This file is indexed.

/usr/share/octave/4.0.0/etc/doc-cache is in octave-common 4.0.0-3ubuntu9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331
46332
46333
46334
46335
46336
46337
46338
46339
46340
46341
46342
46343
46344
46345
46346
46347
46348
46349
46350
46351
46352
46353
46354
46355
46356
46357
46358
46359
46360
46361
46362
46363
46364
46365
46366
46367
46368
46369
46370
46371
46372
46373
46374
46375
46376
46377
46378
46379
46380
46381
46382
46383
46384
46385
46386
46387
46388
46389
46390
46391
46392
46393
46394
46395
46396
46397
46398
46399
46400
46401
46402
46403
46404
46405
46406
46407
46408
46409
46410
46411
46412
46413
46414
46415
46416
46417
46418
46419
46420
46421
46422
46423
46424
46425
46426
46427
46428
46429
46430
46431
46432
46433
46434
46435
46436
46437
46438
46439
46440
46441
46442
46443
46444
46445
46446
46447
46448
46449
46450
46451
46452
46453
46454
46455
46456
46457
46458
46459
46460
46461
46462
46463
46464
46465
46466
46467
46468
46469
46470
46471
46472
46473
46474
46475
46476
46477
46478
46479
46480
46481
46482
46483
46484
46485
46486
46487
46488
46489
46490
46491
46492
46493
46494
46495
46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
46517
46518
46519
46520
46521
46522
46523
46524
46525
46526
46527
46528
46529
46530
46531
46532
46533
46534
46535
46536
46537
46538
46539
46540
46541
46542
46543
46544
46545
46546
46547
46548
46549
46550
46551
46552
46553
46554
46555
46556
46557
46558
46559
46560
46561
46562
46563
46564
46565
46566
46567
46568
46569
46570
46571
46572
46573
46574
46575
46576
46577
46578
46579
46580
46581
46582
46583
46584
46585
46586
46587
46588
46589
46590
46591
46592
46593
46594
46595
46596
46597
46598
46599
46600
46601
46602
46603
46604
46605
46606
46607
46608
46609
46610
46611
46612
46613
46614
46615
46616
46617
46618
46619
46620
46621
46622
46623
46624
46625
46626
46627
46628
46629
46630
46631
46632
46633
46634
46635
46636
46637
46638
46639
46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
46652
46653
46654
46655
46656
46657
46658
46659
46660
46661
46662
46663
46664
46665
46666
46667
46668
46669
46670
46671
46672
46673
46674
46675
46676
46677
46678
46679
46680
46681
46682
46683
46684
46685
46686
46687
46688
46689
46690
46691
46692
46693
46694
46695
46696
46697
46698
46699
46700
46701
46702
46703
46704
46705
46706
46707
46708
46709
46710
46711
46712
46713
46714
46715
46716
46717
46718
46719
46720
46721
46722
46723
46724
46725
46726
46727
46728
46729
46730
46731
46732
46733
46734
46735
46736
46737
46738
46739
46740
46741
46742
46743
46744
46745
46746
46747
46748
46749
46750
46751
46752
46753
46754
46755
46756
46757
46758
46759
46760
46761
46762
46763
46764
46765
46766
46767
46768
46769
46770
46771
46772
46773
46774
46775
46776
46777
46778
46779
46780
46781
46782
46783
46784
46785
46786
46787
46788
46789
46790
46791
46792
46793
46794
46795
46796
46797
46798
46799
46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
46823
46824
46825
46826
46827
46828
46829
46830
46831
46832
46833
46834
46835
46836
46837
46838
46839
46840
46841
46842
46843
46844
46845
46846
46847
46848
46849
46850
46851
46852
46853
46854
46855
46856
46857
46858
46859
46860
46861
46862
46863
46864
46865
46866
46867
46868
46869
46870
46871
46872
46873
46874
46875
46876
46877
46878
46879
46880
46881
46882
46883
46884
46885
46886
46887
46888
46889
46890
46891
46892
46893
46894
46895
46896
46897
46898
46899
46900
46901
46902
46903
46904
46905
46906
46907
46908
46909
46910
46911
46912
46913
46914
46915
46916
46917
46918
46919
46920
46921
46922
46923
46924
46925
46926
46927
46928
46929
46930
46931
46932
46933
46934
46935
46936
46937
46938
46939
46940
46941
46942
46943
46944
46945
46946
46947
46948
46949
46950
46951
46952
46953
46954
46955
46956
46957
46958
46959
46960
46961
46962
46963
46964
46965
46966
46967
46968
46969
46970
46971
46972
46973
46974
46975
46976
46977
46978
46979
46980
46981
46982
46983
46984
46985
46986
46987
46988
46989
46990
46991
46992
46993
46994
46995
46996
46997
46998
46999
47000
47001
47002
47003
47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015
47016
47017
47018
47019
47020
47021
47022
47023
47024
47025
47026
47027
47028
47029
47030
47031
47032
47033
47034
47035
47036
47037
47038
47039
47040
47041
47042
47043
47044
47045
47046
47047
47048
47049
47050
47051
47052
47053
47054
47055
47056
47057
47058
47059
47060
47061
47062
47063
47064
47065
47066
47067
47068
47069
47070
47071
47072
47073
47074
47075
47076
47077
47078
47079
47080
47081
47082
47083
47084
47085
47086
47087
47088
47089
47090
47091
47092
47093
47094
47095
47096
47097
47098
47099
47100
47101
47102
47103
47104
47105
47106
47107
47108
47109
47110
47111
47112
47113
47114
47115
47116
47117
47118
47119
47120
47121
47122
47123
47124
47125
47126
47127
47128
47129
47130
47131
47132
47133
47134
47135
47136
47137
47138
47139
47140
47141
47142
47143
47144
47145
47146
47147
47148
47149
47150
47151
47152
47153
47154
47155
47156
47157
47158
47159
47160
47161
47162
47163
47164
47165
47166
47167
47168
47169
47170
47171
47172
47173
47174
47175
47176
47177
47178
47179
47180
47181
47182
47183
47184
47185
47186
47187
47188
47189
47190
47191
47192
47193
47194
47195
47196
47197
47198
47199
47200
47201
47202
47203
47204
47205
47206
47207
47208
47209
47210
47211
47212
47213
47214
47215
47216
47217
47218
47219
47220
47221
47222
47223
47224
47225
47226
47227
47228
47229
47230
47231
47232
47233
47234
47235
47236
47237
47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
47250
47251
47252
47253
47254
47255
47256
47257
47258
47259
47260
47261
47262
47263
47264
47265
47266
47267
47268
47269
47270
47271
47272
47273
47274
47275
47276
47277
47278
47279
47280
47281
47282
47283
47284
47285
47286
47287
47288
47289
47290
47291
47292
47293
47294
47295
47296
47297
47298
47299
47300
47301
47302
47303
47304
47305
47306
47307
47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320
47321
47322
47323
47324
47325
47326
47327
47328
47329
47330
47331
47332
47333
47334
47335
47336
47337
47338
47339
47340
47341
47342
47343
47344
47345
47346
47347
47348
47349
47350
47351
47352
47353
47354
47355
47356
47357
47358
47359
47360
47361
47362
47363
47364
47365
47366
47367
47368
47369
47370
47371
47372
47373
47374
47375
47376
47377
47378
47379
47380
47381
47382
47383
47384
47385
47386
47387
47388
47389
47390
47391
47392
47393
47394
47395
47396
47397
47398
47399
47400
47401
47402
47403
47404
47405
47406
47407
47408
47409
47410
47411
47412
47413
47414
47415
47416
47417
47418
47419
47420
47421
47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433
47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461
47462
47463
47464
47465
47466
47467
47468
47469
47470
47471
47472
47473
47474
47475
47476
47477
47478
47479
47480
47481
47482
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494
47495
47496
47497
47498
47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
47519
47520
47521
47522
47523
47524
47525
47526
47527
47528
47529
47530
47531
47532
47533
47534
47535
47536
47537
47538
47539
47540
47541
47542
47543
47544
47545
47546
47547
47548
47549
47550
47551
47552
47553
47554
47555
47556
47557
47558
47559
47560
47561
47562
47563
47564
47565
47566
47567
47568
47569
47570
47571
47572
47573
47574
47575
47576
47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
47592
47593
47594
47595
47596
47597
47598
47599
47600
47601
47602
47603
47604
47605
47606
47607
47608
47609
47610
47611
47612
47613
47614
47615
47616
47617
47618
47619
47620
47621
47622
47623
47624
47625
47626
47627
47628
47629
47630
47631
47632
47633
47634
47635
47636
47637
47638
47639
47640
47641
47642
47643
47644
47645
47646
47647
47648
47649
47650
47651
47652
47653
47654
47655
47656
47657
47658
47659
47660
47661
47662
47663
47664
47665
47666
47667
47668
47669
47670
47671
47672
47673
47674
47675
47676
47677
47678
47679
47680
47681
47682
47683
47684
47685
47686
47687
47688
47689
47690
47691
47692
47693
47694
47695
47696
47697
47698
47699
47700
47701
47702
47703
47704
47705
47706
47707
47708
47709
47710
47711
47712
47713
47714
47715
47716
47717
47718
47719
47720
47721
47722
47723
47724
47725
47726
47727
47728
47729
47730
47731
47732
47733
47734
47735
47736
47737
47738
47739
47740
47741
47742
47743
47744
47745
47746
47747
47748
47749
47750
47751
47752
47753
47754
47755
47756
47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827
47828
47829
47830
47831
47832
47833
47834
47835
47836
47837
47838
47839
47840
47841
47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
47870
47871
47872
47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
47889
47890
47891
47892
47893
47894
47895
47896
47897
47898
47899
47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
47932
47933
47934
47935
47936
47937
47938
47939
47940
47941
47942
47943
47944
47945
47946
47947
47948
47949
47950
47951
47952
47953
47954
47955
47956
47957
47958
47959
47960
47961
47962
47963
47964
47965
47966
47967
47968
47969
47970
47971
47972
47973
47974
47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
47995
47996
47997
47998
47999
48000
48001
48002
48003
48004
48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017
48018
48019
48020
48021
48022
48023
48024
48025
48026
48027
48028
48029
48030
48031
48032
48033
48034
48035
48036
48037
48038
48039
48040
48041
48042
48043
48044
48045
48046
48047
48048
48049
48050
48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
48070
48071
48072
48073
48074
48075
48076
48077
48078
48079
48080
48081
48082
48083
48084
48085
48086
48087
48088
48089
48090
48091
48092
48093
48094
48095
48096
48097
48098
48099
48100
48101
48102
48103
48104
48105
48106
48107
48108
48109
48110
48111
48112
48113
48114
48115
48116
48117
48118
48119
48120
48121
48122
48123
48124
48125
48126
48127
48128
48129
48130
48131
48132
48133
48134
48135
48136
48137
48138
48139
48140
48141
48142
48143
48144
48145
48146
48147
48148
48149
48150
48151
48152
48153
48154
48155
48156
48157
48158
48159
48160
48161
48162
48163
48164
48165
48166
48167
48168
48169
48170
48171
48172
48173
48174
48175
48176
48177
48178
48179
48180
48181
48182
48183
48184
48185
48186
48187
48188
48189
48190
48191
48192
48193
48194
48195
48196
48197
48198
48199
48200
48201
48202
48203
48204
48205
48206
48207
48208
48209
48210
48211
48212
48213
48214
48215
48216
48217
48218
48219
48220
48221
48222
48223
48224
48225
48226
48227
48228
48229
48230
48231
48232
48233
48234
48235
48236
48237
48238
48239
48240
48241
48242
48243
48244
48245
48246
48247
48248
48249
48250
48251
48252
48253
48254
48255
48256
48257
48258
48259
48260
48261
48262
48263
48264
48265
48266
48267
48268
48269
48270
48271
48272
48273
48274
48275
48276
48277
48278
48279
48280
48281
48282
48283
48284
48285
48286
48287
48288
48289
48290
48291
48292
48293
48294
48295
48296
48297
48298
48299
48300
48301
48302
48303
48304
48305
48306
48307
48308
48309
48310
48311
48312
48313
48314
48315
48316
48317
48318
48319
48320
48321
48322
48323
48324
48325
48326
48327
48328
48329
48330
48331
48332
48333
48334
48335
48336
48337
48338
48339
48340
48341
48342
48343
48344
48345
48346
48347
48348
48349
48350
48351
48352
48353
48354
48355
48356
48357
48358
48359
48360
48361
48362
48363
48364
48365
48366
48367
48368
48369
48370
48371
48372
48373
48374
48375
48376
48377
48378
48379
48380
48381
48382
48383
48384
48385
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418
48419
48420
48421
48422
48423
48424
48425
48426
48427
48428
48429
48430
48431
48432
48433
48434
48435
48436
48437
48438
48439
48440
48441
48442
48443
48444
48445
48446
48447
48448
48449
48450
48451
48452
48453
48454
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
48470
48471
48472
48473
48474
48475
48476
48477
48478
48479
48480
48481
48482
48483
48484
48485
48486
48487
48488
48489
48490
48491
48492
48493
48494
48495
48496
48497
48498
48499
48500
48501
48502
48503
48504
48505
48506
48507
48508
48509
48510
48511
48512
48513
48514
48515
48516
48517
48518
48519
48520
48521
48522
48523
48524
48525
48526
48527
48528
48529
48530
48531
48532
48533
48534
48535
48536
48537
48538
48539
48540
48541
48542
48543
48544
48545
48546
48547
48548
48549
48550
48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596
48597
48598
48599
48600
48601
48602
48603
48604
48605
48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48631
48632
48633
48634
48635
48636
48637
48638
48639
48640
48641
48642
48643
48644
48645
48646
48647
48648
48649
48650
48651
48652
48653
48654
48655
48656
48657
48658
48659
48660
48661
48662
48663
48664
48665
48666
48667
48668
48669
48670
48671
48672
48673
48674
48675
48676
48677
48678
48679
48680
48681
48682
48683
48684
48685
48686
48687
48688
48689
48690
48691
48692
48693
48694
48695
48696
48697
48698
48699
48700
48701
48702
48703
48704
48705
48706
48707
48708
48709
48710
48711
48712
48713
48714
48715
48716
48717
48718
48719
48720
48721
48722
48723
48724
48725
48726
48727
48728
48729
48730
48731
48732
48733
48734
48735
48736
48737
48738
48739
48740
48741
48742
48743
48744
48745
48746
48747
48748
48749
48750
48751
48752
48753
48754
48755
48756
48757
48758
48759
48760
48761
48762
48763
48764
48765
48766
48767
48768
48769
48770
48771
48772
48773
48774
48775
48776
48777
48778
48779
48780
48781
48782
48783
48784
48785
48786
48787
48788
48789
48790
48791
48792
48793
48794
48795
48796
48797
48798
48799
48800
48801
48802
48803
48804
48805
48806
48807
48808
48809
48810
48811
48812
48813
48814
48815
48816
48817
48818
48819
48820
48821
48822
48823
48824
48825
48826
48827
48828
48829
48830
48831
48832
48833
48834
48835
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
48851
48852
48853
48854
48855
48856
48857
48858
48859
48860
48861
48862
48863
48864
48865
48866
48867
48868
48869
48870
48871
48872
48873
48874
48875
48876
48877
48878
48879
48880
48881
48882
48883
48884
48885
48886
48887
48888
48889
48890
48891
48892
48893
48894
48895
48896
48897
48898
48899
48900
48901
48902
48903
48904
48905
48906
48907
48908
48909
48910
48911
48912
48913
48914
48915
48916
48917
48918
48919
48920
48921
48922
48923
48924
48925
48926
48927
48928
48929
48930
48931
48932
48933
48934
48935
48936
48937
48938
48939
48940
48941
48942
48943
48944
48945
48946
48947
48948
48949
48950
48951
48952
48953
48954
48955
48956
48957
48958
48959
48960
48961
48962
48963
48964
48965
48966
48967
48968
48969
48970
48971
48972
48973
48974
48975
48976
48977
48978
48979
48980
48981
48982
48983
48984
48985
48986
48987
48988
48989
48990
48991
48992
48993
48994
48995
48996
48997
48998
48999
49000
49001
49002
49003
49004
49005
49006
49007
49008
49009
49010
49011
49012
49013
49014
49015
49016
49017
49018
49019
49020
49021
49022
49023
49024
49025
49026
49027
49028
49029
49030
49031
49032
49033
49034
49035
49036
49037
49038
49039
49040
49041
49042
49043
49044
49045
49046
49047
49048
49049
49050
49051
49052
49053
49054
49055
49056
49057
49058
49059
49060
49061
49062
49063
49064
49065
49066
49067
49068
49069
49070
49071
49072
49073
49074
49075
49076
49077
49078
49079
49080
49081
49082
49083
49084
49085
49086
49087
49088
49089
49090
49091
49092
49093
49094
49095
49096
49097
49098
49099
49100
49101
49102
49103
49104
49105
49106
49107
49108
49109
49110
49111
49112
49113
49114
49115
49116
49117
49118
49119
49120
49121
49122
49123
49124
49125
49126
49127
49128
49129
49130
49131
49132
49133
49134
49135
49136
49137
49138
49139
49140
49141
49142
49143
49144
49145
49146
49147
49148
49149
49150
49151
49152
49153
49154
49155
49156
49157
49158
49159
49160
49161
49162
49163
49164
49165
49166
49167
49168
49169
49170
49171
49172
49173
49174
49175
49176
49177
49178
49179
49180
49181
49182
49183
49184
49185
49186
49187
49188
49189
49190
49191
49192
49193
49194
49195
49196
49197
49198
49199
49200
49201
49202
49203
49204
49205
49206
49207
49208
49209
49210
49211
49212
49213
49214
49215
49216
49217
49218
49219
49220
49221
49222
49223
49224
49225
49226
49227
49228
49229
49230
49231
49232
49233
49234
49235
49236
49237
49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
49260
49261
49262
49263
49264
49265
49266
49267
49268
49269
49270
49271
49272
49273
49274
49275
49276
49277
49278
49279
49280
49281
49282
49283
49284
49285
49286
49287
49288
49289
49290
49291
49292
49293
49294
49295
49296
49297
49298
49299
49300
49301
49302
49303
49304
49305
49306
49307
49308
49309
49310
49311
49312
49313
49314
49315
49316
49317
49318
49319
49320
49321
49322
49323
49324
49325
49326
49327
49328
49329
49330
49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
49341
49342
49343
49344
49345
49346
49347
49348
49349
49350
49351
49352
49353
49354
49355
49356
49357
49358
49359
49360
49361
49362
49363
49364
49365
49366
49367
49368
49369
49370
49371
49372
49373
49374
49375
49376
49377
49378
49379
49380
49381
49382
49383
49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
49395
49396
49397
49398
49399
49400
49401
49402
49403
49404
49405
49406
49407
49408
49409
49410
49411
49412
49413
49414
49415
49416
49417
49418
49419
49420
49421
49422
49423
49424
49425
49426
49427
49428
49429
49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
49446
49447
49448
49449
49450
49451
49452
49453
49454
49455
49456
49457
49458
49459
49460
49461
49462
49463
49464
49465
49466
49467
49468
49469
49470
49471
49472
49473
49474
49475
49476
49477
49478
49479
49480
49481
49482
49483
49484
49485
49486
49487
49488
49489
49490
49491
49492
49493
49494
49495
49496
49497
49498
49499
49500
49501
49502
49503
49504
49505
49506
49507
49508
49509
49510
49511
49512
49513
49514
49515
49516
49517
49518
49519
49520
49521
49522
49523
49524
49525
49526
49527
49528
49529
49530
49531
49532
49533
49534
49535
49536
49537
49538
49539
49540
49541
49542
49543
49544
49545
49546
49547
49548
49549
49550
49551
49552
49553
49554
49555
49556
49557
49558
49559
49560
49561
49562
49563
49564
49565
49566
49567
49568
49569
49570
49571
49572
49573
49574
49575
49576
49577
49578
49579
49580
49581
49582
49583
49584
49585
49586
49587
49588
49589
49590
49591
49592
49593
49594
49595
49596
49597
49598
49599
49600
49601
49602
49603
49604
49605
49606
49607
49608
49609
49610
49611
49612
49613
49614
49615
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
49627
49628
49629
49630
49631
49632
49633
49634
49635
49636
49637
49638
49639
49640
49641
49642
49643
49644
49645
49646
49647
49648
49649
49650
49651
49652
49653
49654
49655
49656
49657
49658
49659
49660
49661
49662
49663
49664
49665
49666
49667
49668
49669
49670
49671
49672
49673
49674
49675
49676
49677
49678
49679
49680
49681
49682
49683
49684
49685
49686
49687
49688
49689
49690
49691
49692
49693
49694
49695
49696
49697
49698
49699
49700
49701
49702
49703
49704
49705
49706
49707
49708
49709
49710
49711
49712
49713
49714
49715
49716
49717
49718
49719
49720
49721
49722
49723
49724
49725
49726
49727
49728
49729
49730
49731
49732
49733
49734
49735
49736
49737
49738
49739
49740
49741
49742
49743
49744
49745
49746
49747
49748
49749
49750
49751
49752
49753
49754
49755
49756
49757
49758
49759
49760
49761
49762
49763
49764
49765
49766
49767
49768
49769
49770
49771
49772
49773
49774
49775
49776
49777
49778
49779
49780
49781
49782
49783
49784
49785
49786
49787
49788
49789
49790
49791
49792
49793
49794
49795
49796
49797
49798
49799
49800
49801
49802
49803
49804
49805
49806
49807
49808
49809
49810
49811
49812
49813
49814
49815
49816
49817
49818
49819
49820
49821
49822
49823
49824
49825
49826
49827
49828
49829
49830
49831
49832
49833
49834
49835
49836
49837
49838
49839
49840
49841
49842
49843
49844
49845
49846
49847
49848
49849
49850
49851
49852
49853
49854
49855
49856
49857
49858
49859
49860
49861
49862
49863
49864
49865
49866
49867
49868
49869
49870
49871
49872
49873
49874
49875
49876
49877
49878
49879
49880
49881
49882
49883
49884
49885
49886
49887
49888
49889
49890
49891
49892
49893
49894
49895
49896
49897
49898
49899
49900
49901
49902
49903
49904
49905
49906
49907
49908
49909
49910
49911
49912
49913
49914
49915
49916
49917
49918
49919
49920
49921
49922
49923
49924
49925
49926
49927
49928
49929
49930
49931
49932
49933
49934
49935
49936
49937
49938
49939
49940
49941
49942
49943
49944
49945
49946
49947
49948
49949
49950
49951
49952
49953
49954
49955
49956
49957
49958
49959
49960
49961
49962
49963
49964
49965
49966
49967
49968
49969
49970
49971
49972
49973
49974
49975
49976
49977
49978
49979
49980
49981
49982
49983
49984
49985
49986
49987
49988
49989
49990
49991
49992
49993
49994
49995
49996
49997
49998
49999
50000
50001
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
50015
50016
50017
50018
50019
50020
50021
50022
50023
50024
50025
50026
50027
50028
50029
50030
50031
50032
50033
50034
50035
50036
50037
50038
50039
50040
50041
50042
50043
50044
50045
50046
50047
50048
50049
50050
50051
50052
50053
50054
50055
50056
50057
50058
50059
50060
50061
50062
50063
50064
50065
50066
50067
50068
50069
50070
50071
50072
50073
50074
50075
50076
50077
50078
50079
50080
50081
50082
50083
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
50097
50098
50099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
50487
50488
50489
50490
50491
50492
50493
50494
50495
50496
50497
50498
50499
50500
50501
50502
50503
50504
50505
50506
50507
50508
50509
50510
50511
50512
50513
50514
50515
50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
50679
50680
50681
50682
50683
50684
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
50700
50701
50702
50703
50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
50760
50761
50762
50763
50764
50765
50766
50767
50768
50769
50770
50771
50772
50773
50774
50775
50776
50777
50778
50779
50780
50781
50782
50783
50784
50785
50786
50787
50788
50789
50790
50791
50792
50793
50794
50795
50796
50797
50798
50799
50800
50801
50802
50803
50804
50805
50806
50807
50808
50809
50810
50811
50812
50813
50814
50815
50816
50817
50818
50819
50820
50821
50822
50823
50824
50825
50826
50827
50828
50829
50830
50831
50832
50833
50834
50835
50836
50837
50838
50839
50840
50841
50842
50843
50844
50845
50846
50847
50848
50849
50850
50851
50852
50853
50854
50855
50856
50857
50858
50859
50860
50861
50862
50863
50864
50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
50889
50890
50891
50892
50893
50894
50895
50896
50897
50898
50899
50900
50901
50902
50903
50904
50905
50906
50907
50908
50909
50910
50911
50912
50913
50914
50915
50916
50917
50918
50919
50920
50921
50922
50923
50924
50925
50926
50927
50928
50929
50930
50931
50932
50933
50934
50935
50936
50937
50938
50939
50940
50941
50942
50943
50944
50945
50946
50947
50948
50949
50950
50951
50952
50953
50954
50955
50956
50957
50958
50959
50960
50961
50962
50963
50964
50965
50966
50967
50968
50969
50970
50971
50972
50973
50974
50975
50976
50977
50978
50979
50980
50981
50982
50983
50984
50985
50986
50987
50988
50989
50990
50991
50992
50993
50994
50995
50996
50997
50998
50999
51000
51001
51002
51003
51004
51005
51006
51007
51008
51009
51010
51011
51012
51013
51014
51015
51016
51017
51018
51019
51020
51021
51022
51023
51024
51025
51026
51027
51028
51029
51030
51031
51032
51033
51034
51035
51036
51037
51038
51039
51040
51041
51042
51043
51044
51045
51046
51047
51048
51049
51050
51051
51052
51053
51054
51055
51056
51057
51058
51059
51060
51061
51062
51063
51064
51065
51066
51067
51068
51069
51070
51071
51072
51073
51074
51075
51076
51077
51078
51079
51080
51081
51082
51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
51093
51094
51095
51096
51097
51098
51099
51100
51101
51102
51103
51104
51105
51106
51107
51108
51109
51110
51111
51112
51113
51114
51115
51116
51117
51118
51119
51120
51121
51122
51123
51124
51125
51126
51127
51128
51129
51130
51131
51132
51133
51134
51135
51136
51137
51138
51139
51140
51141
51142
51143
51144
51145
51146
51147
51148
51149
51150
51151
51152
51153
51154
51155
51156
51157
51158
51159
51160
51161
51162
51163
51164
51165
51166
51167
51168
51169
51170
51171
51172
51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192
51193
51194
51195
51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
51211
51212
51213
51214
51215
51216
51217
51218
51219
51220
51221
51222
51223
51224
51225
51226
51227
51228
51229
51230
51231
51232
51233
51234
51235
51236
51237
51238
51239
51240
51241
51242
51243
51244
51245
51246
51247
51248
51249
51250
51251
51252
51253
51254
51255
51256
51257
51258
51259
51260
51261
51262
51263
51264
51265
51266
51267
51268
51269
51270
51271
51272
51273
51274
51275
51276
51277
51278
51279
51280
51281
51282
51283
51284
51285
51286
51287
51288
51289
51290
51291
51292
51293
51294
51295
51296
51297
51298
51299
51300
51301
51302
51303
51304
51305
51306
51307
51308
51309
51310
51311
51312
51313
51314
51315
51316
51317
51318
51319
51320
51321
51322
51323
51324
51325
51326
51327
51328
51329
51330
51331
51332
51333
51334
51335
51336
51337
51338
51339
51340
51341
51342
51343
51344
51345
51346
51347
51348
51349
51350
51351
51352
51353
51354
51355
51356
51357
51358
51359
51360
51361
51362
51363
51364
51365
51366
51367
51368
51369
51370
51371
51372
51373
51374
51375
51376
51377
51378
51379
51380
51381
51382
51383
51384
51385
51386
51387
51388
51389
51390
51391
51392
51393
51394
51395
51396
51397
51398
51399
51400
51401
51402
51403
51404
51405
51406
51407
51408
51409
51410
51411
51412
51413
51414
51415
51416
51417
51418
51419
51420
51421
51422
51423
51424
51425
51426
51427
51428
51429
51430
51431
51432
51433
51434
51435
51436
51437
51438
51439
51440
51441
51442
51443
51444
51445
51446
51447
51448
51449
51450
51451
51452
51453
51454
51455
51456
51457
51458
51459
51460
51461
51462
51463
51464
51465
51466
51467
51468
51469
51470
51471
51472
51473
51474
51475
51476
51477
51478
51479
51480
51481
51482
51483
51484
51485
51486
51487
51488
51489
51490
51491
51492
51493
51494
51495
51496
51497
51498
51499
51500
51501
51502
51503
51504
51505
51506
51507
51508
51509
51510
51511
51512
51513
51514
51515
51516
51517
51518
51519
51520
51521
51522
51523
51524
51525
51526
51527
51528
51529
51530
51531
51532
51533
51534
51535
51536
51537
51538
51539
51540
51541
51542
51543
51544
51545
51546
51547
51548
51549
51550
51551
51552
51553
51554
51555
51556
51557
51558
51559
51560
51561
51562
51563
51564
51565
51566
51567
51568
51569
51570
51571
51572
51573
51574
51575
51576
51577
51578
51579
51580
51581
51582
51583
51584
51585
51586
51587
51588
51589
51590
51591
51592
51593
51594
51595
51596
51597
51598
51599
51600
51601
51602
51603
51604
51605
51606
51607
51608
51609
51610
51611
51612
51613
51614
51615
51616
51617
51618
51619
51620
51621
51622
51623
51624
51625
51626
51627
51628
51629
51630
51631
51632
51633
51634
51635
51636
51637
51638
51639
51640
51641
51642
51643
51644
51645
51646
51647
51648
51649
51650
51651
51652
51653
51654
51655
51656
51657
51658
51659
51660
51661
51662
51663
51664
51665
51666
51667
51668
51669
51670
51671
51672
51673
51674
51675
51676
51677
51678
51679
51680
51681
51682
51683
51684
51685
51686
51687
51688
51689
51690
51691
51692
51693
51694
51695
51696
51697
51698
51699
51700
51701
51702
51703
51704
51705
51706
51707
51708
51709
51710
51711
51712
51713
51714
51715
51716
51717
51718
51719
51720
51721
51722
51723
51724
51725
51726
51727
51728
51729
51730
51731
51732
51733
51734
51735
51736
51737
51738
51739
51740
51741
51742
51743
51744
51745
51746
51747
51748
51749
51750
51751
51752
51753
51754
51755
51756
51757
51758
51759
51760
51761
51762
51763
51764
51765
51766
51767
51768
51769
51770
51771
51772
51773
51774
51775
51776
51777
51778
51779
51780
51781
51782
51783
51784
51785
51786
51787
51788
51789
51790
51791
51792
51793
51794
51795
51796
51797
51798
51799
51800
51801
51802
51803
51804
51805
51806
51807
51808
51809
51810
51811
51812
51813
51814
51815
51816
51817
51818
51819
51820
51821
51822
51823
51824
51825
51826
51827
51828
51829
51830
51831
51832
51833
51834
51835
51836
51837
51838
51839
51840
51841
51842
51843
51844
51845
51846
51847
51848
51849
51850
51851
51852
51853
51854
51855
51856
51857
51858
51859
51860
51861
51862
51863
51864
51865
51866
51867
51868
51869
51870
51871
51872
51873
51874
51875
51876
51877
51878
51879
51880
51881
51882
51883
51884
51885
51886
51887
51888
51889
51890
51891
51892
51893
51894
51895
51896
51897
51898
51899
51900
51901
51902
51903
51904
51905
51906
51907
51908
51909
51910
51911
51912
51913
51914
51915
51916
51917
51918
51919
51920
51921
51922
51923
51924
51925
51926
51927
51928
51929
51930
51931
51932
51933
51934
51935
51936
51937
51938
51939
51940
51941
51942
51943
51944
51945
51946
51947
51948
51949
51950
51951
51952
51953
51954
51955
51956
51957
51958
51959
51960
51961
51962
51963
51964
51965
51966
51967
51968
51969
51970
51971
51972
51973
51974
51975
51976
51977
51978
51979
51980
51981
51982
51983
51984
51985
51986
51987
51988
51989
51990
51991
51992
51993
51994
51995
51996
51997
51998
51999
52000
52001
52002
52003
52004
52005
52006
52007
52008
52009
52010
52011
52012
52013
52014
52015
52016
52017
52018
52019
52020
52021
52022
52023
52024
52025
52026
52027
52028
52029
52030
52031
52032
52033
52034
52035
52036
52037
52038
52039
52040
52041
52042
52043
52044
52045
52046
52047
52048
52049
52050
52051
52052
52053
52054
52055
52056
52057
52058
52059
52060
52061
52062
52063
52064
52065
52066
52067
52068
52069
52070
52071
52072
52073
52074
52075
52076
52077
52078
52079
52080
52081
52082
52083
52084
52085
52086
52087
52088
52089
52090
52091
52092
52093
52094
52095
52096
52097
52098
52099
52100
52101
52102
52103
52104
52105
52106
52107
52108
52109
52110
52111
52112
52113
52114
52115
52116
52117
52118
52119
52120
52121
52122
52123
52124
52125
52126
52127
52128
52129
52130
52131
52132
52133
52134
52135
52136
52137
52138
52139
52140
52141
52142
52143
52144
52145
52146
52147
52148
52149
52150
52151
52152
52153
52154
52155
52156
52157
52158
52159
52160
52161
52162
52163
52164
52165
52166
52167
52168
52169
52170
52171
52172
52173
52174
52175
52176
52177
52178
52179
52180
52181
52182
52183
52184
52185
52186
52187
52188
52189
52190
52191
52192
52193
52194
52195
52196
52197
52198
52199
52200
52201
52202
52203
52204
52205
52206
52207
52208
52209
52210
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
52223
52224
52225
52226
52227
52228
52229
52230
52231
52232
52233
52234
52235
52236
52237
52238
52239
52240
52241
52242
52243
52244
52245
52246
52247
52248
52249
52250
52251
52252
52253
52254
52255
52256
52257
52258
52259
52260
52261
52262
52263
52264
52265
52266
52267
52268
52269
52270
52271
52272
52273
52274
52275
52276
52277
52278
52279
52280
52281
52282
52283
52284
52285
52286
52287
52288
52289
52290
52291
52292
52293
52294
52295
52296
52297
52298
52299
52300
52301
52302
52303
52304
52305
52306
52307
52308
52309
52310
52311
52312
52313
52314
52315
52316
52317
52318
52319
52320
52321
52322
52323
52324
52325
52326
52327
52328
52329
52330
52331
52332
52333
52334
52335
52336
52337
52338
52339
52340
52341
52342
52343
52344
52345
52346
52347
52348
52349
52350
52351
52352
52353
52354
52355
52356
52357
52358
52359
52360
52361
52362
52363
52364
52365
52366
52367
52368
52369
52370
52371
52372
52373
52374
52375
52376
52377
52378
52379
52380
52381
52382
52383
52384
52385
52386
52387
52388
52389
52390
52391
52392
52393
52394
52395
52396
52397
52398
52399
52400
52401
52402
52403
52404
52405
52406
52407
52408
52409
52410
52411
52412
52413
52414
52415
52416
52417
52418
52419
52420
52421
52422
52423
52424
52425
52426
52427
52428
52429
52430
52431
52432
52433
52434
52435
52436
52437
52438
52439
52440
52441
52442
52443
52444
52445
52446
52447
52448
52449
52450
52451
52452
52453
52454
52455
52456
52457
52458
52459
52460
52461
52462
52463
52464
52465
52466
52467
52468
52469
52470
52471
52472
52473
52474
52475
52476
52477
52478
52479
52480
52481
52482
52483
52484
52485
52486
52487
52488
52489
52490
52491
52492
52493
52494
52495
52496
52497
52498
52499
52500
52501
52502
52503
52504
52505
52506
52507
52508
52509
52510
52511
52512
52513
52514
52515
52516
52517
52518
52519
52520
52521
52522
52523
52524
52525
52526
52527
52528
52529
52530
52531
52532
52533
52534
52535
52536
52537
52538
52539
52540
52541
52542
52543
52544
52545
52546
52547
52548
52549
52550
52551
52552
52553
52554
52555
52556
52557
52558
52559
52560
52561
52562
52563
52564
52565
52566
52567
52568
52569
52570
52571
52572
52573
52574
52575
52576
52577
52578
52579
52580
52581
52582
52583
52584
52585
52586
52587
52588
52589
52590
52591
52592
52593
52594
52595
52596
52597
52598
52599
52600
52601
52602
52603
52604
52605
52606
52607
52608
52609
52610
52611
52612
52613
52614
52615
52616
52617
52618
52619
52620
52621
52622
52623
52624
52625
52626
52627
52628
52629
52630
52631
52632
52633
52634
52635
52636
52637
52638
52639
52640
52641
52642
52643
52644
52645
52646
52647
52648
52649
52650
52651
52652
52653
52654
52655
52656
52657
52658
52659
52660
52661
52662
52663
52664
52665
52666
52667
52668
52669
52670
52671
52672
52673
52674
52675
52676
52677
52678
52679
52680
52681
52682
52683
52684
52685
52686
52687
52688
52689
52690
52691
52692
52693
52694
52695
52696
52697
52698
52699
52700
52701
52702
52703
52704
52705
52706
52707
52708
52709
52710
52711
52712
52713
52714
52715
52716
52717
52718
52719
52720
52721
52722
52723
52724
52725
52726
52727
52728
52729
52730
52731
52732
52733
52734
52735
52736
52737
52738
52739
52740
52741
52742
52743
52744
52745
52746
52747
52748
52749
52750
52751
52752
52753
52754
52755
52756
52757
52758
52759
52760
52761
52762
52763
52764
52765
52766
52767
52768
52769
52770
52771
52772
52773
52774
52775
52776
52777
52778
52779
52780
52781
52782
52783
52784
52785
52786
52787
52788
52789
52790
52791
52792
52793
52794
52795
52796
52797
52798
52799
52800
52801
52802
52803
52804
52805
52806
52807
52808
52809
52810
52811
52812
52813
52814
52815
52816
52817
52818
52819
52820
52821
52822
52823
52824
52825
52826
52827
52828
52829
52830
52831
52832
52833
52834
52835
52836
52837
52838
52839
52840
52841
52842
52843
52844
52845
52846
52847
52848
52849
52850
52851
52852
52853
52854
52855
52856
52857
52858
52859
52860
52861
52862
52863
52864
52865
52866
52867
52868
52869
52870
52871
52872
52873
52874
52875
52876
52877
52878
52879
52880
52881
52882
52883
52884
52885
52886
52887
52888
52889
52890
52891
52892
52893
52894
52895
52896
52897
52898
52899
52900
52901
52902
52903
52904
52905
52906
52907
52908
52909
52910
52911
52912
52913
52914
52915
52916
52917
52918
52919
52920
52921
52922
52923
52924
52925
52926
52927
52928
52929
52930
52931
52932
52933
52934
52935
52936
52937
52938
52939
52940
52941
52942
52943
52944
52945
52946
52947
52948
52949
52950
52951
52952
52953
52954
52955
52956
52957
52958
52959
52960
52961
52962
52963
52964
52965
52966
52967
52968
52969
52970
52971
52972
52973
52974
52975
52976
52977
52978
52979
52980
52981
52982
52983
52984
52985
52986
52987
52988
52989
52990
52991
52992
52993
52994
52995
52996
52997
52998
52999
53000
53001
53002
53003
53004
53005
53006
53007
53008
53009
53010
53011
53012
53013
53014
53015
53016
53017
53018
53019
53020
53021
53022
53023
53024
53025
53026
53027
53028
53029
53030
53031
53032
53033
53034
53035
53036
53037
53038
53039
53040
53041
53042
53043
53044
53045
53046
53047
53048
53049
53050
53051
53052
53053
53054
53055
53056
53057
53058
53059
53060
53061
53062
53063
53064
53065
53066
53067
53068
53069
53070
53071
53072
53073
53074
53075
53076
53077
53078
53079
53080
53081
53082
53083
53084
53085
53086
53087
53088
53089
53090
53091
53092
53093
53094
53095
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105
53106
53107
53108
53109
53110
53111
53112
53113
53114
53115
53116
53117
53118
53119
53120
53121
53122
53123
53124
53125
53126
53127
53128
53129
53130
53131
53132
53133
53134
53135
53136
53137
53138
53139
53140
53141
53142
53143
53144
53145
53146
53147
53148
53149
53150
53151
53152
53153
53154
53155
53156
53157
53158
53159
53160
53161
53162
53163
53164
53165
53166
53167
53168
53169
53170
53171
53172
53173
53174
53175
53176
53177
53178
53179
53180
53181
53182
53183
53184
53185
53186
53187
53188
53189
53190
53191
53192
53193
53194
53195
53196
53197
53198
53199
53200
53201
53202
53203
53204
53205
53206
53207
53208
53209
53210
53211
53212
53213
53214
53215
53216
53217
53218
53219
53220
53221
53222
53223
53224
53225
53226
53227
53228
53229
53230
53231
53232
53233
53234
53235
53236
53237
53238
53239
53240
53241
53242
53243
53244
53245
53246
53247
53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265
53266
53267
53268
53269
53270
53271
53272
53273
53274
53275
53276
53277
53278
53279
53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
53295
53296
53297
53298
53299
53300
53301
53302
53303
53304
53305
53306
53307
53308
53309
53310
53311
53312
53313
53314
53315
53316
53317
53318
53319
53320
53321
53322
53323
53324
53325
53326
53327
53328
53329
53330
53331
53332
53333
53334
53335
53336
53337
53338
53339
53340
53341
53342
53343
53344
53345
53346
53347
53348
53349
53350
53351
53352
53353
53354
53355
53356
53357
53358
53359
53360
53361
53362
53363
53364
53365
53366
53367
53368
53369
53370
53371
53372
53373
53374
53375
53376
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
53393
53394
53395
53396
53397
53398
53399
53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
