordschur (U, S, [0,1])
See also: schur.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 187
Reorders the real Schur factorization (U,S) obtained with the 'schur' function, so that selected eigenvalues appear in the upper left diagonal blocks of the quasi triangular Schur matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
diary
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 571
-- Command: diary
-- Command: diary on
-- Command: diary off
-- Command: diary FILENAME
Record a list of all commands _and_ the output they produce, mixed together just as they appear on the terminal.
Valid options are:
on
Start recording a session in a file called 'diary' in the current working directory.
off
Stop recording the session in the diary file.
FILENAME
Record the session in the file named FILENAME.
With no arguments, 'diary' toggles the current diary state.
See also: history.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Record a list of all commands _and_ the output they produce, mixed together just as they appear on the terminal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
more
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
-- Command: more
-- Command: more on
-- Command: more off
Turn output pagination on or off.
Without an argument, 'more' toggles the current state.
The current state can be determined via 'page_screen_output'.
See also: page_screen_output, page_output_immediately, PAGER, PAGER_FLAGS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Turn output pagination on or off.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
terminal_size
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
-- Built-in Function: terminal_size ()
Return a two-element row vector containing the current size of the terminal window in characters (rows and columns).
See also: list_in_columns.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Return a two-element row vector containing the current size of the terminal window in characters (rows and columns).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
page_output_immediately
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 709
-- Built-in Function: VAL = page_output_immediately ()
-- Built-in Function: OLD_VAL = page_output_immediately (NEW_VAL)
-- Built-in Function: page_output_immediately (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available.
Otherwise, Octave buffers its output and waits until just before the prompt is printed to flush it to the pager.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: page_screen_output, more, PAGER, PAGER_FLAGS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
page_screen_output
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 775
-- Built-in Function: VAL = page_screen_output ()
-- Built-in Function: OLD_VAL = page_screen_output (NEW_VAL)
-- Built-in Function: page_screen_output (NEW_VAL, "local")
Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager.
This allows you to view one screenful at a time. Some pagers (such as 'less'--see *note Installation::) are also capable of moving backward on the output.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: more, page_output_immediately, PAGER, PAGER_FLAGS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
PAGER
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 689
-- Built-in Function: VAL = PAGER ()
-- Built-in Function: OLD_VAL = PAGER (NEW_VAL)
-- Built-in Function: PAGER (NEW_VAL, "local")
Query or set the internal variable that specifies the program to use to display terminal output on your system.
The default value is normally "less", "more", or "pg", depending on what programs are installed on your system. *Note Installation::.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: PAGER_FLAGS, page_output_immediately, more, page_screen_output.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that specifies the program to use to display terminal output on your system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
PAGER_FLAGS
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 532
-- Built-in Function: VAL = PAGER_FLAGS ()
-- Built-in Function: OLD_VAL = PAGER_FLAGS (NEW_VAL)
-- Built-in Function: PAGER_FLAGS (NEW_VAL, "local")
Query or set the internal variable that specifies the options to pass to the pager.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: PAGER, more, page_screen_output, page_output_immediately.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Query or set the internal variable that specifies the options to pass to the pager.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
-- Built-in Function: pinv (X)
-- Built-in Function: pinv (X, TOL)
Return the pseudoinverse of X.
Singular values less than TOL are ignored.
If the second argument is omitted, it is taken to be
tol = max (size (X)) * sigma_max (X) * eps,
where 'sigma_max (X)' is the maximal singular value of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Return the pseudoinverse of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rats
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 534
-- Built-in Function: rats (X, LEN)
Convert X into a rational approximation represented as a string.
The string can be converted back into a matrix as follows:
r = rats (hilb (4));
x = str2num (r)
The optional second argument defines the maximum length of the string representing the elements of X. By default LEN is 9.
If the length of the smallest possible rational approximation exceeds LEN, an asterisk (*) padded with spaces will be returned instead.
See also: format, rat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Convert X into a rational approximation represented as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
disp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
-- Built-in Function: disp (X)
Display the value of X.
For example:
disp ("The value of pi is:"), disp (pi)
-| the value of pi is:
-| 3.1416
Note that the output from 'disp' always ends with a newline.
If an output value is requested, 'disp' prints nothing and returns the formatted output in a string.
See also: fdisp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Display the value of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fdisp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 330
-- Built-in Function: fdisp (FID, X)
Display the value of X on the stream FID.
For example:
fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)
-| the value of pi is:
-| 3.1416
Note that the output from 'fdisp' always ends with a newline.
See also: disp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Display the value of X on the stream FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
format
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5273
-- Command: format
-- Command: format options
Reset or specify the format of the output produced by 'disp' and Octave's normal echoing mechanism.
This command only affects the display of numbers but not how they are stored or computed. To change the internal representation from the default double use one of the conversion functions such as 'single', 'uint8', 'int64', etc.
By default, Octave displays 5 significant digits in a human readable form (option 'short' paired with 'loose' format for matrices). If 'format' is invoked without any options, this default format is restored.
Valid formats for floating point numbers are listed in the following table.
'short'
Fixed point format with 5 significant figures in a field that is a maximum of 10 characters wide. (default).
If Octave is unable to format a matrix so that columns line up on the decimal point and all numbers fit within the maximum field width then it switches to an exponential 'e' format.
'long'
Fixed point format with 15 significant figures in a field that is a maximum of 20 characters wide.
As with the 'short' format, Octave will switch to an exponential 'e' format if it is unable to format a matrix properly using the current format.
'short e'
'long e'
Exponential format. The number to be represented is split between a mantissa and an exponent (power of 10). The mantissa has 5 significant digits in the short format and 15 digits in the long format. For example, with the 'short e' format, 'pi' is displayed as '3.1416e+00'.
'short E'
'long E'
Identical to 'short e' or 'long e' but displays an uppercase 'E' to indicate the exponent. For example, with the 'long E' format, 'pi' is displayed as '3.14159265358979E+00'.
'short g'
'long g'
Optimally choose between fixed point and exponential format based on the magnitude of the number. For example, with the 'short g' format, 'pi .^ [2; 4; 8; 16; 32]' is displayed as
ans =
9.8696
97.409
9488.5
9.0032e+07
8.1058e+15
'short eng'
'long eng'
Identical to 'short e' or 'long e' but displays the value using an engineering format, where the exponent is divisible by 3. For example, with the 'short eng' format, '10 * pi' is displayed as '31.4159e+00'.
'long G'
'short G'
Identical to 'short g' or 'long g' but displays an uppercase 'E' to indicate the exponent.
'free'
'none'
Print output in free format, without trying to line up columns of matrices on the decimal point. This also causes complex numbers to be formatted as numeric pairs like this '(0.60419, 0.60709)' instead of like this '0.60419 + 0.60709i'.
The following formats affect all numeric output (floating point and integer types).
'"+"'
'"+" CHARS'
'plus'
'plus CHARS'
Print a '+' symbol for matrix elements greater than zero, a '-' symbol for elements less than zero and a space for zero matrix elements. This format can be very useful for examining the structure of a large sparse matrix.
The optional argument CHARS specifies a list of 3 characters to use for printing values greater than zero, less than zero and equal to zero. For example, with the '"+" "+-."' format, '[1, 0, -1; -1, 0, 1]' is displayed as
ans =
+.-
-.+
'bank'
Print in a fixed format with two digits to the right of the decimal point.
'native-hex'
Print the hexadecimal representation of numbers as they are stored in memory. For example, on a workstation which stores 8 byte real values in IEEE format with the least significant byte first, the value of 'pi' when printed in 'native-hex' format is '400921fb54442d18'.
'hex'
The same as 'native-hex', but always print the most significant byte first.
'native-bit'
Print the bit representation of numbers as stored in memory. For example, the value of 'pi' is
01000000000010010010000111111011
01010100010001000010110100011000
(shown here in two 32 bit sections for typesetting purposes) when printed in native-bit format on a workstation which stores 8 byte real values in IEEE format with the least significant byte first.
'bit'
The same as 'native-bit', but always print the most significant bits first.
'rat'
Print a rational approximation, i.e., values are approximated as the ratio of small integers. For example, with the 'rat' format, 'pi' is displayed as '355/113'.
The following two options affect the display of all matrices.
'compact'
Remove blank lines around column number labels and between matrices producing more compact output with more data per page.
'loose'
Insert blank lines above and below column number labels and between matrices to produce a more readable output with less data per page. (default).
See also: fixed_point_format, output_max_field_width, output_precision, split_long_rows, print_empty_dimensions, rats.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Reset or specify the format of the output produced by 'disp' and Octave's normal echoing mechanism.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
fixed_point_format
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1098
-- Built-in Function: VAL = fixed_point_format ()
-- Built-in Function: OLD_VAL = fixed_point_format (NEW_VAL)
-- Built-in Function: fixed_point_format (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values.
The scaled format prints a scaling factor on the first line of output chosen such that the largest matrix element can be written with a single leading digit. For example:
logspace (1, 7, 5)'
ans =
1.0e+07 *
0.00000
0.00003
0.00100
0.03162
1.00000
Notice that the first value appears to be 0 when it is actually 1. Because of the possibility for confusion you should be careful about enabling 'fixed_point_format'.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: format, output_max_field_width, output_precision.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
print_empty_dimensions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
-- Built-in Function: VAL = print_empty_dimensions ()
-- Built-in Function: OLD_VAL = print_empty_dimensions (NEW_VAL)
-- Built-in Function: print_empty_dimensions (NEW_VAL, "local")
Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, '[]'.
For example, the expression
zeros (3, 0)
will print
ans = [](3x0)
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, '[]'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
split_long_rows
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1149
-- Built-in Function: VAL = split_long_rows ()
-- Built-in Function: OLD_VAL = split_long_rows (NEW_VAL)
-- Built-in Function: split_long_rows (NEW_VAL, "local")
Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window.
If the rows are split, Octave will display the matrix in a series of smaller pieces, each of which can fit within the limits of your terminal width and each set of rows is labeled so that you can easily see which columns are currently being displayed. For example:
octave:13> rand (2,10)
ans =
Columns 1 through 6:
0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201
Columns 7 through 10:
0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
output_max_field_width
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 564
-- Built-in Function: VAL = output_max_field_width ()
-- Built-in Function: OLD_VAL = output_max_field_width (NEW_VAL)
-- Built-in Function: output_max_field_width (NEW_VAL, "local")
Query or set the internal variable that specifies the maximum width of a numeric output field.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: format, fixed_point_format, output_precision.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Query or set the internal variable that specifies the maximum width of a numeric output field.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
output_precision
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 580
-- Built-in Function: VAL = output_precision ()
-- Built-in Function: OLD_VAL = output_precision (NEW_VAL)
-- Built-in Function: output_precision (NEW_VAL, "local")
Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: format, fixed_point_format, output_max_field_width.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
quad_options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1127
-- Built-in Function: quad_options ()
-- Built-in Function: val = quad_options (OPT)
-- Built-in Function: quad_options (OPT, VAL)
Query or set options for the function 'quad'.
When called with no arguments, the names of all available options and their current values are displayed.
Given one argument, return the value of the option OPT.
When called with two arguments, 'quad_options' sets the option OPT to value VAL.
Options include
'"absolute tolerance"'
Absolute tolerance; may be zero for pure relative error test.
'"relative tolerance"'
Non-negative relative tolerance. If the absolute tolerance is zero, the relative tolerance must be greater than or equal to 'max (50*eps, 0.5e-28)'.
'"single precision absolute tolerance"'
Absolute tolerance for single precision; may be zero for pure relative error test.
'"single precision relative tolerance"'
Non-negative relative tolerance for single precision. If the absolute tolerance is zero, the relative tolerance must be greater than or equal to 'max (50*eps, 0.5e-28)'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Query or set options for the function 'quad'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
quad
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1725
-- Built-in Function: Q = quad (F, A, B)
-- Built-in Function: Q = quad (F, A, B, TOL)
-- Built-in Function: Q = quad (F, A, B, TOL, SING)
-- Built-in Function: [Q, IER, NFUN, ERR] = quad (...)
Numerically evaluate the integral of F from A to B using Fortran routines from QUADPACK.
F is a function handle, inline function, or a string containing the name of the function to evaluate. The function must have the form 'y = f (x)' where Y and X are scalars.
A and B are the lower and upper limits of integration. Either or both may be infinite.
The optional argument TOL is a vector that specifies the desired accuracy of the result. The first element of the vector is the desired absolute tolerance, and the second element is the desired relative tolerance. To choose a relative test only, set the absolute tolerance to zero. To choose an absolute test only, set the relative tolerance to zero. Both tolerances default to 'sqrt (eps)' or approximately 1.5e^{-8}.
The optional argument SING is a vector of values at which the integrand is known to be singular.
The result of the integration is returned in Q.
IER contains an integer error code (0 indicates a successful integration).
NFUN indicates the number of function evaluations that were made.
ERR contains an estimate of the error in the solution.
The function 'quad_options' can set other optional parameters for 'quad'.
Note: because 'quad' is written in Fortran it cannot be called recursively. This prevents its use in integrating over more than one variable by routines 'dblquad' and 'triplequad'.
See also: quad_options, quadv, quadl, quadgk, quadcc, trapz, dblquad, triplequad.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Numerically evaluate the integral of F from A to B using Fortran routines from QUADPACK.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
quadcc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2772
-- Function File: Q = quadcc (F, A, B)
-- Function File: Q = quadcc (F, A, B, TOL)
-- Function File: Q = quadcc (F, A, B, TOL, SING)
-- Function File: [Q, ERR, NR_POINTS] = quadcc (...)
Numerically evaluate the integral of F from A to B using doubly-adaptive Clenshaw-Curtis quadrature.
F is a function handle, inline function, or string containing the name of the function to evaluate. The function F must be vectorized and must return a vector of output values if given a vector of input values. For example,
f = @(x) x .* sin (1./x) .* sqrt (abs (1 - x));
which uses the element-by-element "dot" form for all operators.
A and B are the lower and upper limits of integration. Either or both limits may be infinite. 'quadcc' handles an inifinite limit by substituting the variable of integration with 'x = tan (pi/2*u)'.
The optional argument TOL defines the relative tolerance used to stop the integration procedure. The default value is 1e^{-6}.
The optional argument SING contains a list of points where the integrand has known singularities, or discontinuities in any of its derivatives, inside the integration interval. For the example above, which has a discontinuity at x=1, the call to 'quadcc' would be as follows
int = quadcc (f, a, b, 1.0e-6, [ 1 ]);
The result of the integration is returned in Q.
ERR is an estimate of the absolute integration error.
NR_POINTS is the number of points at which the integrand was evaluated.
If the adaptive integration did not converge, the value of ERR will be larger than the requested tolerance. Therefore, it is recommended to verify this value for difficult integrands.
'quadcc' is capable of dealing with non-numeric values of the integrand such as 'NaN' or 'Inf'. If the integral diverges, and 'quadcc' detects this, then a warning is issued and 'Inf' or '-Inf' is returned.
Note: 'quadcc' is a general purpose quadrature algorithm and, as such, may be less efficient for a smooth or otherwise well-behaved integrand than other methods such as 'quadgk'.
The algorithm uses Clenshaw-Curtis quadrature rules of increasing degree in each interval and bisects the interval if either the function does not appear to be smooth or a rule of maximum degree has been reached. The error estimate is computed from the L2-norm of the difference between two successive interpolations of the integrand over the nodes of the respective quadrature rules.
Reference: P. Gonnet, 'Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants', ACM Transactions on Mathematical Software, Vol. 37, Issue 3, Article No. 3, 2010.
See also: quad, quadv, quadl, quadgk, trapz, dblquad, triplequad.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Numerically evaluate the integral of F from A to B using doubly-adaptive Clenshaw-Curtis quadrature.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1858
-- Built-in Function: LAMBDA = qz (A, B)
-- Built-in Function: LAMBDA = qz (A, B, OPT)
QZ decomposition of the generalized eigenvalue problem (A x = s B x).
There are three ways to call this function:
1. 'LAMBDA = qz (A, B)'
Computes the generalized eigenvalues LAMBDA of (A - s B).
2. '[AA, BB, Q, Z, V, W, LAMBDA] = qz (A, B)'
Computes QZ decomposition, generalized eigenvectors, and generalized eigenvalues of (A - s B)
A * V = B * V * diag (LAMBDA)
W' * A = diag (LAMBDA) * W' * B
AA = Q * A * Z, BB = Q * B * Z
with Q and Z orthogonal (unitary)= I
3. '[AA,BB,Z{, LAMBDA}] = qz (A, B, OPT)'
As in form [2], but allows ordering of generalized eigenpairs for, e.g., solution of discrete time algebraic Riccati equations. Form 3 is not available for complex matrices, and does not compute the generalized eigenvectors V, W, nor the orthogonal matrix Q.
OPT
for ordering eigenvalues of the GEP pencil. The leading block of the revised pencil contains all eigenvalues that satisfy:
"N"
= unordered (default)
"S"
= small: leading block has all |lambda| <= 1
"B"
= big: leading block has all |lambda| >= 1
"-"
= negative real part: leading block has all eigenvalues in the open left half-plane
"+"
= non-negative real part: leading block has all eigenvalues in the closed right half-plane
Note: 'qz' performs permutation balancing, but not scaling (*note XREFbalance::). The order of output arguments was selected for compatibility with MATLAB.
See also: eig, balance, lu, chol, hess, qr, qzhess, schur, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
QZ decomposition of the generalized eigenvalue problem (A x = s B x).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rand
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3173
-- Built-in Function: rand (N)
-- Built-in Function: rand (M, N, ...)
-- Built-in Function: rand ([M N ...])
-- Built-in Function: V = rand ("state")
-- Built-in Function: rand ("state", V)
-- Built-in Function: rand ("state", "reset")
-- Built-in Function: V = rand ("seed")
-- Built-in Function: rand ("seed", V)
-- Built-in Function: rand ("seed", "reset")
-- Built-in Function: rand (..., "single")
-- Built-in Function: rand (..., "double")
Return a matrix with random elements uniformly distributed on the interval (0, 1).
The arguments are handled the same as the arguments for 'eye'.
You can query the state of the random number generator using the form
v = rand ("state")
This returns a column vector V of length 625. Later, you can restore the random number generator to the state V using the form
rand ("state", v)
You may also initialize the state vector from an arbitrary vector of length <= 625 for V. This new state will be a hash based on the value of V, not V itself.