53410
53411
53412
53413
53414
53415
53416
53417
53418
53419
53420
53421
53422
53423
53424
53425
53426
53427
53428
53429
53430
53431
53432
53433
53434
53435
53436
53437
53438
53439
53440
53441
53442
53443
53444
53445
53446
53447
53448
53449
53450
53451
53452
53453
53454
53455
53456
53457
53458
53459
53460
53461
53462
53463
53464
53465
53466
53467
53468
53469
53470
53471
53472
53473
53474
53475
53476
53477
53478
53479
53480
53481
53482
53483
53484
53485
53486
53487
53488
53489
53490
53491
53492
53493
53494
53495
53496
53497
53498
53499
53500
53501
53502
53503
53504
53505
53506
53507
53508
53509
53510
53511
53512
53513
53514
53515
53516
53517
53518
53519
53520
53521
53522
53523
53524
53525
53526
53527
53528
53529
53530
53531
53532
53533
53534
53535
53536
53537
53538
53539
53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554
53555
53556
53557
53558
53559
53560
53561
53562
53563
53564
53565
53566
53567
53568
53569
53570
53571
53572
53573
53574
53575
53576
53577
53578
53579
53580
53581
53582
53583
53584
53585
53586
53587
53588
53589
53590
53591
53592
53593
53594
53595
53596
53597
53598
53599
53600
53601
53602
53603
53604
53605
53606
53607
53608
53609
53610
53611
53612
53613
53614
53615
53616
53617
53618
53619
53620
53621
53622
53623
53624
53625
53626
53627
53628
53629
53630
53631
53632
53633
53634
53635
53636
53637
53638
53639
53640
53641
53642
53643
53644
53645
53646
53647
53648
53649
53650
53651
53652
53653
53654
53655
53656
53657
53658
53659
53660
53661
53662
53663
53664
53665
53666
53667
53668
53669
53670
53671
53672
53673
53674
53675
53676
53677
53678
53679
53680
53681
53682
53683
53684
53685
53686
53687
53688
53689
53690
53691
53692
53693
53694
53695
53696
53697
53698
53699
53700
53701
53702
53703
53704
53705
53706
53707
53708
53709
53710
53711
53712
53713
53714
53715
53716
53717
53718
53719
53720
53721
53722
53723
53724
53725
53726
53727
53728
53729
53730
53731
53732
53733
53734
53735
53736
53737
53738
53739
53740
53741
53742
53743
53744
53745
53746
53747
53748
53749
53750
53751
53752
53753
53754
53755
53756
53757
53758
53759
53760
53761
53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
53772
53773
53774
53775
53776
53777
53778
53779
53780
53781
53782
53783
53784
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
53803
53804
53805
53806
53807
53808
53809
53810
53811
53812
53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
53828
53829
53830
53831
53832
53833
53834
53835
53836
53837
53838
53839
53840
53841
53842
53843
53844
53845
53846
53847
53848
53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
53880
53881
53882
53883
53884
53885
53886
53887
53888
53889
53890
53891
53892
53893
53894
53895
53896
53897
53898
53899
53900
53901
53902
53903
53904
53905
53906
53907
53908
53909
53910
53911
53912
53913
53914
53915
53916
53917
53918
53919
53920
53921
53922
53923
53924
53925
53926
53927
53928
53929
53930
53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
53941
53942
53943
53944
53945
53946
53947
53948
53949
53950
53951
53952
53953
53954
53955
53956
53957
53958
53959
53960
53961
53962
53963
53964
53965
53966
53967
53968
53969
53970
53971
53972
53973
53974
53975
53976
53977
53978
53979
53980
53981
53982
53983
53984
53985
53986
53987
53988
53989
53990
53991
53992
53993
53994
53995
53996
53997
53998
53999
54000
54001
54002
54003
54004
54005
54006
54007
54008
54009
54010
54011
54012
54013
54014
54015
54016
54017
54018
54019
54020
54021
54022
54023
54024
54025
54026
54027
54028
54029
54030
54031
54032
54033
54034
54035
54036
54037
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057
54058
54059
54060
54061
54062
54063
54064
54065
54066
54067
54068
54069
54070
54071
54072
54073
54074
54075
54076
54077
54078
54079
54080
54081
54082
54083
54084
54085
54086
54087
54088
54089
54090
54091
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
54132
54133
54134
54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
54152
54153
54154
54155
54156
54157
54158
54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171
54172
54173
54174
54175
54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
54207
54208
54209
54210
54211
54212
54213
54214
54215
54216
54217
54218
54219
54220
54221
54222
54223
54224
54225
54226
54227
54228
54229
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
54245
54246
54247
54248
54249
54250
54251
54252
54253
54254
54255
54256
54257
54258
54259
54260
54261
54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
54277
54278
54279
54280
54281
54282
54283
54284
54285
54286
54287
54288
54289
54290
54291
54292
54293
54294
54295
54296
54297
54298
54299
54300
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
54316
54317
54318
54319
54320
54321
54322
54323
54324
54325
54326
54327
54328
54329
54330
54331
54332
54333
54334
54335
54336
54337
54338
54339
54340
54341
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389
54390
54391
54392
54393
54394
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
54411
54412
54413
54414
54415
54416
54417
54418
54419
54420
54421
54422
54423
54424
54425
54426
54427
54428
54429
54430
54431
54432
54433
54434
54435
54436
54437
54438
54439
54440
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454
54455
54456
54457
54458
54459
54460
54461
54462
54463
54464
54465
54466
54467
54468
54469
54470
54471
54472
54473
54474
54475
54476
54477
54478
54479
54480
54481
54482
54483
54484
54485
54486
54487
54488
54489
54490
54491
54492
54493
54494
54495
54496
54497
54498
54499
54500
54501
54502
54503
54504
54505
54506
54507
54508
54509
54510
54511
54512
54513
54514
54515
54516
54517
54518
54519
54520
54521
54522
54523
54524
54525
54526
54527
54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539
54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
54565
54566
54567
54568
54569
54570
54571
54572
54573
54574
54575
54576
54577
54578
54579
54580
54581
54582
54583
54584
54585
54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
54600
54601
54602
54603
54604
54605
54606
54607
54608
54609
54610
54611
54612
54613
54614
54615
54616
54617
54618
54619
54620
54621
54622
54623
54624
54625
54626
54627
54628
54629
54630
54631
54632
54633
54634
54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
54658
54659
54660
54661
54662
54663
54664
54665
54666
54667
54668
54669
54670
54671
54672
54673
54674
54675
54676
54677
54678
54679
54680
54681
54682
54683
54684
54685
54686
54687
54688
54689
54690
54691
54692
54693
54694
54695
54696
54697
54698
54699
54700
54701
54702
54703
54704
54705
54706
54707
54708
54709
54710
54711
54712
54713
54714
54715
54716
54717
54718
54719
54720
54721
54722
54723
54724
54725
54726
54727
54728
54729
54730
54731
54732
54733
54734
54735
54736
54737
54738
54739
54740
54741
54742
54743
54744
54745
54746
54747
54748
54749
54750
54751
54752
54753
54754
54755
54756
54757
54758
54759
54760
54761
54762
54763
54764
54765
54766
54767
54768
54769
54770
54771
54772
54773
54774
54775
54776
54777
54778
54779
54780
54781
54782
54783
54784
54785
54786
54787
54788
54789
54790
54791
54792
54793
54794
54795
54796
54797
54798
54799
54800
54801
54802
54803
54804
54805
54806
54807
54808
54809
54810
54811
54812
54813
54814
54815
54816
54817
54818
54819
54820
54821
54822
54823
54824
54825
54826
54827
54828
54829
54830
54831
54832
54833
54834
54835
54836
54837
54838
54839
54840
54841
54842
54843
54844
54845
54846
54847
54848
54849
54850
54851
54852
54853
54854
54855
54856
54857
54858
54859
54860
54861
54862
54863
54864
54865
54866
54867
54868
54869
54870
54871
54872
54873
54874
54875
54876
54877
54878
54879
54880
54881
54882
54883
54884
54885
54886
54887
54888
54889
54890
54891
54892
54893
54894
54895
54896
54897
54898
54899
54900
54901
54902
54903
54904
54905
54906
54907
54908
54909
54910
54911
54912
54913
54914
54915
54916
54917
54918
54919
54920
54921
54922
54923
54924
54925
54926
54927
54928
54929
54930
54931
54932
54933
54934
54935
54936
54937
54938
54939
54940
54941
54942
54943
54944
54945
54946
54947
54948
54949
54950
54951
54952
54953
54954
54955
54956
54957
54958
54959
54960
54961
54962
54963
54964
54965
54966
54967
54968
54969
54970
54971
54972
54973
54974
54975
54976
54977
54978
54979
54980
54981
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
55005
55006
55007
55008
55009
55010
55011
55012
55013
55014
55015
55016
55017
55018
55019
55020
55021
55022
55023
55024
55025
55026
55027
55028
55029
55030
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
55053
55054
55055
55056
55057
55058
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078
55079
55080
55081
55082
55083
55084
55085
55086
55087
55088
55089
55090
55091
55092
55093
55094
55095
55096
55097
55098
55099
55100
55101
55102
55103
55104
55105
55106
55107
55108
55109
55110
55111
55112
55113
55114
55115
55116
55117
55118
55119
55120
55121
55122
55123
55124
55125
55126
55127
55128
55129
55130
55131
55132
55133
55134
55135
55136
55137
55138
55139
55140
55141
55142
55143
55144
55145
55146
55147
55148
55149
55150
55151
55152
55153
55154
55155
55156
55157
55158
55159
55160
55161
55162
55163
55164
55165
55166
55167
55168
55169
55170
55171
55172
55173
55174
55175
55176
55177
55178
55179
55180
55181
55182
55183
55184
55185
55186
55187
55188
55189
55190
55191
55192
55193
55194
55195
55196
55197
55198
55199
55200
55201
55202
55203
55204
55205
55206
55207
55208
55209
55210
55211
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
55282
55283
55284
55285
55286
55287
55288
55289
55290
55291
55292
55293
55294
55295
55296
55297
55298
55299
55300
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
55402
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
55600
55601
55602
55603
55604
55605
55606
55607
55608
55609
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
55621
55622
55623
55624
55625
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648
55649
55650
55651
55652
55653
55654
55655
55656
55657
55658
55659
55660
55661
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
55700
55701
55702
55703
55704
55705
55706
55707
55708
55709
55710
55711
55712
55713
55714
55715
55716
55717
55718
55719
55720
55721
55722
55723
55724
55725
55726
55727
55728
55729
55730
55731
55732
55733
55734
55735
55736
55737
55738
55739
55740
55741
55742
55743
55744
55745
55746
55747
55748
55749
55750
55751
55752
55753
55754
55755
55756
55757
55758
55759
55760
55761
55762
55763
55764
55765
55766
55767
55768
55769
55770
55771
55772
55773
55774
55775
55776
55777
55778
55779
55780
55781
55782
55783
55784
55785
55786
55787
55788
55789
55790
55791
55792
55793
55794
55795
55796
55797
55798
55799
55800
55801
55802
55803
55804
55805
55806
55807
55808
55809
55810
55811
55812
55813
55814
55815
55816
55817
55818
55819
55820
55821
55822
55823
55824
55825
55826
55827
55828
55829
55830
55831
55832
55833
55834
55835
55836
55837
55838
55839
55840
55841
55842
55843
55844
55845
55846
55847
55848
55849
55850
55851
55852
55853
55854
55855
55856
55857
55858
55859
55860
55861
55862
55863
55864
55865
55866
55867
55868
55869
55870
55871
55872
55873
55874
55875
55876
55877
55878
55879
55880
55881
55882
55883
55884
55885
55886
55887
55888
55889
55890
55891
55892
55893
55894
55895
55896
55897
55898
55899
55900
55901
55902
55903
55904
55905
55906
55907
55908
55909
55910
55911
55912
55913
55914
55915
55916
55917
55918
55919
55920
55921
55922
55923
55924
55925
55926
55927
55928
55929
55930
55931
55932
55933
55934
55935
55936
55937
55938
55939
55940
55941
55942
55943
55944
55945
55946
55947
55948
55949
55950
55951
55952
55953
55954
55955
55956
55957
55958
55959
55960
55961
55962
55963
55964
55965
55966
55967
55968
55969
55970
55971
55972
55973
55974
55975
55976
55977
55978
55979
55980
55981
55982
55983
55984
55985
55986
55987
55988
55989
55990
55991
55992
55993
55994
55995
55996
55997
55998
55999
56000
56001
56002
56003
56004
56005
56006
56007
56008
56009
56010
56011
56012
56013
56014
56015
56016
56017
56018
56019
56020
56021
56022
56023
56024
56025
56026
56027
56028
56029
56030
56031
56032
56033
56034
56035
56036
56037
56038
56039
56040
56041
56042
56043
56044
56045
56046
56047
56048
56049
56050
56051
56052
56053
56054
56055
56056
56057
56058
56059
56060
56061
56062
56063
56064
56065
56066
56067
56068
56069
56070
56071
56072
56073
56074
56075
56076
56077
56078
56079
56080
56081
56082
56083
56084
56085
56086
56087
56088
56089
56090
56091
56092
56093
56094
56095
56096
56097
56098
56099
56100
56101
56102
56103
56104
56105
56106
56107
56108
56109
56110
56111
56112
56113
56114
56115
56116
56117
56118
56119
56120
56121
56122
56123
56124
56125
56126
56127
56128
56129
56130
56131
56132
56133
56134
56135
56136
56137
56138
56139
56140
56141
56142
56143
56144
56145
56146
56147
56148
56149
56150
56151
56152
56153
56154
56155
56156
56157
56158
56159
56160
56161
56162
56163
56164
56165
56166
56167
56168
56169
56170
56171
56172
56173
56174
56175
56176
56177
56178
56179
56180
56181
56182
56183
56184
56185
56186
56187
56188
56189
56190
56191
56192
56193
56194
56195
56196
56197
56198
56199
56200
56201
56202
56203
56204
56205
56206
56207
56208
56209
56210
56211
56212
56213
56214
56215
56216
56217
56218
56219
56220
56221
56222
56223
56224
56225
56226
56227
56228
56229
56230
56231
56232
56233
56234
56235
56236
56237
56238
56239
56240
56241
56242
56243
56244
56245
56246
56247
56248
56249
56250
56251
56252
56253
56254
56255
56256
56257
56258
56259
56260
56261
56262
56263
56264
56265
56266
56267
56268
56269
56270
56271
56272
56273
56274
56275
56276
56277
56278
56279
56280
56281
56282
56283
56284
56285
56286
56287
56288
56289
56290
56291
56292
56293
56294
56295
56296
56297
56298
56299
56300
56301
56302
56303
56304
56305
56306
56307
56308
56309
56310
56311
56312
56313
56314
56315
56316
56317
56318
56319
56320
56321
56322
56323
56324
56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335
56336
56337
56338
56339
56340
56341
56342
56343
56344
56345
56346
56347
56348
56349
56350
56351
56352
56353
56354
56355
56356
56357
56358
56359
56360
56361
56362
56363
56364
56365
56366
56367
56368
56369
56370
56371
56372
56373
56374
56375
56376
56377
56378
56379
56380
56381
56382
56383
56384
56385
56386
56387
56388
56389
56390
56391
56392
56393
56394
56395
56396
56397
56398
56399
56400
56401
56402
56403
56404
56405
56406
56407
56408
56409
56410
56411
56412
56413
56414
56415
56416
56417
56418
56419
56420
56421
56422
56423
56424
56425
56426
56427
56428
56429
56430
56431
56432
56433
56434
56435
56436
56437
56438
56439
56440
56441
56442
56443
56444
56445
56446
56447
56448
56449
56450
56451
56452
56453
56454
56455
56456
56457
56458
56459
56460
56461
56462
56463
56464
56465
56466
56467
56468
56469
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480
56481
56482
56483
56484
56485
56486
56487
56488
56489
56490
56491
56492
56493
56494
56495
56496
56497
56498
56499
56500
56501
56502
56503
56504
56505
56506
56507
56508
56509
56510
56511
56512
56513
56514
56515
56516
56517
56518
56519
56520
56521
56522
56523
56524
56525
56526
56527
56528
56529
56530
56531
56532
56533
56534
56535
56536
56537
56538
56539
56540
56541
56542
56543
56544
56545
56546
56547
56548
56549
56550
56551
56552
56553
56554
56555
56556
56557
56558
56559
56560
56561
56562
56563
56564
56565
56566
56567
56568
56569
56570
56571
56572
56573
56574
56575
56576
56577
56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589
56590
56591
56592
56593
56594
56595
56596
56597
56598
56599
56600
56601
56602
56603
56604
56605
56606
56607
56608
56609
56610
56611
56612
56613
56614
56615
56616
56617
56618
56619
56620
56621
56622
56623
56624
56625
56626
56627
56628
56629
56630
56631
56632
56633
56634
56635
56636
56637
56638
56639
56640
56641
56642
56643
56644
56645
56646
56647
56648
56649
56650
56651
56652
56653
56654
56655
56656
56657
56658
56659
56660
56661
56662
56663
56664
56665
56666
56667
56668
56669
56670
56671
56672
56673
56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684
56685
56686
56687
56688
56689
56690
56691
56692
56693
56694
56695
56696
56697
56698
56699
56700
56701
56702
56703
56704
56705
56706
56707
56708
56709
56710
56711
56712
56713
56714
56715
56716
56717
56718
56719
56720
56721
56722
56723
56724
56725
56726
56727
56728
56729
56730
56731
56732
56733
56734
56735
56736
56737
56738
56739
56740
56741
56742
56743
56744
56745
56746
56747
56748
56749
56750
56751
56752
56753
56754
56755
56756
56757
56758
56759
56760
56761
56762
56763
56764
56765
56766
56767
56768
56769
56770
56771
56772
56773
56774
56775
56776
56777
56778
56779
56780
56781
56782
56783
56784
56785
56786
56787
56788
56789
56790
56791
56792
56793
56794
56795
56796
56797
56798
56799
56800
56801
56802
56803
56804
56805
56806
56807
56808
56809
56810
56811
56812
56813
56814
56815
56816
56817
56818
56819
56820
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832
56833
56834
56835
56836
56837
56838
56839
56840
56841
56842
56843
56844
56845
56846
56847
56848
56849
56850
56851
56852
56853
56854
56855
56856
56857
56858
56859
56860
56861
56862
56863
56864
56865
56866
56867
56868
56869
56870
56871
56872
56873
56874
56875
56876
56877
56878
56879
56880
56881
56882
56883
56884
56885
56886
56887
56888
56889
56890
56891
56892
56893
56894
56895
56896
56897
56898
56899
56900
56901
56902
56903
56904
56905
56906
56907
56908
56909
56910
56911
56912
56913
56914
56915
56916
56917
56918
56919
56920
56921
56922
56923
56924
56925
56926
56927
56928
56929
56930
56931
56932
56933
56934
56935
56936
56937
56938
56939
56940
56941
56942
56943
56944
56945
56946
56947
56948
56949
56950
56951
56952
56953
56954
56955
56956
56957
56958
56959
56960
56961
56962
56963
56964
56965
56966
56967
56968
56969
56970
56971
56972
56973
56974
56975
56976
56977
56978
56979
56980
56981
56982
56983
56984
56985
56986
56987
56988
56989
56990
56991
56992
56993
56994
56995
56996
56997
56998
56999
57000
57001
57002
57003
57004
57005
57006
57007
57008
57009
57010
57011
57012
57013
57014
57015
57016
57017
57018
57019
57020
57021
57022
57023
57024
57025
57026
57027
57028
57029
57030
57031
57032
57033
57034
57035
57036
57037
57038
57039
57040
57041
57042
57043
57044
57045
57046
57047
57048
57049
57050
57051
57052
57053
57054
57055
57056
57057
57058
57059
57060
57061
57062
57063
57064
57065
57066
57067
57068
57069
57070
57071
57072
57073
57074
57075
57076
57077
57078
57079
57080
57081
57082
57083
57084
57085
57086
57087
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098
57099
57100
57101
57102
57103
57104
57105
57106
57107
57108
57109
57110
57111
57112
57113
57114
57115
57116
57117
57118
57119
57120
57121
57122
57123
57124
57125
57126
57127
57128
57129
57130
57131
57132
57133
57134
57135
57136
57137
57138
57139
57140
57141
57142
57143
57144
57145
57146
57147
57148
57149
57150
57151
57152
57153
57154
57155
57156
57157
57158
57159
57160
57161
57162
57163
57164
57165
57166
57167
57168
57169
57170
57171
57172
57173
57174
57175
57176
57177
57178
57179
57180
57181
57182
57183
57184
57185
57186
57187
57188
57189
57190
57191
57192
57193
57194
57195
57196
57197
57198
57199
57200
57201
57202
57203
57204
57205
57206
57207
57208
57209
57210
57211
57212
57213
57214
57215
57216
57217
57218
57219
57220
57221
57222
57223
57224
57225
57226
57227
57228
57229
57230
57231
57232
57233
57234
57235
57236
57237
57238
57239
57240
57241
57242
57243
57244
57245
57246
57247
57248
57249
57250
57251
57252
57253
57254
57255
57256
57257
57258
57259
57260
57261
57262
57263
57264
57265
57266
57267
57268
57269
57270
57271
57272
57273
57274
57275
57276
57277
57278
57279
57280
57281
57282
57283
57284
57285
57286
57287
57288
57289
57290
57291
57292
57293
57294
57295
57296
57297
57298
57299
57300
57301
57302
57303
57304
57305
57306
57307
57308
57309
57310
57311
57312
57313
57314
57315
57316
57317
57318
57319
57320
57321
57322
57323
57324
57325
57326
57327
57328
57329
57330
57331
57332
57333
57334
57335
57336
57337
57338
57339
57340
57341
57342
57343
57344
57345
57346
57347
57348
57349
57350
57351
57352
57353
57354
57355
57356
57357
57358
57359
57360
57361
57362
57363
57364
57365
57366
57367
57368
57369
57370
57371
57372
57373
57374
57375
57376
57377
57378
57379
57380
57381
57382
57383
57384
57385
57386
57387
57388
57389
57390
57391
57392
57393
57394
57395
57396
57397
57398
57399
57400
57401
57402
57403
57404
57405
57406
57407
57408
57409
57410
57411
57412
57413
57414
57415
57416
57417
57418
57419
57420
57421
57422
57423
57424
57425
57426
57427
57428
57429
57430
57431
57432
57433
57434
57435
57436
57437
57438
57439
57440
57441
57442
57443
57444
57445
57446
57447
57448
57449
57450
57451
57452
57453
57454
57455
57456
57457
57458
57459
57460
57461
57462
57463
57464
57465
57466
57467
57468
57469
57470
57471
57472
57473
57474
57475
57476
57477
57478
57479
57480
57481
57482
57483
57484
57485
57486
57487
57488
57489
57490
57491
57492
57493
57494
57495
57496
57497
57498
57499
57500
57501
57502
57503
57504
57505
57506
57507
57508
57509
57510
57511
57512
57513
57514
57515
57516
57517
57518
57519
57520
57521
57522
57523
57524
57525
57526
57527
57528
57529
57530
57531
57532
57533
57534
57535
57536
57537
57538
57539
57540
57541
57542
57543
57544
57545
57546
57547
57548
57549
57550
57551
57552
57553
57554
57555
57556
57557
57558
57559
57560
57561
57562
57563
57564
57565
57566
57567
57568
57569
57570
57571
57572
57573
57574
57575
57576
57577
57578
57579
57580
57581
57582
57583
57584
57585
57586
57587
57588
57589
57590
57591
57592
57593
57594
57595
57596
57597
57598
57599
57600
57601
57602
57603
57604
57605
57606
57607
57608
57609
57610
57611
57612
57613
57614
57615
57616
57617
57618
57619
57620
57621
57622
57623
57624
57625
57626
57627
57628
57629
57630
57631
57632
57633
57634
57635
57636
57637
57638
57639
57640
57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651
57652
57653
57654
57655
57656
57657
57658
57659
57660
57661
57662
57663
57664
57665
57666
57667
57668
57669
57670
57671
57672
57673
57674
57675
57676
57677
57678
57679
57680
57681
57682
57683
57684
57685
57686
57687
57688
57689
57690
57691
57692
57693
57694
57695
57696
57697
57698
57699
57700
57701
57702
57703
57704
57705
57706
57707
57708
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
57725
57726
57727
57728
57729
57730
57731
57732
57733
57734
57735
57736
57737
57738
57739
57740
57741
57742
57743
57744
57745
57746
57747
57748
57749
57750
57751
57752
57753
57754
57755
57756
57757
57758
57759
57760
57761
57762
57763
57764
57765
57766
57767
57768
57769
57770
57771
57772
57773
57774
57775
57776
57777
57778
57779
57780
57781
57782
57783
57784
57785
57786
57787
57788
57789
57790
57791
57792
57793
57794
57795
57796
57797
57798
57799
57800
57801
57802
57803
57804
57805
57806
57807
57808
57809
57810
57811
57812
57813
57814
57815
57816
57817
57818
57819
57820
57821
57822
57823
57824
57825
57826
57827
57828
57829
57830
57831
57832
57833
57834
57835
57836
57837
57838
57839
57840
57841
57842
57843
57844
57845
57846
57847
57848
57849
57850
57851
57852
57853
57854
57855
57856
57857
57858
57859
57860
57861
57862
57863
57864
57865
57866
57867
57868
57869
57870
57871
57872
57873
57874
57875
57876
57877
57878
57879
57880
57881
57882
57883
57884
57885
57886
57887
57888
57889
57890
57891
57892
57893
57894
57895
57896
57897
57898
57899
57900
57901
57902
57903
57904
57905
57906
57907
57908
57909
57910
57911
57912
57913
57914
57915
57916
57917
57918
57919
57920
57921
57922
57923
57924
57925
57926
57927
57928
57929
57930
57931
57932
57933
57934
57935
57936
57937
57938
57939
57940
57941
57942
57943
57944
57945
57946
57947
57948
57949
57950
57951
57952
57953
57954
57955
57956
57957
57958
57959
57960
57961
57962
57963
57964
57965
57966
57967
57968
57969
57970
57971
57972
57973
57974
57975
57976
57977
57978
57979
57980
57981
57982
57983
57984
57985
57986
57987
57988
57989
57990
57991
57992
57993
57994
57995
57996
57997
57998
57999
58000
58001
58002
58003
58004
58005
58006
58007
58008
58009
58010
58011
58012
58013
58014
58015
58016
58017
58018
58019
58020
58021
58022
58023
58024
58025
58026
58027
58028
58029
58030
58031
58032
58033
58034
58035
58036
58037
58038
58039
58040
58041
58042
58043
58044
58045
58046
58047
58048
58049
58050
58051
58052
58053
58054
58055
58056
58057
58058
58059
58060
58061
58062
58063
58064
58065
58066
58067
58068
58069
58070
58071
58072
58073
58074
58075
58076
58077
58078
58079
58080
58081
58082
58083
58084
58085
58086
58087
58088
58089
58090
58091
58092
58093
58094
58095
58096
58097
58098
58099
58100
58101
58102
58103
58104
58105
58106
58107
58108
58109
58110
58111
58112
58113
58114
58115
58116
58117
58118
58119
58120
58121
58122
58123
58124
58125
58126
58127
58128
58129
58130
58131
58132
58133
58134
58135
58136
58137
58138
58139
58140
58141
58142
58143
58144
58145
58146
58147
58148
58149
58150
58151
58152
58153
58154
58155
58156
58157
58158
58159
58160
58161
58162
58163
58164
58165
58166
58167
58168
58169
58170
58171
58172
58173
58174
58175
58176
58177
58178
58179
58180
58181
58182
58183
58184
58185
58186
58187
58188
58189
58190
58191
58192
58193
58194
58195
58196
58197
58198
58199
58200
58201
58202
58203
58204
58205
58206
58207
58208
58209
58210
58211
58212
58213
58214
58215
58216
58217
58218
58219
58220
58221
58222
58223
58224
58225
58226
58227
58228
58229
58230
58231
58232
58233
58234
58235
58236
58237
58238
58239
58240
58241
58242
58243
58244
58245
58246
58247
58248
58249
58250
58251
58252
58253
58254
58255
58256
58257
58258
58259
58260
58261
58262
58263
58264
58265
58266
58267
58268
58269
58270
58271
58272
58273
58274
58275
58276
58277
58278
58279
58280
58281
58282
58283
58284
58285
58286
58287
58288
58289
58290
58291
58292
58293
58294
58295
58296
58297
58298
58299
58300
58301
58302
58303
58304
58305
58306
58307
58308
58309
58310
58311
58312
58313
58314
58315
58316
58317
58318
58319
58320
58321
58322
58323
58324
58325
58326
58327
58328
58329
58330
58331
58332
58333
58334
58335
58336
58337
58338
58339
58340
58341
58342
58343
58344
58345
58346
58347
58348
58349
58350
58351
58352
58353
58354
58355
58356
58357
58358
58359
58360
58361
58362
58363
58364
58365
58366
58367
58368
58369
58370
58371
58372
58373
58374
58375
58376
58377
58378
58379
58380
58381
58382
58383
58384
58385
58386
58387
58388
58389
58390
58391
58392
58393
58394
58395
58396
58397
58398
58399
58400
58401
58402
58403
58404
58405
58406
58407
58408
58409
58410
58411
58412
58413
58414
58415
58416
58417
58418
58419
58420
58421
58422
58423
58424
58425
58426
58427
58428
58429
58430
58431
58432
58433
58434
58435
58436
58437
58438
58439
58440
58441
58442
58443
58444
58445
58446
58447
58448
58449
58450
58451
58452
58453
58454
58455
58456
58457
58458
58459
58460
58461
58462
58463
58464
58465
58466
58467
58468
58469
58470
58471
58472
58473
58474
58475
58476
58477
58478
58479
58480
58481
58482
58483
58484
58485
58486
58487
58488
58489
58490
58491
58492
58493
58494
58495
58496
58497
58498
58499
58500
58501
58502
58503
58504
58505
58506
58507
58508
58509
58510
58511
58512
58513
58514
58515
58516
58517
58518
58519
58520
58521
58522
58523
58524
58525
58526
58527
58528
58529
58530
58531
58532
58533
58534
58535
58536
58537
58538
58539
58540
58541
58542
58543
58544
58545
58546
58547
58548
58549
58550
58551
58552
58553
58554
58555
58556
58557
58558
58559
58560
58561
58562
58563
58564
58565
58566
58567
58568
58569
58570
58571
58572
58573
58574
58575
58576
58577
58578
58579
58580
58581
58582
58583
58584
58585
58586
58587
58588
58589
58590
58591
58592
58593
58594
58595
58596
58597
58598
58599
58600
58601
58602
58603
58604
58605
58606
58607
58608
58609
58610
58611
58612
58613
58614
58615
58616
58617
58618
58619
58620
58621
58622
58623
58624
58625
58626
58627
58628
58629
58630
58631
58632
58633
58634
58635
58636
58637
58638
58639
58640
58641
58642
58643
58644
58645
58646
58647
58648
58649
58650
58651
58652
58653
58654
58655
58656
58657
58658
58659
58660
58661
58662
58663
58664
58665
58666
58667
58668
58669
58670
58671
58672
58673
58674
58675
58676
58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
58689
58690
58691
58692
58693
58694
58695
58696
58697
58698
58699
58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714
58715
58716
58717
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
58746
58747
58748
58749
58750
58751
58752
58753
58754
58755
58756
58757
58758
58759
58760
58761
58762
58763
58764
58765
58766
58767
58768
58769
58770
58771
58772
58773
58774
58775
58776
58777
58778
58779
58780
58781
58782
58783
58784
58785
58786
58787
58788
58789
58790
58791
58792
58793
58794
58795
58796
58797
58798
58799
58800
58801
58802
58803
58804
58805
58806
58807
58808
58809
58810
58811
58812
58813
58814
58815
58816
58817
58818
58819
58820
58821
58822
58823
58824
58825
58826
58827
58828
58829
58830
58831
58832
58833
58834
58835
58836
58837
58838
58839
58840
58841
58842
58843
58844
58845
58846
58847
58848
58849
58850
58851
58852
58853
58854
58855
58856
58857
58858
58859
58860
58861
58862
58863
58864
58865
58866
58867
58868
58869
58870
58871
58872
58873
58874
58875
58876
58877
58878
58879
58880
58881
58882
58883
58884
58885
58886
58887
58888
58889
58890
58891
58892
58893
58894
58895
58896
58897
58898
58899
58900
58901
58902
58903
58904
58905
58906
58907
58908
58909
58910
58911
58912
58913
58914
58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
58937
58938
58939
58940
58941
58942
58943
58944
58945
58946
58947
58948
58949
58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
58965
58966
58967
58968
58969
58970
58971
58972
58973
58974
58975
58976
58977
58978
58979
58980
58981
58982
58983
58984
58985
58986
58987
58988
58989
58990
58991
58992
58993
58994
58995
58996
58997
58998
58999
59000
59001
59002
59003
59004
59005
59006
59007
59008
59009
59010
59011
59012
59013
59014
59015
59016
59017
59018
59019
59020
59021
59022
59023
59024
59025
59026
59027
59028
59029
59030
59031
59032
59033
59034
59035
59036
59037
59038
59039
59040
59041
59042
59043
59044
59045
59046
59047
59048
59049
59050
59051
59052
59053
59054
59055
59056
59057
59058
59059
59060
59061
59062
59063
59064
59065
59066
59067
59068
59069
59070
59071
59072
59073
59074
59075
59076
59077
59078
59079
59080
59081
59082
59083
59084
59085
59086
59087
59088
59089
59090
59091
59092
59093
59094
59095
59096
59097
59098
59099
59100
59101
59102
59103
59104
59105
59106
59107
59108
59109
59110
59111
59112
59113
59114
59115
59116
59117
59118
59119
59120
59121
59122
59123
59124
59125
59126
59127
59128
59129
59130
59131
59132
59133
59134
59135
59136
59137
59138
59139
59140
59141
59142
59143
59144
59145
59146
59147
59148
59149
59150
59151
59152
59153
59154
59155
59156
59157
59158
59159
59160
59161
59162
59163
59164
59165
59166
59167
59168
59169
59170
59171
59172
59173
59174
59175
59176
59177
59178
59179
59180
59181
59182
59183
59184
59185
59186
59187
59188
59189
59190
59191
59192
59193
59194
59195
59196
59197
59198
59199
59200
59201
59202
59203
59204
59205
59206
59207
59208
59209
59210
59211
59212
59213
59214
59215
59216
59217
59218
59219
59220
59221
59222
59223
59224
59225
59226
59227
59228
59229
59230
59231
59232
59233
59234
59235
59236
59237
59238
59239
59240
59241
59242
59243
59244
59245
59246
59247
59248
59249
59250
59251
59252
59253
59254
59255
59256
59257
59258
59259
59260
59261
59262
59263
59264
59265
59266
59267
59268
59269
59270
59271
59272
59273
59274
59275
59276
59277
59278
59279
59280
59281
59282
59283
59284
59285
59286
59287
59288
59289
59290
59291
59292
59293
59294
59295
59296
59297
59298
59299
59300
59301
59302
59303
59304
59305
59306
59307
59308
59309
59310
59311
59312
59313
59314
59315
59316
59317
59318
59319
59320
59321
59322
59323
59324
59325
59326
59327
59328
59329
59330
59331
59332
59333
59334
59335
59336
59337
59338
59339
59340
59341
59342
59343
59344
59345
59346
59347
59348
59349
59350
59351
59352
59353
59354
59355
59356
59357
59358
59359
59360
59361
59362
59363
59364
59365
59366
59367
59368
59369
59370
59371
59372
59373
59374
59375
59376
59377
59378
59379
59380
59381
59382
59383
59384
59385
59386
59387
59388
59389
59390
59391
59392
59393
59394
59395
59396
59397
59398
59399
59400
59401
59402
59403
59404
59405
59406
59407
59408
59409
59410
59411
59412
59413
59414
59415
59416
59417
59418
59419
59420
59421
59422
59423
59424
59425
59426
59427
59428
59429
59430
59431
59432
59433
59434
59435
59436
59437
59438
59439
59440
59441
59442
59443
59444
59445
59446
59447
59448
59449
59450
59451
59452
59453
59454
59455
59456
59457
59458
59459
59460
59461
59462
59463
59464
59465
59466
59467
59468
59469
59470
59471
59472
59473
59474
59475
59476
59477
59478
59479
59480
59481
59482
59483
59484
59485
59486
59487
59488
59489
59490
59491
59492
59493
59494
59495
59496
59497
59498
59499
59500
59501
59502
59503
59504
59505
59506
59507
59508
59509
59510
59511
59512
59513
59514
59515
59516
59517
59518
59519
59520
59521
59522
59523
59524
59525
59526
59527
59528
59529
59530
59531
59532
59533
59534
59535
59536
59537
59538
59539
59540
59541
59542
59543
59544
59545
59546
59547
59548
59549
59550
59551
59552
59553
59554
59555
59556
59557
59558
59559
59560
59561
59562
59563
59564
59565
59566
59567
59568
59569
59570
59571
59572
59573
59574
59575
59576
59577
59578
59579
59580
59581
59582
59583
59584
59585
59586
59587
59588
59589
59590
59591
59592
59593
59594
59595
59596
59597
59598
59599
59600
59601
59602
59603
59604
59605
59606
59607
59608
59609
59610
59611
59612
59613
59614
59615
59616
59617
59618
59619
59620
59621
59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632
59633
59634
59635
59636
59637
59638
59639
59640
59641
59642
59643
59644
59645
59646
59647
59648
59649
59650
59651
59652
59653
59654
59655
59656
59657
59658
59659
59660
59661
59662
59663
59664
59665
59666
59667
59668
59669
59670
59671
59672
59673
59674
59675
59676
59677
59678
59679
59680
59681
59682
59683
59684
59685
59686
59687
59688
59689
59690
59691
59692
59693
59694
59695
59696
59697
59698
59699
59700
59701
59702
59703
59704
59705
59706
59707
59708
59709
59710
59711
59712
59713
59714
59715
59716
59717
59718
59719
59720
59721
59722
59723
59724
59725
59726
59727
59728
59729
59730
59731
59732
59733
59734
59735
59736
59737
59738
59739
59740
59741
59742
59743
59744
59745
59746
59747
59748
59749
59750
59751
59752
59753
59754
59755
59756
59757
59758
59759
59760
59761
59762
59763
59764
59765
59766
59767
59768
59769
59770
59771
59772
59773
59774
59775
59776
59777
59778
59779
59780
59781
59782
59783
59784
59785
59786
59787
59788
59789
59790
59791
59792
59793
59794
59795
59796
59797
59798
59799
59800
59801
59802
59803
59804
59805
59806
59807
59808
59809
59810
59811
59812
59813
59814
59815
59816
59817
59818
59819
59820
59821
59822
59823
59824
59825
59826
59827
59828
59829
59830
59831
59832
59833
59834
59835
59836
59837
59838
59839
59840
59841
59842
59843
59844
59845
59846
59847
59848
59849
59850
59851
59852
59853
59854
59855
59856
59857
59858
59859
59860
59861
59862
59863
59864
59865
59866
59867
59868
59869
59870
59871
59872
59873
59874
59875
59876
59877
59878
59879
59880
59881
59882
59883
59884
59885
59886
59887
59888
59889
59890
59891
59892
59893
59894
59895
59896
59897
59898
59899
59900
59901
59902
59903
59904
59905
59906
59907
59908
59909
59910
59911
59912
59913
59914
59915
59916
59917
59918
59919
59920
59921
59922
59923
59924
59925
59926
59927
59928
59929
59930
59931
59932
59933
59934
59935
59936
59937
59938
59939
59940
59941
59942
59943
59944
59945
59946
59947
59948
59949
59950
59951
59952
59953
59954
59955
59956
59957
59958
59959
59960
59961
59962
59963
59964
59965
59966
59967
59968
59969
59970
59971
59972
59973
59974
59975
59976
59977
59978
59979
59980
59981
59982
59983
59984
59985
59986
59987
59988
59989
59990
59991
59992
59993
59994
59995
59996
59997
59998
59999
60000
60001
60002
60003
60004
60005
60006
60007
60008
60009
60010
60011
60012
60013
60014
60015
60016
60017
60018
60019
60020
60021
60022
60023
60024
60025
60026
60027
60028
60029
60030
60031
60032
60033
60034
60035
60036
60037
60038
60039
60040
60041
60042
60043
60044
60045
60046
60047
60048
60049
60050
60051
60052
60053
60054
60055
60056
60057
60058
60059
60060
60061
60062
60063
60064
60065
60066
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
60098
60099
60100
60101
60102
60103
60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
60114
60115
60116
60117
60118
60119
60120
60121
60122
60123
60124
60125
60126
60127
60128
60129
60130
60131
60132
60133
60134
60135
60136
60137
60138
60139
60140
60141
60142
60143
60144
60145
60146
60147
60148
60149
60150
60151
60152
60153
60154
60155
60156
60157
60158
60159
60160
60161
60162
60163
60164
60165
60166
60167
60168
60169
60170
60171
60172
60173
60174
60175
60176
60177
60178
60179
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
60195
60196
60197
60198
60199
60200
60201
60202
60203
60204
60205
60206
60207
60208
60209
60210
60211
60212
60213
60214
60215
60216
60217
60218
60219
60220
60221
60222
60223
60224
60225
60226
60227
60228
60229
60230
60231
60232
60233
60234
60235
60236
60237
60238
60239
60240
60241
60242
60243
60244
60245
60246
60247
60248
60249
60250
60251
60252
60253
60254
60255
60256
60257
# doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 1622
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/ascii


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 308
 -- Function File: ascii (F)
     Set the FTP connection F to use ASCII mode for transfers.

     ASCII mode is only appropriate for text files as it will convert the remote host's newline representation to the local host's newline representation.

     F is an FTP object returned by the 'ftp' function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Set the FTP connection F to use ASCII mode for transfers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
@ftp/binary


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
 -- Function File: binary (F)
     Set the FTP connection F to use binary mode for transfers.

     In binary mode there is no conversion of newlines from the remote representation to the local representation.

     F is an FTP object returned by the 'ftp' function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Set the FTP connection F to use binary mode for transfers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
@ftp/cd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 456
 -- Function File: cd (F)
 -- Function File: cd (F, PATH)
     Get or set the remote directory on the FTP connection F.

     F is an FTP object returned by the 'ftp' function.

     If PATH is not specified, return the remote current working directory.  Otherwise, set the remote directory to PATH and return the new remote working directory.

     If the directory does not exist, an error message is printed and the working directory is not changed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Get or set the remote directory on the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/close


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
 -- Function File: close (F)
     Close the FTP connection represented by the FTP object F.

     F is an FTP object returned by the 'ftp' function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Close the FTP connection represented by the FTP object F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
@ftp/delete


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
 -- Function File: delete (F, FILE)
     Delete the remote file FILE over the FTP connection F.

     F is an FTP object returned by the 'ftp' function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Delete the remote file FILE over the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
@ftp/dir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
 -- Function File: LST = dir (F)
     List the current directory in verbose form for the FTP connection F.

     F is an FTP object returned by the 'ftp' function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
List the current directory in verbose form for the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
@ftp/ftp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3633
 -- Function File: F = ftp (HOST)
 -- Function File: F = ftp (HOST, USERNAME, PASSWORD)
     Connect to the FTP server HOST with USERNAME and PASSWORD.

     If USERNAME and PASSWORD are not specified, user "anonymous" with no password is used.  The returned FTP object F represents the established FTP connection.

     The list of actions for an FTP object are shown below.  All functions require an FTP object as the first argument.

     Method                                                                                                                                                     Description
     ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
     ascii                                                                                                                                                      Set transfer type to ascii
     binary                                                                                                                                                     Set transfer type to binary
     cd                                                                                                                                                         Change remote working directory
     close                                                                                                                                                      Close FTP connection
     delete                                                                                                                                                     Delete remote file
     dir                                                                                                                                                        List remote directory contents
     mget                                                                                                                                                       Download remote files
     mkdir                                                                                                                                                      Create remote directory
     mput                                                                                                                                                       Upload local files
     rename                                                                                                                                                     Rename remote file or directory
     rmdir                                                                                                                                                      Remove remote directory

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Connect to the FTP server HOST with USERNAME and PASSWORD.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
@ftp/mget


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 573
 -- Function File: mget (F, FILE)
 -- Function File: mget (F, DIR)
 -- Function File: mget (F, REMOTE_NAME, TARGET)
     Download a remote file FILE or directory DIR to the local directory on the FTP connection F.

     F is an FTP object returned by the 'ftp' function.

     The arguments FILE and DIR can include wildcards and any files or directories on the remote server that match will be downloaded.

     If a third argument TARGET is given, then a single file or directory will be downloaded to the local directory and the local name will be changed to TARGET.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Download a remote file FILE or directory DIR to the local directory on the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/mkdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
 -- Function File: mkdir (F, PATH)
     Create the remote directory PATH, over the FTP connection F.

     F is an FTP object returned by the 'ftp' function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Create the remote directory PATH, over the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
@ftp/mput


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 310
 -- Function File: mput (F, FILE)
     Upload the local file FILE into the current remote directory on the FTP connection F.

     F is an FTP object returned by the ftp function.

     The argument FILE is passed through the 'glob' function and any files that match the wildcards in FILE will be uploaded.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Upload the local file FILE into the current remote directory on the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
@ftp/rename


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 202
 -- Function File: rename (F, OLDNAME, NEWNAME)
     Rename or move the remote file or directory OLDNAME to NEWNAME, over the FTP connection F.

     F is an FTP object returned by the ftp function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Rename or move the remote file or directory OLDNAME to NEWNAME, over the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
@ftp/rmdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
 -- Function File: rmdir (F, PATH)
     Remove the remote directory PATH, over the FTP connection F.

     F is an FTP object returned by the 'ftp' function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Remove the remote directory PATH, over the FTP connection F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lin2mu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
 -- Function File: lin2mu (X, N)
     Convert audio data from linear to mu-law.

     Mu-law values use 8-bit unsigned integers.  Linear values use N-bit signed integers or floating point values in the range -1 <= X <= 1 if N is 0.

     If N is not specified it defaults to 0, 8, or 16 depending on the range of values in X.

     See also: mu2lin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Convert audio data from linear to mu-law.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mu2lin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 301
 -- Function File: mu2lin (X, N)
     Convert audio data from mu-law to linear.

     Mu-law values are 8-bit unsigned integers.  Linear values use N-bit signed integers or floating point values in the range -1<=y<=1 if N is 0.

     If N is not specified it defaults to 0.

     See also: lin2mu.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Convert audio data from mu-law to linear.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
record


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
 -- Function File: record (SEC)
 -- Function File: record (SEC, FS)
     Record SEC seconds of audio from the system's default audio input at a sampling rate of 8000 samples per second.

     If the optional argument FS is given, it specifies the sampling rate for recording.

     For more control over audio recording, use the 'audiorecorder' class.

     See also: sound, soundsc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Record SEC seconds of audio from the system's default audio input at a sampling rate of 8000 samples per second.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sound


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 588
 -- Function File: sound (Y)
 -- Function File: sound (Y, FS)
 -- Function File: sound (Y, FS, NBITS)
     Play audio data Y at sample rate FS to the default audio device.

     The audio signal Y can be a vector or a two-column array, representing mono or stereo audio, respectively.

     If FS is not given, a default sample rate of 8000 samples per second is used.

     The optional argument NBITS specifies the bit depth to play to the audio device and defaults to 8 bits.

     For more control over audio playback, use the 'audioplayer' class.

     See also: soundsc, record.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Play audio data Y at sample rate FS to the default audio device.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
soundsc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 868
 -- Function File: soundsc (Y)
 -- Function File: soundsc (Y, FS)
 -- Function File: soundsc (Y, FS, NBITS)
 -- Function File: soundsc (..., [YMIN, YMAX])
     Scale the audio data Y and play it at sample rate FS to the default audio device.

     The audio signal Y can be a vector or a two-column array, representing mono or stereo audio, respectively.

     If FS is not given, a default sample rate of 8000 samples per second is used.

     The optional argument NBITS specifies the bit depth to play to the audio device and defaults to 8 bits.

     By default, Y is automatically normalized to the range [-1, 1].  If the range [YMIN, YMAX] is given, then elements of Y that fall within the range YMIN <= Y <= YMAX are scaled to the range [-1, 1] instead.

     For more control over audio playback, use the 'audioplayer' class.

     See also: sound, record.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Scale the audio data Y and play it at sample rate FS to the default audio device.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
wavread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1315
 -- Function File: Y = wavread (FILENAME)
 -- Function File: [Y, FS, NBITS] = wavread (FILENAME)
 -- Function File: [...] = wavread (FILENAME, N)
 -- Function File: [...] = wavread (FILENAME, [N1 N2])
 -- Function File: [...] = wavread (..., DATATYPE)
 -- Function File: SZ = wavread (FILENAME, "size")
 -- Function File: [N_SAMP, N_CHAN] = wavread (FILENAME, "size")
     Read the audio signal Y from the RIFF/WAVE sound file FILENAME.

     If the file contains multichannel data, then Y is a matrix with the channels represented as columns.

     If N is specified, only the first N samples of the file are returned.  If [N1 N2] is specified, only the range of samples from N1 to N2 is returned.  A value of 'Inf' can be used to represent the total number of samples in the file.

     If the option "size" is given, then the size of the audio signal is returned instead of the data.  The size is returned in a row vector of the form [SAMPLES CHANNELS].  If there are two output arguments, the number of samples is assigned to the first and the number of channels is assigned to the second.

     The optional return value FS is the sample rate of the audio file in Hz.  The optional return value NBITS is the number of bits per sample as encoded in the file.