By default, the generator is initialized from '/dev/urandom' if it is available, otherwise from CPU time, wall clock time, and the current fraction of a second. Note that this differs from MATLAB, which always initializes the state to the same state at startup. To obtain behavior comparable to MATLAB, initialize with a deterministic state vector in Octave's startup files (*note Startup Files::).
To compute the pseudo-random sequence, 'rand' uses the Mersenne Twister with a period of 2^{19937}-1 (See M. Matsumoto and T. Nishimura, 'Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator', ACM Trans. on Modeling and Computer Simulation Vol. 8, No. 1, pp. 3-30, January 1998, <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>). Do *not* use for cryptography without securely hashing several returned values together, otherwise the generator state can be learned after reading 624 consecutive values.
Older versions of Octave used a different random number generator. The new generator is used by default as it is significantly faster than the old generator, and produces random numbers with a significantly longer cycle time. However, in some circumstances it might be desirable to obtain the same random sequences as produced by the old generators. To do this the keyword "seed" is used to specify that the old generators should be used, as in
rand ("seed", val)
which sets the seed of the generator to VAL. The seed of the generator can be queried with
s = rand ("seed")
However, it should be noted that querying the seed will not cause 'rand' to use the old generators, only setting the seed will. To cause 'rand' to once again use the new generators, the keyword "state" should be used to reset the state of the 'rand'.
The state or seed of the generator can be reset to a new random value using the "reset" keyword.
The class of the value returned can be controlled by a trailing "double" or "single" argument. These are the only valid classes.
See also: randn, rande, randg, randp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Return a matrix with random elements uniformly distributed on the interval (0, 1).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1119
-- Built-in Function: randn (N)
-- Built-in Function: randn (M, N, ...)
-- Built-in Function: randn ([M N ...])
-- Built-in Function: V = randn ("state")
-- Built-in Function: randn ("state", V)
-- Built-in Function: randn ("state", "reset")
-- Built-in Function: V = randn ("seed")
-- Built-in Function: randn ("seed", V)
-- Built-in Function: randn ("seed", "reset")
-- Built-in Function: randn (..., "single")
-- Built-in Function: randn (..., "double")
Return a matrix with normally distributed random elements having zero mean and variance one.
The arguments are handled the same as the arguments for 'rand'.
By default, 'randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a normal distribution.
The class of the value returned can be controlled by a trailing "double" or "single" argument. These are the only valid classes.
Reference: G. Marsaglia and W.W. Tsang, 'Ziggurat Method for Generating Random Variables', J. Statistical Software, vol 5, 2000, <http://www.jstatsoft.org/v05/i08/>
See also: rand, rande, randg, randp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Return a matrix with normally distributed random elements having zero mean and variance one.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rande
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1090
-- Built-in Function: rande (N)
-- Built-in Function: rande (M, N, ...)
-- Built-in Function: rande ([M N ...])
-- Built-in Function: V = rande ("state")
-- Built-in Function: rande ("state", V)
-- Built-in Function: rande ("state", "reset")
-- Built-in Function: V = rande ("seed")
-- Built-in Function: rande ("seed", V)
-- Built-in Function: rande ("seed", "reset")
-- Built-in Function: rande (..., "single")
-- Built-in Function: rande (..., "double")
Return a matrix with exponentially distributed random elements.
The arguments are handled the same as the arguments for 'rand'.
By default, 'randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a normal distribution.
The class of the value returned can be controlled by a trailing "double" or "single" argument. These are the only valid classes.
Reference: G. Marsaglia and W.W. Tsang, 'Ziggurat Method for Generating Random Variables', J. Statistical Software, vol 5, 2000, <http://www.jstatsoft.org/v05/i08/>
See also: rand, randn, randg, randp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a matrix with exponentially distributed random elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randg
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2028
-- Built-in Function: randg (N)
-- Built-in Function: randg (M, N, ...)
-- Built-in Function: randg ([M N ...])
-- Built-in Function: V = randg ("state")
-- Built-in Function: randg ("state", V)
-- Built-in Function: randg ("state", "reset")
-- Built-in Function: V = randg ("seed")
-- Built-in Function: randg ("seed", V)
-- Built-in Function: randg ("seed", "reset")
-- Built-in Function: randg (..., "single")
-- Built-in Function: randg (..., "double")
Return a matrix with 'gamma (A,1)' distributed random elements.
The arguments are handled the same as the arguments for 'rand', except for the argument A.
This can be used to generate many distributions:
'gamma (a, b)' for 'a > -1', 'b > 0'
r = b * randg (a)
'beta (a, b)' for 'a > -1', 'b > -1'
r1 = randg (a, 1)
r = r1 / (r1 + randg (b, 1))
'Erlang (a, n)'
r = a * randg (n)
'chisq (df)' for 'df > 0'
r = 2 * randg (df / 2)
't (df)' for '0 < df < inf' (use randn if df is infinite)
r = randn () / sqrt (2 * randg (df / 2) / df)
'F (n1, n2)' for '0 < n1', '0 < n2'
## r1 equals 1 if n1 is infinite
r1 = 2 * randg (n1 / 2) / n1
## r2 equals 1 if n2 is infinite
r2 = 2 * randg (n2 / 2) / n2
r = r1 / r2
negative 'binomial (n, p)' for 'n > 0', '0 < p <= 1'
r = randp ((1 - p) / p * randg (n))
non-central 'chisq (df, L)', for 'df >= 0' and 'L > 0'
(use chisq if 'L = 0')
r = randp (L / 2)
r(r > 0) = 2 * randg (r(r > 0))
r(df > 0) += 2 * randg (df(df > 0)/2)
'Dirichlet (a1, ... ak)'
r = (randg (a1), ..., randg (ak))
r = r / sum (r)
The class of the value returned can be controlled by a trailing "double" or "single" argument. These are the only valid classes.
See also: rand, randn, rande, randp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a matrix with 'gamma (A,1)' distributed random elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1823
-- Built-in Function: randp (L, N)
-- Built-in Function: randp (L, M, N, ...)
-- Built-in Function: randp (L, [M N ...])
-- Built-in Function: V = randp ("state")
-- Built-in Function: randp ("state", V)
-- Built-in Function: randp ("state", "reset")
-- Built-in Function: V = randp ("seed")
-- Built-in Function: randp ("seed", V)
-- Built-in Function: randp ("seed", "reset")
-- Built-in Function: randp (..., "single")
-- Built-in Function: randp (..., "double")
Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L.
The arguments are handled the same as the arguments for 'rand', except for the argument L.
Five different algorithms are used depending on the range of L and whether or not L is a scalar or a matrix.
For scalar L <= 12, use direct method.
W.H. Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.
For scalar L > 12, use rejection method.[1]
W.H. Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.
For matrix L <= 10, use inversion method.[2]
E. Stadlober, et al., WinRand source code, available via FTP.
For matrix L > 10, use patchwork rejection method.
E. Stadlober, et al., WinRand source code, available via FTP, or H. Zechner, 'Efficient sampling from continuous and discrete unimodal distributions', Doctoral Dissertation, 156pp., Technical University Graz, Austria, 1994.
For L > 1e8, use normal approximation.
L. Montanet, et al., 'Review of Particle Properties', Physical Review D 50 p1284, 1994.
The class of the value returned can be controlled by a trailing "double" or "single" argument. These are the only valid classes.
See also: rand, randn, rande, randg.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
randperm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 457
-- Built-in Function: randperm (N)
-- Built-in Function: randperm (N, M)
Return a row vector containing a random permutation of '1:N'.
If M is supplied, return M unique entries, sampled without replacement from '1:N'.
The complexity is O(N) in memory and O(M) in time, unless M < N/5, in which case O(M) memory is used as well. The randomization is performed using rand(). All permutations are equally likely.
See also: perms.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return a row vector containing a random permutation of '1:N'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rcond
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 416
-- Built-in Function: C = rcond (A)
Compute the 1-norm estimate of the reciprocal condition number as returned by LAPACK.
If the matrix is well-conditioned then C will be near 1 and if the matrix is poorly conditioned it will be close to 0.
The matrix A must not be sparse. If the matrix is sparse then 'condest (A)' or 'rcond (full (A))' should be used instead.
See also: cond, condest.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Compute the 1-norm estimate of the reciprocal condition number as returned by LAPACK.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
regexp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8643
-- Built-in Function: [S, E, TE, M, T, NM, SP] = regexp (STR, PAT)
-- Built-in Function: [...] = regexp (STR, PAT, "OPT1", ...)
Regular expression string matching.
Search for PAT in STR and return the positions and substrings of any matches, or empty values if there are none.
The matched pattern PAT can include any of the standard regex operators, including:
'.'
Match any character
'* + ? {}'
Repetition operators, representing
'*'
Match zero or more times
'+'
Match one or more times
'?'
Match zero or one times
'{N}'
Match exactly N times
'{N,}'
Match N or more times
'{M,N}'
Match between M and N times
'[...] [^...]'
List operators. The pattern will match any character listed between "[" and "]". If the first character is "^" then the pattern is inverted and any character except those listed between brackets will match.
Escape sequences defined below can also be used inside list operators. For example, a template for a floating point number might be '[-+.\d]+'.
'() (?:)'
Grouping operator. The first form, parentheses only, also creates a token.
'|'
Alternation operator. Match one of a choice of regular expressions. The alternatives must be delimited by the grouping operator '()' above.
'^ $'
Anchoring operators. Requires pattern to occur at the start ('^') or end ('$') of the string.
In addition, the following escaped characters have special meaning.
'\d'
Match any digit
'\D'
Match any non-digit
'\s'
Match any whitespace character
'\S'
Match any non-whitespace character
'\w'
Match any word character
'\W'
Match any non-word character
'\<'
Match the beginning of a word
'\>'
Match the end of a word
'\B'
Match within a word
Implementation Note: For compatibility with MATLAB, escape sequences in PAT (e.g., "\n" => newline) are expanded even when PAT has been defined with single quotes. To disable expansion use a second backslash before the escape sequence (e.g., "\\n") or use the 'regexptranslate' function.
The outputs of 'regexp' default to the order given below
S
The start indices of each matching substring
E
The end indices of each matching substring
TE
The extents of each matched token surrounded by '(...)' in PAT
M
A cell array of the text of each match
T
A cell array of the text of each token matched
NM
A structure containing the text of each matched named token, with the name being used as the fieldname. A named token is denoted by '(?<name>...)'.
SP
A cell array of the text not returned by match, i.e., what remains if you split the string based on PAT.
Particular output arguments, or the order of the output arguments, can be selected by additional OPT arguments. These are strings and the correspondence between the output arguments and the optional argument are
'start' S
'end' E
'tokenExtents' TE
'match' M
'tokens' T
'names' NM
'split' SP
Additional arguments are summarized below.
'once'
Return only the first occurrence of the pattern.
'matchcase'
Make the matching case sensitive. (default)
Alternatively, use (?-i) in the pattern.
'ignorecase'
Ignore case when matching the pattern to the string.
Alternatively, use (?i) in the pattern.
'stringanchors'
Match the anchor characters at the beginning and end of the string. (default)
Alternatively, use (?-m) in the pattern.
'lineanchors'
Match the anchor characters at the beginning and end of the line.
Alternatively, use (?m) in the pattern.
'dotall'
The pattern '.' matches all characters including the newline character. (default)
Alternatively, use (?s) in the pattern.
'dotexceptnewline'
The pattern '.' matches all characters except the newline character.
Alternatively, use (?-s) in the pattern.
'literalspacing'
All characters in the pattern, including whitespace, are significant and are used in pattern matching. (default)
Alternatively, use (?-x) in the pattern.
'freespacing'
The pattern may include arbitrary whitespace and also comments beginning with the character '#'.
Alternatively, use (?x) in the pattern.
'noemptymatch'
Zero-length matches are not returned. (default)
'emptymatch'
Return zero-length matches.
'regexp ('a', 'b*', 'emptymatch')' returns '[1 2]' because there are zero or more 'b' characters at positions 1 and end-of-string.
See also: regexpi, strfind, regexprep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Regular expression string matching.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
regexpi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 413
-- Built-in Function: [S, E, TE, M, T, NM, SP] = regexpi (STR, PAT)
-- Built-in Function: [...] = regexpi (STR, PAT, "OPT1", ...)
Case insensitive regular expression string matching.
Search for PAT in STR and return the positions and substrings of any matches, or empty values if there are none. *Note regexp: XREFregexp, for details on the syntax of the search pattern.
See also: regexp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Case insensitive regular expression string matching.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
regexprep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1072
-- Built-in Function: OUTSTR = regexprep (STRING, PAT, REPSTR)
-- Built-in Function: OUTSTR = regexprep (STRING, PAT, REPSTR, "OPT1", ...)
Replace occurrences of pattern PAT in STRING with REPSTR.
The pattern is a regular expression as documented for 'regexp'. *Note regexp: XREFregexp.
The replacement string may contain '$i', which substitutes for the ith set of parentheses in the match string. For example,
regexprep ("Bill Dunn", '(\w+) (\w+)', '$2, $1')
returns "Dunn, Bill"
Options in addition to those of 'regexp' are
'once'
Replace only the first occurrence of PAT in the result.
'warnings'
This option is present for compatibility but is ignored.
Implementation Note: For compatibility with MATLAB, escape sequences in PAT (e.g., "\n" => newline) are expanded even when PAT has been defined with single quotes. To disable expansion use a second backslash before the escape sequence (e.g., "\\n") or use the 'regexptranslate' function.
See also: regexp, regexpi, strrep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Replace occurrences of pattern PAT in STRING with REPSTR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
schur
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1735
-- Built-in Function: S = schur (A)
-- Built-in Function: S = schur (A, "real")
-- Built-in Function: S = schur (A, "complex")
-- Built-in Function: S = schur (A, OPT)
-- Built-in Function: [U, S] = schur (...)
Compute the Schur decomposition of A.
The Schur decomposition is defined as
S = U' * A * U
where U is a unitary matrix ('U'* U' is identity) and S is upper triangular. The eigenvalues of A (and S) are the diagonal elements of S. If the matrix A is real, then the real Schur decomposition is computed, in which the matrix U is orthogonal and S is block upper triangular with blocks of size at most '2 x 2' along the diagonal. The diagonal elements of S (or the eigenvalues of the '2 x 2' blocks, when appropriate) are the eigenvalues of A and S.
The default for real matrices is a real Schur decomposition. A complex decomposition may be forced by passing the flag "complex".
The eigenvalues are optionally ordered along the diagonal according to the value of OPT. 'OPT = "a"' indicates that all eigenvalues with negative real parts should be moved to the leading block of S (used in 'are'), 'OPT = "d"' indicates that all eigenvalues with magnitude less than one should be moved to the leading block of S (used in 'dare'), and 'OPT = "u"', the default, indicates that no ordering of eigenvalues should occur. The leading K columns of U always span the A-invariant subspace corresponding to the K leading eigenvalues of S.
The Schur decomposition is used to compute eigenvalues of a square matrix, and has applications in the solution of algebraic Riccati equations in control (see 'are' and 'dare').
See also: rsf2csf, ordschur, lu, chol, hess, qr, qz, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute the Schur decomposition of A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rsf2csf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
-- Function File: [U, T] = rsf2csf (UR, TR)
Convert a real, upper quasi-triangular Schur form TR to a complex, upper triangular Schur form T.
Note that the following relations hold:
UR * TR * UR' = U * T * U' and 'U' * U' is the identity matrix I.
Note also that U and T are not unique.
See also: schur.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Convert a real, upper quasi-triangular Schur form TR to a complex, upper triangular Schur form T.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
SIG
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
-- Built-in Function: SIG ()
Return a structure containing Unix signal names and their defined values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Return a structure containing Unix signal names and their defined values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
debug_on_interrupt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 727
-- Built-in Function: VAL = debug_on_interrupt ()
-- Built-in Function: OLD_VAL = debug_on_interrupt (NEW_VAL)
-- Built-in Function: debug_on_interrupt (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with 'C-c').
If a second interrupt signal is received before reaching the debugging mode, a normal interrupt will occur.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: debug_on_error, debug_on_warning.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with 'C-c').
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
sighup_dumps_octave_core
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 576
-- Built-in Function: VAL = sighup_dumps_octave_core ()
-- Built-in Function: OLD_VAL = sighup_dumps_octave_core (NEW_VAL)
-- Built-in Function: sighup_dumps_octave_core (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a hangup signal.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 162
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a hangup signal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
sigterm_dumps_octave_core
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 582
-- Built-in Function: VAL = sigterm_dumps_octave_core ()
-- Built-in Function: OLD_VAL = sigterm_dumps_octave_core (NEW_VAL)
-- Built-in Function: sigterm_dumps_octave_core (NEW_VAL, "local")
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a terminate signal.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a terminate signal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
issparse
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
-- Built-in Function: issparse (X)
Return true if X is a sparse matrix.
See also: ismatrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return true if X is a sparse matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sparse
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2146
-- Built-in Function: S = sparse (A)
-- Built-in Function: S = sparse (I, J, SV, M, N)
-- Built-in Function: S = sparse (I, J, SV)
-- Built-in Function: S = sparse (M, N)
-- Built-in Function: S = sparse (I, J, S, M, N, "unique")
-- Built-in Function: S = sparse (I, J, SV, M, N, NZMAX)
Create a sparse matrix from a full matrix, or row, column, value triplets.
If A is a full matrix, convert it to a sparse matrix representation, removing all zero values in the process.
Given the integer index vectors I and J, and a 1-by-'nnz' vector of real or complex values SV, construct the sparse matrix 'S(I(K),J(K)) = SV(K)' with overall dimensions M and N. If any of SV, I or J are scalars, they are expanded to have a common size.
If M or N are not specified their values are derived from the maximum index in the vectors I and J as given by 'M = max (I)', 'N = max (J)'.
*Note*: if multiple values are specified with the same I, J indices, the corresponding value in S will be the sum of the values at the repeated location. See 'accumarray' for an example of how to produce different behavior, such as taking the minimum instead.
If the option "unique" is given, and more than one value is specified at the same I, J indices, then the last specified value will be used.
'sparse (M, N)' will create an empty MxN sparse matrix and is equivalent to 'sparse ([], [], [], M, N)'
The argument 'nzmax' is ignored but accepted for compatibility with MATLAB.