     See also: audioread, audiowrite, wavwrite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Read the audio signal Y from the RIFF/WAVE sound file FILENAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
wavwrite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 601
 -- Function File: wavwrite (Y, FILENAME)
 -- Function File: wavwrite (Y, FS, FILENAME)
 -- Function File: wavwrite (Y, FS, NBITS, FILENAME)
     Write the audio signal Y to the RIFF/WAVE sound file FILENAME.

     If Y is a matrix, the columns represent multiple audio channels.

     The optional argument FS specifies the sample rate of the audio signal in Hz.

     The optional argument NBITS specifies the number of bits per sample to write to FILENAME.

     The default sample rate is 8000 Hz and the default bit depth is 16 bits per sample.

     See also: audiowrite, audioread, wavread.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Write the audio signal Y to the RIFF/WAVE sound file FILENAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
@audioplayer/__get_properties__


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
 -- Function File: PROPERTIES = __get_properties__ (PLAYER)
     Return a struct containing all named properties of the audioplayer object PLAYER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Return a struct containing all named properties of the audioplayer object PLAYER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
@audioplayer/audioplayer


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 922
 -- Function File: PLAYER = audioplayer (Y, FS)
 -- Function File: PLAYER = audioplayer (Y, FS, NBITS)
 -- Function File: PLAYER = audioplayer (Y, FS, NBITS, ID)
 -- Function File: PLAYER = audioplayer (RECORDER)
 -- Function File: PLAYER = audioplayer (RECORDER, ID)
     Create an audioplayer object that will play back data Y at sample rate FS.

     The optional arguments NBITS, and ID specify the bit depth and player device id, respectively.  Device IDs may be found using the audiodevinfo function.  Given an audioplayer object, use the data from the object to initialize the player.

     The signal Y can be a vector or a two-dimensional array.

     The following example will create an audioplayer object that will play back one second of white noise at 44100 sample rate using 8 bits per sample.

          y = randn (2, 44100) - 0.5;
          player = audioplayer (y, 44100, 8);
          play (player);
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Create an audioplayer object that will play back data Y at sample rate FS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
@audioplayer/display


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
 -- Function File: display (PLAYER)
     Display the properties of the audioplayer object PLAYER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Display the properties of the audioplayer object PLAYER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
@audioplayer/get


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 422
 -- Function File: VALUE = get (PLAYER, NAME)
 -- Function File: VALUES = get (PLAYER)
     Return the VALUE of the property identified by NAME.

     If NAME is a cell array return the values of the properties identified by the elements of the cell array.  Given only the player object, return a scalar structure with values of all properties of PLAYER.  The field names of the structure correspond to property names.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the VALUE of the property identified by NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
@audioplayer/isplaying


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
 -- Function File: isplaying (PLAYER)
     Return true if the audioplayer object PLAYER is currently playing back audio and false otherwise.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return true if the audioplayer object PLAYER is currently playing back audio and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
@audioplayer/pause


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 -- Function File: pause (PLAYER)
     Pause the audioplayer PLAYER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Pause the audioplayer PLAYER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
@audioplayer/play


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 401
 -- Function File: play (PLAYER)
 -- Function File: play (PLAYER, START)
 -- Function File: play (PLAYER, LIMITS)
     Play audio stored in the audioplayer object PLAYER without blocking.

     Given optional argument start, begin playing at START seconds in the recording.  Given a two-element vector LIMITS, begin and end playing at the number of seconds specified by the elements of the vector.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Play audio stored in the audioplayer object PLAYER without blocking.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
@audioplayer/playblocking


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 422
 -- Function File: playblocking (PLAYER)
 -- Function File: playblocking (PLAYER, START)
 -- Function File: playblocking (PLAYER, LIMITS)
     Play audio stored in the audioplayer object PLAYER with blocking.

     Given optional argument start, begin playing at START seconds in the recording.  Given a two-element vector LIMITS, begin and end playing at the number of seconds specified by the elements of the vector.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Play audio stored in the audioplayer object PLAYER with blocking.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
@audioplayer/resume


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
 -- Function File: resume (PLAYER)
     Resume playback for the paused audioplayer object PLAYER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Resume playback for the paused audioplayer object PLAYER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
@audioplayer/set


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 503
 -- Function File: set (PLAYER, NAME, VALUE)
 -- Function File: set (PLAYER, PROPERTIES)
 -- Function File: PROPERTIES = set (PLAYER)
     Set the value of property specified by NAME to a given VALUE.

     If NAME and VALUE are cell arrays, set each property to the corresponding value.  Given a structure of PROPERTIES with fields corresponding to property names, set the value of those properties to the field values.  Given only the audioplayer object, return a structure of settable properties.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Set the value of property specified by NAME to a given VALUE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
@audioplayer/stop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
 -- Function File: stop (PLAYER)
     Stop the playback for the audioplayer PLAYER and reset the relevant variables to their starting values.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Stop the playback for the audioplayer PLAYER and reset the relevant variables to their starting values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
@audioplayer/subsasgn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
 -- Function File: VALUE = subsasgn (PLAYER, IDX, RHS)
     Perform subscripted assignment on the audio player object PLAYER.

     Assign the value of RHS to the player property named by IDX.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Perform subscripted assignment on the audio player object PLAYER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
@audioplayer/subsref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 175
 -- Function File: VALUE = subsref (PLAYER, IDX)
     Perform subscripted selection on the audio player object PLAYER.

     Return the player property value named by IDX.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Perform subscripted selection on the audio player object PLAYER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
@audiorecorder/__get_properties__


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Function File: PROPERTIES = __get_properties__ (RECORDER)
     Return a struct containing all named properties of the recorder object RECORDER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return a struct containing all named properties of the recorder object RECORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
@audiorecorder/audiorecorder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 482
 -- Function File: RECORDER = audiorecorder ()
 -- Function File: RECORDER = audiorecorder (FS, NBITS, CHANNELS)
 -- Function File: RECORDER = audiorecorder (FS, NBITS, CHANNELS, ID)
     Create an audiorecorder object recording 8 bit mono audio at 8000 Hz sample rate.

     The optional arguments FS, NBITS, CHANNELS, and ID specify the sample rate, bit depth, number of channels and recording device id, respectively.  Device IDs may be found using the audiodevinfo function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Create an audiorecorder object recording 8 bit mono audio at 8000 Hz sample rate.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
@audiorecorder/display


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
 -- Function File: display (RECORDER)
     Display the properties of the audiorecorder object RECORDER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Display the properties of the audiorecorder object RECORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
@audiorecorder/get


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 434
 -- Function File: VALUE = get (RECORDER, NAME)
 -- Function File: VALUES = get (RECORDER)
     Return the VALUE of the property identified by NAME.

     If NAME is a cell array, return the values of the properties corresponding to the elements of the cell array.  Given only the recorder object, return a scalar structure with values of all properties of RECORDER.  The field names of the structure correspond to property names.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the VALUE of the property identified by NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
@audiorecorder/getaudiodata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 415
 -- Function File: DATA = getaudiodata (RECORDER)
 -- Function File: DATA = getaudiodata (RECORDER, DATATYPE)
     Return recorder audio data as a matrix with values between -1.0 and 1.0 and with as many columns as there are channels in the recorder.

     Given the optional argument DATATYPE, convert the recorded data to the specified type, which may be one of "double", "single", "int16", "int8" or "uint8".
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return recorder audio data as a matrix with values between -1.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
@audiorecorder/getplayer


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
 -- Function File: PLAYER = getplayer (RECORDER)
     Return an audioplayer object with data recorded by the audiorecorder object RECORDER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return an audioplayer object with data recorded by the audiorecorder object RECORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
@audiorecorder/isrecording


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
 -- Function File: isrecording (RECORDER)
     Return true if the audiorecorder object RECORDER is currently recording audio and false otherwise.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return true if the audiorecorder object RECORDER is currently recording audio and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
@audiorecorder/pause


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
 -- Function File: pause (RECORDER)
     Pause recording with audiorecorder object RECORDER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Pause recording with audiorecorder object RECORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
@audiorecorder/play


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 437
 -- Function File: PLAYER = play (RECORDER)
 -- Function File: PLAYER = play (RECORDER, START)
 -- Function File: PLAYER = play (RECORDER, [START, END])
     Play the audio recorded in RECORDER and return a corresponding audioplayer object.

     If the optional argument START is provided, begin playing START seconds in to the recording.

     If the optional argument END is provided, stop playing at END seconds in the recording.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Play the audio recorded in RECORDER and return a corresponding audioplayer object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
@audiorecorder/record


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Function File: record (RECORDER)
 -- Function File: record (RECORDER, LENGTH)
     Record audio without blocking using the audiorecorder object RECORDER until stopped or paused by the STOP or PAUSE method.

     Given the optional argument LENGTH, record for LENGTH seconds.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
Record audio without blocking using the audiorecorder object RECORDER until stopped or paused by the STOP or PAUSE method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
@audiorecorder/recordblocking


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
 -- Function File: recordblocking (RECORDER, LENGTH)
     Record audio with blocking (synchronous I/O).

     The length of the recording in seconds (LENGTH) must be specified.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Record audio with blocking (synchronous I/O).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
@audiorecorder/resume


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
 -- Function File: resume (RECORDER)
     Resume recording with the paused audiorecorder object RECORDER.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Resume recording with the paused audiorecorder object RECORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
@audiorecorder/set


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 521
 -- Function File: set (RECORDER, NAME, VALUE)
 -- Function File: set (RECORDER, PROPERTIES)
 -- Function File: PROPERTIES = set (RECORDER)
     Set the value of property specified by NAME to a given VALUE.

     If NAME and VALUE are cell arrays of the same size, set each property to a corresponding value.  Given a structure with fields corresponding to property names, set the value of those properties to the corresponding field values.  Given only the recorder object, return a structure of settable properties.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Set the value of property specified by NAME to a given VALUE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
@audiorecorder/stop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
 -- Function File: stop (RECORDER)
     Stop the audiorecorder object RECORDER and clean up any audio streams.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Stop the audiorecorder object RECORDER and clean up any audio streams.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
@audiorecorder/subsasgn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 204
 -- Function File: VALUE = subsasgn (RECORDER, IDX, RHS)
     Perform subscripted assignment on the audio recorder object RECORDER.

     Assign the value of RHS to the recorder property named by IDX.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Perform subscripted assignment on the audio recorder object RECORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
@audiorecorder/subsref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
 -- Function File: VALUE = subsref (RECORDER, IDX)
     Perform subscripted selection on the audio recorder object RECORDER.

     Return the recorder property value named by IDX.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Perform subscripted selection on the audio recorder object RECORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bicubic


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 479
 -- Function File: ZI = bicubic (X, Y, Z, XI, YI, EXTRAPVAL)

     'bicubic' is deprecated and will be removed in Octave version 4.4.  Use 'interp2 (..., "spline")' for the equivalent functionality.

     Return a matrix ZI corresponding to the bicubic interpolations at XI and YI of the data supplied as X, Y and Z.  Points outside the grid are set to EXTRAPVAL.

     See <http://wiki.woodpecker.org.cn/moin/Octave/Bicubic> for further information.

     See also: interp2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
'bicubic' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
default_save_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 298
 -- Built-in Function: VAL = default_save_options ()
 -- Built-in Function: OLD_VAL = default_save_options (NEW_VAL)
 -- Built-in Function: default_save_options (NEW_VAL, "local")
     This function has been deprecated.  Use 'save_default_options' instead.

     See also: save_default_options.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
delaunay3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1403
 -- Function File: TETR = delaunay3 (X, Y, Z)
 -- Function File: TETR = delaunay3 (X, Y, Z, OPTIONS)

     'delaunay3' is deprecated and will be removed in Octave version 4.4.  Please use 'delaunay' in all new code.

     Compute the Delaunay triangulation for a 3-D set of points.  The return value TETR is a set of tetrahedrons which satisfies the Delaunay circum-circle criterion, i.e., only a single data point from [X, Y, Z] is within the circum-circle of the defining tetrahedron.

     The set of tetrahedrons TETR is a matrix of size [n, 4].  Each row defines a tetrahedron and the four columns are the four vertices of the tetrahedron.  The value of 'TETR(i,j)' is an index into X, Y, Z for the location of the j-th vertex of the i-th tetrahedron.

     An optional fourth argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command.  See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.  The default options are '{"Qt", "Qbb", "Qc", "Qz"}'.

     If OPTIONS is not present or '[]' then the default arguments are used.  Otherwise, OPTIONS replaces the default argument list.  To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS.  Use a null string to pass no arguments.

     See also: delaunay, delaunayn, convhull, voronoi, tetramesh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'delaunay3' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
dump_prefs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 485
 -- Function File: dump_prefs ()
 -- Function File: dump_prefs (FID)

     'dump_prefs' is deprecated and will be removed in Octave version 4.4.  Please use individual preference get/set routines in all new code.

     Dump the current settings of all user preferences to stdout in a format that can be parsed by Octave later.

     If the optional argument FID is given then the results are written to the file specified by file descriptor FID.

     See also: octave_config_info.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
'dump_prefs' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
find_dir_in_path


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 207
 -- Built-in Function: find_dir_in_path (DIR)
 -- Built-in Function: find_dir_in_path (DIR, "all")
     This function has been deprecated.  Use 'dir_in_loadpath' instead.

     See also: dir_in_loadpath.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
finite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
 -- Mapping Function: finite (X)

     'finite' is deprecated and will be removed in Octave version 4.4.  Please use 'isfinite' in all new code.

     Return a logical array which is true where the elements of X are finite values and false where they are not.  For example:

          finite ([13, Inf, NA, NaN])
               => [ 1, 0, 0, 0 ]

     See also: isfinite, isinf, isnan, isna.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
'finite' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fmod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
 -- Mapping Function: fmod (X, Y)

     'fmod' is deprecated and will be removed in Octave version 4.4.  Please use 'rem' in all new code.

     Return the remainder of the division 'X / Y', computed using the expression

          x - y .* fix (x ./ y)

     An error message is printed if the dimensions of the arguments do not agree, or if either of the arguments is complex.

     See also: rem, mod.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
'fmod' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fnmatch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 470
 -- Built-in Function: fnmatch (PATTERN, STRING)

     'fnmatch' is deprecated and will be removed in Octave version 4.4.  Please use 'glob' or 'regexp' in all new code.

     Return true or false for each element of STRING that matches any of the elements of the string array PATTERN, using the rules of filename pattern matching.  For example:

          fnmatch (\"a*b\", {\"ab\"; \"axyzb\"; \"xyzab\"})
               => [ 1; 1; 0 ]

     See also: glob, regexp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
'fnmatch' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
gen_doc_cache


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
 -- Function File: gen_doc_cache (OUT_FILE, DIRECTORY)
     This function has been deprecated.  Use 'doc_cache_create' instead.

     See also: doc_cache_create.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gmap40


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 550
 -- Function File: MAP = gmap40 ()
 -- Function File: MAP = gmap40 (N)

     'gmap40' is deprecated and will be removed in Octave version 4.4.

     Create color colormap.  The colormap consists of red, green, blue, yellow, magenta and cyan.

     This colormap is specifically designed for users of gnuplot 4.0 where these 6 colors are the allowable ones for patch objects.

     The argument N must be a scalar.  If unspecified, a length of 6 is assumed.  Larger values of N result in a repetition of the above colors.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
'gmap40' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
interp1q


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 762
 -- Function File: YI = interp1q (X, Y, XI)
     One-dimensional linear interpolation without error checking.  Interpolates Y, defined at the points X, at the points XI.  The sample points X must be a strictly monotonically increasing column vector.  If Y is a matrix or an N-dimensional array, the interpolation is performed on each column of Y.  If Y is a vector, it must be a column vector of the same length as X.

     Values of XI beyond the endpoints of the interpolation result in NA being returned.

     Note that the error checking is only a significant portion of the execution time of this 'interp1' if the size of the input arguments is relatively small.  Therefore, the benefit of using 'interp1q' is relatively small.

     See also: interp1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
One-dimensional linear interpolation without error checking.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
isequalwithequalnans


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
 -- Function File: isequalwithequalnans (X1, X2, ...)
     This function has been deprecated.  Use 'isequaln' instead.

     See also: isequaln.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isstr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
 -- Function File: isstr (A)
     This function has been deprecated.  Use ischar instead.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
java_convert_matrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 626
 -- Built-in Function: VAL = java_convert_matrix ()
 -- Built-in Function: OLD_VAL = java_convert_matrix (NEW_VAL)
 -- Built-in Function: java_convert_matrix (NEW_VAL, "local")
     Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices.  The default value is false.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: java_matrix_autoconversion, java_unsigned_conversion, java_debug.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
java_debug


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 609
 -- Built-in Function: VAL = java_debug ()
 -- Built-in Function: OLD_VAL = java_debug (NEW_VAL)
 -- Built-in Function: java_debug (NEW_VAL, "local")
     Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: debug_java, java_convert_matrix, java_unsigned_conversion.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 162
Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
java_invoke


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 690
 -- Built-in Function: RET = java_invoke (OBJ, METHODNAME)
 -- Built-in Function: RET = java_invoke (OBJ, METHODNAME, ARG1, ...)
     Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, ... For static methods, OBJ can be a string representing the fully qualified name of the corresponding class.  The function returns the result of the method invocation.

     When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax.  For instance, the two following statements are equivalent

            ret = java_invoke (x, "method1", 1.0, "a string")
            ret = x.method1 (1.0, "a string")

     See also: javaMethod, javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java_new


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 370
 -- Loadable Function: OBJ = java_new (NAME)
 -- Loadable Function: OBJ = java_new (NAME, ARG1, ...)
     Create a Java object of class NAME, by calling the class constructor with the arguments ARG1, ...

            x = java_new ("java.lang.StringBuffer")
            x = java_new ("java.lang.StringBuffer", "Initial string")

     See also: javaObject, javaMethod.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Create a Java object of class NAME, by calling the class constructor with the arguments ARG1, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
java_unsigned_conversion


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 736
 -- Built-in Function: VAL = java_unsigned_conversion ()
 -- Built-in Function: OLD_VAL = java_unsigned_conversion (NEW_VAL)
 -- Built-in Function: java_unsigned_conversion (NEW_VAL, "local")
     Query or set the internal variable that controls how integer classes are converted when Java matrix autoconversion is enabled.  When enabled, Java arrays of class Byte or Integer are converted to matrices of class uint8 or uint32 respectively.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: java_unsigned_autoconversion, java_convert_matrix, debug_java.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
Query or set the internal variable that controls how integer classes are converted when Java matrix autoconversion is enabled.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javafields


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
 -- Function File: javafields (JAVAOBJ)
 -- Function File: javafields ("CLASSNAME")
 -- Function File: FLD_NAMES = javafields (...)
     Return the fields of a Java object or Java class in the form of a cell array of strings.  If no output is requested, print the result to the standard output.

     See also: fieldnames, methods, javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Return the fields of a Java object or Java class in the form of a cell array of strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
javamethods


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 363
 -- Function File: javamethods (JAVAOBJ)
 -- Function File: javamethods ("CLASSNAME")
 -- Function File: MTD_NAMES = javamethods (...)
     Return the methods of a Java object or Java class in the form of a cell array of strings.  If no output is requested, print the result to the standard output.

     See also: methods, fieldnames, javaMethod, javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the methods of a Java object or Java class in the form of a cell array of strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
loadaudio


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 628
 -- Function File: loadaudio (NAME, EXT, BPS)

     'loadaudio' is deprecated and will be removed in Octave version 4.4.  Please use 'audioread' in all new code.

     Load audio data from the file 'NAME.EXT' into the vector X.

     The extension EXT determines how the data in the audio file is interpreted; the extensions 'lin' (default) and 'raw' correspond to linear, the extensions 'au', 'mu', or 'snd' to mu-law encoding.

     The argument BPS can be either 8 (default) or 16, and specifies the number of bits per sample used in the audio file.

     See also: lin2mu, mu2lin, saveaudio, playaudio, setaudio, record.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'loadaudio' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
luinc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2405
 -- Built-in Function: [L, U, P, Q] = luinc (A, '0')
 -- Built-in Function: [L, U, P, Q] = luinc (A, DROPTOL)
 -- Built-in Function: [L, U, P, Q] = luinc (A, OPTS)

     'luinc' is deprecated and will be removed in Octave version 4.4.  Please use 'ilu' or 'ichol' in all new code.

     Produce the incomplete LU factorization of the sparse matrix A.  Two types of incomplete factorization are possible, and the type is determined by the second argument to 'luinc'.

     Called with a second argument of '0', the zero-level incomplete LU factorization is produced.  This creates a factorization of A where the position of the nonzero arguments correspond to the same positions as in the matrix A.

     Alternatively, the fill-in of the incomplete LU factorization can be controlled through the variable DROPTOL or the structure OPTS.  The UMFPACK multifrontal factorization code by Tim A. Davis is used for the incomplete LU factorization, (availability <http://www.cise.ufl.edu/research/sparse/umfpack/>)

     DROPTOL determines the values below which the values in the LU  factorization are dropped and replaced by zero.  It must be a positive scalar, and any values in the factorization whose absolute value are less than this value are dropped, expect if leaving them increase the sparsity of the matrix.  Setting DROPTOL to zero results in a complete LU factorization which is the default.

     OPTS is a structure containing one or more of the fields

     'droptol'
          The drop tolerance as above.  If OPTS only contains 'droptol' then this is equivalent to using the variable DROPTOL.

     'milu'
          A logical variable flagging whether to use the modified incomplete LU  factorization.  In the case that 'milu' is true, the dropped values are subtracted from the diagonal of the matrix U of the factorization.  The default is 'false'.

     'udiag'
          A logical variable that flags whether zero elements on the diagonal of U should be replaced with DROPTOL to attempt to avoid singular factors.  The default is 'false'.

     'thresh'
          Defines the pivot threshold in the interval [0,1].  Values outside that range are ignored.

     All other fields in OPTS are ignored.  The outputs from 'luinc' are the same as for 'lu'.

     Given the string argument \"vector\", 'luinc' returns the values of P Q as vector values.

     See also: ilu, ichol, lu, sparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
'luinc' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
mouse_wheel_zoom


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 390
 -- Loadable Function: OLD_VAL = mouse_wheel_zoom (NEW_VAL)
     Query or set the mouse wheel zoom factor.

     The zoom factor is a number in the range (0,1) which is the percentage of the current axis limits that will be used when zooming.  For example, if the current x-axis limits are [0, 50] and 'mouse_wheel_zoom' is 0.4 (40%), then a zoom operation will change the limits by 20.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Query or set the mouse wheel zoom factor.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nfields


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
 -- Function File: nfields (S)
     Return the number of fields of the structure S.

     *Warning:* 'nfields' is scheduled for removal in version 4.4.  Use 'numfields' instead.

     See also: numfields, fieldnames.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the number of fields of the structure S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
octave_tmp_file_name


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 680
 -- Built-in Function: FNAME = octave_tmp_file_name ()
 -- Built-in Function: FNAME = octave_tmp_file_name (DIR)
 -- Built-in Function: FNAME = octave_tmp_file_name (DIR, PREFIX)

     'octave_tmp_file_name' is deprecated and will be removed in Octave version 4.4.  Use 'tempname' for equivalent functionality.

     Return a unique temporary file name as a string.

     If PREFIX is omitted, a value of "oct-" is used.  If DIR is also omitted, the default directory for temporary files ('P_tmpdir' is used.  If DIR is provided, it must exist, otherwise the default directory for temporary files is used.

     See also: tempname, tmpnam, mkstemp, tempdir, P_tmpdir, tmpfile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
'octave_tmp_file_name' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
playaudio


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 346
 -- Function File: playaudio (NAME, EXT)
 -- Function File: playaudio (X)

     'playaudio' is deprecated and will be removed in Octave version 4.4.  Please use 'audioplayer' in all new code.

     Play the audio file 'NAME.EXT' or the audio data stored in the vector X.

     See also: lin2mu, mu2lin, loadaudio, saveaudio, setaudio, record.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'playaudio' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
re_read_readline_init_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
 -- Built-in Function: re_read_readline_init_file (FILE)
     This function has been deprecated.  Use 'readline_re_read_init_file' instead.

     See also: readline_read_init_file.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
read_readline_init_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
 -- Built-in Function: read_readline_init_file (FILE)
     This function has been deprecated.  Use 'readline_read_init_file' instead.

     See also: readline_read_init_file.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
saveaudio


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 477
 -- Function File: saveaudio (NAME, X, EXT, BPS)

     'saveaudio' is deprecated and will be removed in Octave version 4.4.  Please use 'audiowrite' in all new code.

     Save a vector X of audio data to the file 'NAME.EXT'.  The optional parameters EXT and BPS determine the encoding and the number of bits per sample used in the audio file (see 'loadaudio'); defaults are 'lin' and 8, respectively.

     See also: lin2mu, mu2lin, loadaudio, playaudio, setaudio, record.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
'saveaudio' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
saving_history


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 264
 -- Built-in Function: VAL = saving_history ()
 -- Built-in Function: OLD_VAL = saving_history (NEW_VAL)
 -- Built-in Function: saving_history (NEW_VAL, "local")
     This function has been deprecated.  Use 'history_save' instead.

     See also: history_save.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
This function has been deprecated.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setaudio


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 412
 -- Function File: setaudio ()
 -- Function File: setaudio (W_TYPE)
 -- Function File: setaudio (W_TYPE, VALUE)

     'setaudio' is deprecated and will be removed in Octave version 4.4.  Please scale the audio signal in all new code or use the operating system's native tools to adjust audio input and output levels.

     Execute the shell command 'mixer', possibly with optional arguments W_TYPE and VALUE.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
'setaudio' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
syl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 403
 -- Built-in Function: X = syl (A, B, C)

     'syl' is deprecated and will be removed in Octave version 4.4.  Use 'sylvester' for the equivalent functionality.

     Solve the Sylvester equation

          A X + X B + C = 0

     using standard LAPACK subroutines.  For example:

          syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
             => [ -0.50000, -0.66667; -0.66667, -0.50000 ]
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
'syl' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
usage


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 959
 -- Built-in Function: usage (MSG)

     'usage' is deprecated and will be removed in Octave version 4.4.  Please use 'print_usage' in all new code.

     Print the message MSG, prefixed by the string 'usage: ', and set Octave's internal error state such that control will return to the top level without evaluating any more commands.  This is useful for aborting from functions.

     After 'usage' is evaluated, Octave will print a traceback of all the function calls leading to the usage message.

     You should use this function for reporting problems errors that result from an improper call to a function, such as calling a function with an incorrect number of arguments, or with arguments of the wrong type.  For example, most functions distributed with Octave begin with code like this

          if (nargin != 2)
            usage (\"foo (a, b)\");
          endif

     to check for the proper number of arguments.

     See also: print_usage.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
'usage' is deprecated and will be removed in Octave version 4.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acosd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
 -- Function File: acosd (X)
     Compute the inverse cosine in degrees for each element of X.

     See also: cosd, acos.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse cosine in degrees for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
acot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
 -- Mapping Function: acot (X)
     Compute the inverse cotangent in radians for each element of X.

     See also: cot, acotd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the inverse cotangent in radians for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acotd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
 -- Function File: acotd (X)
     Compute the inverse cotangent in degrees for each element of X.

     See also: cotd, acot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the inverse cotangent in degrees for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acoth


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
 -- Mapping Function: acoth (X)
     Compute the inverse hyperbolic cotangent of each element of X.

     See also: coth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compute the inverse hyperbolic cotangent of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
acsc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
 -- Mapping Function: acsc (X)
     Compute the inverse cosecant in radians for each element of X.

     See also: csc, acscd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compute the inverse cosecant in radians for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acscd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
 -- Function File: acscd (X)
     Compute the inverse cosecant in degrees for each element of X.

     See also: cscd, acsc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compute the inverse cosecant in degrees for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acsch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
 -- Mapping Function: acsch (X)
     Compute the inverse hyperbolic cosecant of each element of X.

     See also: csch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse hyperbolic cosecant of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
asec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
 -- Mapping Function: asec (X)
     Compute the inverse secant in radians for each element of X.

     See also: sec, asecd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse secant in radians for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asecd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
 -- Function File: asecd (X)
     Compute the inverse secant in degrees for each element of X.

     See also: secd, asec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse secant in degrees for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asech


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
 -- Mapping Function: asech (X)
     Compute the inverse hyperbolic secant of each element of X.

     See also: sech.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the inverse hyperbolic secant of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
 -- Function File: asind (X)
     Compute the inverse sine in degrees for each element of X.

     See also: sind, asin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the inverse sine in degrees for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
atan2d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
 -- Function File: atan2d (Y, X)
     Compute atan2 (Y / X) in degrees for corresponding elements from Y and X.

     See also: tand, atan2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Compute atan2 (Y / X) in degrees for corresponding elements from Y and X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
atand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
 -- Function File: atand (X)
     Compute the inverse tangent in degrees for each element of X.

     See also: tand, atan.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse tangent in degrees for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cosd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
 -- Function File: cosd (X)
     Compute the cosine for each element of X in degrees.

     Returns zero for elements where '(X-90)/180' is an integer.

     See also: acosd, cos.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the cosine for each element of X in degrees.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
 -- Mapping Function: cot (X)
     Compute the cotangent for each element of X in radians.

     See also: acot, cotd, coth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Compute the cotangent for each element of X in radians.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cotd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
 -- Function File: cotd (X)
     Compute the cotangent for each element of X in degrees.

     See also: acotd, cot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Compute the cotangent for each element of X in degrees.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
coth


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Mapping Function: coth (X)
     Compute the hyperbolic cotangent of each element of X.

     See also: acoth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the hyperbolic cotangent of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
csc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
 -- Mapping Function: csc (X)
     Compute the cosecant for each element of X in radians.

     See also: acsc, cscd, csch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the cosecant for each element of X in radians.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cscd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 119
 -- Function File: cscd (X)
     Compute the cosecant for each element of X in degrees.

     See also: acscd, csc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the cosecant for each element of X in degrees.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
csch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
 -- Mapping Function: csch (X)
     Compute the hyperbolic cosecant of each element of X.

     See also: acsch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the hyperbolic cosecant of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
 -- Mapping Function: sec (X)
     Compute the secant for each element of X in radians.

     See also: asec, secd, sech.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the secant for each element of X in radians.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
secd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Function File: secd (X)
     Compute the secant for each element of X in degrees.

     See also: asecd, sec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the secant for each element of X in degrees.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sech


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
 -- Mapping Function: sech (X)
     Compute the hyperbolic secant of each element of X.

     See also: asech.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Compute the hyperbolic secant of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
 -- Function File: sind (X)
     Compute the sine for each element of X in degrees.

     Returns zero for elements where 'X/180' is an integer.

     See also: asind, sin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the sine for each element of X in degrees.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
 -- Function File: tand (X)
     Compute the tangent for each element of X in degrees.

     Returns zero for elements where 'X/180' is an integer and 'Inf' for elements where '(X-90)/180' is an integer.

     See also: atand, tan.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the tangent for each element of X in degrees.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
accumarray


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3911
 -- Function File: accumarray (SUBS, VALS, SZ, FUNC, FILLVAL, ISSPARSE)
 -- Function File: accumarray (SUBS, VALS, ...)

     Create an array by accumulating the elements of a vector into the positions defined by their subscripts.

     The subscripts are defined by the rows of the matrix SUBS and the values by VALS.  Each row of SUBS corresponds to one of the values in VALS.  If VALS is a scalar, it will be used for each of the row of SUBS.  If SUBS is a cell array of vectors, all vectors must be of the same length, and the subscripts in the Kth vector must correspond to the Kth dimension of the result.

     The size of the matrix will be determined by the subscripts themselves.  However, if SZ is defined it determines the matrix size.  The length of SZ must correspond to the number of columns in SUBS.  An exception is if SUBS has only one column, in which case SZ may be the dimensions of a vector and the subscripts of SUBS are taken as the indices into it.

     The default action of 'accumarray' is to sum the elements with the same subscripts.  This behavior can be modified by defining the FUNC function.  This should be a function or function handle that accepts a column vector and returns a scalar.  The result of the function should not depend on the order of the subscripts.

     The elements of the returned array that have no subscripts associated with them are set to zero.  Defining FILLVAL to some other value allows these values to be defined.  This behavior changes, however, for certain values of FUNC.  If FUNC is 'min' (respectively, 'max') then the result will be filled with the minimum (respectively, maximum) integer if VALS is of integral type, logical false (respectively, logical true) if VALS is of logical type, zero if FILLVAL is zero and all values are non-positive (respectively, non-negative), and NaN otherwise.

     By default 'accumarray' returns a full matrix.  If ISSPARSE is logically true, then a sparse matrix is returned instead.

     The following 'accumarray' example constructs a frequency table that in the first column counts how many occurrences each number in the second column has, taken from the vector X.  Note the usage of 'unique' for assigning to all repeated elements of X the same index (*note unique: XREFunique.).

          X = [91, 92, 90, 92, 90, 89, 91, 89, 90, 100, 100, 100];
          [U, ~, J] = unique (X);
          [accumarray(J', 1), U']
            =>  2    89
                3    90
                2    91
                2    92
                3   100

     Another example, where the result is a multi-dimensional 3-D array and the default value (zero) appears in the output:

          accumarray ([1, 1, 1;
                       2, 1, 2;
                       2, 3, 2;
                       2, 1, 2;
                       2, 3, 2], 101:105)
          => ans(:,:,1) = [101, 0, 0; 0, 0, 0]
          => ans(:,:,2) = [0, 0, 0; 206, 0, 208]

     The sparse option can be used as an alternative to the 'sparse' constructor (*note sparse: XREFsparse.).  Thus

          sparse (I, J, SV)

     can be written with 'accumarray' as

          accumarray ([I, J], SV', [], [], 0, true)

     For repeated indices, 'sparse' adds the corresponding value.  To take the minimum instead, use 'min' as an accumulator function:

          accumarray ([I, J], SV', [], @min, 0, true)

     The complexity of accumarray in general for the non-sparse case is generally O(M+N), where N is the number of subscripts and M is the maximum subscript (linearized in multi-dimensional case).  If FUNC is one of '@sum' (default), '@max', '@min' or '@(x) {x}', an optimized code path is used.  Note that for general reduction function the interpreter overhead can play a major part and it may be more efficient to do multiple accumarray calls and compute the results in a vectorized manner.

     See also: accumdim, unique, sparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Create an array by accumulating the elements of a vector into the positions defined by their subscripts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
accumdim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1581
 -- Function File: accumdim (SUBS, VALS, DIM, N, FUNC, FILLVAL)
     Create an array by accumulating the slices of an array into the positions defined by their subscripts along a specified dimension.

     The subscripts are defined by the index vector SUBS.  The dimension is specified by DIM.  If not given, it defaults to the first non-singleton dimension.  The length of SUBS must be equal to 'size (VALS, DIM)'.

     The extent of the result matrix in the working dimension will be determined by the subscripts themselves.  However, if N is defined it determines this extent.

     The default action of 'accumdim' is to sum the subarrays with the same subscripts.  This behavior can be modified by defining the FUNC function.  This should be a function or function handle that accepts an array and a dimension, and reduces the array along this dimension.  As a special exception, the built-in 'min' and 'max' functions can be used directly, and 'accumdim' accounts for the middle empty argument that is used in their calling.

     The slices of the returned array that have no subscripts associated with them are set to zero.  Defining FILLVAL to some other value allows these values to be defined.

     An example of the use of 'accumdim' is:

          accumdim ([1, 2, 1, 2, 1], [ 7, -10,   4;
                                      -5, -12,   8;
                                     -12,   2,   8;
                                     -10,   9,  -3;
                                      -5,  -3, -13])
          => [-10,-11,-1;-15,-3,5]

     See also: accumarray.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
Create an array by accumulating the slices of an array into the positions defined by their subscripts along a specified dimension.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bincoeff


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 502
 -- Mapping Function: bincoeff (N, K)
     Return the binomial coefficient of N and K, defined as

           /   \
           | n |    n (n-1) (n-2) ... (n-k+1)
           |   |  = -------------------------
           | k |               k!
           \   /

     For example:

          bincoeff (5, 2)
             => 10

     In most cases, the 'nchoosek' function is faster for small scalar integer arguments.  It also warns about loss of precision for big arguments.

     See also: nchoosek.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return the binomial coefficient of N and K, defined as 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitcmp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 367
 -- Function File: bitcmp (A, K)
     Return the K-bit complement of integers in A.

     If K is omitted 'k = log2 (bitmax) + 1' is assumed.

          bitcmp (7,4)
            => 8
          dec2bin (11)
            => 1011
          dec2bin (bitcmp (11, 6))
            => 110100

     See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the K-bit complement of integers in A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitget


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 289
 -- Function File: C = bitget (A, N)
     Return the status of bit(s) N of the unsigned integers in A.

     The least significant bit is N = 1.

          bitget (100, 8:-1:1)
          => 0  1  1  0  0  1  0  0

     See also: bitand, bitor, bitxor, bitset, bitcmp, bitshift, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return the status of bit(s) N of the unsigned integers in A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitset


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 403
 -- Function File: C = bitset (A, N)
 -- Function File: C = bitset (A, N, VAL)
     Set or reset bit(s) N of the unsigned integers in A.

     VAL = 0 resets and VAL = 1 sets the bits.  The least significant bit is N = 1.  All variables must be the same size or scalars.

          dec2bin (bitset (10, 1))
            => 1011

     See also: bitand, bitor, bitxor, bitget, bitcmp, bitshift, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Set or reset bit(s) N of the unsigned integers in A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
blkdiag


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 298
 -- Function File: blkdiag (A, B, C, ...)
     Build a block diagonal matrix from A, B, C, ...

     All arguments must be numeric and either two-dimensional matrices or scalars.  If any argument is of type sparse, the output will also be sparse.

     See also: diag, horzcat, vertcat, sparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Build a block diagonal matrix from A, B, C, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cart2pol


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 804
 -- Function File: [THETA, R] = cart2pol (X, Y)
 -- Function File: [THETA, R, Z] = cart2pol (X, Y, Z)
 -- Function File: [THETA, R] = cart2pol (C)
 -- Function File: [THETA, R, Z] = cart2pol (C)
 -- Function File: P = cart2pol (...)

     Transform Cartesian coordinates to polar or cylindrical coordinates.

     The inputs X, Y (, and Z) must be the same shape, or scalar.  If called with a single matrix argument then each row of C represents the Cartesian coordinate (X, Y (, Z)).

     THETA describes the angle relative to the positive x-axis.

     R is the distance to the z-axis (0, 0, z).

     If only a single return argument is requested then return a matrix P where each row represents one polar/(cylindrical) coordinate (THETA, PHI (, Z)).

     See also: pol2cart, cart2sph, sph2cart.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Transform Cartesian coordinates to polar or cylindrical coordinates.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cart2sph


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 733
 -- Function File: [THETA, PHI, R] = cart2sph (X, Y, Z)
 -- Function File: [THETA, PHI, R] = cart2sph (C)
 -- Function File: S = cart2sph (...)
     Transform Cartesian coordinates to spherical coordinates.

     The inputs X, Y, and Z must be the same shape, or scalar.  If called with a single matrix argument then each row of C represents the Cartesian coordinate (X, Y, Z).

     THETA describes the angle relative to the positive x-axis.

     PHI is the angle relative to the xy-plane.

     R is the distance to the origin (0, 0, 0).

     If only a single return argument is requested then return a matrix S where each row represents one spherical coordinate (THETA, PHI, R).

     See also: sph2cart, cart2pol, pol2cart.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Transform Cartesian coordinates to spherical coordinates.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cell2mat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 322
 -- Function File: M = cell2mat (C)
     Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle.

     Elements of C must be numeric, logical, or char matrices; or cell arrays; or structs; and 'cat' must be able to concatenate them together.

     See also: mat2cell, num2cell.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
celldisp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 552
 -- Function File: celldisp (C)
 -- Function File: celldisp (C, NAME)
     Recursively display the contents of a cell array.

     By default the values are displayed with the name of the variable C.  However, this name can be replaced with the variable NAME.  For example:

          c = {1, 2, {31, 32}};
          celldisp (c, "b")
             =>
                b{1} =
                 1
                b{2} =
                 2
                b{3}{1} =
                 31
                b{3}{2} =
                 32

     See also: disp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Recursively display the contents of a cell array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
chop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 334
 -- Function File: chop (X, NDIGITS, BASE)
     Truncate elements of X to a length of NDIGITS such that the resulting numbers are exactly divisible by BASE.

     If BASE is not specified it defaults to 10.

          chop (-pi, 5, 10)
             => -3.14200000000000
          chop (-pi, 5, 5)
             => -3.14150000000000
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Truncate elements of X to a length of NDIGITS such that the resulting numbers are exactly divisible by BASE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
circshift


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 772
 -- Function File: Y = circshift (X, N)
     Circularly shift the values of the array X.

     N must be a vector of integers no longer than the number of dimensions in X.  The values of N can be either positive or negative, which determines the direction in which the values or X are shifted.  If an element of N is zero, then the corresponding dimension of X will not be shifted.  For example:

          x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
          circshift (x, 1)
          =>  7, 8, 9
              1, 2, 3
              4, 5, 6
          circshift (x, -2)
          =>  7, 8, 9
              1, 2, 3
              4, 5, 6
          circshift (x, [0,1])
          =>  3, 1, 2
              6, 4, 5
              9, 7, 8

     See also: permute, ipermute, shiftdim.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Circularly shift the values of the array X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
common_size


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 627
 -- Function File: [ERR, Y1, ...] = common_size (X1, ...)
     Determine if all input arguments are either scalar or of common size.

     If true, ERR is zero, and YI is a matrix of the common size with all entries equal to XI if this is a scalar or XI otherwise.  If the inputs cannot be brought to a common size, ERR is 1, and YI is XI.  For example:

          [errorcode, a, b] = common_size ([1 2; 3 4], 5)
               => errorcode = 0
               => a = [ 1, 2; 3, 4 ]
               => b = [ 5, 5; 5, 5 ]

     This is useful for implementing functions where arguments can either be scalars or of common size.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Determine if all input arguments are either scalar or of common size.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cplxpair


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 931
 -- Function File: cplxpair (Z)
 -- Function File: cplxpair (Z, TOL)
 -- Function File: cplxpair (Z, TOL, DIM)
     Sort the numbers Z into complex conjugate pairs ordered by increasing real part.

     The negative imaginary complex numbers are placed first within each pair.  All real numbers (those with 'abs (imag (Z) / Z) < TOL') are placed after the complex pairs.

     If TOL is unspecified the default value is 100*'eps'.

     By default the complex pairs are sorted along the first non-singleton dimension of Z.  If DIM is specified, then the complex pairs are sorted along this dimension.

     Signal an error if some complex numbers could not be paired.  Signal an error if all complex numbers are not exact conjugates (to within TOL).  Note that there is no defined order for pairs with identical real parts but differing imaginary parts.

          cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Sort the numbers Z into complex conjugate pairs ordered by increasing real part.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cumtrapz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 965
 -- Function File: Q = cumtrapz (Y)
 -- Function File: Q = cumtrapz (X, Y)
 -- Function File: Q = cumtrapz (..., DIM)
     Cumulative numerical integration of points Y using the trapezoidal method.

     'cumtrapz (Y)' computes the cumulative integral of Y along the first non-singleton dimension.  Where 'trapz' reports only the overall integral sum, 'cumtrapz' reports the current partial sum value at each point of Y.

     When the argument X is omitted an equally spaced X vector with unit spacing (1) is assumed.  'cumtrapz (X, Y)' evaluates the integral with respect to the spacing in X and the values in Y.  This is useful if the points in Y have been sampled unevenly.

     If the optional DIM argument is given, operate along this dimension.

     Application Note: If X is not specified then unit spacing will be used.  To scale the integral to the correct value you must multiply by the actual spacing value (deltaX).

     See also: trapz, cumsum.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Cumulative numerical integration of points Y using the trapezoidal method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
curl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 987
 -- Function File: [CX, CY, CZ, V] = curl (X, Y, Z, FX, FY, FZ)
 -- Function File: [CZ, V] = curl (X, Y, FX, FY)
 -- Function File: [...] = curl (FX, FY, FZ)
 -- Function File: [...] = curl (FX, FY)
 -- Function File: V = curl (...)
     Calculate curl of vector field given by the arrays FX, FY, and FZ or FX, FY respectively.

                            / d         d       d         d       d         d     \
          curl F(x,y,z)  =  | -- Fz  -  -- Fy,  -- Fx  -  -- Fz,  -- Fy  -  -- Fx |
                            \ dy        dz      dz        dx      dx        dy    /

     The coordinates of the vector field can be given by the arguments X, Y, Z or X, Y respectively.  V calculates the scalar component of the angular velocity vector in direction of the z-axis for two-dimensional input.  For three-dimensional input the scalar rotation is calculated at each grid point in direction of the vector field at that point.

     See also: divergence, gradient, del2, cross.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Calculate curl of vector field given by the arrays FX, FY, and FZ or FX, FY respectively.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dblquad


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1203
 -- Function File: dblquad (F, XA, XB, YA, YB)
 -- Function File: dblquad (F, XA, XB, YA, YB, TOL)
 -- Function File: dblquad (F, XA, XB, YA, YB, TOL, QUADF)
 -- Function File: dblquad (F, XA, XB, YA, YB, TOL, QUADF, ...)
     Numerically evaluate the double integral of F.

     F is a function handle, inline function, or string containing the name of the function to evaluate.  The function F must have the form z = f(x,y) where X is a vector and Y is a scalar.  It should return a vector of the same length and orientation as X.

     XA, YA and XB, YB are the lower and upper limits of integration for x and y respectively.  The underlying integrator determines whether infinite bounds are accepted.

     The optional argument TOL defines the absolute tolerance used to integrate each sub-integral.  The default value is 1e^{-6}.

     The optional argument QUADF specifies which underlying integrator function to use.  Any choice but 'quad' is available and the default is 'quadcc'.

     Additional arguments, are passed directly to F.  To use the default value for TOL or QUADF one may pass ':' or an empty matrix ([]).

     See also: triplequad, quad, quadv, quadl, quadgk, quadcc, trapz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Numerically evaluate the double integral of F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
deal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 954
 -- Function File: [R1, R2, ..., RN] = deal (A)
 -- Function File: [R1, R2, ..., RN] = deal (A1, A2, ..., AN)

     Copy the input parameters into the corresponding output parameters.

     If only a single input parameter is supplied, its value is copied to each of the outputs.

     For example,

          [a, b, c] = deal (x, y, z);

     is equivalent to

          a = x;
          b = y;
          c = z;

     and

          [a, b, c] = deal (x);

     is equivalent to

          a = b = c = x;

     Programming Note: 'deal' is often used with comma separated lists derived from cell arrays or structures.  This is unnecessary as the interpreter can perform the same action without the overhead of a function call.  For example:

          c = {[1 2], "Three", 4};
          [x, y, z ] = c{:}
          =>
             x =

                1   2

             y = Three
             z =  4

     See also: cell2struct, struct2cell, repmat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Copy the input parameters into the corresponding output parameters.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
del2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
 -- Function File: D = del2 (M)
 -- Function File: D = del2 (M, H)
 -- Function File: D = del2 (M, DX, DY, ...)

     Calculate the discrete Laplace operator.

     For a 2-dimensional matrix M this is defined as

                1    / d^2            d^2         \
          D  = --- * | ---  M(x,y) +  ---  M(x,y) |
                4    \ dx^2           dy^2        /

     For N-dimensional arrays the sum in parentheses is expanded to include second derivatives over the additional higher dimensions.

     The spacing between evaluation points may be defined by H, which is a scalar defining the equidistant spacing in all dimensions.  Alternatively, the spacing in each dimension may be defined separately by DX, DY, etc.  A scalar spacing argument defines equidistant spacing, whereas a vector argument can be used to specify variable spacing.  The length of the spacing vectors must match the respective dimension of M.  The default spacing value is 1.

     At least 3 data points are needed for each dimension.  Boundary points are calculated from the linear extrapolation of interior points.

     See also: gradient, diff.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Calculate the discrete Laplace operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
display


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 321
 -- Function File: display (A)
     Display the contents of an object.

     If A is an object of the class "myclass", then 'display' is called in a case like

          myclass (...)

     where Octave is required to display the contents of a variable of the type "myclass".

     See also: class, subsref, subsasgn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Display the contents of an object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
divergence


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 652
 -- Function File: DIV = divergence (X, Y, Z, FX, FY, FZ)
 -- Function File: DIV = divergence (FX, FY, FZ)
 -- Function File: DIV = divergence (X, Y, FX, FY)
 -- Function File: DIV = divergence (FX, FY)
     Calculate divergence of a vector field given by the arrays FX, FY, and FZ or FX, FY respectively.

                            d               d               d
          div F(x,y,z)  =   -- F(x,y,z)  +  -- F(x,y,z)  +  -- F(x,y,z)
                            dx              dy              dz

     The coordinates of the vector field can be given by the arguments X, Y, Z or X, Y respectively.

     See also: curl, gradient, del2, dot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Calculate divergence of a vector field given by the arrays FX, FY, and FZ or FX, FY respectively.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
fieldnames


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 673
 -- Function File: NAMES = fieldnames (STRUCT)
 -- Function File: NAMES = fieldnames (OBJ)
 -- Function File: NAMES = fieldnames (JAVAOBJ)
 -- Function File: NAMES = fieldnames ("JCLASSNAME")
     Return a cell array of strings with the names of the fields in the specified input.

     When the input is a structure STRUCT, the names are the elements of the structure.

     When the input is an Octave object OBJ, the names are the public properties of the object.

     When the input is a Java object JAVAOBJ or Java classname JCLASSNAME the name are the public data elements of the object or class.

     See also: numfields, isfield, orderfields, struct, methods.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return a cell array of strings with the names of the fields in the specified input.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
flip


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 635
 -- Function File: flip (X)
 -- Function File: flip (X, DIM)
     Flip array across dimension DIM.

     Return a copy of X flipped about the dimension DIM.  DIM defaults to the first non-singleton dimension.  For example:

          flip ([1  2  3  4])
                =>  4  3  2  1

          flip ([1; 2; 3; 4])
                =>  4
                    3
                    2
                    1

          flip ([1 2; 3 4])
                =>  3  4
                    1  2

          flip ([1 2; 3 4], 2)
                =>  2  1
                    4  3

     See also: fliplr, flipud, rot90, rotdim, permute, transpose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Flip array across dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
flipdim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 299
 -- Function File: flipdim (X)
 -- Function File: flipdim (X, DIM)
     Flip array across dimension DIM.

     This function is an alias for 'flip' and exists for backwards and MATLAB compatibility.  See 'flip' for complete usage information.

     See also: flip, fliplr, flipud, rot90, rotdim.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Flip array across dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fliplr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
 -- Function File: fliplr (X)
     Flip array left to right.

     Return a copy of X with the order of the columns reversed.  In other words, X is flipped left-to-right about a vertical axis.  For example:

          fliplr ([1, 2; 3, 4])
               =>  2  1
                   4  3

     See also: flipud, flip, rot90, rotdim.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Flip array left to right.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
flipud


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 331
 -- Function File: flipud (X)
     Flip array upside down.

     Return a copy of X with the order of the rows reversed.  In other words, X is flipped upside-down about a horizontal axis.  For example:

          flipud ([1, 2; 3, 4])
               =>  3  4
                   1  2

     See also: fliplr, flip, rot90, rotdim.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Flip array upside down.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gradient


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1794
 -- Function File: DX = gradient (M)
 -- Function File: [DX, DY, DZ, ...] = gradient (M)
 -- Function File: [...] = gradient (M, S)
 -- Function File: [...] = gradient (M, X, Y, Z, ...)
 -- Function File: [...] = gradient (F, X0)
 -- Function File: [...] = gradient (F, X0, S)
 -- Function File: [...] = gradient (F, X0, X, Y, ...)

     Calculate the gradient of sampled data or a function.

     If M is a vector, calculate the one-dimensional gradient of M.  If M is a matrix the gradient is calculated for each dimension.

     '[DX, DY] = gradient (M)' calculates the one-dimensional gradient for X and Y direction if M is a matrix.  Additional return arguments can be use for multi-dimensional matrices.

     A constant spacing between two points can be provided by the S parameter.  If S is a scalar, it is assumed to be the spacing for all dimensions.  Otherwise, separate values of the spacing can be supplied by the X, ... arguments.  Scalar values specify an equidistant spacing.  Vector values for the X, ... arguments specify the coordinate for that dimension.  The length must match their respective dimension of M.

     At boundary points a linear extrapolation is applied.  Interior points are calculated with the first approximation of the numerical gradient

          y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).

     If the first argument F is a function handle, the gradient of the function at the points in X0 is approximated using central difference.  For example, 'gradient (@cos, 0)' approximates the gradient of the cosine function in the point x0 = 0.  As with sampled data, the spacing values between the points from which the gradient is estimated can be set via the S or DX, DY, ... arguments.  By default a spacing of 1 is used.

     See also: diff, del2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Calculate the gradient of sampled data or a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
idivide


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1317
 -- Function File: idivide (X, Y, OP)
     Integer division with different rounding rules.

     The standard behavior of integer division such as 'A ./ B' is to round the result to the nearest integer.  This is not always the desired behavior and 'idivide' permits integer element-by-element division to be performed with different treatment for the fractional part of the division as determined by the OP flag.  OP is a string with one of the values:

     "fix"
          Calculate 'A ./ B' with the fractional part rounded towards zero.

     "round"
          Calculate 'A ./ B' with the fractional part rounded towards the nearest integer.

     "floor"
          Calculate 'A ./ B' with the fractional part rounded towards negative infinity.

     "ceil"
          Calculate 'A ./ B' with the fractional part rounded towards positive infinity.

     If OP is not given it defaults to "fix".  An example demonstrating these rounding rules is

          idivide (int8 ([-3, 3]), int8 (4), "fix")
            => int8 ([0, 0])
          idivide (int8 ([-3, 3]), int8 (4), "round")
            => int8 ([-1, 1])
          idivide (int8 ([-3, 3]), int8 (4), "floor")
            => int8 ([-1, 0])
          idivide (int8 ([-3, 3]), int8 (4), "ceil")
            => int8 ([0, 1])

     See also: ldivide, rdivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Integer division with different rounding rules.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
inputParser


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4761
 -- Function File: P = inputParser ()
     Create object P of the inputParser class.

     This class is designed to allow easy parsing of function arguments.  The class supports four types of arguments:

       1. mandatory (see 'addRequired');

       2. optional (see 'addOptional');

       3. named (see 'addParamValue');

       4. switch (see 'addSwitch').

     After defining the function API with these methods, the supplied arguments can be parsed with the 'parse' method and the parsing results accessed with the 'Results' accessor.

 -- Accessor method: inputParser.Parameters
     Return list of parameter names already defined.

 -- Accessor method: inputParser.Results
     Return structure with argument names as fieldnames and corresponding values.

 -- Accessor method: inputParser.Unmatched
     Return structure similar to 'Results', but for unmatched parameters.  See the 'KeepUnmatched' property.

 -- Accessor method: inputParser.UsingDefaults
     Return cell array with the names of arguments that are using default values.

 -- Class property: inputParser.CaseSensitive = BOOLEAN
     Set whether matching of argument names should be case sensitive.  Defaults to false.

 -- Class property: inputParser.FunctionName = NAME
     Set function name to be used in error messages; Defaults to empty string.

 -- Class property: inputParser.KeepUnmatched = BOOLEAN
     Set whether an error should be given for non-defined arguments.  Defaults to false.  If set to true, the extra arguments can be accessed through 'Unmatched' after the 'parse' method.  Note that since 'Switch' and 'ParamValue' arguments can be mixed, it is not possible to know the unmatched type.  If argument is found unmatched it is assumed to be of the 'ParamValue' type and it is expected to be followed by a value.

 -- Class property: inputParser.StructExpand = BOOLEAN
     Set whether a structure can be passed to the function instead of parameter/value pairs.  Defaults to true.  Not implemented yet.

     The following example shows how to use this class:

          function check (varargin)
            p = inputParser ();                      # create object
            p.FunctionName = "check";                # set function name
            p.addRequired ("pack", @ischar);         # mandatory argument
            p.addOptional ("path", pwd(), @ischar);  # optional argument

            ## create a function handle to anonymous functions for validators
            val_mat = @(x) isvector (x) && all (x <= 1) && all (x >= 0);
            p.addOptional ("mat", [0 0], val_mat);

            ## create two arguments of type "ParamValue"
            val_type = @(x) any (strcmp (x, {"linear", "quadratic"}));
            p.addParamValue ("type", "linear", val_type);
            val_verb = @(x) any (strcmp (x, {"low", "medium", "high"}));
            p.addParamValue ("tolerance", "low", val_verb);

            ## create a switch type of argument
            p.addSwitch ("verbose");

            p.parse (varargin{:});  # Run created parser on inputs

            ## the rest of the function can access inputs by using p.Results.
            ## for example, get the tolerance input with p.Results.tolerance
          endfunction

          check ("mech");           # valid, use defaults for other arguments
          check ();                 # error, one argument is mandatory
          check (1);                # error, since ! ischar
          check ("mech", "~/dev");  # valid, use defaults for other arguments

          check ("mech", "~/dev", [0 1 0 0], "type", "linear");  # valid

          ## following is also valid.  Note how the Switch argument type can
          ## be mixed into or before the ParamValue argument type (but it
          ## must still appear after any Optional argument).
          check ("mech", "~/dev", [0 1 0 0], "verbose", "tolerance", "high");

          ## following returns an error since not all optional arguments,
          ## `path' and `mat', were given before the named argument `type'.
          check ("mech", "~/dev", "type", "linear");

     _Note 1_: A function can have any mixture of the four API types but they must appear in a specific order.  'Required' arguments must be first and can be followed by any 'Optional' arguments.  Only the 'ParamValue' and 'Switch' arguments may be mixed together and they must appear at the end.

     _Note 2_: If both 'Optional' and 'ParamValue' arguments are mixed in a function API then once a string Optional argument fails to validate it will be considered the end of the 'Optional' arguments.  The remaining arguments will be compared against any 'ParamValue' or 'Switch' arguments.

     See also: nargin, validateattributes, validatestring, varargin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Create object P of the inputParser class.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
int2str


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 697
 -- Function File: int2str (N)
     Convert an integer (or array of integers) to a string (or a character array).

          int2str (123)
               => "123"

          s = int2str ([1, 2, 3; 4, 5, 6])
               => s =
                  1  2  3
                  4  5  6

          whos s
               =>
                Attr Name        Size                     Bytes  Class
                ==== ====        ====                     =====  =====
                     s           2x7                         14  char

     This function is not very flexible.  For better control over the results, use 'sprintf' (*note Formatted Output::).

     See also: sprintf, num2str, mat2str.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Convert an integer (or array of integers) to a string (or a character array).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interp1


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3161
 -- Function File: YI = interp1 (X, Y, XI)
 -- Function File: YI = interp1 (Y, XI)
 -- Function File: YI = interp1 (..., METHOD)
 -- Function File: YI = interp1 (..., EXTRAP)
 -- Function File: YI = interp1 (..., "left")
 -- Function File: YI = interp1 (..., "right")
 -- Function File: PP = interp1 (..., "pp")

     One-dimensional interpolation.

     Interpolate input data to determine the value of YI at the points XI.  If not specified, X is taken to be the indices of Y ('1:length (Y)').  If Y is a matrix or an N-dimensional array, the interpolation is performed on each column of Y.

     The interpolation METHOD is one of:

     "nearest"
          Return the nearest neighbor.

     "previous"
          Return the previous neighbor.

     "next"
          Return the next neighbor.

     "linear" (default)
          Linear interpolation from nearest neighbors.

     "pchip"
          Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative.

     "cubic"
          Cubic interpolation (same as "pchip").

     "spline"
          Cubic spline interpolation--smooth first and second derivatives throughout the curve.

     Adding '*' to the start of any method above forces 'interp1' to assume that X is uniformly spaced, and only 'X(1)' and 'X(2)' are referenced.  This is usually faster, and is never slower.  The default method is "linear".

     If EXTRAP is the string "extrap", then extrapolate values beyond the endpoints using the current METHOD.  If EXTRAP is a number, then replace values beyond the endpoints with that number.  When unspecified, EXTRAP defaults to 'NA'.

     If the string argument "pp" is specified, then XI should not be supplied and 'interp1' returns a piecewise polynomial object.  This object can later be used with 'ppval' to evaluate the interpolation.  There is an equivalence, such that 'ppval (interp1 (X, Y, METHOD, "pp"), XI) == interp1 (X, Y, XI, METHOD, "extrap")'.

     Duplicate points in X specify a discontinuous interpolant.  There may be at most 2 consecutive points with the same value.  If X is increasing, the default discontinuous interpolant is right-continuous.  If X is decreasing, the default discontinuous interpolant is left-continuous.  The continuity condition of the interpolant may be specified by using the options "left" or "right" to select a left-continuous or right-continuous interpolant, respectively.  Discontinuous interpolation is only allowed for "nearest" and "linear" methods; in all other cases, the X-values must be unique.