Example 1 (sum at repeated indices):
I = [1 1 2]; J = [1 1 2]; SV = [3 4 5];
sparse (I, J, SV, 3, 4)
=>
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])
(1, 1) -> 7
(2, 2) -> 5
Example 2 ("unique" option):
I = [1 1 2]; J = [1 1 2]; SV = [3 4 5];
sparse (I, J, SV, 3, 4, "unique")
=>
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])
(1, 1) -> 4
(2, 2) -> 5
See also: full, accumarray, spalloc, spdiags, speye, spones, sprand, sprandn, sprandsym, spconvert, spfun.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Create a sparse matrix from a full matrix, or row, column, value triplets.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spalloc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1043
-- Built-in Function: S = spalloc (M, N, NZ)
Create an M-by-N sparse matrix with pre-allocated space for at most NZ nonzero elements.
This is useful for building a matrix incrementally by a sequence of indexed assignments. Subsequent indexed assignments after 'spalloc' will reuse the pre-allocated memory, provided they are of one of the simple forms
* 'S(I:J) = X'
* 'S(:,I:J) = X'
* 'S(K:L,I:J) = X'
and that the following conditions are met:
* the assignment does not decrease nnz (S).
* after the assignment, nnz (S) does not exceed NZ.
* no index is out of bounds.
Partial movement of data may still occur, but in general the assignment will be more memory and time efficient under these circumstances. In particular, it is possible to efficiently build a pre-allocated sparse matrix from a contiguous block of columns.
The amount of pre-allocated memory for a given matrix may be queried using the function 'nzmax'.
See also: nzmax, sparse.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Create an M-by-N sparse matrix with pre-allocated space for at most NZ nonzero elements.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spparms
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2317
-- Built-in Function: spparms ()
-- Built-in Function: VALS = spparms ()
-- Built-in Function: [KEYS, VALS] = spparms ()
-- Built-in Function: VAL = spparms (KEY)
-- Built-in Function: spparms (VALS)
-- Built-in Function: spparms ("default")
-- Built-in Function: spparms ("tight")
-- Built-in Function: spparms (KEY, VAL)
Query or set the parameters used by the sparse solvers and factorization functions.
The first four calls above get information about the current settings, while the others change the current settings. The parameters are stored as pairs of keys and values, where the values are all floats and the keys are one of the following strings:
'spumoni'
Printing level of debugging information of the solvers (default 0)
'ths_rel'
Included for compatibility. Not used. (default 1)
'ths_abs'
Included for compatibility. Not used. (default 1)
'exact_d'
Included for compatibility. Not used. (default 0)
'supernd'
Included for compatibility. Not used. (default 3)
'rreduce'
Included for compatibility. Not used. (default 3)
'wh_frac'
Included for compatibility. Not used. (default 0.5)
'autommd'
Flag whether the LU/QR and the '\' and '/' operators will automatically use the sparsity preserving mmd functions (default 1)
'autoamd'
Flag whether the LU and the '\' and '/' operators will automatically use the sparsity preserving amd functions (default 1)
'piv_tol'
The pivot tolerance of the UMFPACK solvers (default 0.1)
'sym_tol'
The pivot tolerance of the UMFPACK symmetric solvers (default 0.001)
'bandden'
The density of nonzero elements in a banded matrix before it is treated by the LAPACK banded solvers (default 0.5)
'umfpack'
Flag whether the UMFPACK or mmd solvers are used for the LU, '\' and '/' operations (default 1)
The value of individual keys can be set with 'spparms (KEY, VAL)'. The default values can be restored with the special keyword "default". The special keyword "tight" can be used to set the mmd solvers to attempt a sparser solution at the potential cost of longer running time.
See also: chol, colamd, lu, qr, symamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Query or set the parameters used by the sparse solvers and factorization functions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sqrtm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 355
-- Built-in Function: S = sqrtm (A)
-- Built-in Function: [S, ERROR_ESTIMATE] = sqrtm (A)
Compute the matrix square root of the square matrix A.
Ref: N.J. Higham. 'A New sqrtm for MATLAB'. Numerical Analysis Report No. 336, Manchester Centre for Computational Mathematics, Manchester, England, January 1999.
See also: expm, logm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the matrix square root of the square matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
str2double
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1491
-- Built-in Function: str2double (S)
Convert a string to a real or complex number.
The string must be in one of the following formats where a and b are real numbers and the complex unit is 'i' or 'j':
* a + bi
* a + b*i
* a + i*b
* bi + a
* b*i + a
* i*b + a
If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate optional arguments and 'd' indicates zero or more digits. The special input values 'Inf', 'NaN', and 'NA' are also accepted.
S may be a character string, character matrix, or cell array. For character arrays the conversion is repeated for every row, and a double or complex array is returned. Empty rows in S are deleted and not returned in the numeric array. For cell arrays each character string element is processed and a double or complex array of the same dimensions as S is returned.
For unconvertible scalar or character string input 'str2double' returns a NaN. Similarly, for character array input 'str2double' returns a NaN for any row of S that could not be converted. For a cell array, 'str2double' returns a NaN for any element of S for which conversion fails. Note that numeric elements in a mixed string/numeric cell array are not strings and the conversion will fail for these elements and return NaN.
'str2double' can replace 'str2num', and it avoids the security risk of using 'eval' on unknown data.
See also: str2num.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Convert a string to a real or complex number.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strfind
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1205
-- Built-in Function: IDX = strfind (STR, PATTERN)
-- Built-in Function: IDX = strfind (CELLSTR, PATTERN)
-- Built-in Function: IDX = strfind (..., "overlaps", VAL)
Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX.
If there is no such occurrence, or if PATTERN is longer than STR, or if PATTERN itself is empty, then IDX is the empty array '[]'.
The optional argument "overlaps" determines whether the pattern can match at every position in STR (true), or only for unique occurrences of the complete pattern (false). The default is true.
If a cell array of strings CELLSTR is specified then IDX is a cell array of vectors, as specified above.
Examples:
strfind ("abababa", "aba")
=> [1, 3, 5]
strfind ("abababa", "aba", "overlaps", false)
=> [1, 5]
strfind ({"abababa", "bebebe", "ab"}, "aba")
=>
{
[1,1] =
1 3 5
[1,2] = [](1x0)
[1,3] = [](1x0)
}
See also: findstr, strmatch, regexp, regexpi, find.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strrep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 778
-- Built-in Function: NEWSTR = strrep (STR, PTN, REP)
-- Built-in Function: NEWSTR = strrep (CELLSTR, PTN, REP)
-- Built-in Function: NEWSTR = strrep (..., "overlaps", VAL)
Replace all occurrences of the pattern PTN in the string STR with the string REP and return the result.
The optional argument "overlaps" determines whether the pattern can match at every position in STR (true), or only for unique occurrences of the complete pattern (false). The default is true.
S may also be a cell array of strings, in which case the replacement is done for each element and a cell array is returned.
Example:
strrep ("This is a test string", "is", "&%$")
=> "Th&%$ &%$ a test string"
See also: regexprep, strfind, findstr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Replace all occurrences of the pattern PTN in the string STR with the string REP and return the result.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
char
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1108
-- Built-in Function: char (X)
-- Built-in Function: char (X, ...)
-- Built-in Function: char (S1, S2, ...)
-- Built-in Function: char (CELL_ARRAY)
Create a string array from one or more numeric matrices, character matrices, or cell arrays.
Arguments are concatenated vertically. The returned values are padded with blanks as needed to make each row of the string array have the same length. Empty input strings are significant and will concatenated in the output.
For numerical input, each element is converted to the corresponding ASCII character. A range error results if an input is outside the ASCII range (0-255).
For cell arrays, each element is concatenated separately. Cell arrays converted through 'char' can mostly be converted back with 'cellstr'. For example:
char ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
=> ["abc "
" "
"98 "
"99 "
"d "
"str1 "
"half "]
See also: strvcat, cellstr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Create a string array from one or more numeric matrices, character matrices, or cell arrays.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strvcat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1128
-- Built-in Function: strvcat (X)
-- Built-in Function: strvcat (X, ...)
-- Built-in Function: strvcat (S1, S2, ...)
-- Built-in Function: strvcat (CELL_ARRAY)
Create a character array from one or more numeric matrices, character matrices, or cell arrays.
Arguments are concatenated vertically. The returned values are padded with blanks as needed to make each row of the string array have the same length. Unlike 'char', empty strings are removed and will not appear in the output.
For numerical input, each element is converted to the corresponding ASCII character. A range error results if an input is outside the ASCII range (0-255).
For cell arrays, each element is concatenated separately. Cell arrays converted through 'strvcat' can mostly be converted back with 'cellstr'. For example:
strvcat ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
=> ["abc "
"98 "
"99 "
"d "
"str1 "
"half "]
See also: char, strcat, cstrcat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Create a character array from one or more numeric matrices, character matrices, or cell arrays.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ischar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
-- Built-in Function: ischar (X)
Return true if X is a character array.
See also: isfloat, isinteger, islogical, isnumeric, iscellstr, isa.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return true if X is a character array.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strcmp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
-- Built-in Function: strcmp (S1, S2)
Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
*Caution:* For compatibility with MATLAB, Octave's strcmp function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function.
See also: strcmpi, strncmp, strncmpi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strncmp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 834
-- Built-in Function: strncmp (S1, S2, N)
Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.
strncmp ("abce", "abcd", 3)
=> 1
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
strncmp ("abce", {"abcd", "bca", "abc"}, 3)
=> [1, 0, 1]
*Caution:* For compatibility with MATLAB, Octave's strncmp function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function.
See also: strncmpi, strcmp, strcmpi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strcmpi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 774
-- Built-in Function: strcmpi (S1, S2)
Return 1 if the character strings S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
*Caution:* For compatibility with MATLAB, Octave's strcmp function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function.
*Caution:* National alphabets are not supported.
See also: strcmp, strncmp, strncmpi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
Return 1 if the character strings S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strncmpi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 782
-- Built-in Function: strncmpi (S1, S2, N)
Return 1 if the first N character of S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
*Caution:* For compatibility with MATLAB, Octave's strncmpi function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function.
*Caution:* National alphabets are not supported.
See also: strncmp, strcmp, strcmpi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Return 1 if the first N character of S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
list_in_columns
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1054
-- Built-in Function: list_in_columns (ARG, WIDTH, PREFIX)
Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH and optional prefix PREFIX.
The argument ARG must be a cell array of character strings or a character array.
If WIDTH is not specified or is an empty matrix, or less than or equal to zero, the width of the terminal screen is used. Newline characters are used to break the lines in the output string. For example:
list_in_columns ({"abc", "def", "ghijkl", "mnop", "qrs", "tuv"}, 20)
=> abc mnop
def qrs
ghijkl tuv
whos ans
=>
Variables in the current scope:
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x37 37 char
Total is 37 elements using 37 bytes
See also: terminal_size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH and optional prefix PREFIX.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sub2ind
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 459
-- Function File: IND = sub2ind (DIMS, I, J)
-- Function File: IND = sub2ind (DIMS, S1, S2, ..., SN)
Convert subscripts to a linear index.
The following example shows how to convert the two-dimensional index '(2,3)' of a 3-by-3 matrix to a linear index. The matrix is linearly indexed moving from one column to next, filling up all rows in each column.
linear_index = sub2ind ([3, 3], 2, 3)
=> 8
See also: ind2sub.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert subscripts to a linear index.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ind2sub
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 425
-- Function File: [S1, S2, ..., SN] = ind2sub (DIMS, IND)
Convert a linear index to subscripts.
The following example shows how to convert the linear index '8' in a 3-by-3 matrix into a subscript. The matrix is linearly indexed moving from one column to next, filling up all rows in each column.
[r, c] = ind2sub ([3, 3], 8)
=> r = 2
=> c = 3
See also: sub2ind.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert a linear index to subscripts.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
svd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1151
-- Built-in Function: S = svd (A)
-- Built-in Function: [U, S, V] = svd (A)
-- Built-in Function: [U, S, V] = svd (A, ECON)
Compute the singular value decomposition of A
A = U*S*V'
The function 'svd' normally returns only the vector of singular values. When called with three return values, it computes U, S, and V. For example,
svd (hilb (3))
returns
ans =
1.4083189
0.1223271
0.0026873
and
[u, s, v] = svd (hilb (3))
returns
u =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
s =
1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269
v =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
If given a second argument, 'svd' returns an economy-sized decomposition, eliminating the unnecessary rows or columns of U or V.
See also: svd_driver, svds, eig, lu, chol, hess, qr, qz.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Compute the singular value decomposition of A
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
svd_driver
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 533
-- Built-in Function: VAL = svd_driver ()
-- Built-in Function: OLD_VAL = svd_driver (NEW_VAL)
-- Built-in Function: svd_driver (NEW_VAL, "local")
Query or set the underlying LAPACK driver used by 'svd'.
Currently recognized values are "gesvd" and "gesdd". The default is "gesvd".
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Query or set the underlying LAPACK driver used by 'svd'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
sylvester
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
-- Built-in Function: X = syl (A, B, C)
Solve the Sylvester equation
A X + X B = C
using standard LAPACK subroutines.
For example:
sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
=> [ 0.50000, 0.66667; 0.66667, 0.50000 ]
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Solve the Sylvester equation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
ignore_function_time_stamp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 837
-- Built-in Function: VAL = ignore_function_time_stamp ()
-- Built-in Function: OLD_VAL = ignore_function_time_stamp (NEW_VAL)
Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files.
If the internal variable is set to "system", Octave will not automatically recompile function files in subdirectories of 'OCTAVE-HOME/lib/VERSION' if they have changed since they were last compiled, but will recompile other function files in the search path if they change.
If set to "all", Octave will not recompile any function files unless their definitions are removed with 'clear'.
If set to "none", Octave will always check time stamps on files to determine whether functions defined in function files need to recompiled.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dup2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Built-in Function: [FID, MSG] = dup2 (OLD, NEW)
Duplicate a file descriptor.
If successful, FID is greater than zero and contains the new file ID. Otherwise, FID is negative and MSG contains a system-dependent error message.
See also: fopen, fclose, fcntl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Duplicate a file descriptor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
exec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 490
-- Built-in Function: [ERR, MSG] = exec (FILE, ARGS)
Replace current process with a new process.
Calling 'exec' without first calling 'fork' will terminate your current Octave process and replace it with the program named by FILE. For example,
exec ("ls" "-l")
will run 'ls' and return you to your shell prompt.
If successful, 'exec' does not return. If 'exec' does return, ERR will be nonzero, and MSG will contain a system-dependent error message.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Replace current process with a new process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
popen2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1290
-- Built-in Function: [IN, OUT, PID] = popen2 (COMMAND, ARGS)
Start a subprocess with two-way communication.
The name of the process is given by COMMAND, and ARGS is an array of strings containing options for the command.
The file identifiers for the input and output streams of the subprocess are returned in IN and OUT. If execution of the command is successful, PID contains the process ID of the subprocess. Otherwise, PID is -1.
For example:
[in, out, pid] = popen2 ("sort", "-r");
fputs (in, "these\nare\nsome\nstrings\n");
fclose (in);
EAGAIN = errno ("EAGAIN");
done = false;
do
s = fgets (out);
if (ischar (s))
fputs (stdout, s);
elseif (errno () == EAGAIN)
sleep (0.1);
fclear (out);
else
done = true;
endif
until (done)
fclose (out);
waitpid (pid);
-| these
-| strings
-| some
-| are
Note that 'popen2', unlike 'popen', will not "reap" the child process. If you don't use 'waitpid' to check the child's exit status, it will linger until Octave exits.
See also: popen, waitpid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Start a subprocess with two-way communication.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fcntl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1336
-- Built-in Function: [ERR, MSG] = fcntl (FID, REQUEST, ARG)
Change the properties of the open file FID.
The following values may be passed as REQUEST:
'F_DUPFD'
Return a duplicate file descriptor.
'F_GETFD'
Return the file descriptor flags for FID.
'F_SETFD'
Set the file descriptor flags for FID.
'F_GETFL'
Return the file status flags for FID. The following codes may be returned (some of the flags may be undefined on some systems).
'O_RDONLY'
Open for reading only.
'O_WRONLY'
Open for writing only.
'O_RDWR'
Open for reading and writing.
'O_APPEND'
Append on each write.
'O_CREAT'
Create the file if it does not exist.
'O_NONBLOCK'
Non-blocking mode.
'O_SYNC'
Wait for writes to complete.
'O_ASYNC'
Asynchronous I/O.
'F_SETFL'
Set the file status flags for FID to the value specified by ARG. The only flags that can be changed are 'O_APPEND' and 'O_NONBLOCK'.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: fopen, dup2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Change the properties of the open file FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fork
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 630
-- Built-in Function: [PID, MSG] = fork ()
Create a copy of the current process.
Fork can return one of the following values:
> 0
You are in the parent process. The value returned from 'fork' is the process id of the child process. You should probably arrange to wait for any child processes to exit.
0
You are in the child process. You can call 'exec' to start another process. If that fails, you should probably call 'exit'.
< 0
The call to 'fork' failed for some reason. You must take evasive action. A system dependent error message will be waiting in MSG.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Create a copy of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getpgrp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
-- Built-in Function: pgid = getpgrp ()
Return the process group id of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return the process group id of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getpid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
-- Built-in Function: pid = getpid ()
Return the process id of the current process.
See also: getppid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the process id of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getppid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
-- Built-in Function: pid = getppid ()
Return the process id of the parent process.
See also: getpid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the process id of the parent process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getegid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
-- Built-in Function: egid = getegid ()
Return the effective group id of the current process.
See also: getgid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return the effective group id of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getgid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
-- Built-in Function: gid = getgid ()
Return the real group id of the current process.
See also: getegid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the real group id of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
geteuid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
-- Built-in Function: euid = geteuid ()
Return the effective user id of the current process.
See also: getuid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the effective user id of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getuid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
-- Built-in Function: uid = getuid ()
Return the real user id of the current process.
See also: geteuid.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the real user id of the current process.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
kill
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 565
-- Built-in Function: [ERR, MSG] = kill (PID, SIG)
Send signal SIG to process PID.
If PID is positive, then signal SIG is sent to PID.
If PID is 0, then signal SIG is sent to every process in the process group of the current process.
If PID is -1, then signal SIG is sent to every process except process 1.
If PID is less than -1, then signal SIG is sent to every process in the process group -PID.
If SIG is 0, then no signal is sent, but error checking is still performed.