     An example of the use of 'interp1' is

          xf = [0:0.05:10];
          yf = sin (2*pi*xf/5);
          xp = [0:10];
          yp = sin (2*pi*xp/5);
          lin = interp1 (xp, yp, xf);
          near = interp1 (xp, yp, xf, "nearest");
          pch = interp1 (xp, yp, xf, "pchip");
          spl = interp1 (xp, yp, xf, "spline");
          plot (xf,yf,"r", xf,near,"g", xf,lin,"b", xf,pch,"c", xf,spl,"m",
                xp,yp,"r*");
          legend ("original", "nearest", "linear", "pchip", "spline");

     See also: pchip, spline, interpft, interp2, interp3, interpn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
One-dimensional interpolation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interp2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2196
 -- Function File: ZI = interp2 (X, Y, Z, XI, YI)
 -- Function File: ZI = interp2 (Z, XI, YI)
 -- Function File: ZI = interp2 (Z, N)
 -- Function File: ZI = interp2 (Z)
 -- Function File: ZI = interp2 (..., METHOD)
 -- Function File: ZI = interp2 (..., METHOD, EXTRAP)

     Two-dimensional interpolation.

     Interpolate reference data X, Y, Z to determine ZI at the coordinates XI, YI.  The reference data X, Y can be matrices, as returned by 'meshgrid', in which case the sizes of X, Y, and Z must be equal.  If X, Y are vectors describing a grid then 'length (X) == columns (Z)' and 'length (Y) == rows (Z)'.  In either case the input data must be strictly monotonic.

     If called without X, Y, and just a single reference data matrix Z, the 2-D region 'X = 1:columns (Z), Y = 1:rows (Z)' is assumed.  This saves memory if the grid is regular and the distance between points is not important.

     If called with a single reference data matrix Z and a refinement value N, then perform interpolation over a grid where each original interval has been recursively subdivided N times.  This results in '2^N-1' additional points for every interval in the original grid.  If N is omitted a value of 1 is used.  As an example, the interval [0,1] with 'N==2' results in a refined interval with points at [0, 1/4, 1/2, 3/4, 1].

     The interpolation METHOD is one of:

     "nearest"
          Return the nearest neighbor.

     "linear" (default)
          Linear interpolation from nearest neighbors.

     "pchip"
          Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative.

     "cubic"
          Cubic interpolation (same as "pchip").

     "spline"
          Cubic spline interpolation--smooth first and second derivatives throughout the curve.

     EXTRAP is a scalar number.  It replaces values beyond the endpoints with EXTRAP.  Note that if EXTRAPVAL is used, METHOD must be specified as well.  If EXTRAP is omitted and the METHOD is "spline", then the extrapolated values of the "spline" are used.  Otherwise the default EXTRAP value for any other METHOD is "NA".

     See also: interp1, interp3, interpn, meshgrid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Two-dimensional interpolation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interp3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2261
 -- Function File: VI = interp3 (X, Y, Z, V, XI, YI, ZI)
 -- Function File: VI = interp3 (V, XI, YI, ZI)
 -- Function File: VI = interp3 (V, N)
 -- Function File: VI = interp3 (V)
 -- Function File: VI = interp3 (..., METHOD)
 -- Function File: VI = interp3 (..., METHOD, EXTRAPVAL)

     Three-dimensional interpolation.

     Interpolate reference data X, Y, Z, V to determine VI at the coordinates XI, YI, ZI.  The reference data X, Y, Z can be matrices, as returned by 'meshgrid', in which case the sizes of X, Y, Z, and V must be equal.  If X, Y, Z are vectors describing a cubic grid then 'length (X) == columns (V)', 'length (Y) == rows (V)', and 'length (Z) == size (V, 3)'.  In either case the input data must be strictly monotonic.

     If called without X, Y, Z, and just a single reference data matrix V, the 3-D region 'X = 1:columns (V), Y = 1:rows (V), Z = 1:size (V, 3)' is assumed.  This saves memory if the grid is regular and the distance between points is not important.

     If called with a single reference data matrix V and a refinement value N, then perform interpolation over a 3-D grid where each original interval has been recursively subdivided N times.  This results in '2^N-1' additional points for every interval in the original grid.  If N is omitted a value of 1 is used.  As an example, the interval [0,1] with 'N==2' results in a refined interval with points at [0, 1/4, 1/2, 3/4, 1].

     The interpolation METHOD is one of:

     "nearest"
          Return the nearest neighbor.

     "linear" (default)
          Linear interpolation from nearest neighbors.

     "cubic"
          Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative (not implemented yet).

     "spline"
          Cubic spline interpolation--smooth first and second derivatives throughout the curve.

     EXTRAPVAL is a scalar number.  It replaces values beyond the endpoints with EXTRAPVAL.  Note that if EXTRAPVAL is used, METHOD must be specified as well.  If EXTRAPVAL is omitted and the METHOD is "spline", then the extrapolated values of the "spline" are used.  Otherwise the default EXTRAPVAL value for any other METHOD is "NA".

     See also: interp1, interp2, interpn, meshgrid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Three-dimensional interpolation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
interpft


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 539
 -- Function File: interpft (X, N)
 -- Function File: interpft (X, N, DIM)

     Fourier interpolation.

     If X is a vector then X is resampled with N points.  The data in X is assumed to be equispaced.  If X is a matrix or an N-dimensional array, the interpolation is performed on each column of X.

     If DIM is specified, then interpolate along the dimension DIM.

     'interpft' assumes that the interpolated function is periodic, and so assumptions are made about the endpoints of the interpolation.

     See also: interp1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Fourier interpolation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
interpn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1993
 -- Function File: VI = interpn (X1, X2, ..., V, Y1, Y2, ...)
 -- Function File: VI = interpn (V, Y1, Y2, ...)
 -- Function File: VI = interpn (V, M)
 -- Function File: VI = interpn (V)
 -- Function File: VI = interpn (..., METHOD)
 -- Function File: VI = interpn (..., METHOD, EXTRAPVAL)

     Perform N-dimensional interpolation, where N is at least two.

     Each element of the N-dimensional array V represents a value at a location given by the parameters X1, X2, ..., XN.  The parameters X1, X2, ..., XN are either N-dimensional arrays of the same size as the array V in the "ndgrid" format or vectors.  The parameters Y1, etc.  respect a similar format to X1, etc., and they represent the points at which the array VI is interpolated.

     If X1, ..., XN are omitted, they are assumed to be 'x1 = 1 : size (V, 1)', etc.  If M is specified, then the interpolation adds a point half way between each of the interpolation points.  This process is performed M times.  If only V is specified, then M is assumed to be '1'.

     The interpolation METHOD is one of:

     "nearest"
          Return the nearest neighbor.

     "linear" (default)
          Linear interpolation from nearest neighbors.

     "pchip"
          Piecewise cubic Hermite interpolating polynomial--shape-preserving interpolation with smooth first derivative (not implemented yet).

     "cubic"
          Cubic interpolation (same as "pchip" [not implemented yet]).

     "spline"
          Cubic spline interpolation--smooth first and second derivatives throughout the curve.

     The default method is "linear".

     EXTRAPVAL is a scalar number.  It replaces values beyond the endpoints with EXTRAPVAL.  Note that if EXTRAPVAL is used, METHOD must be specified as well.  If EXTRAPVAL is omitted and the METHOD is "spline", then the extrapolated values of the "spline" are used.  Otherwise the default EXTRAPVAL value for any other METHOD is "NA".

     See also: interp1, interp2, interp3, spline, ndgrid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Perform N-dimensional interpolation, where N is at least two.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
 -- Function File: isdir (F)
     Return true if F is a directory.

     See also: exist, stat, is_absolute_filename, is_rooted_relative_filename.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return true if F is a directory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isequal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
 -- Function File: isequal (X1, X2, ...)
     Return true if all of X1, X2, ... are equal.

     See also: isequaln.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Return true if all of X1, X2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isequaln


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
 -- Function File: isequaln (X1, X2, ...)
     Return true if all of X1, X2, ... are equal under the additional assumption that NaN == NaN (no comparison of NaN placeholders in dataset).

     See also: isequal.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Return true if all of X1, X2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
loadobj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 485
 -- Function File: B = loadobj (A)
     Method of a class to manipulate an object after loading it from a file.

     The function 'loadobj' is called when the object A is loaded using the 'load' function.  An example of the use of 'saveobj' might be to add fields to an object that don't make sense to be saved.  For example:

          function b = loadobj (a)
            b = a;
            b.addmissingfield = addfield (b);
          endfunction

     See also: saveobj, class.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Method of a class to manipulate an object after loading it from a file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
logspace


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 531
 -- Function File: logspace (A, B)
 -- Function File: logspace (A, B, N)
 -- Function File: logspace (A, pi, N)
     Return a row vector with N elements logarithmically spaced from 10^A to 10^B.

     If N is unspecified it defaults to 50.

     If B is equal to pi, the points are between 10^A and pi, _not_ 10^A and 10^pi, in order to be compatible with the corresponding MATLAB function.

     Also for compatibility with MATLAB, return the second argument B if fewer than two values are requested.

     See also: linspace.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return a row vector with N elements logarithmically spaced from 10^A to 10^B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
methods


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 314
 -- Function File: methods (OBJ)
 -- Function File: methods ("CLASSNAME")
 -- Function File: MTDS = methods (...)

     Return a cell array containing the names of the methods for the object OBJ or the named class CLASSNAME.

     OBJ may be an Octave class object or a Java object.

     See also: fieldnames.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Return a cell array containing the names of the methods for the object OBJ or the named class CLASSNAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nargchk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 605
 -- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS)
 -- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS, "string")
 -- Function File: MSGSTRUCT = nargchk (MINARGS, MAXARGS, NARGS, "struct")
     Return an appropriate error message string (or structure) if the number of inputs requested is invalid.

     This is useful for checking to see that the number of input arguments supplied to a function is within an acceptable range.

     *Caution*: 'nargchk' is scheduled for deprecation.  Use 'narginchk' in all new code.

     See also: narginchk, nargoutchk, error, nargin, nargout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Return an appropriate error message string (or structure) if the number of inputs requested is invalid.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
narginchk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
 -- Function File: narginchk (MINARGS, MAXARGS)
     Check for correct number of input arguments.

     Generate an error message if the number of arguments in the calling function is outside the range MINARGS and MAXARGS.  Otherwise, do nothing.

     Both MINARGS and MAXARGS must be scalar numeric values.  Zero, Inf, and negative values are all allowed, and MINARGS and MAXARGS may be equal.

     Note that this function evaluates 'nargin' on the caller.

     See also: nargoutchk, error, nargout, nargin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Check for correct number of input arguments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nargoutchk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1032
 -- Function File: nargoutchk (MINARGS, MAXARGS)
 -- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS)
 -- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS, "string")
 -- Function File: MSGSTRUCT = nargoutchk (MINARGS, MAXARGS, NARGS, "struct")
     Check for correct number of output arguments.

     In the first form, return an error if the number of arguments is not between MINARGS and MAXARGS.  Otherwise, do nothing.  Note that this function evaluates the value of 'nargout' on the caller so its value must have not been tampered with.

     Both MINARGS and MAXARGS must be numeric scalars.  Zero, Inf, and negative are all valid, and they can have the same value.

     For backwards compatibility, the other forms return an appropriate error message string (or structure) if the number of outputs requested is invalid.

     This is useful for checking to that the number of output arguments supplied to a function is within an acceptable range.

     See also: narginchk, error, nargout, nargin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Check for correct number of output arguments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nextpow2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 240
 -- Function File: nextpow2 (X)
     Compute the exponent for the smallest power of two larger than the input.

     For each element in the input array X, return the first integer N such that 2^n >= abs (x).

     See also: pow2, log2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Compute the exponent for the smallest power of two larger than the input.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nthargout


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1255
 -- Function File: nthargout (N, FUNC, ...)
 -- Function File: nthargout (N, NTOT, FUNC, ...)
     Return the Nth output argument of the function specified by the function handle or string FUNC.

     Any additional arguments are passed directly to FUNC.  The total number of arguments to call FUNC with can be passed in NTOT; by default NTOT is N.  The input N can also be a vector of indices of the output, in which case the output will be a cell array of the requested output arguments.

     The intended use 'nthargout' is to avoid intermediate variables.  For example, when finding the indices of the maximum entry of a matrix, the following two compositions of nthargout

          M = magic (5);
          cell2mat (nthargout ([1, 2], @ind2sub, size (M),
                               nthargout (2, @max, M(:))))
          => 5   3

     are completely equivalent to the following lines:

          M = magic (5);
          [~, idx] = max (M(:));
          [i, j] = ind2sub (size (M), idx);
          [i, j]
          => 5   3

     It can also be helpful to have all output arguments in a single cell in the following manner:

          USV = nthargout ([1:3], @svd, hilb (5));

     See also: nargin, nargout, varargin, varargout, isargout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return the Nth output argument of the function specified by the function handle or string FUNC.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
num2str


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1433
 -- Function File: num2str (X)
 -- Function File: num2str (X, PRECISION)
 -- Function File: num2str (X, FORMAT)
     Convert a number (or array) to a string (or a character array).

     The optional second argument may either give the number of significant digits (PRECISION) to be used in the output or a format template string (FORMAT) as in 'sprintf' (*note Formatted Output::).  'num2str' can also process complex numbers.

     Examples:

          num2str (123.456)
               => "123.46"

          num2str (123.456, 4)
               => "123.5"

          s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
               => s =
                  1.0  1.3
                  3.0  3.6
          whos s
               =>
                Attr Name        Size                     Bytes  Class
                ==== ====        ====                     =====  =====
                     s           2x8                         16  char

          num2str (1.234 + 27.3i)
               => "1.234+27.3i"

     Notes:

     For MATLAB compatibility, leading spaces are stripped before returning the string.

     The 'num2str' function is not very flexible.  For better control over the results, use 'sprintf' (*note Formatted Output::).

     For complex X, the format string may only contain one output conversion specification and nothing else.  Otherwise, results will be unpredictable.

     See also: sprintf, int2str, mat2str.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Convert a number (or array) to a string (or a character array).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
pol2cart


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 796
 -- Function File: [X, Y] = pol2cart (THETA, R)
 -- Function File: [X, Y, Z] = pol2cart (THETA, R, Z)
 -- Function File: [X, Y] = pol2cart (P)
 -- Function File: [X, Y, Z] = pol2cart (P)
 -- Function File: C = pol2cart (...)
     Transform polar or cylindrical coordinates to Cartesian coordinates.

     The inputs THETA, R, (and Z) must be the same shape, or scalar.  If called with a single matrix argument then each row of P represents the polar/(cylindrical) coordinate (THETA, R (, Z)).

     THETA describes the angle relative to the positive x-axis.

     R is the distance to the z-axis (0, 0, z).

     If only a single return argument is requested then return a matrix C where each row represents one Cartesian coordinate (X, Y (, Z)).

     See also: cart2pol, sph2cart, cart2sph.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Transform polar or cylindrical coordinates to Cartesian coordinates.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
polyarea


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 478
 -- Function File: polyarea (X, Y)
 -- Function File: polyarea (X, Y, DIM)

     Determine area of a polygon by triangle method.

     The variables X and Y define the vertex pairs, and must therefore have the same shape.  They can be either vectors or arrays.  If they are arrays then the columns of X and Y are treated separately and an area returned for each.

     If the optional DIM argument is given, then 'polyarea' works along this dimension of the arrays X and Y.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Determine area of a polygon by triangle method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
postpad


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 606
 -- Function File: postpad (X, L)
 -- Function File: postpad (X, L, C)
 -- Function File: postpad (X, L, C, DIM)
     Append the scalar value C to the vector X until it is of length L.  If C is not given, a value of 0 is used.

     If 'length (X) > L', elements from the end of X are removed until a vector of length L is obtained.

     If X is a matrix, elements are appended or removed from each row.

     If the optional argument DIM is given, operate along this dimension.

     If DIM is larger than the dimensions of X, the result will have DIM dimensions.

     See also: prepad, cat, resize.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Append the scalar value C to the vector X until it is of length L.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
prepad


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 612
 -- Function File: prepad (X, L)
 -- Function File: prepad (X, L, C)
 -- Function File: prepad (X, L, C, DIM)
     Prepend the scalar value C to the vector X until it is of length L.  If C is not given, a value of 0 is used.

     If 'length (X) > L', elements from the beginning of X are removed until a vector of length L is obtained.

     If X is a matrix, elements are prepended or removed from each row.

     If the optional argument DIM is given, operate along this dimension.

     If DIM is larger than the dimensions of X, the result will have DIM dimensions.

     See also: postpad, cat, resize.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Prepend the scalar value C to the vector X until it is of length L.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
profexplore


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 460
 -- Function File: profexplore ()
 -- Function File: profexplore (DATA)
     Interactively explore hierarchical profiler output.

     Assuming DATA is the structure with profile data returned by 'profile ("info")', this command opens an interactive prompt that can be used to explore the call-tree.  Type 'help' to get a list of possible commands.  If DATA is omitted, 'profile ("info")' is called and used in its place.

     See also: profile, profshow.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Interactively explore hierarchical profiler output.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
profile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1474
 -- Command: profile on
 -- Command: profile off
 -- Command: profile resume
 -- Command: profile clear
 -- Function File: S = profile ("status")
 -- Function File: T = profile ("info")
     Control the built-in profiler.

     'profile on'
          Start the profiler, clearing all previously collected data if there is any.

     'profile off'
          Stop profiling.  The collected data can later be retrieved and examined with 'T = profile ("info")'.

     'profile clear'
          Clear all collected profiler data.

     'profile resume'
          Restart profiling without clearing the old data.  All newly collected statistics are added to the existing ones.

     'S = profile ("status")'
          Return a structure with information about the current status of the profiler.  At the moment, the only field is 'ProfilerStatus' which is either "on" or "off".

     'T = profile ("info")'
          Return the collected profiling statistics in the structure T.  The flat profile is returned in the field 'FunctionTable' which is an array of structures, each entry corresponding to a function which was called and for which profiling statistics are present.  In addition, the field 'Hierarchical' contains the hierarchical call tree.  Each node has an index into the 'FunctionTable' identifying the function it corresponds to as well as data fields for number of calls and time spent at this level in the call tree.

          See also: profshow, profexplore.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Control the built-in profiler.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
profshow


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 695
 -- Function File: profshow (DATA)
 -- Function File: profshow (DATA, N)
 -- Function File: profshow ()
 -- Function File: profshow (N)
     Display flat per-function profiler results.

     Print out profiler data (execution time, number of calls) for the most critical N functions.  The results are sorted in descending order by the total time spent in each function.  If N is unspecified it defaults to 20.

     The input DATA is the structure returned by 'profile ("info")'.  If unspecified, 'profshow' will use the current profile dataset.

     The attribute column displays 'R' for recursive functions, and is blank for all other function types.

     See also: profexplore, profile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Display flat per-function profiler results.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
quadgk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3764
 -- Function File: Q = quadgk (F, A, B)
 -- Function File: Q = quadgk (F, A, B, ABSTOL)
 -- Function File: Q = quadgk (F, A, B, ABSTOL, TRACE)
 -- Function File: Q = quadgk (F, A, B, PROP, VAL, ...)
 -- Function File: [Q, ERR] = quadgk (...)

     Numerically evaluate the integral of F from A to B using adaptive Gauss-Konrod quadrature.

     F is a function handle, inline function, or string containing the name of the function to evaluate.  The function F must be vectorized and return a vector of output values when given a vector of input values.

     A and B are the lower and upper limits of integration.  Either or both limits may be infinite or contain weak end singularities.  Variable transformation will be used to treat any infinite intervals and weaken the singularities.  For example:

          quadgk (@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)

     Note that the formulation of the integrand uses the element-by-element operator './' and all user functions to 'quadgk' should do the same.

     The optional argument TOL defines the absolute tolerance used to stop the integration procedure.  The default value is 1e-10.

     The algorithm used by 'quadgk' involves subdividing the integration interval and evaluating each subinterval.  If TRACE is true then after computing each of these partial integrals display: (1) the number of subintervals at this step, (2) the current estimate of the error ERR, (3) the current estimate for the integral Q.

     Alternatively, properties of 'quadgk' can be passed to the function as pairs "PROP", VAL.  Valid properties are

     'AbsTol'
          Define the absolute error tolerance for the quadrature.  The default absolute tolerance is 1e-10.

     'RelTol'
          Define the relative error tolerance for the quadrature.  The default relative tolerance is 1e-5.

     'MaxIntervalCount'
          'quadgk' initially subdivides the interval on which to perform the quadrature into 10 intervals.  Subintervals that have an unacceptable error are subdivided and re-evaluated.  If the number of subintervals exceeds 650 subintervals at any point then a poor convergence is signaled and the current estimate of the integral is returned.  The property "MaxIntervalCount" can be used to alter the number of subintervals that can exist before exiting.

     'WayPoints'
          Discontinuities in the first derivative of the function to integrate can be flagged with the "WayPoints" property.  This forces the ends of a subinterval to fall on the breakpoints of the function and can result in significantly improved estimation of the error in the integral, faster computation, or both.  For example,

               quadgk (@(x) abs (1 - x.^2), 0, 2, "Waypoints", 1)

          signals the breakpoint in the integrand at 'X = 1'.

     'Trace'
          If logically true 'quadgk' prints information on the convergence of the quadrature at each iteration.

     If any of A, B, or WAYPOINTS is complex then the quadrature is treated as a contour integral along a piecewise continuous path defined by the above.  In this case the integral is assumed to have no edge singularities.  For example,

          quadgk (@(z) log (z), 1+1i, 1+1i, "WayPoints",
                  [1-1i, -1,-1i, -1+1i])

     integrates 'log (z)' along the square defined by '[1+1i, 1-1i, -1-1i, -1+1i]'.

     The result of the integration is returned in Q.

     ERR is an approximate bound on the error in the integral 'abs (Q - I)', where I is the exact value of the integral.

     Reference: L.F. Shampine, '"Vectorized adaptive quadrature in MATLAB"', Journal of Computational and Applied Mathematics, pp.  131-140, Vol 211, Issue 2, Feb 2008.

     See also: quad, quadv, quadl, quadcc, trapz, dblquad, triplequad.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Numerically evaluate the integral of F from A to B using adaptive Gauss-Konrod quadrature.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
quadl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1403
 -- Function File: Q = quadl (F, A, B)
 -- Function File: Q = quadl (F, A, B, TOL)
 -- Function File: Q = quadl (F, A, B, TOL, TRACE)
 -- Function File: Q = quadl (F, A, B, TOL, TRACE, P1, P2, ...)

     Numerically evaluate the integral of F from A to B using an adaptive Lobatto rule.

     F is a function handle, inline function, or string containing the name of the function to evaluate.  The function F must be vectorized and return a vector of output values when given a vector of input values.

     A and B are the lower and upper limits of integration.  Both limits must be finite.

     The optional argument TOL defines the relative tolerance with which to perform the integration.  The default value is 'eps'.

     The algorithm used by 'quadl' involves recursively subdividing the integration interval.  If TRACE is defined then for each subinterval display: (1) the left end of the subinterval, (2) the length of the subinterval, (3) the approximation of the integral over the subinterval.

     Additional arguments P1, etc., are passed directly to the function F.  To use default values for TOL and TRACE, one may pass empty matrices ([]).

     Reference: W. Gander and W. Gautschi, 'Adaptive Quadrature - Revisited', BIT Vol.  40, No.  1, March 2000, pp.  84-101.  <http://www.inf.ethz.ch/personal/gander/>

     See also: quad, quadv, quadgk, quadcc, trapz, dblquad, triplequad.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Numerically evaluate the integral of F from A to B using an adaptive Lobatto rule.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
quadv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1714
 -- Function File: Q = quadv (F, A, B)
 -- Function File: Q = quadv (F, A, B, TOL)
 -- Function File: Q = quadv (F, A, B, TOL, TRACE)
 -- Function File: Q = quadv (F, A, B, TOL, TRACE, P1, P2, ...)
 -- Function File: [Q, NFUN] = quadv (...)

     Numerically evaluate the integral of F from A to B using an adaptive Simpson's rule.

     F is a function handle, inline function, or string containing the name of the function to evaluate.  'quadv' is a vectorized version of 'quad' and the function defined by F must accept a scalar or vector as input and return a scalar, vector, or array as output.

     A and B are the lower and upper limits of integration.  Both limits must be finite.

     The optional argument TOL defines the tolerance used to stop the adaptation procedure.  The default value is 1e-6.

     The algorithm used by 'quadv' involves recursively subdividing the integration interval and applying Simpson's rule on each subinterval.  If TRACE is true then after computing each of these partial integrals display: (1) the total number of function evaluations, (2) the left end of the subinterval, (3) the length of the subinterval, (4) the approximation of the integral over the subinterval.

     Additional arguments P1, etc., are passed directly to the function F.  To use default values for TOL and TRACE, one may pass empty matrices ([]).

     The result of the integration is returned in Q

     NFUN indicates the number of function evaluations that were made.

     Note: 'quadv' is written in Octave's scripting language and can be used recursively in 'dblquad' and 'triplequad', unlike the 'quad' function.

     See also: quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Numerically evaluate the integral of F from A to B using an adaptive Simpson's rule.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1226
 -- Function File: randi (IMAX)
 -- Function File: randi (IMAX, N)
 -- Function File: randi (IMAX, M, N, ...)
 -- Function File: randi ([IMIN IMAX], ...)
 -- Function File: randi (..., "CLASS")
     Return random integers in the range 1:IMAX.

     Additional arguments determine the shape of the return matrix.  When no arguments are specified a single random integer is returned.  If one argument N is specified then a square matrix (N x N) is returned.  Two or more arguments will return a multi-dimensional matrix (M x N x ...).

     The integer range may optionally be described by a two element matrix with a lower and upper bound in which case the returned integers will be on the interval [IMIN, IMAX].

     The optional argument CLASS will return a matrix of the requested type.  The default is "double".

     The following example returns 150 integers in the range 1-10.

          ri = randi (10, 150, 1)

     Implementation Note: 'randi' relies internally on 'rand' which uses class "double" to represent numbers.  This limits the maximum integer (IMAX) and range (IMAX - IMIN) to the value returned by the 'bitmax' function.  For IEEE floating point numbers this value is 2^{53} - 1.

     See also: rand.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return random integers in the range 1:IMAX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
rat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 488
 -- Function File: S = rat (X, TOL)
 -- Function File: [N, D] = rat (X, TOL)

     Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion.

     For example:

          rat (pi) = 3 + 1/(7 + 1/16) = 355/113
          rat (e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))
                  = 1457/536

     When called with two output arguments return the numerator and denominator separately as two matrices.

     See also: rats.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
repmat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 514
 -- Function File: repmat (A, M)
 -- Function File: repmat (A, M, N)
 -- Function File: repmat (A, M, N, P ...)
 -- Function File: repmat (A, [M N])
 -- Function File: repmat (A, [M N P ...])
     Form a block matrix of size M by N, with a copy of matrix A as each element.

     If N is not specified, form an M by M block matrix.  For copying along more than two dimensions, specify the number of times to copy across each dimension M, N, P, ..., in a vector in the second argument.

     See also: repelems.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Form a block matrix of size M by N, with a copy of matrix A as each element.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rot90


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 902
 -- Function File: rot90 (A)
 -- Function File: rot90 (A, K)
     Rotate array by 90 degree increments.

     Return a copy of A with the elements rotated counterclockwise in 90-degree increments.

     The second argument is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1).  Negative values of K rotate the matrix in a clockwise direction.  For example,

          rot90 ([1, 2; 3, 4], -1)
              =>  3  1
                  4  2

     rotates the given matrix clockwise by 90 degrees.  The following are all equivalent statements:

          rot90 ([1, 2; 3, 4], -1)
          rot90 ([1, 2; 3, 4], 3)
          rot90 ([1, 2; 3, 4], 7)

     The rotation is always performed on the plane of the first two dimensions, i.e., rows and columns.  To perform a rotation on any other plane, use 'rotdim'.

     See also: rotdim, fliplr, flipud, flip.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Rotate array by 90 degree increments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rotdim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1037
 -- Function File: rotdim (X)
 -- Function File: rotdim (X, N)
 -- Function File: rotdim (X, N, PLANE)
     Return a copy of X with the elements rotated counterclockwise in 90-degree increments.

     The second argument N is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1).  Negative values of N rotate the matrix in a clockwise direction.

     The third argument is also optional and defines the plane of the rotation.  If present, PLANE is a two element vector containing two different valid dimensions of the matrix.  When PLANE is not given the first two non-singleton dimensions are used.

     For example,

          rotdim ([1, 2; 3, 4], -1, [1, 2])
               =>  3  1
                   4  2

     rotates the given matrix clockwise by 90 degrees.  The following are all equivalent statements:

          rotdim ([1, 2; 3, 4], -1, [1, 2])
          rotdim ([1, 2; 3, 4], 3, [1, 2])
          rotdim ([1, 2; 3, 4], 7, [1, 2])

     See also: rot90, fliplr, flipud, flip.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return a copy of X with the elements rotated counterclockwise in 90-degree increments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
saveobj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 642
 -- Function File: B = saveobj (A)
     Method of a class to manipulate an object prior to saving it to a file.

     The function 'saveobj' is called when the object A is saved using the 'save' function.  An example of the use of 'saveobj' might be to remove fields of the object that don't make sense to be saved or it might be used to ensure that certain fields of the object are initialized before the object is saved.  For example:

          function b = saveobj (a)
            b = a;
            if (isempty (b.field))
               b.field = initfield (b);
            endif
          endfunction

     See also: loadobj, class.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Method of a class to manipulate an object prior to saving it to a file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
shift


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 287
 -- Function File: shift (X, B)
 -- Function File: shift (X, B, DIM)
     If X is a vector, perform a circular shift of length B of the elements of X.

     If X is a matrix, do the same for each column of X.

     If the optional DIM argument is given, operate along this dimension.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
If X is a vector, perform a circular shift of length B of the elements of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
shiftdim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 887
 -- Function File: Y = shiftdim (X, N)
 -- Function File: [Y, NS] = shiftdim (X)
     Shift the dimensions of X by N, where N must be an integer scalar.

     When N is positive, the dimensions of X are shifted to the left, with the leading dimensions circulated to the end.  If N is negative, then the dimensions of X are shifted to the right, with N leading singleton dimensions added.

     Called with a single argument, 'shiftdim', removes the leading singleton dimensions, returning the number of dimensions removed in the second output argument NS.