Return 0 if successful, otherwise return -1.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Send signal SIG to process PID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lstat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
-- Built-in Function: INFO = lstat (SYMLINK)
-- Built-in Function: [INFO, ERR, MSG] = lstat (SYMLINK)
Return a structure INFO containing information about the symbolic link SYMLINK.
The function outputs are described in the documentation for 'stat'.
See also: stat, symlink.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return a structure INFO containing information about the symbolic link SYMLINK.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mkfifo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 479
-- Built-in Function: ERR = mkfifo (NAME, MODE)
-- Built-in Function: [ERR, MSG] = mkfifo (NAME, MODE)
Create a FIFO special file named NAME with file mode MODE.
MODE is interpreted as a decimal number (_not_ octal) and is subject to umask processing. The final calculated mode is 'MODE - UMASK'.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: pipe, umask.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Create a FIFO special file named NAME with file mode MODE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pipe
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
-- Built-in Function: [READ_FD, WRITE_FD, ERR, MSG] = pipe ()
Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: mkfifo.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
stat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2535
-- Built-in Function: [INFO, ERR, MSG] = stat (FILE)
-- Built-in Function: [INFO, ERR, MSG] = stat (FID)
-- Built-in Function: [INFO, ERR, MSG] = lstat (FILE)
-- Built-in Function: [INFO, ERR, MSG] = lstat (FID)
Return a structure INFO containing the following information about FILE or file identifier FID.
'dev'
ID of device containing a directory entry for this file.
'ino'
File number of the file.
'mode'
File mode, as an integer. Use the functions 'S_ISREG', 'S_ISDIR', 'S_ISCHR', 'S_ISBLK', 'S_ISFIFO', 'S_ISLNK', or 'S_ISSOCK' to extract information from this value.
'modestr'
File mode, as a string of ten letters or dashes as would be returned by 'ls -l'.
'nlink'
Number of links.
'uid'
User ID of file's owner.
'gid'
Group ID of file's group.
'rdev'
ID of device for block or character special files.
'size'
Size in bytes.
'atime'
Time of last access in the same form as time values returned from 'time'. *Note Timing Utilities::.
'mtime'
Time of last modification in the same form as time values returned from 'time'. *Note Timing Utilities::.
'ctime'
Time of last file status change in the same form as time values returned from 'time'. *Note Timing Utilities::.
'blksize'
Size of blocks in the file.
'blocks'
Number of blocks allocated for file.
If the call is successful ERR is 0 and MSG is an empty string. If the file does not exist, or some other error occurs, INFO is an empty matrix, ERR is -1, and MSG contains the corresponding system error message.
If FILE is a symbolic link, 'stat' will return information about the actual file that is referenced by the link. Use 'lstat' if you want information about the symbolic link itself.
For example:
[info, err, msg] = stat ("/vmlinuz")
=> info =
{
atime = 855399756
rdev = 0
ctime = 847219094
uid = 0
size = 389218
blksize = 4096
mtime = 847219094
gid = 6
nlink = 1
blocks = 768
mode = -rw-r--r--
modestr = -rw-r--r--
ino = 9316
dev = 2049
}
=> err = 0
=> msg =
See also: lstat, ls, dir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return a structure INFO containing the following information about FILE or file identifier FID.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISREG
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 199
-- Built-in Function: S_ISREG (MODE)
Return true if MODE corresponds to a regular file.
The value of MODE is assumed to be returned from a call to 'stat'.
See also: stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if MODE corresponds to a regular file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISDIR
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
-- Built-in Function: S_ISDIR (MODE)
Return true if MODE corresponds to a directory.
The value of MODE is assumed to be returned from a call to 'stat'.
See also: stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return true if MODE corresponds to a directory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISCHR
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 203
-- Built-in Function: S_ISCHR (MODE)
Return true if MODE corresponds to a character device.
The value of MODE is assumed to be returned from a call to 'stat'.
See also: stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return true if MODE corresponds to a character device.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISBLK
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 199
-- Built-in Function: S_ISBLK (MODE)
Return true if MODE corresponds to a block device.
The value of MODE is assumed to be returned from a call to 'stat'.
See also: stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if MODE corresponds to a block device.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
S_ISFIFO
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 192
-- Built-in Function: S_ISFIFO (MODE)
Return true if MODE corresponds to a fifo.
The value of MODE is assumed to be returned from a call to 'stat'.
See also: stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return true if MODE corresponds to a fifo.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISLNK
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 200
-- Built-in Function: S_ISLNK (MODE)
Return true if MODE corresponds to a symbolic link.
The value of MODE is assumed to be returned from a call to 'stat'.
See also: stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return true if MODE corresponds to a symbolic link.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
S_ISSOCK
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
-- Built-in Function: S_ISSOCK (MODE)
Return true if MODE corresponds to a socket.
The value of MODE is assumed to be returned from a call to 'stat'.
See also: stat, lstat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return true if MODE corresponds to a socket.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
gethostname
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
-- Built-in Function: gethostname ()
Return the hostname of the system where Octave is running.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the hostname of the system where Octave is running.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
uname
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 539
-- Built-in Function: [UTS, ERR, MSG] = uname ()
Return system information in the structure.
For example:
uname ()
=> {
sysname = x86_64
nodename = segfault
release = 2.6.15-1-amd64-k8-smp
version = Linux
machine = #2 SMP Thu Feb 23 04:57:49 UTC 2006
}
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return system information in the structure.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unlink
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 253
-- Built-in Function: [ERR, MSG] = unlink (FILE)
Delete the file named FILE.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
See also: delete, rmdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Delete the file named FILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
waitpid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1428
-- Built-in Function: [PID, STATUS, MSG] = waitpid (PID, OPTIONS)
Wait for process PID to terminate.
The PID argument can be:
-1
Wait for any child process.
0
Wait for any child process whose process group ID is equal to that of the Octave interpreter process.
> 0
Wait for termination of the child process with ID PID.
The OPTIONS argument can be a bitwise OR of zero or more of the following constants:
'0'
Wait until signal is received or a child process exits (this is the default if the OPTIONS argument is missing).
'WNOHANG'
Do not hang if status is not immediately available.
'WUNTRACED'
Report the status of any child processes that are stopped, and whose status has not yet been reported since they stopped.
'WCONTINUE'
Return if a stopped child has been resumed by delivery of 'SIGCONT'. This value may not be meaningful on all systems.
If the returned value of PID is greater than 0, it is the process ID of the child process that exited. If an error occurs, PID will be less than zero and MSG will contain a system-dependent error message. The value of STATUS contains additional system-dependent information about the subprocess that exited.
See also: WCONTINUE, WCOREDUMP, WEXITSTATUS, WIFCONTINUED, WIFSIGNALED, WIFSTOPPED, WNOHANG, WSTOPSIG, WTERMSIG, WUNTRACED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Wait for process PID to terminate.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WIFEXITED
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
-- Built-in Function: WIFEXITED (STATUS)
Given STATUS from a call to 'waitpid', return true if the child terminated normally.
See also: waitpid, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Given STATUS from a call to 'waitpid', return true if the child terminated normally.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
WEXITSTATUS
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 308
-- Built-in Function: WEXITSTATUS (STATUS)
Given STATUS from a call to 'waitpid', return the exit status of the child.
This function should only be employed if 'WIFEXITED' returned true.
See also: waitpid, WIFEXITED, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Given STATUS from a call to 'waitpid', return the exit status of the child.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
WIFSIGNALED
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 258
-- Built-in Function: WIFSIGNALED (STATUS)
Given STATUS from a call to 'waitpid', return true if the child process was terminated by a signal.
See also: waitpid, WIFEXITED, WEXITSTATUS, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Given STATUS from a call to 'waitpid', return true if the child process was terminated by a signal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
WTERMSIG
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
-- Built-in Function: WTERMSIG (STATUS)
Given STATUS from a call to 'waitpid', return the number of the signal that caused the child process to terminate.
This function should only be employed if 'WIFSIGNALED' returned true.
See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Given STATUS from a call to 'waitpid', return the number of the signal that caused the child process to terminate.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WCOREDUMP
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 466
-- Built-in Function: WCOREDUMP (STATUS)
Given STATUS from a call to 'waitpid', return true if the child produced a core dump.
This function should only be employed if 'WIFSIGNALED' returned true. The macro used to implement this function is not specified in POSIX.1-2001 and is not available on some Unix implementations (e.g., AIX, SunOS).
See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Given STATUS from a call to 'waitpid', return true if the child produced a core dump.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
WIFSTOPPED
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 385
-- Built-in Function: WIFSTOPPED (STATUS)
Given STATUS from a call to 'waitpid', return true if the child process was stopped by delivery of a signal.
This is only possible if the call was done using 'WUNTRACED' or when the child is being traced (see ptrace(2)).
See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Given STATUS from a call to 'waitpid', return true if the child process was stopped by delivery of a signal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
WSTOPSIG
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
-- Built-in Function: WSTOPSIG (STATUS)
Given STATUS from a call to 'waitpid', return the number of the signal which caused the child to stop.
This function should only be employed if 'WIFSTOPPED' returned true.
See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WIFCONTINUED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Given STATUS from a call to 'waitpid', return the number of the signal which caused the child to stop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
WIFCONTINUED
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 268
-- Built-in Function: WIFCONTINUED (STATUS)
Given STATUS from a call to 'waitpid', return true if the child process was resumed by delivery of 'SIGCONT'.
See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Given STATUS from a call to 'waitpid', return true if the child process was resumed by delivery of 'SIGCONT'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
canonicalize_file_name
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
-- Built-in Function: [CNAME, STATUS, MSG] = canonicalize_file_name (FNAME)
Return the canonical name of file FNAME.
If the file does not exist the empty string ("") is returned.
See also: make_absolute_filename, is_absolute_filename, is_rooted_relative_filename.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return the canonical name of file FNAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_DUPFD
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
-- Built-in Function: F_DUPFD ()
Return the numerical value to pass to 'fcntl' to return a duplicate file descriptor.
See also: fcntl, F_GETFD, F_GETFL, F_SETFD, F_SETFL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return the numerical value to pass to 'fcntl' to return a duplicate file descriptor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_GETFD
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
-- Built-in Function: F_GETFD ()
Return the numerical value to pass to 'fcntl' to return the file descriptor flags.
See also: fcntl, F_DUPFD, F_GETFL, F_SETFD, F_SETFL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Return the numerical value to pass to 'fcntl' to return the file descriptor flags.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_GETFL
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
-- Built-in Function: F_GETFL ()
Return the numerical value to pass to 'fcntl' to return the file status flags.
See also: fcntl, F_DUPFD, F_GETFD, F_SETFD, F_SETFL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Return the numerical value to pass to 'fcntl' to return the file status flags.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_SETFD
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
-- Built-in Function: F_SETFD ()
Return the numerical value to pass to 'fcntl' to set the file descriptor flags.
See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFL.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return the numerical value to pass to 'fcntl' to set the file descriptor flags.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_SETFL
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
-- Built-in Function: F_SETFL ()
Return the numerical value to pass to 'fcntl' to set the file status flags.
See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFD.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return the numerical value to pass to 'fcntl' to set the file status flags.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
O_APPEND
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 340
-- Built-in Function: O_APPEND ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate each write operation appends, or that may be passed to 'fcntl' to set the write mode to append.
See also: fcntl, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 190
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate each write operation appends, or that may be passed to 'fcntl' to set the write mode to append.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
O_ASYNC
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 262
-- Built-in Function: O_ASYNC ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate asynchronous I/O.
See also: fcntl, O_APPEND, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate asynchronous I/O.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
O_CREAT
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 296
-- Built-in Function: O_CREAT ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file should be created if it does not exist.
See also: fcntl, O_APPEND, O_ASYNC, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file should be created if it does not exist.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
O_EXCL
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 271
-- Built-in Function: O_EXCL ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that file locking is used.
See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that file locking is used.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
O_NONBLOCK
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
-- Built-in Function: O_NONBLOCK ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to 'fcntl' to set non-blocking I/O.
See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to 'fcntl' to set non-blocking I/O.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
O_RDONLY
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Built-in Function: O_RDONLY ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for reading only.
See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for reading only.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
O_RDWR
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
-- Built-in Function: O_RDWR ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for both reading and writing.
See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for both reading and writing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
O_SYNC
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
-- Built-in Function: O_SYNC ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for synchronous I/O.
See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for synchronous I/O.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
O_TRUNC
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 302
-- Built-in Function: O_TRUNC ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that if file exists, it should be truncated when writing.
See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_WRONLY.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that if file exists, it should be truncated when writing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
O_WRONLY
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Built-in Function: O_WRONLY ()
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for writing only.
See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for writing only.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
WNOHANG
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
-- Built-in Function: WNOHANG ()
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit.
See also: waitpid, WUNTRACED, WCONTINUE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WUNTRACED
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
-- Built-in Function: WUNTRACED ()
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if the child process has stopped but is not traced via the 'ptrace' system call
See also: waitpid, WNOHANG, WCONTINUE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 201
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if the child process has stopped but is not traced via the 'ptrace' system call
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WCONTINUE
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 281
-- Built-in Function: WCONTINUE ()
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a 'SIGCONT' signal.
See also: waitpid, WNOHANG, WUNTRACED.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a 'SIGCONT' signal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
clc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
-- Built-in Function: clc ()
-- Built-in Function: home ()
Clear the terminal screen and move the cursor to the upper left corner.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Clear the terminal screen and move the cursor to the upper left corner.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getenv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 232
-- Built-in Function: getenv (VAR)
Return the value of the environment variable VAR.
For example,
getenv ("PATH")
returns a string containing the value of your path.
See also: setenv, unsetenv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Return the value of the environment variable VAR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
setenv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 296
-- Built-in Function: setenv (VAR, VALUE)
-- Built-in Function: setenv (VAR)
-- Built-in Function: putenv (...)
Set the value of the environment variable VAR to VALUE.
If no VALUE is specified then the variable will be assigned the null string.
See also: unsetenv, getenv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Set the value of the environment variable VAR to VALUE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
unsetenv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
-- Built-in Function: STATUS = unsetenv (VAR)
Delete the environment variable VAR.
Return 0 if the variable was deleted, or did not exist, and -1 if an error occurred.
See also: setenv, getenv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Delete the environment variable VAR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
kbhit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 487
-- Built-in Function: kbhit ()
-- Built-in Function: kbhit (1)
Read a single keystroke from the keyboard.
If called with an argument, don't wait for a keypress.
For example,
x = kbhit ();
will set X to the next character typed at the keyboard as soon as it is typed.
x = kbhit (1);
is identical to the above example, but doesn't wait for a keypress, returning the empty string if no key is available.
See also: input, pause.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Read a single keystroke from the keyboard.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
pause
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 508
-- Built-in Function: pause ()
-- Built-in Function: pause (N)
Suspend the execution of the program for N seconds.
N is a positive real value and may be a fraction of a second.
If invoked without an input arguments then the program is suspended until a character is typed.
The following example prints a message and then waits 5 seconds before clearing the screen.
fprintf (stderr, "wait please...\n");
pause (5);
clc;
See also: kbhit, sleep.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Suspend the execution of the program for N seconds.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sleep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
-- Built-in Function: sleep (SECONDS)
Suspend the execution of the program for the given number of seconds.
See also: usleep, pause.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Suspend the execution of the program for the given number of seconds.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
usleep
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 327
-- Built-in Function: usleep (MICROSECONDS)
Suspend the execution of the program for the given number of microseconds.
On systems where it is not possible to sleep for periods of time less than one second, 'usleep' will pause the execution for 'round (MICROSECONDS / 1e6)' seconds.
See also: sleep, pause.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Suspend the execution of the program for the given number of microseconds.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isieee
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
-- Built-in Function: isieee ()
Return true if your computer _claims_ to conform to the IEEE standard for floating point calculations.
No actual tests are performed.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Return true if your computer _claims_ to conform to the IEEE standard for floating point calculations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
native_float_format
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
-- Built-in Function: native_float_format ()
Return the native floating point format as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the native floating point format as a string.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
tilde_expand
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 669
-- Built-in Function: tilde_expand (STRING)
Perform tilde expansion on STRING.
If STRING begins with a tilde character, ('~'), all of the characters preceding the first slash (or all characters, if there is no slash) are treated as a possible user name, and the tilde and the following characters up to the slash are replaced by the home directory of the named user. If the tilde is followed immediately by a slash, the tilde is replaced by the home directory of the user running Octave.
For example:
tilde_expand ("~joeuser/bin")
=> "/home/joeuser/bin"
tilde_expand ("~/bin")
=> "/home/jwe/bin"
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Perform tilde expansion on STRING.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
get_home_directory
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 333
-- Built-in Function: HOMEDIR = get_home_directory ()
Return the current home directory.
On most systems, this is equivalent to 'getenv ("HOME")'. On Windows systems, if the environment variable 'HOME' is not set then it is equivalent to 'fullfile (getenv ("HOMEDRIVE"), getenv ("HOMEPATH"))'
See also: getenv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the current home directory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
have_window_system
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
-- Built-in Function: have_window_system ()
Return true if a window system is available (X11, Windows, or Apple OS X) and false otherwise.
See also: isguirunning.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return true if a window system is available (X11, Windows, or Apple OS X) and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
time
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 432
-- Built-in Function: SECONDS = time ()
Return the current time as the number of seconds since the epoch.
The epoch is referenced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970. For example, on Monday February 17, 1997 at 07:15:06 CUT, the value returned by 'time' was 856163706.
See also: strftime, strptime, localtime, gmtime, mktime, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the current time as the number of seconds since the epoch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gmtime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 740
-- Built-in Function: TM_STRUCT = gmtime (T)
Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to CUT (Coordinated Universal Time).
For example:
gmtime (time ())
=> {
usec = 0
sec = 6
min = 15
hour = 7
mday = 17
mon = 1
year = 97
wday = 1
yday = 47
isdst = 0
zone = CST
}
See also: strftime, strptime, localtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to CUT (Coordinated Universal Time).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
localtime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 711
-- Built-in Function: TM_STRUCT = localtime (T)
Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to the local time zone.
localtime (time ())
=> {
usec = 0
sec = 6
min = 15
hour = 1
mday = 17
mon = 1
year = 97
wday = 1
yday = 47
isdst = 0
zone = CST
}
See also: strftime, strptime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to the local time zone.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mktime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 371
-- Built-in Function: SECONDS = mktime (TM_STRUCT)
Convert a time structure corresponding to the local time to the number of seconds since the epoch.