     For example:

          x = ones (1, 2, 3);
          size (shiftdim (x, -1))
             => [1, 1, 2, 3]
          size (shiftdim (x, 1))
             => [2, 3]
          [b, ns] = shiftdim (x)
             => b = [1, 1, 1; 1, 1, 1]
             => ns = 1

     See also: reshape, permute, ipermute, circshift, squeeze.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Shift the dimensions of X by N, where N must be an integer scalar.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sortrows


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 389
 -- Function File: [S, I] = sortrows (A)
 -- Function File: [S, I] = sortrows (A, C)
     Sort the rows of the matrix A according to the order of the columns specified in C.

     If C is omitted, a lexicographical sort is used.  By default ascending order is used however if elements of C are negative then the corresponding column is sorted in descending order.

     See also: sort.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Sort the rows of the matrix A according to the order of the columns specified in C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sph2cart


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 733
 -- Function File: [X, Y, Z] = sph2cart (THETA, PHI, R)
 -- Function File: [X, Y, Z] = sph2cart (S)
 -- Function File: C = sph2cart (...)
     Transform spherical coordinates to Cartesian coordinates.

     The inputs THETA, PHI, and R must be the same shape, or scalar.  If called with a single matrix argument then each row of S represents the spherical coordinate (THETA, PHI, R).

     THETA describes the angle relative to the positive x-axis.

     PHI is the angle relative to the xy-plane.

     R is the distance to the origin (0, 0, 0).

     If only a single return argument is requested then return a matrix C where each row represents one Cartesian coordinate (X, Y, Z).

     See also: cart2sph, pol2cart, cart2pol.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Transform spherical coordinates to Cartesian coordinates.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
structfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1900
 -- Function File: structfun (FUNC, S)
 -- Function File: [A, ...] = structfun (...)
 -- Function File: structfun (..., "ErrorHandler", ERRFUNC)
 -- Function File: structfun (..., "UniformOutput", VAL)

     Evaluate the function named NAME on the fields of the structure S.  The fields of S are passed to the function FUNC individually.

     'structfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string).  In the case of a character string argument, the function must accept a single argument named X, and it must return a string value.  If the function returns more than one argument, they are returned as separate output variables.

     If the parameter "UniformOutput" is set to true (the default), then the function must return a single element which will be concatenated into the return value.  If "UniformOutput" is false, the outputs are placed into a structure with the same fieldnames as the input structure.

          s.name1 = "John Smith";
          s.name2 = "Jill Jones";
          structfun (@(x) regexp (x, '(\w+)$', "matches"){1}, s,
                     "UniformOutput", false)
          =>
             {
               name1 = Smith
               name2 = Jones
             }

     Given the parameter "ErrorHandler", ERRFUNC defines a function to call in case FUNC generates an error.  The form of the function is

          function [...] = errfunc (SE, ...)

     where there is an additional input argument to ERRFUNC relative to FUNC, given by SE.  This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error.  For an example on how to use an error handler, *note cellfun: XREFcellfun.

     See also: cellfun, arrayfun, spfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Evaluate the function named NAME on the fields of the structure S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
subsindex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 829
 -- Function File: IDX = subsindex (A)
     Convert an object to an index vector.

     When A is a class object defined with a class constructor, then 'subsindex' is the overloading method that allows the conversion of this class object to a valid indexing vector.  It is important to note that 'subsindex' must return a zero-based real integer vector of the class "double".  For example, if the class constructor

          function b = myclass (a)
            b = class (struct ("a", a), "myclass");
          endfunction

     then the 'subsindex' function

          function idx = subsindex (a)
            idx = double (a.a) - 1.0;
          endfunction

     can then be used as follows

          a = myclass (1:4);
          b = 1:10;
          b(a)
          => 1  2  3  4

     See also: class, subsref, subsasgn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert an object to an index vector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
trapz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1239
 -- Function File: Q = trapz (Y)
 -- Function File: Q = trapz (X, Y)
 -- Function File: Q = trapz (..., DIM)

     Numerically evaluate the integral of points Y using the trapezoidal method.

     'trapz (Y)' computes the integral of Y along the first non-singleton dimension.  When the argument X is omitted an equally spaced X vector with unit spacing (1) is assumed.  'trapz (X, Y)' evaluates the integral with respect to the spacing in X and the values in Y.  This is useful if the points in Y have been sampled unevenly.

     If the optional DIM argument is given, operate along this dimension.

     Application Note: If X is not specified then unit spacing will be used.  To scale the integral to the correct value you must multiply by the actual spacing value (deltaX). As an example, the integral of x^3 over the range [0, 1] is x^4/4 or 0.25.  The following code uses 'trapz' to calculate the integral in three different ways.

          x = 0:0.1:1;
          y = x.^3;
          q = trapz (y)
            => q = 2.525   # No scaling
          q * 0.1
            => q = 0.2525  # Approximation to integral by scaling
          trapz (x, y)
            => q = 0.2525  # Same result by specifying X

     See also: cumtrapz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Numerically evaluate the integral of points Y using the trapezoidal method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
triplequad


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1291
 -- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB)
 -- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL)
 -- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL, QUADF)
 -- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL, QUADF, ...)
     Numerically evaluate the triple integral of F.

     F is a function handle, inline function, or string containing the name of the function to evaluate.  The function F must have the form w = f(x,y,z) where either X or Y is a vector and the remaining inputs are scalars.  It should return a vector of the same length and orientation as X or Y.

     XA, YA, ZA and XB, YB, ZB are the lower and upper limits of integration for x, y, and z respectively.  The underlying integrator determines whether infinite bounds are accepted.

     The optional argument TOL defines the absolute tolerance used to integrate each sub-integral.  The default value is 1e-6.

     The optional argument QUADF specifies which underlying integrator function to use.  Any choice but 'quad' is available and the default is 'quadcc'.

     Additional arguments, are passed directly to F.  To use the default value for TOL or QUADF one may pass ':' or an empty matrix ([]).

     See also: dblquad, quad, quadv, quadl, quadgk, quadcc, trapz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Numerically evaluate the triple integral of F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
validateattributes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4153
 -- Function File: validateattributes (A, CLASSES, ATTRIBUTES)
 -- Function File: validateattributes (A, CLASSES, ATTRIBUTES, ARG_IDX)
 -- Function File: validateattributes (A, CLASSES, ATTRIBUTES, FUNC_NAME)
 -- Function File: validateattributes (A, CLASSES, ATTRIBUTES, FUNC_NAME, ARG_NAME)
 -- Function File: validateattributes (A, CLASSES, ATTRIBUTES, FUNC_NAME, ARG_NAME, ARG_IDX)
     Check validity of input argument.

     Confirms that the argument A is valid by belonging to one of CLASSES, and holding all of the ATTRIBUTES.  If it does not, an error is thrown, with a message formatted accordingly.  The error message can be made further complete by the function name FUN_NAME, the argument name ARG_NAME, and its position in the input ARG_IDX.

     CLASSES must be a cell array of strings (an empty cell array is allowed) with the name of classes (remember that a class name is case sensitive).  In addition to the class name, the following categories names are also valid:

     "float"
          Floating point value comprising classes "double" and "single".

     "integer"
          Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.

     "numeric"
          Numeric value comprising either a floating point or integer value.

     ATTRIBUTES must be a cell array with names of checks for A.  Some of them require an additional value to be supplied right after the name (see details for each below).

     "<="
          All values are less than or equal to the following value in ATTRIBUTES.

     "<"
          All values are less than the following value in ATTRIBUTES.

     ">="
          All values are greater than or equal to the following value in ATTRIBUTES.

     ">"
          All values are greater than the following value in ATTRIBUTES.

     "2d"
          A 2-dimensional matrix.  Note that vectors and empty matrices have 2 dimensions, one of them being of length 1, or both length 0.

     "3d"
          Has no more than 3 dimensions.  A 2-dimensional matrix is a 3-D matrix whose 3rd dimension is of length 1.

     "binary"
          All values are either 1 or 0.

     "column"
          Values are arranged in a single column.

     "decreasing"
          No value is NAN, and each is less than the preceding one.

     "even"
          All values are even numbers.

     "finite"
          All values are finite.

     "increasing"
          No value is NAN, and each is greater than the preceding one.

     "integer"
          All values are integer.  This is different than using 'isinteger' which only checks its an integer type.  This checks that each value in A is an integer value, i.e., it has no decimal part.

     "ncols"
          Has exactly as many columns as the next value in ATTRIBUTES.

     "ndims"
          Has exactly as many dimensions as the next value in ATTRIBUTES.

     "nondecreasing"
          No value is NAN, and each is greater than or equal to the preceding one.

     "nonempty"
          It is not empty.

     "nonincreasing"
          No value is NAN, and each is less than or equal to the preceding one.

     "nonnan"
          No value is a 'NaN'.

     "non-negative"
          All values are non negative.

     "nonsparse"
          It is not a sparse matrix.

     "nonzero"
          No value is zero.

     "nrows"
          Has exactly as many rows as the next value in ATTRIBUTES.

     "numel"
          Has exactly as many elements as the next value in ATTRIBUTES.

     "odd"
          All values are odd numbers.

     "positive"
          All values are positive.

     "real"
          It is a non-complex matrix.

     "row"
          Values are arranged in a single row.

     "scalar"
          It is a scalar.

     "size"
          Its size has length equal to the values of the next in ATTRIBUTES.  The next value must is an array with the length for each dimension.  To ignore the check for a certain dimension, the value of 'NaN' can be used.

     "square"
          Is a square matrix.

     "vector"
          Values are arranged in a single vector (column or vector).

     See also: isa, validatestring, inputParser.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Check validity of input argument.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
convhull


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 877
 -- Function File: H = convhull (X, Y)
 -- Function File: H = convhull (X, Y, OPTIONS)
     Compute the convex hull of the set of points defined by the arrays X and Y.  The hull H is an index vector into the set of points and specifies which points form the enclosing hull.

     An optional third argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command.  See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.  The default option is '{"Qt"}'.

     If OPTIONS is not present or '[]' then the default arguments are used.  Otherwise, OPTIONS replaces the default argument list.  To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS.  Use a null string to pass no arguments.

     See also: convhulln, delaunay, voronoi.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute the convex hull of the set of points defined by the arrays X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
delaunayn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1454
 -- Function File: T = delaunayn (PTS)
 -- Function File: T = delaunayn (PTS, OPTIONS)
     Compute the Delaunay triangulation for an N-dimensional set of points.

     The Delaunay triangulation is a tessellation of the convex hull of a set of points such that no N-sphere defined by the N-triangles contains any other points from the set.

     The input matrix PTS of size [n, dim] contains n points in a space of dimension dim.  The return matrix T has size [m, dim+1].  Each row of T contains a set of indices back into the original set of points PTS which describes a simplex of dimension dim.  For example, a 2-D simplex is a triangle and 3-D simplex is a tetrahedron.

     An optional second argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command.  See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.  The default options depend on the dimension of the input:

        * 2-D and 3-D: OPTIONS = '{"Qt", "Qbb", "Qc", "Qz"}'

        * 4-D and higher: OPTIONS = '{"Qt", "Qbb", "Qc", "Qx"}'

     If OPTIONS is not present or '[]' then the default arguments are used.  Otherwise, OPTIONS replaces the default argument list.  To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS.  Use a null string to pass no arguments.

     See also: delaunay, convhulln, voronoin, trimesh, tetramesh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Compute the Delaunay triangulation for an N-dimensional set of points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
delaunay


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2226
 -- Function File: TRI = delaunay (X, Y)
 -- Function File: TETR = delaunay (X, Y, Z)
 -- Function File: TRI = delaunay (X)
 -- Function File: TRI = delaunay (..., OPTIONS)
     Compute the Delaunay triangulation for a 2-D or 3-D set of points.

     For 2-D sets, the return value TRI is a set of triangles which satisfies the Delaunay circum-circle criterion, i.e., only a single data point from [X, Y] is within the circum-circle of the defining triangle.  The set of triangles TRI is a matrix of size [n, 3].  Each row defines a triangle and the three columns are the three vertices of the triangle.  The value of 'TRI(i,j)' is an index into X and Y for the location of the j-th vertex of the i-th triangle.

     For 3-D sets, the return value TETR is a set of tetrahedrons which satisfies the Delaunay circum-circle criterion, i.e., only a single data point from [X, Y, Z] is within the circum-circle of the defining tetrahedron.  The set of tetrahedrons is a matrix of size [n, 4].  Each row defines a tetrahedron and the four columns are the four vertices of the tetrahedron.  The value of 'TETR(i,j)' is an index into X, Y, Z for the location of the j-th vertex of the i-th tetrahedron.

     The input X may also be a matrix with two or three columns where the first column contains x-data, the second y-data, and the optional third column contains z-data.

     The optional last argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command.  See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.  The default options are '{"Qt", "Qbb", "Qc", "Qz"}'.

     If OPTIONS is not present or '[]' then the default arguments are used.  Otherwise, OPTIONS replaces the default argument list.  To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS.  Use a null string to pass no arguments.

          x = rand (1, 10);
          y = rand (1, 10);
          tri = delaunay (x, y);
          triplot (tri, x, y);
          hold on;
          plot (x, y, "r*");
          axis ([0,1,0,1]);

     See also: delaunayn, convhull, voronoi, triplot, trimesh, tetramesh, trisurf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Compute the Delaunay triangulation for a 2-D or 3-D set of points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dsearch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 305
 -- Function File: IDX = dsearch (X, Y, TRI, XI, YI)
 -- Function File: IDX = dsearch (X, Y, TRI, XI, YI, S)
     Return the index IDX of the closest point in 'X, Y' to the elements '[XI(:), YI(:)]'.

     The variable S is accepted for compatibility but is ignored.

     See also: dsearchn, tsearch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return the index IDX of the closest point in 'X, Y' to the elements '[XI(:), YI(:)]'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dsearchn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
 -- Function File: IDX = dsearchn (X, TRI, XI)
 -- Function File: IDX = dsearchn (X, TRI, XI, OUTVAL)
 -- Function File: IDX = dsearchn (X, XI)
 -- Function File: [IDX, D] = dsearchn (...)
     Return the index IDX of the closest point in X to the elements XI.

     If OUTVAL is supplied, then the values of XI that are not contained within one of the simplices TRI are set to OUTVAL.  Generally, TRI is returned from 'delaunayn (X)'.

     See also: dsearch, tsearch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Return the index IDX of the closest point in X to the elements XI.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
griddata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 647
 -- Function File: ZI = griddata (X, Y, Z, XI, YI)
 -- Function File: ZI = griddata (X, Y, Z, XI, YI, METHOD)
 -- Function File: [XI, YI, ZI] = griddata (...)

     Generate a regular mesh from irregular data using interpolation.

     The function is defined by 'Z = f (X, Y)'.  Inputs 'X, Y, Z' are vectors of the same length or 'X, Y' are vectors and 'Z' is matrix.

     The interpolation points are all '(XI, YI)'.  If XI, YI are vectors then they are made into a 2-D mesh.

     The interpolation method can be "nearest", "cubic" or "linear".  If method is omitted it defaults to "linear".

     See also: griddata3, griddatan, delaunay.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
griddata3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 752
 -- Function File: VI = griddata3 (X, Y, Z, V, XI, YI, ZI)
 -- Function File: VI = griddata3 (X, Y, Z, V, XI, YI, ZI, METHOD)
 -- Function File: VI = griddata3 (X, Y, Z, V, XI, YI, ZI, METHOD, OPTIONS)

     Generate a regular mesh from irregular data using interpolation.

     The function is defined by 'V = f (X, Y, Z)'.  The interpolation points are specified by XI, YI, ZI.

     The interpolation method can be "nearest" or "linear".  If method is omitted it defaults to "linear".

     The optional argument OPTIONS is passed directly to Qhull when computing the Delaunay triangulation used for interpolation.  See 'delaunayn' for information on the defaults and how to pass different values.

     See also: griddata, griddatan, delaunayn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
griddatan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 687
 -- Function File: YI = griddatan (X, Y, XI)
 -- Function File: YI = griddatan (X, Y, XI, METHOD)
 -- Function File: YI = griddatan (X, Y, XI, METHOD, OPTIONS)

     Generate a regular mesh from irregular data using interpolation.

     The function is defined by 'Y = f (X)'.  The interpolation points are all XI.

     The interpolation method can be "nearest" or "linear".  If method is omitted it defaults to "linear".

     The optional argument OPTIONS is passed directly to Qhull when computing the Delaunay triangulation used for interpolation.  See 'delaunayn' for information on the defaults and how to pass different values.

     See also: griddata, griddata3, delaunayn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
inpolygon


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
 -- Function File: IN = inpolygon (X, Y, XV, YV)
 -- Function File: [IN, ON] = inpolygon (X, Y, XV, YV)

     For a polygon defined by vertex points '(XV, YV)', return true if the points '(X, Y)' are inside (or on the boundary) of the polygon; Otherwise, return false.

     The input variables X and Y, must have the same dimension.

     The optional output ON returns true if the points are exactly on the polygon edge, and false otherwise.

     See also: delaunay.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 158
For a polygon defined by vertex points '(XV, YV)', return true if the points '(X, Y)' are inside (or on the boundary) of the polygon; Otherwise, return false.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rectint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 922
 -- Function File: AREA = rectint (A, B)
     Compute area or volume of intersection of rectangles or N-D boxes.

     Compute the area of intersection of rectangles in A and rectangles in B.  N-dimensional boxes are supported in which case the volume, or hypervolume is computed according to the number of dimensions.

     2-dimensional rectangles are defined as '[xpos ypos width height]' where xpos and ypos are the position of the bottom left corner.  Higher dimensions are supported where the coordinates for the minimum value of each dimension follow the length of the box in that dimension, e.g., '[xpos ypos zpos kpos ... width height depth k_length ...]'.

     Each row of A and B define a rectangle, and if both define multiple rectangles, then the output, AREA, is a matrix where the i-th row corresponds to the i-th row of a and the j-th column corresponds to the j-th row of b.

     See also: polyarea.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Compute area or volume of intersection of rectangles or N-D boxes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
tsearchn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 415
 -- Function File: IDX = tsearchn (X, T, XI)
 -- Function File: [IDX, P] = tsearchn (X, T, XI)
     Search for the enclosing Delaunay convex hull.

     For 'T = delaunayn (X)', finds the index in T containing the points XI.  For points outside the convex hull, IDX is NaN.

     If requested 'tsearchn' also returns the Barycentric coordinates P of the enclosing triangles.

     See also: delaunay, delaunayn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Search for the enclosing Delaunay convex hull.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
voronoi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1323
 -- Function File: voronoi (X, Y)
 -- Function File: voronoi (X, Y, OPTIONS)
 -- Function File: voronoi (..., "linespec")
 -- Function File: voronoi (HAX, ...)
 -- Function File: H = voronoi (...)
 -- Function File: [VX, VY] = voronoi (...)
     Plot the Voronoi diagram of points '(X, Y)'.

     The Voronoi facets with points at infinity are not drawn.

     The OPTIONS argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command.  See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.

     If "linespec" is given it is used to set the color and line style of the plot.

     If an axis graphics handle HAX is supplied then the Voronoi diagram is drawn on the specified axis rather than in a new figure.

     If a single output argument is requested then the Voronoi diagram will be plotted and a graphics handle H to the plot is returned.

     [VX, VY] = voronoi (...) returns the Voronoi vertices instead of plotting the diagram.

          x = rand (10, 1);
          y = rand (size (x));
          h = convhull (x, y);
          [vx, vy] = voronoi (x, y);
          plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");
          legend ("", "points", "hull");

     See also: voronoin, delaunay, convhull.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Plot the Voronoi diagram of points '(X, Y)'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
voronoin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1086
 -- Function File: [C, F] = voronoin (PTS)
 -- Function File: [C, F] = voronoin (PTS, OPTIONS)
     Compute N-dimensional Voronoi facets.

     The input matrix PTS of size [n, dim] contains n points in a space of dimension dim.

     C contains the points of the Voronoi facets.  The list F contains, for each facet, the indices of the Voronoi points.

     An optional second argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command.  See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.

     The default options depend on the dimension of the input:

        * 2-D and 3-D: OPTIONS = '{"Qbb"}'

        * 4-D and higher: OPTIONS = '{"Qbb", "Qx"}'

     If OPTIONS is not present or '[]' then the default arguments are used.  Otherwise, OPTIONS replaces the default argument list.  To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS.  Use a null string to pass no arguments.

     See also: voronoi, convhulln, delaunayn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute N-dimensional Voronoi facets.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
errordlg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 685
 -- Function File: H = errordlg (MSG)
 -- Function File: H = errordlg (MSG, TITLE)
 -- Function File: H = errordlg (MSG, TITLE, CREATEMODE)
     Display MSG using an error dialog box.

     The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.

     The optional input TITLE (character string) can be used to set the dialog caption.  The default title is "Error Dialog".

     The return value is always 1.

     Compatibility Note: The optional argument CREATEMODE is accepted for MATLAB compatibility, but is not implemented.

     See also: helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Display MSG using an error dialog box.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
guidata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 502
 -- Function File: DATA = guidata (H)
 -- Function File: guidata (H, DATA)
     Query or set user-custom GUI data.

     The GUI data is stored in the figure handle H.  If H is not a figure handle then it's parent figure will be used for storage.

     DATA must be a single object which means it is usually preferable for it to be a data container such as a cell array or struct so that additional data items can be added easily.

     See also: getappdata, setappdata, get, set, getpref, setpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Query or set user-custom GUI data.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
guihandles


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 661
 -- Function File: HDATA = guihandles (H)
 -- Function File: HDATA = guihandles
     Return a structure of object handles for the figure associated with handle H.

     If no handle is specified the current figure returned by 'gcf' is used.

     The fieldname for each entry of HDATA is taken from the "tag" property of the graphic object.  If the tag is empty then the handle is not returned.  If there are multiple graphic objects with the same tag then the entry in HDATA will be a vector of handles.  'guihandles' includes all possible handles, including those for which "HandleVisibility" is "off".

     See also: guidata, findobj, findall, allchild.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return a structure of object handles for the figure associated with handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
helpdlg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 500
 -- Function File: H = helpdlg (MSG)
 -- Function File: H = helpdlg (MSG, TITLE)
     Display MSG in a help dialog box.

     The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.

     The optional input TITLE (character string) can be used to set the dialog caption.  The default title is "Help Dialog".

     The return value is always 1.

     See also: errordlg, inputdlg, listdlg, msgbox, questdlg, warndlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Display MSG in a help dialog box.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
inputdlg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1364
 -- Function File: CSTR = inputdlg (PROMPT)
 -- Function File: CSTR = inputdlg (PROMPT, TITLE)
 -- Function File: CSTR = inputdlg (PROMPT, TITLE, ROWSCOLS)
 -- Function File: CSTR = inputdlg (PROMPT, TITLE, ROWSCOLS, DEFAULTS)
     Return user input from a multi-textfield dialog box in a cell array of strings, or an empty cell array if the dialog is closed by the Cancel button.

     Inputs:

     PROMPT
          A cell array with strings labeling each text field.  This input is required.

     TITLE
          String to use for the caption of the dialog.  The default is "Input Dialog".

     ROWSCOLS
          Specifies the size of the text fields and can take three forms:

            1. a scalar value which defines the number of rows used for each text field.

            2. a vector which defines the individual number of rows used for each text field.

            3. a matrix which defines the individual number of rows and columns used for each text field.  In the matrix each row describes a single text field.  The first column specifies the number of input rows to use and the second column specifies the text field width.

     DEFAULTS
          A list of default values to place in each text fields.  It must be a cell array of strings with the same size as PROMPT.

     See also: errordlg, helpdlg, listdlg, msgbox, questdlg, warndlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
Return user input from a multi-textfield dialog box in a cell array of strings, or an empty cell array if the dialog is closed by the Cancel button.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
listdlg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1663
 -- Function File: [SEL, OK] = listdlg (KEY, VALUE, ...)
     Return user inputs from a list dialog box in a vector of selection indices SEL and a flag OK indicating how the user closed the dialog box.

     The value of OK is 1 if the user closed the box with the OK button, otherwise it is 0 and SEL is empty.

     The indices in SEL are 1-based.

     The arguments are specified in form of KEY, VALUE pairs.  The "ListString" argument pair must be specified.

     Valid KEY and VALUE pairs are:

     "ListString"
          a cell array of strings comprising the content of the list.

     "SelectionMode"
          can be either "Single" or "Multiple" (default).

     "ListSize"
          a vector with two elements WIDTH and HEIGHT defining the size of the list field in pixels.  Default is [160 300].

     "InitialValue"
          a vector containing 1-based indices of preselected elements.  Default is 1 (first item).

     "Name"
          a string to be used as the dialog caption.  Default is "".

     "PromptString"
          a cell array of strings to be displayed above the list field.  Default is {}.

     "OKString"
          a string used to label the OK button.  Default is "OK".

     "CancelString"
          a string used to label the Cancel button.  Default is "Cancel".

     Example:

          [sel, ok] = listdlg ("ListString", {"An item", "another", "yet another"},
                               "SelectionMode", "Multiple");
          if (ok == 1)
            for i = 1:numel (sel)
              disp (sel(i));
            endfor
          endif

     See also: menu, errordlg, helpdlg, inputdlg, msgbox, questdlg, warndlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
Return user inputs from a list dialog box in a vector of selection indices SEL and a flag OK indicating how the user closed the dialog box.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
msgbox


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 811
 -- Function File: H = msgbox (MSG)
 -- Function File: H = msgbox (MSG, TITLE)
 -- Function File: H = msgbox (MSG, TITLE, ICON)
 -- Function File: H = msgbox (..., CREATEMODE)
     Display MSG using a message dialog box.

     The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.

     The optional input TITLE (character string) can be used to decorate the dialog caption.

     The optional argument ICON selects a dialog icon.  It can be one of "none" (default), "error", "help", or "warn".

     The return value is always 1.

     Compatibility Note: The optional argument CREATEMODE is accepted for MATLAB compatibility, but is not implemented.

     See also: errordlg, helpdlg, inputdlg, listdlg, questdlg, warndlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Display MSG using a message dialog box.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
questdlg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1154
 -- Function File: BTN = questdlg (MSG)
 -- Function File: BTN = questdlg (MSG, TITLE)
 -- Function File: BTN = questdlg (MSG, TITLE, DEFAULT)
 -- Function File: BTN = questdlg (MSG, TITLE, BTN1, BTN2, DEFAULT)
 -- Function File: BTN = questdlg (MSG, TITLE, BTN1, BTN2, BTN3, DEFAULT)
     Display MSG using a question dialog box and return the caption of the activated button.

     The dialog may contain two or three buttons which will all close the dialog.

     The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.

     The optional TITLE (character string) can be used to decorate the dialog caption.

     The string DEFAULT identifies the default button, which is activated by pressing the <ENTER> key.  It must match one of the strings given in BTN1, BTN2, or BTN3.

     If only MSG and TITLE are specified, three buttons with the default captions "Yes", "No", and "Cancel" are used.

     If only two button captions, BTN1 and BTN2, are specified the dialog will have only these two buttons.

     See also: errordlg, helpdlg, inputdlg, listdlg, warndlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Display MSG using a question dialog box and return the caption of the activated button.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
uicontextmenu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
 -- Function File: HUI = uicontextmenu ("Name", value, ...)
   


# name: <cell-element>
# type: sq_string
# elements: 0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uicontrol


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
 -- Function File: HUI = uicontrol ("Name", value, ...)
 -- Function File: HUI = uicontrol (PARENT, "Name", value, ...)
 -- Function File: uicontrol (H)
   


# name: <cell-element>
# type: sq_string
# elements: 0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
uigetdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 377
 -- Function File: DIRNAME = uigetdir ()
 -- Function File: DIRNAME = uigetdir (INIT_PATH)
 -- Function File: DIRNAME = uigetdir (INIT_PATH, DIALOG_NAME)
     Open a GUI dialog for selecting a directory.

     If INIT_PATH is not given the current working directory is used.

     DIALOG_NAME may be used to customize the dialog title.

     See also: uigetfile, uiputfile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Open a GUI dialog for selecting a directory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uigetfile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1797
 -- Function File: [FNAME, FPATH, FLTIDX] = uigetfile ()
 -- Function File: [...] = uigetfile (FLT)
 -- Function File: [...] = uigetfile (FLT, DIALOG_NAME)
 -- Function File: [...] = uigetfile (FLT, DIALOG_NAME, DEFAULT_FILE)
 -- Function File: [...] = uigetfile (..., "Position", [PX PY])
 -- Function File: [...] = uigetfile (..., "MultiSelect", MODE)

     Open a GUI dialog for selecting a file and return the filename FNAME, the path to this file FPATH, and the filter index FLTIDX.

     FLT contains a (list of) file filter string(s) in one of the following formats:

     "/path/to/filename.ext"
          If a filename is given then the file extension is extracted and used as filter.  In addition, the path is selected as current path and the filename is selected as default file.  Example: 'uigetfile ("myfun.m")'

     A single file extension "*.ext"
          Example: 'uigetfile ("*.ext")'

     A 2-column cell array
          containing a file extension in the first column and a brief description in the second column.  Example: 'uigetfile ({"*.ext", "My Description";"*.xyz", "XYZ-Format"})'

          The filter string can also contain a semicolon separated list of filter extensions.  Example: 'uigetfile ({"*.gif;*.png;*.jpg", "Supported Picture Formats"})'

     DIALOG_NAME can be used to customize the dialog title.

     If DEFAULT_FILE is given then it will be selected in the GUI dialog.  If, in addition, a path is given it is also used as current path.

     The screen position of the GUI dialog can be set using the "Position" key and a 2-element vector containing the pixel coordinates.  Two or more files can be selected when setting the "MultiSelect" key to "on".  In that case FNAME is a cell array containing the files.

     See also: uiputfile, uigetdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
Open a GUI dialog for selecting a file and return the filename FNAME, the path to this file FPATH, and the filter index FLTIDX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uimenu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1962
 -- Function File: HUI = uimenu (PROPERTY, VALUE, ...)
 -- Function File: HUI = uimenu (H, PROPERTY, VALUE, ...)
     Create a uimenu object and return a handle to it.

     If H is omitted then a top-level menu for the current figure is created.  If H is given then a submenu relative to H is created.

     uimenu objects have the following specific properties:

     "accelerator"
          A string containing the key combination together with CTRL to execute this menu entry (e.g., "x" for CTRL+x).

     "callback"
          Is the function called when this menu entry is executed.  It can be either a function string (e.g., "myfun"), a function handle (e.g., @myfun) or a cell array containing the function handle and arguments for the callback function (e.g., {@myfun, arg1, arg2}).

     "checked"
          Can be set "on" or "off".  Sets a mark at this menu entry.