For example:
mktime (localtime (time ()))
=> 856163706
See also: strftime, strptime, localtime, gmtime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Convert a time structure corresponding to the local time to the number of seconds since the epoch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strftime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2932
-- Built-in Function: strftime (FMT, TM_STRUCT)
Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains '%' substitutions similar to those in 'printf'.
Except where noted, substituted fields have a fixed size; numeric fields are padded if necessary. Padding is with zeros by default; for fields that display a single number, padding can be changed or inhibited by following the '%' with one of the modifiers described below. Unknown field specifiers are copied as normal characters. All other characters are copied to the output without change. For example:
strftime ("%r (%Z) %A %e %B %Y", localtime (time ()))
=> "01:15:06 AM (CST) Monday 17 February 1997"
Octave's 'strftime' function supports a superset of the ANSI C field specifiers.
Literal character fields:
'%%'
% character.
'%n'
Newline character.
'%t'
Tab character.
Numeric modifiers (a nonstandard extension):
'- (dash)'
Do not pad the field.
'_ (underscore)'
Pad the field with spaces.
Time fields:
'%H'
Hour (00-23).
'%I'
Hour (01-12).
'%k'
Hour (0-23).
'%l'
Hour (1-12).
'%M'
Minute (00-59).
'%p'
Locale's AM or PM.
'%r'
Time, 12-hour (hh:mm:ss [AP]M).
'%R'
Time, 24-hour (hh:mm).
'%s'
Time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard extension).
'%S'
Second (00-61).
'%T'
Time, 24-hour (hh:mm:ss).
'%X'
Locale's time representation (%H:%M:%S).
'%Z'
Time zone (EDT), or nothing if no time zone is determinable.
Date fields:
'%a'
Locale's abbreviated weekday name (Sun-Sat).
'%A'
Locale's full weekday name, variable length (Sunday-Saturday).
'%b'
Locale's abbreviated month name (Jan-Dec).
'%B'
Locale's full month name, variable length (January-December).
'%c'
Locale's date and time (Sat Nov 04 12:02:33 EST 1989).
'%C'
Century (00-99).
'%d'
Day of month (01-31).
'%e'
Day of month ( 1-31).
'%D'
Date (mm/dd/yy).
'%h'
Same as %b.
'%j'
Day of year (001-366).
'%m'
Month (01-12).
'%U'
Week number of year with Sunday as first day of week (00-53).
'%w'
Day of week (0-6).
'%W'
Week number of year with Monday as first day of week (00-53).
'%x'
Locale's date representation (mm/dd/yy).
'%y'
Last two digits of year (00-99).
'%Y'
Year (1970-).
See also: strptime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains '%' substitutions similar to those in 'printf'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strptime
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 503
-- Built-in Function: [TM_STRUCT, NCHARS] = strptime (STR, FMT)
Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.
If FMT fails to match, NCHARS is 0; otherwise, it is set to the position of last matched character plus 1. Always check for this unless you're absolutely sure the date string will be parsed correctly.
See also: strftime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
quit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 591
-- Built-in Function: exit
-- Built-in Function: exit (STATUS)
-- Built-in Function: quit
-- Built-in Function: quit (STATUS)
Exit the current Octave session.
If the optional integer value STATUS is supplied, pass that value to the operating system as Octave's exit status. The default value is zero.
When exiting, Octave will attempt to run the m-file 'finish.m' if it exists. User commands to save the workspace or clean up temporary files may be placed in that file. Alternatively, another m-file may be scheduled to run using 'atexit'.
See also: atexit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Exit the current Octave session.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
warranty
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
-- Built-in Function: warranty ()
Describe the conditions for copying and distributing Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Describe the conditions for copying and distributing Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
system
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1623
-- Built-in Function: system ("STRING")
-- Built-in Function: system ("STRING", RETURN_OUTPUT)
-- Built-in Function: system ("STRING", RETURN_OUTPUT, TYPE)
-- Built-in Function: [STATUS, OUTPUT] = system (...)
Execute a shell command specified by STRING.
If the optional argument TYPE is "async", the process is started in the background and the process ID of the child process is returned immediately. Otherwise, the child process is started and Octave waits until it exits. If the TYPE argument is omitted, it defaults to the value "sync".
If SYSTEM is called with one or more output arguments, or if the optional argument RETURN_OUTPUT is true and the subprocess is started synchronously, then the output from the command is returned as a variable. Otherwise, if the subprocess is executed synchronously, its output is sent to the standard output. To send the output of a command executed with 'system' through the pager, use a command like
[output, text] = system ("cmd");
disp (text);
or
printf ("%s\n", nthargout (2, "system", "cmd"));
The 'system' function can return two values. The first is the exit status of the command and the second is any output from the command that was written to the standard output stream. For example,
[status, output] = system ("echo foo; exit 2");
will set the variable 'output' to the string 'foo', and the variable 'status' to the integer '2'.
For commands run asynchronously, STATUS is the process id of the command shell that is started to run the command.
See also: unix, dos.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Execute a shell command specified by STRING.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
atexit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 986
-- Built-in Function: atexit (FCN)
-- Built-in Function: atexit (FCN, FLAG)
Register a function to be called when Octave exits.
For example,
function last_words ()
disp ("Bye bye");
endfunction
atexit ("last_words");
will print the message "Bye bye" when Octave exits.
The additional argument FLAG will register or unregister FCN from the list of functions to be called when Octave exits. If FLAG is true, the function is registered, and if FLAG is false, it is unregistered. For example, after registering the function 'last_words' above,
atexit ("last_words", false);
will remove the function from the list and Octave will not call 'last_words' when it exits.
Note that 'atexit' only removes the first occurrence of a function from the list, so if a function was placed in the list multiple times with 'atexit', it must also be removed from the list multiple times.
See also: quit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Register a function to be called when Octave exits.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
octave_config_info
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
-- Built-in Function: octave_config_info ()
-- Built-in Function: octave_config_info (OPTION)
Return a structure containing configuration and installation information for Octave.
If OPTION is a string, return the configuration information for the specified option.
See also: computer.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return a structure containing configuration and installation information for Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tril
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1325
-- Function File: tril (A)
-- Function File: tril (A, K)
-- Function File: tril (A, K, PACK)
-- Function File: triu (A)
-- Function File: triu (A, K)
-- Function File: triu (A, K, PACK)
Return a new matrix formed by extracting the lower ('tril') or upper ('triu') triangular part of the matrix A, and setting all other elements to zero.
The second argument is optional, and specifies how many diagonals above or below the main diagonal should also be set to zero.
The default value of K is zero, so that 'triu' and 'tril' normally include the main diagonal as part of the result.
If the value of K is nonzero integer, the selection of elements starts at an offset of K diagonals above or below the main diagonal; above for positive K and below for negative K.
The absolute value of K must not be greater than the number of subdiagonals or superdiagonals.
For example:
tril (ones (3), -1)
=> 0 0 0
1 0 0
1 1 0
and
tril (ones (3), 1)
=> 1 1 0
1 1 1
1 1 1
If the option "pack" is given as third argument, the extracted elements are not inserted into a matrix, but rather stacked column-wise one above other.
See also: diag.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Return a new matrix formed by extracting the lower ('tril') or upper ('triu') triangular part of the matrix A, and setting all other elements to zero.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
triu
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 188
-- Function File: triu (A)
-- Function File: triu (A, K)
-- Function File: triu (A, K, PACK)
See the documentation for the 'tril' function (*note tril::).
See also: tril.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
See the documentation for the 'tril' function (*note tril::).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tsearch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 284
-- Built-in Function: IDX = tsearch (X, Y, T, XI, YI)
Search for the enclosing Delaunay convex hull.
For 'T = delaunay (X, Y)', finds the index in T containing the points '(XI, YI)'. For points outside the convex hull, IDX is NaN.
See also: delaunay, delaunayn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Search for the enclosing Delaunay convex hull.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
typecast
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1400
-- Built-in Function: Y = typecast (X, "CLASS")
Return a new array Y resulting from interpreting the data of X in memory as data of the numeric class CLASS.
Both the class of X and CLASS must be one of the built-in numeric classes:
"logical"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
"double complex"
"single complex"
the last two are only used with CLASS; they indicate that a complex-valued result is requested. Complex arrays are stored in memory as consecutive pairs of real numbers. The sizes of integer types are given by their bit counts. Both logical and char are typically one byte wide; however, this is not guaranteed by C++. If your system is IEEE conformant, single and double will be 4 bytes and 8 bytes wide, respectively. "logical" is not allowed for CLASS.
If the input is a row vector, the return value is a row vector, otherwise it is a column vector.
If the bit length of X is not divisible by that of CLASS, an error occurs.
An example of the use of typecast on a little-endian machine is
X = uint16 ([1, 65535]);
typecast (X, "uint8")
=> [ 1, 0, 255, 255]
See also: cast, bitpack, bitunpack, swapbytes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return a new array Y resulting from interpreting the data of X in memory as data of the numeric class CLASS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bitpack
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 835
-- Built-in Function: Y = bitpack (X, CLASS)
Return a new array Y resulting from interpreting the logical array X as raw bit patterns for data of the numeric class CLASS.
CLASS must be one of the built-in numeric classes:
"double"
"single"
"double complex"
"single complex"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
The number of elements of X should be divisible by the bit length of CLASS. If it is not, excess bits are discarded. Bits come in increasing order of significance, i.e., 'x(1)' is bit 0, 'x(2)' is bit 1, etc.
The result is a row vector if X is a row vector, otherwise it is a column vector.
See also: bitunpack, typecast.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Return a new array Y resulting from interpreting the logical array X as raw bit patterns for data of the numeric class CLASS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
bitunpack
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 504
-- Built-in Function: Y = bitunpack (X)
Return a logical array Y corresponding to the raw bit patterns of X.
X must belong to one of the built-in numeric classes:
"double"
"single"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
The result is a row vector if X is a row vector; otherwise, it is a column vector.
See also: bitpack, typecast.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return a logical array Y corresponding to the raw bit patterns of X.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
urlwrite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1343
-- Loadable Function: urlwrite (URL, LOCALFILE)
-- Loadable Function: F = urlwrite (URL, LOCALFILE)
-- Loadable Function: [F, SUCCESS] = urlwrite (URL, LOCALFILE)
-- Loadable Function: [F, SUCCESS, MESSAGE] = urlwrite (URL, LOCALFILE)
Download a remote file specified by its URL and save it as LOCALFILE.
For example:
urlwrite ("ftp://ftp.octave.org/pub/README",
"README.txt");
The full path of the downloaded file is returned in F.
The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message.
If no output argument is specified and an error occurs, then the error is signaled through Octave's error handling mechanism.
This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE protocols. Username and password may be specified in the URL, for example:
urlwrite ("http://username:password@example.com/file.txt",
"file.txt");
GET and POST requests can be specified by METHOD and PARAM. The parameter METHOD is either 'get' or 'post' and PARAM is a cell array of parameter and value pairs. For example:
urlwrite ("http://www.google.com/search", "search.html",
"get", {"query", "octave"});
See also: urlread.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Download a remote file specified by its URL and save it as LOCALFILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
urlread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1195
-- Loadable Function: S = urlread (URL)
-- Loadable Function: [S, SUCCESS] = urlread (URL)
-- Loadable Function: [S, SUCCESS, MESSAGE] = urlread (URL)
-- Loadable Function: [...] = urlread (URL, METHOD, PARAM)
Download a remote file specified by its URL and return its content in string S.
For example:
s = urlread ("ftp://ftp.octave.org/pub/README");
The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message.
If no output argument is specified and an error occurs, then the error is signaled through Octave's error handling mechanism.
This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE protocols. Username and password may be specified in the URL. For example:
s = urlread ("http://user:password@example.com/file.txt");
GET and POST requests can be specified by METHOD and PARAM. The parameter METHOD is either 'get' or 'post' and PARAM is a cell array of parameter and value pairs. For example:
s = urlread ("http://www.google.com/search", "get",
{"query", "octave"});
See also: urlwrite.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Download a remote file specified by its URL and return its content in string S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isvarname
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
-- Built-in Function: isvarname (NAME)
Return true if NAME is a valid variable name.
See also: iskeyword, exist, who.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return true if NAME is a valid variable name.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
file_in_loadpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 682
-- Built-in Function: file_in_loadpath (FILE)
-- Built-in Function: file_in_loadpath (FILE, "all")
Return the absolute name of FILE if it can be found in the list of directories specified by 'path'.
If no file is found, return an empty character string.
If the first argument is a cell array of strings, search each directory of the loadpath for element of the cell array and return the first that matches.
If the second optional argument "all" is supplied, return a cell array containing the list of all files that have the same name in the path. If no files are found, return an empty cell array.
See also: file_in_path, dir_in_loadpath, path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Return the absolute name of FILE if it can be found in the list of directories specified by 'path'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
file_in_path
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 833
-- Built-in Function: file_in_path (PATH, FILE)
-- Built-in Function: file_in_path (PATH, FILE, "all")
Return the absolute name of FILE if it can be found in PATH.
The value of PATH should be a colon-separated list of directories in the format described for 'path'. If no file is found, return an empty character string. For example:
file_in_path (EXEC_PATH, "sh")
=> "/bin/sh"
If the second argument is a cell array of strings, search each directory of the path for element of the cell array and return the first that matches.
If the third optional argument "all" is supplied, return a cell array containing the list of all files that have the same name in the path. If no files are found, return an empty cell array.
See also: file_in_loadpath, dir_in_loadpath, path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return the absolute name of FILE if it can be found in PATH.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
do_string_escapes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 277
-- Built-in Function: do_string_escapes (STRING)
Convert escape sequences in STRING to the characters they represent.
Escape sequences begin with a leading backslash ('\') followed by 1-3 characters (.e.g., "\n" => newline).
See also: undo_string_escapes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Convert escape sequences in STRING to the characters they represent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
undo_string_escapes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 770
-- Built-in Function: undo_string_escapes (S)
Convert special characters in strings back to their escaped forms.
For example, the expression
bell = "\a";
assigns the value of the alert character (control-g, ASCII code 7) to the string variable 'bell'. If this string is printed, the system will ring the terminal bell (if it is possible). This is normally the desired outcome. However, sometimes it is useful to be able to print the original representation of the string, with the special characters replaced by their escape sequences. For example,
octave:13> undo_string_escapes (bell)
ans = \a
replaces the unprintable alert character with its printable representation.
See also: do_string_escapes.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Convert special characters in strings back to their escaped forms.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
is_absolute_filename
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
-- Built-in Function: is_absolute_filename (FILE)
Return true if FILE is an absolute filename.
See also: is_rooted_relative_filename, make_absolute_filename, isdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return true if FILE is an absolute filename.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
is_rooted_relative_filename
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
-- Built-in Function: is_rooted_relative_filename (FILE)
Return true if FILE is a rooted-relative filename.
See also: is_absolute_filename, make_absolute_filename, isdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if FILE is a rooted-relative filename.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
make_absolute_filename
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
-- Built-in Function: make_absolute_filename (FILE)
Return the full name of FILE beginning from the root of the file system.
No check is done for the existence of FILE.
See also: canonicalize_file_name, is_absolute_filename, is_rooted_relative_filename, isdir.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return the full name of FILE beginning from the root of the file system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
dir_in_loadpath
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 543
-- Built-in Function: dir_in_loadpath (DIR)
-- Built-in Function: dir_in_loadpath (DIR, "all")
Return the full name of the path element matching DIR.
The match is performed at the end of each path element. For example, if DIR is "foo/bar", it matches the path element "/some/dir/foo/bar", but not "/some/dir/foo/bar/baz" "/some/dir/allfoo/bar".
If the optional second argument is supplied, return a cell array containing all name matches rather than just the first.
See also: file_in_path, file_in_loadpath, path.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return the full name of the path element matching DIR.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
errno
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 367
-- Built-in Function: ERR = errno ()
-- Built-in Function: ERR = errno (VAL)
-- Built-in Function: ERR = errno (NAME)
Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.
See also: errno_list.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 209
Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
errno_list
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
-- Built-in Function: errno_list ()
Return a structure containing the system-dependent errno values.
See also: errno.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a structure containing the system-dependent errno values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isindex
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 629
-- Built-in Function: isindex (IND)
-- Built-in Function: isindex (IND, N)
Return true if IND is a valid index.
Valid indices are either positive integers (although possibly of real data type), or logical arrays.
If present, N specifies the maximum extent of the dimension to be indexed. When possible the internal result is cached so that subsequent indexing using IND will not perform the check again.
Implementation Note: Strings are first converted to double values before the checks for valid indices are made. Unless a string contains the NULL character "\0", it will always be a valid index.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return true if IND is a valid index.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isstudent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
-- Built-in Function: isstudent ()
Return true if running in the student edition of MATLAB.
'isstudent' always returns false in Octave.
See also: false.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return true if running in the student edition of MATLAB.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isglobal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
-- Built-in Function: isglobal (NAME)
Return true if NAME is a globally visible variable.
For example:
global x
isglobal ("x")
=> 1
See also: isvarname, exist.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return true if NAME is a globally visible variable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
exist
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1663
-- Built-in Function: C = exist (NAME)
-- Built-in Function: C = exist (NAME, TYPE)
Check for the existence of NAME as a variable, function, file, directory, or class.
The return code C is one of
1
NAME is a variable.
2
NAME is an absolute file name, an ordinary file in Octave's 'path', or (after appending '.m') a function file in Octave's 'path'.
3
NAME is a '.oct' or '.mex' file in Octave's 'path'.
5
NAME is a built-in function.
7
NAME is a directory.
103
NAME is a function not associated with a file (entered on the command line).
0
NAME does not exist.
If the optional argument TYPE is supplied, check only for symbols of the specified type. Valid types are
"var"
Check only for variables.
"builtin"
Check only for built-in functions.
"dir"
Check only for directories.
"file"
Check only for files and directories.
"class"
Check only for classes. (Note: This option is accepted, but not currently implemented)
If no type is given, and there are multiple possible matches for name, 'exist' will return a code according to the following priority list: variable, built-in function, oct-file, directory, file, class.
'exist' returns 2 if a regular file called NAME is present in Octave's search path. If you want information about other types of files not on the search path you should use some combination of the functions 'file_in_path' and 'stat' instead.
See also: file_in_loadpath, file_in_path, dir_in_loadpath, stat.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Check for the existence of NAME as a variable, function, file, directory, or class.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
who
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1094
-- Command: who
-- Command: who pattern ...
-- Command: who option pattern ...
-- Command: C = who ("pattern", ...)
List currently defined variables matching the given patterns.
Valid pattern syntax is the same as described for the 'clear' command. If no patterns are supplied, all variables are listed.
By default, only variables visible in the local scope are displayed.
The following are valid options, but may not be combined.
'global'
List variables in the global scope rather than the current scope.
'-regexp'
The patterns are considered to be regular expressions when matching the variables to display. The same pattern syntax accepted by the 'regexp' function is used.
'-file'
The next argument is treated as a filename. All variables found within the specified file are listed. No patterns are accepted when reading variables from a file.
If called as a function, return a cell array of defined variable names matching the given patterns.
See also: whos, isglobal, isvarname, exist, regexp.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
List currently defined variables matching the given patterns.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
whos
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1666
-- Command: whos
-- Command: whos pattern ...
-- Command: whos option pattern ...
-- Built-in Function: S = whos ("pattern", ...)
Provide detailed information on currently defined variables matching the given patterns.
Options and pattern syntax are the same as for the 'who' command.
Extended information about each variable is summarized in a table with the following default entries.
Attr
Attributes of the listed variable. Possible attributes are:
blank
Variable in local scope
'a'
Automatic variable. An automatic variable is one created by the interpreter, for example 'argn'.
'c'
Variable of complex type.
'f'
Formal parameter (function argument).
'g'
Variable with global scope.
'p'
Persistent variable.
Name
The name of the variable.
Size
The logical size of the variable. A scalar is 1x1, a vector is 1xN or Nx1, a 2-D matrix is MxN.
Bytes
The amount of memory currently used to store the variable.
Class
The class of the variable. Examples include double, single, char, uint16, cell, and struct.
The table can be customized to display more or less information through the function 'whos_line_format'.
If 'whos' is called as a function, return a struct array of defined variable names matching the given patterns. Fields in the structure describing each variable are: name, size, bytes, class, global, sparse, complex, nesting, persistent.
See also: who, whos_line_format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Provide detailed information on currently defined variables matching the given patterns.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
mlock
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
-- Built-in Function: mlock ()
Lock the current function into memory so that it can't be cleared.
See also: munlock, mislocked, persistent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Lock the current function into memory so that it can't be cleared.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
munlock
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
-- Built-in Function: munlock ()
-- Built-in Function: munlock (FCN)
Unlock the named function FCN.
If no function is named then unlock the current function.
See also: mlock, mislocked, persistent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Unlock the named function FCN.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
mislocked
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 258
-- Built-in Function: mislocked ()
-- Built-in Function: mislocked (FCN)
Return true if the named function FCN is locked.
If no function is named then return true if the current function is locked.
See also: mlock, munlock, persistent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return true if the named function FCN is locked.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
clear
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2095
-- Command: clear [options] pattern ...
Delete the names matching the given patterns from the symbol table.
The pattern may contain the following special characters:
'?'
Match any single character.
'*'
Match zero or more characters.
'[ LIST ]'
Match the list of characters specified by LIST. If the first character is '!' or '^', match all characters except those specified by LIST. For example, the pattern '[a-zA-Z]' will match all lowercase and uppercase alphabetic characters.
For example, the command
clear foo b*r
clears the name 'foo' and all names that begin with the letter 'b' and end with the letter 'r'.
If 'clear' is called without any arguments, all user-defined variables (local and global) are cleared from the symbol table.
If 'clear' is called with at least one argument, only the visible names matching the arguments are cleared. For example, suppose you have defined a function 'foo', and then hidden it by performing the assignment 'foo = 2'. Executing the command 'clear foo' once will clear the variable definition and restore the definition of 'foo' as a function. Executing 'clear foo' a second time will clear the function definition.
The following options are available in both long and short form
'-all, -a'
Clear all local and global user-defined variables and all functions from the symbol table.
'-exclusive, -x'
Clear the variables that don't match the following pattern.
'-functions, -f'
Clear the function names and the built-in symbols names.
'-global, -g'
Clear global symbol names.
'-variables, -v'
Clear local variable names.
'-classes, -c'
Clears the class structure table and clears all objects.
'-regexp, -r'
The arguments are treated as regular expressions as any variables that match will be cleared.
With the exception of 'exclusive', all long options can be used without the dash as well.
See also: who, whos, exist.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Delete the names matching the given patterns from the symbol table.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
whos_line_format
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1910
-- Built-in Function: VAL = whos_line_format ()
-- Built-in Function: OLD_VAL = whos_line_format (NEW_VAL)
-- Built-in Function: whos_line_format (NEW_VAL, "local")
Query or set the format string used by the command 'whos'.
A full format string is:
%[modifier]<command>[:width[:left-min[:balance]]];
The following command sequences are available:
'%a'
Prints attributes of variables (g=global, p=persistent, f=formal parameter, a=automatic variable).
'%b'
Prints number of bytes occupied by variables.
'%c'
Prints class names of variables.
'%e'
Prints elements held by variables.
'%n'
Prints variable names.
'%s'
Prints dimensions of variables.
'%t'
Prints type names of variables.
Every command may also have an alignment modifier:
'l'
Left alignment.
'r'
Right alignment (default).
'c'
Column-aligned (only applicable to command %s).
The 'width' parameter is a positive integer specifying the minimum number of columns used for printing. No maximum is needed as the field will auto-expand as required.
The parameters 'left-min' and 'balance' are only available when the column-aligned modifier is used with the command '%s'. 'balance' specifies the column number within the field width which will be aligned between entries. Numbering starts from 0 which indicates the leftmost column. 'left-min' specifies the minimum field width to the left of the specified balance column.
The default format is:
" %a:4; %ln:6; %cs:16:6:1; %rb:12; %lc:-1;\n"
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: whos.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Query or set the format string used by the command 'whos'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
missing_function_hook
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
-- Built-in Function: VAL = missing_function_hook ()
-- Built-in Function: OLD_VAL = missing_function_hook (NEW_VAL)
-- Built-in Function: missing_function_hook (NEW_VAL, "local")
Query or set the internal variable that specifies the function to call when an unknown identifier is requested.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: missing_component_hook.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that specifies the function to call when an unknown identifier is requested.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
missing_component_hook
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1025
-- Built-in Function: VAL = missing_component_hook ()
-- Built-in Function: OLD_VAL = missing_component_hook (NEW_VAL)
-- Built-in Function: missing_component_hook (NEW_VAL, "local")
Query or set the internal variable that specifies the function to call when a component of Octave is missing.
This can be useful for packagers that may split the Octave installation into multiple sub-packages, for example, to provide a hint to users for how to install the missing components.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
The hook function is expected to be of the form
FCN (COMPONENT)
Octave will call FCN with the name of the function that requires the component and a string describing the missing component. The hook function should return an error message to be displayed.
See also: missing_function_hook.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Query or set the internal variable that specifies the function to call when a component of Octave is missing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
jit_failcnt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 535
-- Built-in Function: VAL = jit_failcnt ()
-- Built-in Function: OLD_VAL = jit_failcnt (NEW_VAL)
-- Built-in Function: jit_failcnt (NEW_VAL, "local")
Query or set the internal variable that counts the number of JIT fail exceptions for Octave's JIT compiler.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: jit_enable, jit_startcnt, debug_jit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Query or set the internal variable that counts the number of JIT fail exceptions for Octave's JIT compiler.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
debug_jit
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 525
-- Built-in Function: VAL = debug_jit ()
-- Built-in Function: OLD_VAL = debug_jit (NEW_VAL)
-- Built-in Function: debug_jit (NEW_VAL, "local")
Query or set the internal variable that determines whether debugging/tracing is enabled for Octave's JIT compiler.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: jit_enable, jit_startcnt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Query or set the internal variable that determines whether debugging/tracing is enabled for Octave's JIT compiler.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
jit_enable
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 483
-- Built-in Function: VAL = jit_enable ()
-- Built-in Function: OLD_VAL = jit_enable (NEW_VAL)
-- Built-in Function: jit_enable (NEW_VAL, "local")
Query or set the internal variable that enables Octave's JIT compiler.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: jit_startcnt, debug_jit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Query or set the internal variable that enables Octave's JIT compiler.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
jit_startcnt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 732
-- Built-in Function: VAL = jit_startcnt ()
-- Built-in Function: OLD_VAL = jit_startcnt (NEW_VAL)
-- Built-in Function: jit_startcnt (NEW_VAL, "local")
Query or set the internal variable that determines whether JIT compilation will take place for a specific loop.
Because compilation is a costly operation it does not make sense to employ JIT when the loop count is low. By default only loops with greater than 1000 iterations will be accelerated.
When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls. The original variable value is restored when exiting the function.
See also: jit_enable, jit_failcnt, debug_jit.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that determines whether JIT compilation will take place for a specific loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
autoload
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1206
-- Built-in Function: AUTOLOAD_MAP = autoload ()
-- Built-in Function: autoload (FUNCTION, FILE)
-- Built-in Function: autoload (..., "remove")
Define FUNCTION to autoload from FILE.
The second argument, FILE, should be an absolute file name or a file name in the same directory as the function or script from which the autoload command was run. FILE _should not_ depend on the Octave load path.
Normally, calls to 'autoload' appear in PKG_ADD script files that are evaluated when a directory is added to Octave's load path. To avoid having to hardcode directory names in FILE, if FILE is in the same directory as the PKG_ADD script then
autoload ("foo", "bar.oct");
will load the function 'foo' from the file 'bar.oct'. The above usage when 'bar.oct' is not in the same directory, or usages such as
autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior may be unpredictable.
With no arguments, return a structure containing the current autoload map.
If a third argument "remove" is given, the function is cleared and not loaded anymore during the current Octave session.
See also: PKG_ADD.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Define FUNCTION to autoload from FILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
mfilename
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 462
-- Built-in Function: mfilename ()
-- Built-in Function: mfilename ("fullpath")
-- Built-in Function: mfilename ("fullpathext")
Return the name of the currently executing file.
When called from outside an m-file return the empty string.
Given the argument "fullpath", include the directory part of the file name, but not the extension.
Given the argument "fullpathext", include the directory part of the file name and the extension.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the name of the currently executing file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
source
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
-- Built-in Function: source (FILE)
Parse and execute the contents of FILE.
This is equivalent to executing commands from a script file, but without requiring the file to be named 'FILE.m'.
See also: run.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Parse and execute the contents of FILE.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
feval
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 892
-- Built-in Function: feval (NAME, ...)
Evaluate the function named NAME.
Any arguments after the first are passed as inputs to the named function. For example,
feval ("acos", -1)
=> 3.1416
calls the function 'acos' with the argument '-1'.
The function 'feval' can also be used with function handles of any sort (*note Function Handles::). Historically, 'feval' was the only way to call user-supplied functions in strings, but function handles are now preferred due to the cleaner syntax they offer. For example,
F = @exp;
feval (F, 1)
=> 2.7183
F (1)
=> 2.7183
are equivalent ways to call the function referred to by F. If it cannot be predicted beforehand whether F is a function handle, function name in a string, or inline function then 'feval' can be used instead.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Evaluate the function named NAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
builtin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 622
-- Built-in Function: [...] = builtin (F, ...)
Call the base function F even if F is overloaded to another function for the given type signature.
This is normally useful when doing object-oriented programming and there is a requirement to call one of Octave's base functions rather than the overloaded one of a new class.
A trivial example which redefines the 'sin' function to be the 'cos' function shows how 'builtin' works.
sin (0)
=> 0
function y = sin (x), y = cos (x); endfunction
sin (0)
=> 1
builtin ("sin", 0)
=> 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Call the base function F even if F is overloaded to another function for the given type signature.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
eval
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1191
-- Built-in Function: eval (TRY)
-- Built-in Function: eval (TRY, CATCH)
Parse the string TRY and evaluate it as if it were an Octave program.
If execution fails, evaluate the optional string CATCH.
The string TRY is evaluated in the current context, so any results remain available after 'eval' returns.
The following example creates the variable A with the approximate value of 3.1416 in the current workspace.
eval ("A = acos(-1);");
If an error occurs during the evaluation of TRY then the CATCH string is evaluated, as the following example shows:
eval ('error ("This is a bad example");',
'printf ("This error occurred:\n%s\n", lasterr ());');
-| This error occurred:
This is a bad example
Programming Note: if you are only using 'eval' as an error-capturing mechanism, rather than for the execution of arbitrary code strings, Consider using try/catch blocks or unwind_protect/unwind_protect_cleanup blocks instead. These techniques have higher performance and don't introduce the security considerations that the evaluation of arbitrary code does.
See also: evalin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Parse the string TRY and evaluate it as if it were an Octave program.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
assignin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
-- Built-in Function: assignin (CONTEXT, VARNAME, VALUE)
Assign VALUE to VARNAME in context CONTEXT, which may be either "base" or "caller".
See also: evalin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Assign VALUE to VARNAME in context CONTEXT, which may be either "base" or "caller".
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
evalin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 256
-- Built-in Function: evalin (CONTEXT, TRY)
-- Built-in Function: evalin (CONTEXT, TRY, CATCH)
Like 'eval', except that the expressions are evaluated in the context CONTEXT, which may be either "caller" or "base".
See also: eval, assignin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
Like 'eval', except that the expressions are evaluated in the context CONTEXT, which may be either "caller" or "base".
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
amd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1189
-- Loadable Function: P = amd (S)
-- Loadable Function: P = amd (S, OPTS)
Return the approximate minimum degree permutation of a matrix.
This is a permutation such that the Cholesky factorization of 'S (P, P)' tends to be sparser than the Cholesky factorization of S itself. 'amd' is typically faster than 'symamd' but serves a similar purpose.
The optional parameter OPTS is a structure that controls the behavior of 'amd'. The fields of the structure are
OPTS.dense
Determines what 'amd' considers to be a dense row or column of the input matrix. Rows or columns with more than 'max (16, (dense * sqrt (N)))' entries, where N is the order of the matrix S, are ignored by 'amd' during the calculation of the permutation. The value of dense must be a positive scalar and the default value is 10.0
OPTS.aggressive
If this value is a nonzero scalar, then 'amd' performs aggressive absorption. The default is not to perform aggressive absorption.
The author of the code itself is Timothy A. Davis <davis@cise.ufl.edu>, University of Florida (see <http://www.cise.ufl.edu/research/sparse/amd>).
See also: symamd, colamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return the approximate minimum degree permutation of a matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ccolamd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3636
-- Loadable Function: P = ccolamd (S)
-- Loadable Function: P = ccolamd (S, KNOBS)
-- Loadable Function: P = ccolamd (S, KNOBS, CMEMBER)
-- Loadable Function: [P, STATS] = ccolamd (...)
Constrained column approximate minimum degree permutation.
'P = ccolamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S. For a non-symmetric matrix S, 'S(:, P)' tends to have sparser LU factors than S. 'chol (S(:, P)' * S(:, P))' also tends to be sparser than 'chol (S' * S)'. 'P = ccolamd (S, 1)' optimizes the ordering for 'lu (S(:, P))'. The ordering is followed by a column elimination tree post-ordering.
KNOBS is an optional 1-element to 5-element input vector, with a default value of '[0 10 10 1 0]' if not present or empty. Entries not present are set to their defaults.
'KNOBS(1)'
if nonzero, the ordering is optimized for 'lu (S(:, p))'. It will be a poor ordering for 'chol (S(:, P)' * S(:, P))'. This is the most important knob for ccolamd.
'KNOBS(2)'
if S is m-by-n, rows with more than 'max (16, KNOBS(2) * sqrt (n))' entries are ignored.
'KNOBS(3)'
columns with more than 'max (16, KNOBS(3) * sqrt (min (M, N)))' entries are ignored and ordered last in the output permutation (subject to the cmember constraints).
'KNOBS(4)'
if nonzero, aggressive absorption is performed.
'KNOBS(5)'
if nonzero, statistics and knobs are printed.
CMEMBER is an optional vector of length n. It defines the constraints on the column ordering. If 'CMEMBER(j) = C', then column J is in constraint set C (C must be in the range 1 to n). In the output permutation P, all columns in set 1 appear first, followed by all columns in set 2, and so on. 'CMEMBER = ones (1,n)' if not present or empty. 'ccolamd (S, [], 1 : n)' returns '1 : n'
'P = ccolamd (S)' is about the same as 'P = colamd (S)'. KNOBS and its default values differ. 'colamd' always does aggressive absorption, and it finds an ordering suitable for both 'lu (S(:, P))' and 'chol (S(:, P)' * S(:, P))'; it cannot optimize its ordering for 'lu (S(:, P))' to the extent that 'ccolamd (S, 1)' can.
STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S. Ordering statistics are in 'STATS(1 : 3)'. 'STATS(1)' and 'STATS(2)' are the number of dense or empty rows and columns ignored by CCOLAMD and 'STATS(3)' is the number of garbage collections performed on the internal data structure used by CCOLAMD (roughly of size '2.2 * nnz (S) + 4 * M + 7 * N' integers).
'STATS(4 : 7)' provide information if CCOLAMD was able to continue. The matrix is OK if 'STATS(4)' is zero, or 1 if invalid. 'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. 'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists. 'STATS(7)' is the number of duplicate or out-of-order row indices. 'STATS(8 : 20)' is always zero in the current version of CCOLAMD (reserved for future use).
The authors of the code itself are S. Larimore, T. Davis (Univ. of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab. See <http://www.cise.ufl.edu/research/sparse> for ccolamd, csymamd, amd, colamd, symamd, and other related orderings.
See also: colamd, csymamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Constrained column approximate minimum degree permutation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
csymamd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2576
-- Loadable Function: P = csymamd (S)
-- Loadable Function: P = csymamd (S, KNOBS)
-- Loadable Function: P = csymamd (S, KNOBS, CMEMBER)
-- Loadable Function: [P, STATS] = csymamd (...)
For a symmetric positive definite matrix S, return the permutation vector P such that 'S(P,P)' tends to have a sparser Cholesky factor than S.
Sometimes 'csymamd' works well for symmetric indefinite matrices too. The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced. S must be square. The ordering is followed by an elimination tree post-ordering.
KNOBS is an optional 1-element to 3-element input vector, with a default value of '[10 1 0]'. Entries not present are set to their defaults.
'KNOBS(1)'
If S is n-by-n, then rows and columns with more than 'max(16,KNOBS(1)*sqrt(n))' entries are ignored, and ordered last in the output permutation (subject to the cmember constraints).
'KNOBS(2)'
If nonzero, aggressive absorption is performed.
'KNOBS(3)'
If nonzero, statistics and knobs are printed.
CMEMBER is an optional vector of length n. It defines the constraints on the ordering. If 'CMEMBER(j) = S', then row/column j is in constraint set C (C must be in the range 1 to n). In the output permutation P, rows/columns in set 1 appear first, followed by all rows/columns in set 2, and so on. 'CMEMBER = ones (1,n)' if not present or empty. 'csymamd (S,[],1:n)' returns '1:n'.
'P = csymamd (S)' is about the same as 'P = symamd (S)'. KNOBS and its default values differ.
'STATS(4:7)' provide information if CCOLAMD was able to continue. The matrix is OK if 'STATS(4)' is zero, or 1 if invalid. 'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. 'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists. 'STATS(7)' is the number of duplicate or out-of-order row indices. 'STATS(8:20)' is always zero in the current version of CCOLAMD (reserved for future use).
The authors of the code itself are S. Larimore, T. Davis (Univ. of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab. See <http://www.cise.ufl.edu/research/sparse> for ccolamd, csymamd, amd, colamd, symamd, and other related orderings.
See also: symamd, ccolamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
For a symmetric positive definite matrix S, return the permutation vector P such that 'S(P,P)' tends to have a sparser Cholesky factor than S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
chol
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1711
-- Loadable Function: R = chol (A)
-- Loadable Function: [R, P] = chol (A)
-- Loadable Function: [R, P, Q] = chol (S)
-- Loadable Function: [R, P, Q] = chol (S, "vector")
-- Loadable Function: [L, ...] = chol (..., "lower")
-- Loadable Function: [L, ...] = chol (..., "upper")
Compute the Cholesky factor, R, of the symmetric positive definite matrix A.
The Cholesky factor is defined by
R' * R = A.
Called with one output argument 'chol' fails if A or S is not positive definite. With two or more output arguments P flags whether the matrix was positive definite and 'chol' does not fail. A zero value indicated that the matrix was positive definite and the R gives the factorization, and P will have a positive value otherwise.
If called with 3 outputs then a sparsity preserving row/column permutation is applied to A prior to the factorization. That is R is the factorization of 'A(Q,Q)' such that
R' * R = Q' * A * Q.
The sparsity preserving permutation is generally returned as a matrix. However, given the flag "vector", Q will be returned as a vector such that
R' * R = A(Q, Q).
Called with either a sparse or full matrix and using the "lower" flag, 'chol' returns the lower triangular factorization such that
L * L' = A.
For full matrices, if the "lower" flag is set only the lower triangular part of the matrix is used for the factorization, otherwise the upper triangular part is used.
In general the lower triangular factorization is significantly faster for sparse matrices.
See also: hess, lu, qr, qz, schur, svd, ichol, cholinv, chol2inv, cholupdate, cholinsert, choldelete, cholshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Compute the Cholesky factor, R, of the symmetric positive definite matrix A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cholinv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
-- Loadable Function: cholinv (A)
Compute the inverse of the symmetric positive definite matrix A using the Cholesky factorization.
See also: chol, chol2inv, inv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Compute the inverse of the symmetric positive definite matrix A using the Cholesky factorization.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
chol2inv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 334
-- Loadable Function: chol2inv (U)
Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U.
Note that U should be an upper-triangular matrix with positive diagonal elements. 'chol2inv (U)' provides 'inv (U'*U)' but it is much faster than using 'inv'.
See also: chol, cholinv, inv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cholupdate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 629
-- Loadable Function: [R1, INFO] = cholupdate (R, U, OP)
Update or downdate a Cholesky factorization.
Given an upper triangular matrix R and a column vector U, attempt to determine another upper triangular matrix R1 such that
* R1'*R1 = R'*R + U*U' if OP is "+"
* R1'*R1 = R'*R - U*U' if OP is "-"
If OP is "-", INFO is set to
* 0 if the downdate was successful,
* 1 if R'*R - U*U' is not positive definite,
* 2 if R is singular.
If INFO is not present, an error message is printed in cases 1 and 2.
See also: chol, cholinsert, choldelete, cholshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Update or downdate a Cholesky factorization.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cholinsert
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 662
-- Loadable Function: R1 = cholinsert (R, J, U)
-- Loadable Function: [R1, INFO] = cholinsert (R, J, U)
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1]. u(j) should be positive.
On return, INFO is set to
* 0 if the insertion was successful,
* 1 if A1 is not positive definite,
* 2 if R is singular.
If INFO is not present, an error message is printed in cases 1 and 2.
See also: chol, cholupdate, choldelete, cholshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 234
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
choldelete
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 310
-- Loadable Function: R1 = choldelete (R, J)
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1].
See also: chol, cholupdate, cholinsert, cholshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cholshift
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 422
-- Loadable Function: R1 = cholshift (R, I, J)
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation
'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
or
'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
See also: chol, cholupdate, cholinsert, choldelete.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 295
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation 'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J or 'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
colamd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3358
-- Loadable Function: P = colamd (S)
-- Loadable Function: P = colamd (S, KNOBS)
-- Loadable Function: [P, STATS] = colamd (S)
-- Loadable Function: [P, STATS] = colamd (S, KNOBS)
Compute the column approximate minimum degree permutation.
'P = colamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S. For a non-symmetric matrix S, 'S(:,P)' tends to have sparser LU factors than S. The Cholesky factorization of 'S(:,P)' * S(:,P)' also tends to be sparser than that of 'S' * S'.
KNOBS is an optional one- to three-element input vector. If S is m-by-n, then rows with more than 'max(16,KNOBS(1)*sqrt(n))' entries are ignored. Columns with more than 'max (16,KNOBS(2)*sqrt(min(m,n)))' entries are removed prior to ordering, and ordered last in the output permutation P. Only completely dense rows or columns are removed if 'KNOBS(1)' and 'KNOBS(2)' are < 0, respectively. If 'KNOBS(3)' is nonzero, STATS and KNOBS are printed. The default is 'KNOBS = [10 10 0]'. Note that KNOBS differs from earlier versions of colamd.
STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S. Ordering statistics are in 'STATS(1:3)'. 'STATS(1)' and 'STATS(2)' are the number of dense or empty rows and columns ignored by COLAMD and 'STATS(3)' is the number of garbage collections performed on the internal data structure used by COLAMD (roughly of size '2.2 * nnz(S) + 4 * M + 7 * N' integers).
Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!) and so on. If a matrix is invalid, then COLAMD may or may not be able to continue. If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then COLAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however). If a matrix is invalid in other ways then COLAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned. COLAMD is thus a simple way to check a sparse matrix to see if it's valid.
'STATS(4:7)' provide information if COLAMD was able to continue. The matrix is OK if 'STATS(4)' is zero, or 1 if invalid. 'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. 'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists. 'STATS(7)' is the number of duplicate or out-of-order row indices. 'STATS(8:20)' is always zero in the current version of COLAMD (reserved for future use).
The ordering is followed by a column elimination tree post-ordering.
The authors of the code itself are Stefan I. Larimore and Timothy A. Davis <davis@cise.ufl.edu>, University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. (see <http://www.cise.ufl.edu/research/sparse/colamd>)
See also: colperm, symamd, ccolamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the column approximate minimum degree permutation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
symamd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3212
-- Loadable Function: P = symamd (S)
-- Loadable Function: P = symamd (S, KNOBS)
-- Loadable Function: [P, STATS] = symamd (S)
-- Loadable Function: [P, STATS] = symamd (S, KNOBS)
For a symmetric positive definite matrix S, returns the permutation vector p such that 'S(P, P)' tends to have a sparser Cholesky factor than S.
Sometimes 'symamd' works well for symmetric indefinite matrices too. The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced. S must be square.
KNOBS is an optional one- to two-element input vector. If S is n-by-n, then rows and columns with more than 'max (16,KNOBS(1)*sqrt(n))' entries are removed prior to ordering, and ordered last in the output permutation P. No rows/columns are removed if 'KNOBS(1) < 0'. If 'KNOBS (2)' is nonzero, 'stats' and KNOBS are printed. The default is 'KNOBS = [10 0]'. Note that KNOBS differs from earlier versions of 'symamd'.
STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S. Ordering statistics are in 'STATS(1:3)'. 'STATS(1) = STATS(2)' is the number of dense or empty rows and columns ignored by SYMAMD and 'STATS(3)' is the number of garbage collections performed on the internal data structure used by SYMAMD (roughly of size '8.4 * nnz (tril (S, -1)) + 9 * N' integers).
Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!) and so on. If a matrix is invalid, then SYMAMD may or may not be able to continue. If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then SYMAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however). If a matrix is invalid in other ways then SYMAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned. SYMAMD is thus a simple way to check a sparse matrix to see if it's valid.
'STATS(4:7)' provide information if SYMAMD was able to continue. The matrix is OK if 'STATS (4)' is zero, or 1 if invalid. 'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. 'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists. 'STATS(7)' is the number of duplicate or out-of-order row indices. 'STATS(8:20)' is always zero in the current version of SYMAMD (reserved for future use).
The ordering is followed by a column elimination tree post-ordering.
The authors of the code itself are Stefan I. Larimore and Timothy A. Davis <davis@cise.ufl.edu>, University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. (see <http://www.cise.ufl.edu/research/sparse/colamd>)
See also: colperm, colamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
For a symmetric positive definite matrix S, returns the permutation vector p such that 'S(P, P)' tends to have a sparser Cholesky factor than S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
etree
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
-- Loadable Function: P = etree (S)
-- Loadable Function: P = etree (S, TYP)
-- Loadable Function: [P, Q] = etree (S, TYP)
Return the elimination tree for the matrix S.
By default S is assumed to be symmetric and the symmetric elimination tree is returned. The argument TYP controls whether a symmetric or column elimination tree is returned. Valid values of TYP are "sym" or "col", for symmetric or column elimination tree respectively.
Called with a second argument, 'etree' also returns the postorder permutations on the tree.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the elimination tree for the matrix S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
convhulln
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1218
-- Loadable Function: H = convhulln (PTS)
-- Loadable Function: H = convhulln (PTS, OPTIONS)
-- Loadable Function: [H, V] = convhulln (...)
Compute the convex hull of the set of points PTS.
PTS is a matrix of size [n, dim] containing n points in a space of dimension dim.
The hull H is an index vector into the set of points and specifies which points form the enclosing hull.
An optional second argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command. See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>. The default options depend on the dimension of the input:
* 2D, 3D, 4D: OPTIONS = '{"Qt"}'
* 5D and higher: OPTIONS = '{"Qt", "Qx"}'
If OPTIONS is not present or '[]' then the default arguments are used. Otherwise, OPTIONS replaces the default argument list. To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS. Use a null string to pass no arguments.
If the second output V is requested the volume of the enclosing convex hull is calculated.
See also: convhull, delaunayn, voronoin.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the convex hull of the set of points PTS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dmperm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 729
-- Loadable Function: P = dmperm (S)
-- Loadable Function: [P, Q, R, S] = dmperm (S)
Perform a Dulmage-Mendelsohn permutation of the sparse matrix S.
With a single output argument 'dmperm' performs the row permutations P such that 'S(P,:)' has no zero elements on the diagonal.
Called with two or more output arguments, returns the row and column permutations, such that 'S(P, Q)' is in block triangular form. The values of R and S define the boundaries of the blocks. If S is square then 'R == S'.
The method used is described in: A. Pothen & C.-J. Fan. 'Computing the Block Triangular Form of a Sparse Matrix'. ACM Trans. Math. Software, 16(4):303-324, 1990.
See also: colamd, ccolamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Perform a Dulmage-Mendelsohn permutation of the sparse matrix S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sprank
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 412
-- Loadable Function: P = sprank (S)
Calculate the structural rank of the sparse matrix S.
Note that only the structure of the matrix is used in this calculation based on a Dulmage-Mendelsohn permutation to block triangular form. As such the numerical rank of the matrix S is bounded by 'sprank (S) >= rank (S)'. Ignoring floating point errors 'sprank (S) == rank (S)'.
See also: dmperm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Calculate the structural rank of the sparse matrix S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fftw
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3147
-- Loadable Function: METHOD = fftw ("planner")
-- Loadable Function: fftw ("planner", METHOD)
-- Loadable Function: WISDOM = fftw ("dwisdom")
-- Loadable Function: fftw ("dwisdom", WISDOM)
-- Loadable Function: fftw ("threads", NTHREADS)
-- Loadable Function: NTHREADS = fftw ("threads")
Manage FFTW wisdom data.
Wisdom data can be used to significantly accelerate the calculation of the FFTs, but implies an initial cost in its calculation. When the FFTW libraries are initialized, they read a system wide wisdom file (typically in '/etc/fftw/wisdom'), allowing wisdom to be shared between applications other than Octave. Alternatively, the 'fftw' function can be used to import wisdom. For example,
WISDOM = fftw ("dwisdom")
will save the existing wisdom used by Octave to the string WISDOM. This string can then be saved to a file and restored using the 'save' and 'load' commands respectively. This existing wisdom can be re-imported as follows
fftw ("dwisdom", WISDOM)
If WISDOM is an empty string, then the wisdom used is cleared.
During the calculation of Fourier transforms further wisdom is generated. The fashion in which this wisdom is generated is also controlled by the 'fftw' function. There are five different manners in which the wisdom can be treated:
"estimate"
Specifies that no run-time measurement of the optimal means of calculating a particular is performed, and a simple heuristic is used to pick a (probably sub-optimal) plan. The advantage of this method is that there is little or no overhead in the generation of the plan, which is appropriate for a Fourier transform that will be calculated once.
"measure"
In this case a range of algorithms to perform the transform is considered and the best is selected based on their execution time.
"patient"
Similar to "measure", but a wider range of algorithms is considered.
"exhaustive"
Like "measure", but all possible algorithms that may be used to treat the transform are considered.
"hybrid"
As run-time measurement of the algorithm can be expensive, this is a compromise where "measure" is used for transforms up to the size of 8192 and beyond that the "estimate" method is used.
The default method is "estimate". The current method can be queried with
METHOD = fftw ("planner")
or set by using
fftw ("planner", METHOD)
Note that calculated wisdom will be lost when restarting Octave. However, the wisdom data can be reloaded if it is saved to a file as described above. Saved wisdom files should not be used on different platforms since they will not be efficient and the point of calculating the wisdom is lost.
The number of threads used for computing the plans and executing the transforms can be set with
fftw ("threads", NTHREADS)
Note that octave must be compiled with multi-threaded FFTW support for this feature. The number of processors available to the current process is used per default.
See also: fft, ifft, fft2, ifft2, fftn, ifftn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Manage FFTW wisdom data.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2290
-- Loadable Function: [Q, R, P] = qr (A)
-- Loadable Function: [Q, R, P] = qr (A, '0')
-- Loadable Function: [C, R] = qr (A, B)
-- Loadable Function: [C, R] = qr (A, B, '0')
Compute the QR factorization of A, using standard LAPACK subroutines.
For example, given the matrix 'A = [1, 2; 3, 4]',
[Q, R] = qr (A)
returns
Q =
-0.31623 -0.94868
-0.94868 0.31623
R =
-3.16228 -4.42719
0.00000 -0.63246
The 'qr' factorization has applications in the solution of least squares problems
min norm(A x - b)
for overdetermined systems of equations (i.e., A is a tall, thin matrix). The QR factorization is 'Q * R = A' where Q is an orthogonal matrix and R is upper triangular.
If given a second argument of '0', 'qr' returns an economy-sized QR factorization, omitting zero rows of R and the corresponding columns of Q.
If the matrix A is full, the permuted QR factorization '[Q, R, P] = qr (A)' forms the QR factorization such that the diagonal entries of R are decreasing in magnitude order. For example, given the matrix 'a = [1, 2; 3, 4]',
[Q, R, P] = qr (A)
returns
Q =
-0.44721 -0.89443
-0.89443 0.44721
R =
-4.47214 -3.13050
0.00000 0.44721
P =
0 1
1 0
The permuted 'qr' factorization '[Q, R, P] = qr (A)' factorization allows the construction of an orthogonal basis of 'span (A)'.
If the matrix A is sparse, then compute the sparse QR factorization of A, using CSPARSE. As the matrix Q is in general a full matrix, this function returns the Q-less factorization R of A, such that 'R = chol (A' * A)'.
If the final argument is the scalar '0' and the number of rows is larger than the number of columns, then an economy factorization is returned. That is R will have only 'size (A,1)' rows.
If an additional matrix B is supplied, then 'qr' returns C, where 'C = Q' * B'. This allows the least squares approximation of 'A \ B' to be calculated as
[C, R] = qr (A, B)
x = R \ C
See also: chol, hess, lu, qz, schur, svd, qrupdate, qrinsert, qrdelete, qrshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Compute the QR factorization of A, using standard LAPACK subroutines.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qrupdate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 638
-- Loadable Function: [Q1, R1] = qrupdate (Q, R, U, V)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update). Notice that the latter case is done as a sequence of rank-1 updates; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.
The QR factorization supplied may be either full (Q is square) or economized (R is square).
See also: qr, qrinsert, qrdelete, qrshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 244
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qrinsert
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1022
-- Loadable Function: [Q1, R1] = qrinsert (Q, R, J, X, ORIENT)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is "row").
The default value of ORIENT is "col". If ORIENT is "col", U may be a matrix and J an index vector resulting in the QR factorization of a matrix B such that B(:,J) gives U and B(:,J) = [] gives A. Notice that the latter case is done as a sequence of k insertions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.
If ORIENT is "col", the QR factorization supplied may be either full (Q is square) or economized (R is square).
If ORIENT is "row", full factorization is needed.
See also: qr, qrupdate, qrdelete, qrshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 343
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is "row").
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qrdelete
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 955
-- Loadable Function: [Q1, R1] = qrdelete (Q, R, J, ORIENT)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.e., A with one column deleted (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);A(j+1:n,:)], i.e., A with one row deleted (if ORIENT is "row").
The default value of ORIENT is "col".
If ORIENT is "col", J may be an index vector resulting in the QR factorization of a matrix B such that A(:,J) = [] gives B. Notice that the latter case is done as a sequence of k deletions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.
If ORIENT is "col", the QR factorization supplied may be either full (Q is square) or economized (R is square).
If ORIENT is "row", full factorization is needed.
See also: qr, qrupdate, qrinsert, qrshift.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
qrshift
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 385
-- Loadable Function: [Q1, R1] = qrshift (Q, R, I, J)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation
'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
or
'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
See also: qr, qrupdate, qrinsert, qrdelete.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 259
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation 'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J or 'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
symbfact
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1261
-- Loadable Function: [COUNT, H, PARENT, POST, R] = symbfact (S)
-- Loadable Function: [...] = symbfact (S, TYP)
-- Loadable Function: [...] = symbfact (S, TYP, MODE)
Perform a symbolic factorization analysis on the sparse matrix S.
The input variables are
S
S is a complex or real sparse matrix.
TYP
Is the type of the factorization and can be one of
'sym'
Factorize S. This is the default.
'col'
Factorize 'S' * S'.
'row'
Factorize S * S'.
'lo'
Factorize S'
MODE
The default is to return the Cholesky factorization for R, and if MODE is 'L', the conjugate transpose of the Cholesky factorization is returned. The conjugate transpose version is faster and uses less memory, but returns the same values for COUNT, H, PARENT and POST outputs.
The output variables are
COUNT
The row counts of the Cholesky factorization as determined by TYP.
H
The height of the elimination tree.
PARENT
The elimination tree itself.
POST
A sparse boolean matrix whose structure is that of the Cholesky factorization as determined by TYP.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Perform a symbolic factorization analysis on the sparse matrix S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
symrcm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 933
-- Loadable Function: P = symrcm (S)
Return the symmetric reverse Cuthill-McKee permutation of S.
P is a permutation vector such that 'S(P, P)' tends to have its diagonal elements closer to the diagonal than S. This is a good preordering for LU or Cholesky factorization of matrices that come from "long, skinny" problems. It works for both symmetric and asymmetric S.
The algorithm represents a heuristic approach to the NP-complete bandwidth minimization problem. The implementation is based in the descriptions found in
E. Cuthill, J. McKee. 'Reducing the Bandwidth of Sparse Symmetric Matrices'. Proceedings of the 24th ACM National Conference, 157-172 1969, Brandon Press, New Jersey.
A. George, J.W.H. Liu. 'Computer Solution of Large Sparse Positive Definite Systems', Prentice Hall Series in Computational Mathematics, ISBN 0-13-165274-5, 1981.
See also: colperm, colamd, symamd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return the symmetric reverse Cuthill-McKee permutation of S.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
audioread
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 721
-- Loadable Function: [Y, FS] = audioread (FILENAME)
-- Loadable Function: [Y, FS] = audioread (FILENAME, SAMPLES)
-- Loadable Function: [Y, FS] = audioread (FILENAME, DATATYPE)
-- Loadable Function: [Y, FS] = audioread (FILENAME, SAMPLES, DATATYPE)
Read the audio file FILENAME and return the audio data Y and sampling rate FS.
The audio data is stored as matrix with rows corresponding to audio frames and columns corresponding to channels.
The optional two-element vector argument SAMPLES specifies starting and ending frames.
The optional argument DATATYPE specifies the datatype to return. If it is "native", then the type of data depends on how the data is stored in the audio file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Read the audio file FILENAME and return the audio data Y and sampling rate FS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
audiowrite
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 841
-- Loadable Function: audiowrite (FILENAME, Y, FS)
-- Loadable Function: audiowrite (FILENAME, Y, FS, NAME, VALUE, ...)
Write audio data from the matrix Y to FILENAME at sampling rate FS with the file format determined by the file extension.
Additional name/value argument pairs may be used to specify the following options:
'BitsPerSample'
Number of bits per sample, valid values are 8, 16, 24 and 32. Default is 16.
'BitRate'
Valid argument name, but ignored. Left for compatibility with MATLAB.
'Quality'
Quality setting for the Ogg Vorbis compressor. Values can range between 0 and 100 with 100 being the highest quality setting. Default is 75.
'Title'
Title for the audio file.
'Artist'
Artist name.
'Comment'
Comment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Write audio data from the matrix Y to FILENAME at sampling rate FS with the file format determined by the file extension.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
audioinfo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
-- Loadable Function: INFO = audioinfo (FILENAME)
Return information about an audio file specified by FILENAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return information about an audio file specified by FILENAME.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
audiodevinfo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1254
-- Loadable Function: DEVINFO = audiodevinfo ()
-- Loadable Function: DEVS = audiodevinfo (IO)
-- Loadable Function: NAME = audiodevinfo (IO, ID)
-- Loadable Function: ID = audiodevinfo (IO, NAME)
-- Loadable Function: ID = audiodevinfo (IO, RATE, BITS, CHANS)
-- Loadable Function: SUPPORTS = audiodevinfo (IO, ID, RATE, BITS, CHANS)
Return a structure describing the available audio input and output devices.
The DEVINFO structure has two fields "input" and "output". The value of each field is a structure array with fields "Name", "DriverVersion" and "ID" describing an audio device.
If the optional argument IO is 1, return information about input devices only. If it is 0, return information about output devices only.
If the optional argument ID is provided, return information about the corresponding device.
If the optional argument NAME is provided, return the id of the named device.
Given a sampling rate, bits per sample, and number of channels for an input or output device, return the ID of the first device that supports playback or recording using the specified parameters.
If also given a device ID, return true if the device supports playback or recording using those parameters.
# name: <cell-element>
# type: sq_string
# elements: 0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
break
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
-- Keyword: break
Exit the innermost enclosing do, while or for loop.
See also: do, while, for, parfor, continue.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Exit the innermost enclosing do, while or for loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
case
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 272
-- Keyword: case VALUE
-- Keyword: case {VALUE, ...}
A case statement in a switch. Octave cases are exclusive and do not fall-through as do C-language cases. A switch statement must have at least one case. See 'switch' for an example.
See also: switch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
A case statement in a switch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
catch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
-- Keyword: catch
-- Keyword: catch VALUE
Begin the cleanup part of a try-catch block.
See also: try.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Begin the cleanup part of a try-catch block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
continue
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
-- Keyword: continue
Jump to the end of the innermost enclosing do, while or for loop.
See also: do, while, for, parfor, break.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Jump to the end of the innermost enclosing do, while or for loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
do
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 246
-- Keyword: do
Begin a do-until loop. This differs from a do-while loop in that the body of the loop is executed at least once.
i = 0;
do
i++
until (i == 10)
See also: for, until, while.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Begin a do-until loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
else
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
-- Keyword: else
Alternate action for an if block. See 'if' for an example.
See also: if.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Alternate action for an if block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
elseif
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
-- Keyword: elseif (CONDITION)
Alternate conditional test for an if block. See 'if' for an example.
See also: if.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Alternate conditional test for an if block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
end
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
-- Built-in Function: end
The magic index "end" refers to the last valid entry in an indexing operation.
Example:
X = [ 1 2 3
4 5 6 ];
X(1,end)
=> 3
X(end,1)
=> 4
X(end,end)
=> 6
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
The magic index "end" refers to the last valid entry in an indexing operation.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
end_try_catch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
-- Keyword: end_try_catch
Mark the end of an 'try-catch' block.
See also: try, catch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Mark the end of an 'try-catch' block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
end_unwind_protect
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
-- Keyword: end_unwind_protect
Mark the end of an unwind_protect block.
See also: unwind_protect.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Mark the end of an unwind_protect block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
endfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
-- Keyword: endfor
Mark the end of a for loop. See 'for' for an example.
See also: for.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Mark the end of a for loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
endfunction
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
-- Keyword: endfunction
Mark the end of a function.
See also: function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Mark the end of a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
endif
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
-- Keyword: endif
Mark the end of an if block. See 'if' for an example.
See also: if.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Mark the end of an if block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
endparfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
-- Keyword: endparfor
Mark the end of a parfor loop. See 'parfor' for an example.
See also: parfor.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Mark the end of a parfor loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
endswitch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
-- Keyword: endswitch
Mark the end of a switch block. See 'switch' for an example.
See also: switch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Mark the end of a switch block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
endwhile
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
-- Keyword: endwhile
Mark the end of a while loop. See 'while' for an example.
See also: do, while.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Mark the end of a while loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
for
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
-- Keyword: for I = RANGE
Begin a for loop.
for i = 1:10
i
endfor
See also: do, parfor, while.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
Begin a for loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
function
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
-- Keyword: function OUTPUTS = function (INPUT, ...)
-- Keyword: function function (INPUT, ...)
-- Keyword: function OUTPUTS = function
Begin a function body with OUTPUTS as results and INPUTS as parameters.
See also: return.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Begin a function body with OUTPUTS as results and INPUTS as parameters.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
global
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
-- Keyword: global VAR
Declare variables to have global scope.
global X;
if (isempty (X))
x = 1;
endif
See also: persistent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Declare variables to have global scope.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
if
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 423
-- Keyword: if (COND) ... endif
-- Keyword: if (COND) ... else ... endif
-- Keyword: if (COND) ... elseif (COND) ... endif
-- Keyword: if (COND) ... elseif (COND) ... else ... endif
Begin an if block.
x = 1;
if (x == 1)
disp ("one");
elseif (x == 2)
disp ("two");
else
disp ("not one or two");
endif
See also: switch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Begin an if block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
otherwise
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
-- Keyword: otherwise
The default statement in a switch block (similar to else in an if block).
See also: switch.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
The default statement in a switch block (similar to else in an if block).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
parfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 219
-- Keyword: parfor I = RANGE
-- Keyword: parfor (I = RANGE, MAXPROC)
Begin a for loop that may execute in parallel.
parfor i = 1:10
i
endparfor
See also: for, do, while.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Begin a for loop that may execute in parallel.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
persistent
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 409
-- Keyword: persistent VAR
Declare variables as persistent. A variable that has been declared persistent within a function will retain its contents in memory between subsequent calls to the same function. The difference between persistent variables and global variables is that persistent variables are local in scope to a particular function and are not visible elsewhere.
See also: global.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Declare variables as persistent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
return
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
-- Keyword: return
Return from a function.
See also: function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Return from a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
static
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
-- Keyword: static
This statement has been deprecated in favor of 'persistent'.
See also: persistent.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
This statement has been deprecated in favor of 'persistent'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
switch
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 364
-- Keyword: switch STATEMENT
Begin a switch block.
yesno = "yes"
switch yesno
case {"Yes" "yes" "YES" "y" "Y"}
value = 1;
case {"No" "no" "NO" "n" "N"}
value = 0;
otherwise
error ("invalid value");
endswitch
See also: if, case, otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Begin a switch block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
try
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 326
-- Keyword: try
Begin a try-catch block.
If an error occurs within a try block, then the catch code will be run and execution will proceed after the catch block (though it is often recommended to use the lasterr function to re-throw the error after cleanup is completed).
See also: catch, unwind_protect.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Begin a try-catch block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
until
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
-- Keyword: until (COND)
End a do-until loop. See 'do' for an example.
See also: do.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
End a do-until loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
unwind_protect
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 475
-- Keyword: unwind_protect
Begin an unwind_protect block.
If an error occurs within the first part of an unwind_protect block the commands within the unwind_protect_cleanup block are executed before the error is thrown. If an error is not thrown, then the unwind_protect_cleanup block is still executed (in other words, the unwind_protect_cleanup will be run with or without an error in the unwind_protect block).
See also: unwind_protect_cleanup, try.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Begin an unwind_protect block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
unwind_protect_cleanup
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
-- Keyword: unwind_protect_cleanup
Begin the cleanup section of an unwind_protect block.
See also: unwind_protect.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Begin the cleanup section of an unwind_protect block.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
varargin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
-- Keyword: varargin
Pass an arbitrary number of arguments into a function.
See also: varargout, nargin, isargout, nargout, nthargout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Pass an arbitrary number of arguments into a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
varargout
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
-- Keyword: varargout
Pass an arbitrary number of arguments out of a function.
See also: varargin, nargin, isargout, nargout, nthargout.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Pass an arbitrary number of arguments out of a function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
while
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
-- Keyword: while
Begin a while loop.
i = 0;
while (i < 10)
i++
endwhile
See also: do, endwhile, for, until.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
Begin a while loop.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
!
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
-- Operator: !
Logical 'not' operator.
See also: ~, not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Logical 'not' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
!=
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
-- Operator: !=
Logical 'not equals' operator.
See also: ~=, ne.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Logical 'not equals' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
"
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
-- Operator: "
String delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
String delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
#
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
-- Operator: #
Begin comment character.
See also: %, #{.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Begin comment character.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
#{
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
-- Operator: #{
Begin block comment. There must be nothing else, other than whitespace, in the line both before and after '#{'. It is possible to nest block comments.
See also: %{, #}, #.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Begin block comment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
#}
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
-- Operator: #}
Close block comment. There must be nothing else, other than whitespace, in the line both before and after '#}'. It is possible to nest block comments.
See also: %}, #{, #.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Close block comment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
%
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
-- Operator: %
Begin comment character.
See also: #, %{.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Begin comment character.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
%{
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
-- Operator: %{
Begin block comment. There must be nothing else, other than whitespace, in the line both before and after '%{'. It is possible to nest block comments.
See also: #{, %}, %.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Begin block comment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
%}
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
-- Operator: %}
Close block comment. There must be nothing else, other than whitespace, in the line both before and after '%}'. It is possible to nest block comments.
See also: #}, %{, %.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Close block comment.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
&
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
-- Operator: &
Element by element logical 'and' operator.
See also: &&, and.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Element by element logical 'and' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
&&
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
-- Operator: &&
Logical 'and' operator (with short-circuit evaluation).
See also: &, and.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Logical 'and' operator (with short-circuit evaluation).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
'
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
-- Operator: '
Matrix transpose operator. For complex matrices, computes the complex conjugate (Hermitian) transpose.
The single quote character may also be used to delimit strings, but it is better to use the double quote character, since that is never ambiguous.
See also: .', transpose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Matrix transpose operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
(
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
-- Operator: (
Array index or function argument delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Array index or function argument delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
-- Operator: )
Array index or function argument delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Array index or function argument delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
*
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
-- Operator: *
Multiplication operator.
See also: .*, times.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Multiplication operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
**
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 248
-- Operator: **
Power operator. This may return complex results for real inputs. Use 'realsqrt', 'cbrt', 'nthroot', or 'realroot' to obtain real results when possible.
See also: power, ^, .**, .^, realpow, realsqrt, cbrt, nthroot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
Power operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
+
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
-- Operator: +
Addition operator.
See also: plus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Addition operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
++
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
-- Operator: ++
Increment operator. As in C, may be applied as a prefix or postfix operator.
See also: -.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
Increment operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
,
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
-- Operator: ,
Array index, function argument, or command separator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Array index, function argument, or command separator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
-
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
-- Operator: -
Subtraction or unary negation operator.
See also: minus.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Subtraction or unary negation operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
-
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
-- Operator: --
Decrement operator. As in C, may be applied as a prefix or postfix operator.
See also: ++.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
Decrement operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.'
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 168
-- Operator: .'
Matrix transpose operator. For complex matrices, computes the transpose, _not_ the complex conjugate transpose.
See also: ', transpose.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Matrix transpose operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.*
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
-- Operator: .*
Element by element multiplication operator.
See also: *, times.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Element by element multiplication operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
.**
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 311
-- Operator: .*
Element by element power operator. If several complex results are possible, returns the one with smallest non-negative argument (angle). Use 'realpow', 'realsqrt', 'cbrt', or 'nthroot' if a real result is preferred.
See also: **, ^, .^, power, realpow, realsqrt, cbrt, nthroot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Element by element power operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
...
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
-- Operator: ...
Continuation marker. Joins current line with following line.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Continuation marker.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
./
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
-- Operator: ./
Element by element right division operator.
See also: /, ., rdivide, mrdivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Element by element right division operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.\
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
-- Operator: .\
Element by element left division operator.
See also: , ./, rdivide, mrdivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Element by element left division operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.^
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
-- Operator: .^
Element by element power operator. If several complex results are possible, returns the one with smallest non-negative argument (angle). Use 'realpow', 'realsqrt', 'cbrt', or 'nthroot' if a real result is preferred.
See also: .**, ^, **, power, realpow, realsqrt, cbrt, nthroot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Element by element power operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
-- Operator: /
Right division operator.
See also: ./, , rdivide, mrdivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Right division operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
:
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
-- Operator: :
Select entire rows or columns of matrices.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Select entire rows or columns of matrices.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
;
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
-- Operator: ;
Array row or command separator.
See also: ,.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Array row or command separator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
<
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
-- Operator: <
'Less than' operator.
See also: lt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
'Less than' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
<=
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
-- Operator: <=
'Less than' or 'equals' operator.
See also: le.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
'Less than' or 'equals' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
=
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
-- Operator: =
Assignment operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Assignment operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
==
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
-- Operator: ==
Equality test operator.
See also: eq.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Equality test operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
>
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
-- Operator: >
'Greater than' operator.
See also: gt.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
'Greater than' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
>=
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
-- Operator: >=
'Greater than' or 'equals' operator.
See also: ge.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
'Greater than' or 'equals' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
[
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
-- Operator: [
Return list delimiter.
See also: ].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Return list delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
\
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
-- Operator: \
Left division operator.
See also: ., /, ldivide, mldivide.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Left division operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
]
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
-- Operator: ]
Return list delimiter.
See also: [.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Return list delimiter.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
^
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 248
-- Operator: ^
Power operator. This may return complex results for real inputs. Use 'realsqrt', 'cbrt', 'nthroot', or 'realroot' to obtain real results when possible.
See also: power, **, .^, .**, realpow, realsqrt, cbrt, nthroot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
Power operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
|
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
-- Operator: |
Element by element logical 'or' operator.
See also: ||, or.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Element by element logical 'or' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
||
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
-- Operator: ||
Logical 'or' (with short-circuit evaluation) operator.
See also: |, or.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Logical 'or' (with short-circuit evaluation) operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
~
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
-- Operator: ~
Logical 'not' operator.
See also: !, not.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Logical 'not' operator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
~=
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
-- Operator: ~=
Logical 'not equals' operator.
See also: !=, ne.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Logical 'not equals' operator.
|