     "enable"
          Can be set "on" or "off".  If disabled the menu entry cannot be selected and it is grayed out.

     "foregroundcolor"
          A color value setting the text color for this menu entry.

     "label"
          A string containing the label for this menu entry.  A "&"-symbol can be used to mark the "accelerator" character (e.g., "E&xit")

     "position"
          An scalar value containing the relative menu position.  The entry with the lowest value is at the first position starting from left or top.

     "separator"
          Can be set "on" or "off".  If enabled it draws a separator line above the current position.  It is ignored for top level entries.

     Examples:

          f = uimenu ("label", "&File", "accelerator", "f");
          e = uimenu ("label", "&Edit", "accelerator", "e");
          uimenu (f, "label", "Close", "accelerator", "q", ...
                     "callback", "close (gcf)");
          uimenu (e, "label", "Toggle &Grid", "accelerator", "g", ...
                     "callback", "grid (gca)");

     See also: figure.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create a uimenu object and return a handle to it.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
uipanel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 119
 -- Function File: HUI = uipanel ("Name", value, ...)
 -- Function File: HUI = uipanel (PARENT, "Name", value, ...)
   


# name: <cell-element>
# type: sq_string
# elements: 0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
uipushtool


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
 -- Function File: HUI = uipushtool ("Name", value, ...)
 -- Function File: HUI = uipushtool (PARENT, "Name", value, ...)
   


# name: <cell-element>
# type: sq_string
# elements: 0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uiputfile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1362
 -- Function File: [FNAME, FPATH, FLTIDX] = uiputfile ()
 -- Function File: [FNAME, FPATH, FLTIDX] = uiputfile (FLT)
 -- Function File: [FNAME, FPATH, FLTIDX] = uiputfile (FLT, DIALOG_NAME)
 -- Function File: [FNAME, FPATH, FLTIDX] = uiputfile (FLT, DIALOG_NAME, DEFAULT_FILE)
     Open a GUI dialog for selecting a file.

     FLT contains a (list of) file filter string(s) in one of the following formats:

     "/path/to/filename.ext"
          If a filename is given the file extension is extracted and used as filter.  In addition the path is selected as current path and the filename is selected as default file.  Example: 'uiputfile ("myfun.m")'

     "*.ext"
          A single file extension.  Example: 'uiputfile ("*.ext")'

     '{"*.ext", "My Description"}'
          A 2-column cell array containing the file extension in the 1st column and a brief description in the 2nd column.  Example: 'uiputfile ({"*.ext","My Description";"*.xyz", "XYZ-Format"})'

     The filter string can also contain a semicolon separated list of filter extensions.  Example: 'uiputfile ({"*.gif;*.png;*.jpg", "Supported Picture Formats"})'

     DIALOG_NAME can be used to customize the dialog title.  If DEFAULT_FILE is given it is preselected in the GUI dialog.  If, in addition, a path is given it is also used as current path.

     See also: uigetfile, uigetdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Open a GUI dialog for selecting a file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
uiresume


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 304
 -- Function File: uiresume (H)
     Resume program execution suspended with 'uiwait'.

     The handle H must be the same as the on specified in 'uiwait'.  If the handle is invalid or there is no 'uiwait' call pending for the figure with handle H, this function does nothing.

     See also: uiwait.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Resume program execution suspended with 'uiwait'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
uitoggletool


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
 -- Function File: HUI = uitoggletool ("Name", value, ...)
 -- Function File: HUI = uitoggletool (PARENT, "Name", value, ...)
   


# name: <cell-element>
# type: sq_string
# elements: 0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
uitoolbar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
 -- Function File: HUI = uitoolbar ("Name", value, ...)
 -- Function File: HUI = uitoolbar (PARENT, "Name", value, ...)
   


# name: <cell-element>
# type: sq_string
# elements: 0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uiwait


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
 -- Function File: uiwait
 -- Function File: uiwait (H)
 -- Function File: uiwait (H, TIMEOUT)
     Suspend program execution until the figure with handle H is deleted or 'uiresume' is called.

     When no figure handle is specified this function uses the current figure.  If the figure handle is invalid or there is no current figure, this functions returns immediately.

     When specified, TIMEOUT defines the number of seconds to wait for the figure deletion or the 'uiresume' call.  The timeout value must be at least 1.  If a smaller value is specified, a warning is issued and a timeout value of 1 is used instead.  If a non-integer value is specified, it is truncated towards 0.  If TIMEOUT is not specified, the program execution is suspended indefinitely.

     See also: uiresume, waitfor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Suspend program execution until the figure with handle H is deleted or 'uiresume' is called.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
waitbar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 842
 -- Function File: H = waitbar (FRAC)
 -- Function File: H = waitbar (FRAC, MSG)
 -- Function File: H = waitbar (..., "FigureProperty", "Value", ...)
 -- Function File: waitbar (FRAC)
 -- Function File: waitbar (FRAC, HWBAR)
 -- Function File: waitbar (FRAC, HWBAR, MSG)
     Return a handle H to a new waitbar object.

     The waitbar is filled to fraction FRAC which must be in the range [0, 1].

     The optional message MSG is centered and displayed above the waitbar.

     The appearance of the waitbar figure window can be configured by passing property/value pairs to the function.

     When called with a single input the current waitbar, if it exists, is updated to the new value FRAC.  If there are multiple outstanding waitbars they can be updated individually by passing the handle HWBAR of the specific waitbar to modify.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return a handle H to a new waitbar object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
waitforbuttonpress


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
 -- Function File: waitforbuttonpress ()
 -- Function File: B = waitforbuttonpress ()
     Wait for mouse click or key press over the current figure window.

     The return value of B is 0 if a mouse button was pressed or 1 if a key was pressed.

     See also: waitfor, ginput, kbhit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Wait for mouse click or key press over the current figure window.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
warndlg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 668
 -- Function File: H = warndlg (MSG)
 -- Function File: H = warndlg (MSG, TITLE)
 -- Function File: H = warndlg (MSG, TITLE, CREATEMODE)
     Display MSG using a warning dialog box.

     The message may have multiple lines separated by newline characters ("\n"), or it may be a cellstr array with one element for each line.

     The optional input TITLE (character string) can be used to set the dialog caption.  The default title is "Warning Dialog".

     The return value is always 1.

     Compatibility Note: The optional argument CREATEMODE is accepted for MATLAB compatibility, but is not implemented.

     See also: helpdlg, inputdlg, listdlg, questdlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Display MSG using a warning dialog box.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
doc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 518
 -- Command: doc FUNCTION_NAME
 -- Command: doc
     Display documentation for the function FUNCTION_NAME directly from an online version of the printed manual, using the GNU Info browser.

     If invoked without an argument, the manual is shown from the beginning.

     For example, the command 'doc rand' starts the GNU Info browser at the 'rand' node in the online version of the manual.

     Once the GNU Info browser is running, help for using it is available using the command 'C-h'.

     See also: help.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
Display documentation for the function FUNCTION_NAME directly from an online version of the printed manual, using the GNU Info browser.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
doc_cache_create


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 656
 -- Function File: doc_cache_create (OUT_FILE, DIRECTORY)
 -- Function File: doc_cache_create (OUT_FILE)
 -- Function File: doc_cache_create ()
     Generate documentation cache for all functions in DIRECTORY.

     A documentation cache is generated for all functions in DIRECTORY which may be a single string or a cell array of strings.  The cache is used to speed up the function 'lookfor'.

     The cache is saved in the file OUT_FILE which defaults to the value 'doc-cache' if not given.

     If no directory is given (or it is the empty matrix), a cache for built-in operators, etc.  is generated.

     See also: doc_cache_file, lookfor, path.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Generate documentation cache for all functions in DIRECTORY.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
get_first_help_sentence


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 876
 -- Function File: TEXT = get_first_help_sentence (NAME)
 -- Function File: TEXT = get_first_help_sentence (NAME, MAX_LEN)
 -- Function File: [TEXT, STATUS] = get_first_help_sentence (...)
     Return the first sentence of a function's help text.

     The first sentence is defined as the text after the function declaration until either the first period (".")  or the first appearance of two consecutive newlines ("\n\n").  The text is truncated to a maximum length of MAX_LEN, which defaults to 80.

     The optional output argument STATUS returns the status reported by 'makeinfo'.  If only one output argument is requested, and STATUS is nonzero, a warning is displayed.

     As an example, the first sentence of this help text is

          get_first_help_sentence ("get_first_help_sentence")
          -| ans = Return the first sentence of a function's help text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the first sentence of a function's help text.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
help


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 908
 -- Command: help NAME
 -- Command: help '--list'
 -- Command: help '.'
 -- Command: help
     Display the help text for NAME.

     For example, the command 'help help' prints a short message describing the 'help' command.

     Given the single argument '--list', list all operators, keywords, built-in functions, and loadable functions available in the current session of Octave.

     Given the single argument '.', list all operators available in the current session of Octave.

     If invoked without any arguments, 'help' display instructions on how to access help from the command line.

     The help command can provide information about most operators, for example 'help +', but not the comma and semicolon characters which are used by the Octave interpreter as command separators.  For help on either of these type 'help comma' or 'help semicolon'.

     See also: doc, lookfor, which, info.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Display the help text for NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lookfor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1364
 -- Command: lookfor STR
 -- Command: lookfor -all STR
 -- Function File: [FCN, HELP1STR] = lookfor (STR)
 -- Function File: [FCN, HELP1STR] = lookfor ("-all", STR)
     Search for the string STR in the documentation of all functions in the current function search path.

     By default, 'lookfor' looks for STR in just the first sentence of the help string for each function found.  The entire help text of each function can be searched by using the "-all" argument.  All searches are case insensitive.

     When called with no output arguments, 'lookfor' prints the list of matching functions to the terminal.  Otherwise, the output argument FCNS contains the function names and HELP1STR contains the first sentence from the help string of each function.

     Programming Note: The ability of 'lookfor' to correctly identify the first sentence of the help text is dependent on the format of the function's help.  All Octave core functions are correctly formatted, but the same can not be guaranteed for external packages and user-supplied functions.  Therefore, the use of the "-all" argument may be necessary to find related functions that are not a part of Octave.

     The speed of lookup is greatly enhanced by having a cached documentation file.  See 'doc_cache_create' for more information.

     See also: help, doc, which, path, doc_cache_create.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Search for the string STR in the documentation of all functions in the current function search path.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
print_usage


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Function File: print_usage ()
 -- Function File: print_usage (NAME)
     Print the usage message for the function NAME.

     When called with no input arguments the 'print_usage' function displays the usage message of the currently executing function.

     See also: help.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Print the usage message for the function NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
type


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 558
 -- Command: type NAME ...
 -- Command: type -q NAME ...
 -- Function File: text = type ("NAME", ...)
     Display the contents of NAME which may be a file, function (m-file), variable, operator, or keyword.

     'type' normally prepends a header line describing the category of NAME such as function or variable; The '-q' option suppresses this behavior.

     If no output variable is used the contents are displayed on screen.  Otherwise, a cell array of strings is returned, where each element corresponds to the contents of each requested function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Display the contents of NAME which may be a file, function (m-file), variable, operator, or keyword.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
which


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 190
 -- Command: which name ...
     Display the type of each NAME.

     If NAME is defined from a function file, the full name of the file is also displayed.

     See also: help, lookfor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Display the type of each NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
autumn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
 -- Function File: MAP = autumn ()
 -- Function File: MAP = autumn (N)
     Create color colormap.  This colormap ranges from red through orange to yellow.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
bone


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
 -- Function File: MAP = bone ()
 -- Function File: MAP = bone (N)
     Create color colormap.  This colormap varies from black to white with gray-blue shades.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
brighten


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 703
 -- Function File: MAP_OUT = brighten (BETA)
 -- Function File: MAP_OUT = brighten (MAP, BETA)
 -- Function File: MAP_OUT = brighten (H, BETA)
 -- Function File: brighten (...)
     Brighten or darken a colormap.

     The argument BETA must be a scalar between -1 and 1, where a negative value darkens and a positive value brightens the colormap.

     If the MAP argument is omitted, the function is applied to the current colormap.

     The first argument can also be a valid graphics handle H, in which case 'brighten' is applied to the colormap associated with this handle.

     If no output is specified then the result is written to the current colormap.

     See also: colormap, contrast.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Brighten or darken a colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cmpermute


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 594
 -- Function File: [Y, NEWMAP] = cmpermute (X, MAP)
 -- Function File: [Y, NEWMAP] = cmpermute (X, MAP, INDEX)
     Reorder colors in a colormap.

     When called with only two arguments, 'cmpermute' randomly rearranges the colormap MAP and returns a new colormap NEWMAP.  It also returns the indexed image Y which is the equivalent of the original input image X when displayed using NEWMAP.

     When called with an optional third argument the order of colors in the new colormap is defined by INDEX.

     *Caution:* 'index' should not have repeated elements or the function will fail.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Reorder colors in a colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cmunique


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1381
 -- Function File: [Y, NEWMAP] = cmunique (X, MAP)
 -- Function File: [Y, NEWMAP] = cmunique (RGB)
 -- Function File: [Y, NEWMAP] = cmunique (I)
     Convert an input image X to an ouput indexed image Y which uses the smallest colormap possible NEWMAP.

     When the input is an indexed image (X with colormap MAP) the output is a colormap NEWMAP from which any repeated rows have been eliminated.  The output image, Y, is the original input image with the indices adjusted to match the new, possibly smaller, colormap.

     When the input is an RGB image (an MxNx3 array), the output colormap will contain one entry for every unique color in the original image.  In the worst case the new map could have as many rows as the number of pixels in the original image.

     When the input is a grayscale image I, the output colormap will contain one entry for every unique intensity value in the original image.  In the worst case the new map could have as many rows as the number of pixels in the original image.

     Implementation Details:

     NEWMAP is always an Mx3 matrix, even if the input image is an intensity grayscale image I (all three RGB planes are assigned the same value).

     The output image is of class uint8 if the size of the new colormap is less than or equal to 256.  Otherwise, the output image is of class double.

     See also: rgb2ind, gray2ind.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Convert an input image X to an ouput indexed image Y which uses the smallest colormap possible NEWMAP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
colorcube


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 512
 -- Function File: MAP = colorcube ()
 -- Function File: MAP = colorcube (N)
     Create color colormap.  This colormap is composed of as many equally spaced colors (not grays) in the RGB color space as possible.

     If there are not a perfect number N of regularly spaced colors then the remaining entries in the colormap are gradients of pure red, green, blue, and gray.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
colormap


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1442
 -- Function File: CMAP = colormap ()
 -- Function File: CMAP = colormap (MAP)
 -- Function File: CMAP = colormap ("default")
 -- Function File: CMAP = colormap ("MAP_NAME")
 -- Function File: CMAP = colormap (HAX, ...)
 -- Command: colormap MAP_NAME
 -- Function File: CMAPS = colormap ("list")
 -- Function File: colormap ("register", "NAME")
 -- Function File: colormap ("unregister", "NAME")
     Query or set the current colormap.

     With no input arguments, 'colormap' returns the current color map.

     'colormap (MAP)' sets the current colormap to MAP.  The colormap should be an N row by 3 column matrix.  The columns contain red, green, and blue intensities respectively.  All entries must be between 0 and 1 inclusive.  The new colormap is returned.

     'colormap ("default")' restores the default colormap (the 'jet' map with 64 entries).  The default colormap is returned.

     The map may also be specified by a string, "MAP_NAME", where MAP_NAME is the name of a function that returns a colormap.

     If the first argument HAX is an axes handle, then the colormap for the parent figure of HAX is queried or set.

     For convenience, it is also possible to use this function with the command form, 'colormap MAP_NAME'.

     'colormap ("list")' returns a cell array with all of the available colormaps.  The options "register" and "unregister" add or remove the colormap NAME from this list.

     See also: jet.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Query or set the current colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contrast


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
 -- Function File: CMAP = contrast (X)
 -- Function File: CMAP = contrast (X, N)
     Return a gray colormap that maximizes the contrast in an image.

     The returned colormap will have N rows.  If N is not defined then the size of the current colormap is used.

     See also: colormap, brighten.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a gray colormap that maximizes the contrast in an image.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cool


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 275
 -- Function File: MAP = cool ()
 -- Function File: MAP = cool (N)
     Create color colormap.  The colormap varies from cyan to magenta.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
copper


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
 -- Function File: MAP = copper ()
 -- Function File: MAP = copper (N)
     Create color colormap.  This colormap varies from black to a light copper tone.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cubehelix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
 -- Function File: MAP = cubehelix ()
 -- Function File: MAP = cubehelix (N)
     Create cubehelix colormap.

     This colormap varies from black to white going though blue, green, and red tones while maintaining a monotonically increasing perception of intensity.  This is achieved by transversing a color cube from black to white through a helix, hence the name cubehelix, while taking into account the perceived brightness of each channel according to the NTSC specifications from 1953.

          rgbplot (cubehelix (256))

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     Reference: Green, D. A., 2011, '"A colour scheme for the display of astronomical intensity images"', Bulletin of the Astronomical Society of India, 39, 289.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Create cubehelix colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
flag


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 314
 -- Function File: MAP = flag ()
 -- Function File: MAP = flag (N)
     Create color colormap.  This colormap cycles through red, white, blue, and black with each index change.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gray


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
 -- Function File: MAP = gray ()
 -- Function File: MAP = gray (N)
     Create gray colormap.  This colormap varies from black to white with shades of gray.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Create gray colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gray2ind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 591
 -- Function File: IMG = gray2ind (I)
 -- Function File: IMG = gray2ind (I, N)
 -- Function File: IMG = gray2ind (BW)
 -- Function File: IMG = gray2ind (BW, N)
 -- Function File: [IMG, MAP] = gray2ind (...)
     Convert a grayscale or binary intensity image to an indexed image.

     The indexed image will consist of N different intensity values.  If not given N defaults to 64 for grayscale images or 2 for binary black and white images.

     The output IMG is of class uint8 if N is less than or equal to 256; Otherwise the return class is uint16.

     See also: ind2gray, rgb2ind.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Convert a grayscale or binary intensity image to an indexed image.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
hot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
 -- Function File: MAP = hot ()
 -- Function File: MAP = hot (N)
     Create color colormap.  This colormap ranges from black through dark red, red, orange, yellow, to white.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
hsv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 550
 -- Function File: hsv (N)
     Create color colormap.  This colormap begins with red, changes through yellow, green, cyan, blue, and magenta, before returning to red.

     It is useful for displaying periodic functions.  The map is obtained by linearly varying the hue through all possible values while keeping constant maximum saturation and value.  The equivalent code is 'hsv2rgb ([(0:N-1)'/N, ones(N,2)])'.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hsv2rgb


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
 -- Function File: RGB_MAP = hsv2rgb (HSV_MAP)
 -- Function File: RGB_IMG = hsv2rgb (HSV_IMG)
     Transform a colormap or image from hue-saturation-value (HSV) space to red-green-blue (RGB) space.

     A color in HSV space is represented by hue, saturation and value (brightness) levels.  Value gives the amount of light in the color.  Hue describes the dominant wavelength.  Saturation is the amount of hue mixed into the color.

     A color in the RGB space consists of red, green, and blue intensities.

     See also: rgb2hsv, ind2rgb, ntsc2rgb.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Transform a colormap or image from hue-saturation-value (HSV) space to red-green-blue (RGB) space.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
iscolormap


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 329
 -- Function File: iscolormap (CMAP)
     Return true if CMAP is a colormap.

     A colormap is a real matrix with N rows and 3 columns.  Each row represents a single color.  The columns contain red, green, and blue intensities respectively.  All entries must be between 0 and 1 inclusive.

     See also: colormap, rgbplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return true if CMAP is a colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
image


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1887
 -- Function File: image (IMG)
 -- Function File: image (X, Y, IMG)
 -- Function File: image (..., "PROP", VAL, ...)
 -- Function File: image ("PROP1", VAL1, ...)
 -- Function File: H = image (...)
     Display a matrix as an indexed color image.

     The elements of IMG are indices into the current colormap.

     X and Y are optional 2-element vectors, '[min, max]', which specify the range for the axis labels.  If a range is specified as '[max, min]' then the image will be reversed along that axis.  For convenience, X and Y may be specified as N-element vectors matching the length of the data in IMG.  However, only the first and last elements will be used to determine the axis limits.  *Warning:* X and Y are ignored when using gnuplot 4.0 or earlier.

     Multiple property/value pairs may be specified for the image object, but they must appear in pairs.

     The optional return value H is a graphics handle to the image.

     Implementation Note: The origin (0, 0) for images is located in the upper left.  For ordinary plots, the origin is located in the lower left.  Octave handles this inversion by plotting the data normally, and then reversing the direction of the y-axis by setting the 'ydir' property to "reverse".  This has implications whenever an image and an ordinary plot need to be overlaid.  The recommended solution is to display the image and then plot the reversed ydata using, for example, 'flipud (ydata)'.

     Calling Forms: The 'image' function can be called in two forms: High-Level and Low-Level.  When invoked with normal options, the High-Level form is used which first calls 'newplot' to prepare the graphic figure and axes.  When the only inputs to 'image' are property/value pairs the Low-Level form is used which creates a new instance of an image object and inserts it in the current axes.

     See also: imshow, imagesc, colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Display a matrix as an indexed color image.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
imagesc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1266
 -- Function File: imagesc (IMG)
 -- Function File: imagesc (X, Y, IMG)
 -- Function File: imagesc (..., CLIMITS)
 -- Function File: imagesc (..., "PROP", VAL, ...)
 -- Function File: imagesc ("PROP1", VAL1, ...)
 -- Function File: imagesc (HAX, ...)
 -- Function File: H = imagesc (...)
     Display a scaled version of the matrix IMG as a color image.

     The colormap is scaled so that the entries of the matrix occupy the entire colormap.  If 'CLIMITS = [LO, HI]' is given, then that range is set to the "clim" of the current axes.

     The axis values corresponding to the matrix elements are specified in X and Y, either as pairs giving the minimum and maximum values for the respective axes, or as values for each row and column of the matrix IMG.

     The optional return value H is a graphics handle to the image.

     Calling Forms: The 'imagesc' function can be called in two forms: High-Level and Low-Level.  When invoked with normal options, the High-Level form is used which first calls 'newplot' to prepare the graphic figure and axes.  When the only inputs to 'image' are property/value pairs the Low-Level form is used which creates a new instance of an image object and inserts it in the current axes.

     See also: image, imshow, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Display a scaled version of the matrix IMG as a color image.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
imfinfo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3857
 -- Function File: INFO = imfinfo (FILENAME)
 -- Function File: INFO = imfinfo (URL)
 -- Function File: INFO = imfinfo (..., EXT)
     Read image information from a file.

     'imfinfo' returns a structure containing information about the image stored in the file FILENAME.  If there is no file FILENAME, and EXT was specified, it will look for a file named FILENAME and extension EXT, i.e., a file named FILENAME.EXT.

     The output structure INFO contains the following fields:

     'Filename'
          The full name of the image file.

     'FileModDate'
          Date of last modification to the file.

     'FileSize'
          Number of bytes of the image on disk

     'Format'
          Image format (e.g., "jpeg").

     'Height'
          Image height in pixels.

     'Width'
          Image Width in pixels.

     'BitDepth'
          Number of bits per channel per pixel.

     'ColorType'
          Image type.  Value is "grayscale", "indexed", "truecolor", "CMYK", or "undefined".

     'XResolution'
          X resolution of the image.

     'YResolution'
          Y resolution of the image.

     'ResolutionUnit'
          Units of image resolution.  Value is "Inch", "Centimeter", or "undefined".

     'DelayTime'
          Time in 1/100ths of a second (0 to 65535) which must expire before displaying the next image in an animated sequence.

     'LoopCount'
          Number of iterations to loop an animation.

     'ByteOrder'
          Endian option for formats that support it.  Value is "little-endian", "big-endian", or "undefined".

     'Gamma'
          Gamma level of the image.  The same color image displayed on two different workstations may look different due to differences in the display monitor.

     'Quality'
          JPEG/MIFF/PNG compression level.  Value is an integer in the range [0 100].

     'DisposalMethod'
          Only valid for GIF images, control how successive frames are rendered (how the preceding frame is disposed of) when creating a GIF animation.  Values can be "doNotSpecify", "leaveInPlace", "restoreBG", or "restorePrevious".  For non-GIF files, value is an empty string.

     'Chromaticities'
          Value is a 1x8 Matrix with the x,y chromaticity values for white, red, green, and blue points, in that order.

     'Comment'
          Image comment.

     'Compression'
          Compression type.  Value can be "none", "bzip", "fax3", "fax4", "jpeg", "lzw", "rle", "deflate", "lzma", "jpeg2000", "jbig2", "jbig2", or "undefined".

     'Colormap'
          Colormap for each image.

     'Orientation'
          The orientation of the image with respect to the rows and columns.  Value is an integer between 1 and 8 as defined in the TIFF 6 specifications, and for MATLAB compatibility.

     'Software'
          Name and version of the software or firmware of the camera or image input device used to generate the image.

     'Make'
          The manufacturer of the recording equipment.  This is the manufacture of the DSC, scanner, video digitizer or other equipment that generated the image.

     'Model'
          The model name or model number of the recording equipment as mentioned on the field "Make".

     'DateTime'
          The date and time of image creation as defined by the Exif standard, i.e., it is the date and time the file was changed.

     'ImageDescription'
          The title of the image as defined by the Exif standard.

     'Artist'
          Name of the camera owner, photographer or image creator.

     'Copyright'
          Copyright notice of the person or organization claiming rights to the image.

     'DigitalCamera'
          A struct with information retrieved from the Exif tag.

     'GPSInfo'
          A struct with geotagging information retrieved from the Exif tag.

     See also: imread, imwrite, imshow, imformats.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Read image information from a file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
imformats


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1731
 -- Function File: imformats ()
 -- Function File: FORMATS = imformats (EXT)
 -- Function File: FORMATS = imformats (FORMAT)
 -- Function File: FORMATS = imformats ("add", FORMAT)
 -- Function File: FORMATS = imformats ("remove", EXT)
 -- Function File: FORMATS = imformats ("update", EXT, FORMAT)
 -- Function File: FORMATS = imformats ("factory")
     Manage supported image formats.

     FORMATS is a structure with information about each supported file format, or from a specific format EXT, the value displayed on the field 'ext'.  It contains the following fields:

     ext
          The name of the file format.  This may match the file extension but Octave will automatically detect the file format.

     description
          A long description of the file format.

     isa
          A function handle to confirm if a file is of the specified format.

     write
          A function handle to write if a file is of the specified format.

     read
          A function handle to open files the specified format.

     info
          A function handle to obtain image information of the specified format.

     alpha
          Logical value if format supports alpha channel (transparency or matte).

     multipage
          Logical value if format supports multipage (multiple images per file).

     It is possible to change the way Octave manages file formats with the options "add", "remove", and "update", and supplying a structure FORMAT with the required fields.  The option "factory" resets the configuration to the default.

     This can be used by Octave packages to extend the image reading capabilities Octave, through use of the PKG_ADD and PKG_DEL commands.

     See also: imfinfo, imread, imwrite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Manage supported image formats.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
imread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2606
 -- Function File: [IMG, MAP, ALPHA] = imread (FILENAME)
 -- Function File: [...] = imread (URL)
 -- Function File: [...] = imread (..., EXT)
 -- Function File: [...] = imread (..., IDX)
 -- Function File: [...] = imread (..., PARAM1, VAL1, ...)
     Read images from various file formats.

     Read an image as a matrix from the file FILENAME.  If there is no file FILENAME, and EXT was specified, it will look for a file with the extension EXT.  Finally, it will attempt to download and read an image from URL.

     The size and class of the output depends on the format of the image.  A color image is returned as an MxNx3 matrix.  Gray-level and black-and-white images are of size MxN. Multipage images will have an additional 4th dimension.

     The bit depth of the image determines the class of the output: "uint8", "uint16" or "single" for gray and color, and "logical" for black and white.  Note that indexed images always return the indexes for a colormap, independent if MAP is a requested output.  To obtain the actual RGB image, use 'ind2rgb'.  When more than one indexed image is being read, MAP is obtained from the first.  In some rare cases this may be incorrect and 'imfinfo' can be used to obtain the colormap of each image.

     See the Octave manual for more information in representing images.

     Some file formats, such as TIFF and GIF, are able to store multiple images in a single file.  IDX can be a scalar or vector specifying the index of the images to read.  By default, Octave will only read the first page.

     Depending on the file format, it is possible to configure the reading of images with PARAM, VAL pairs.  The following options are supported:

     '"Frames" or "Index"'
          This is an alternative method to specify IDX.  When specifying it in this way, its value can also be the string "all".

     '"Info"'
          This option exists for MATLAB compatibility and has no effect.  For maximum performance while reading multiple images from a single file, use the Index option.

     '"PixelRegion"'
          Controls the image region that is read.  Takes as value a cell array with two arrays of 3 elements '{ROWS COLS}'.  The elements in the array are the start, increment and end pixel to be read.  If the increment value is omitted, defaults to 1.  For example, the following are all equivalent:

               imread (filename, "PixelRegion", {[200 600] [300 700]});
               imread (filename, "PixelRegion", {[200 1 600] [300 1 700]});
               imread (filename)(200:600, 300:700);

     See also: imwrite, imfinfo, imformats.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Read images from various file formats.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
imshow


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1727
 -- Function File: imshow (IM)
 -- Function File: imshow (IM, LIMITS)
 -- Function File: imshow (IM, MAP)
 -- Function File: imshow (RGB, ...)
 -- Function File: imshow (FILENAME)
 -- Function File: imshow (..., STRING_PARAM1, VALUE1, ...)
 -- Function File: H = imshow (...)
     Display the image IM, where IM can be a 2-dimensional (grayscale image) or a 3-dimensional (RGB image) matrix.

     If LIMITS is a 2-element vector '[LOW, HIGH]', the image is shown using a display range between LOW and HIGH.  If an empty matrix is passed for LIMITS, the display range is computed as the range between the minimal and the maximal value in the image.

     If MAP is a valid color map, the image will be shown as an indexed image using the supplied color map.

     If a file name is given instead of an image, the file will be read and shown.

     If given, the parameter STRING_PARAM1 has value VALUE1.  STRING_PARAM1 can be any of the following:

     "displayrange"
          VALUE1 is the display range as described above.

     "colormap"
          VALUE1 is the colormap to use when displaying an indexed image.

     "xdata"
          If VALUE1 is a two element vector, it must contain horizontal axis limits in the form [xmin xmax]; Otherwise VALUE1 must be a vector and only the first and last elements will be used for xmin and xmax respectively.

     "ydata"
          If VALUE1 is a two element vector, it must contain vertical axis limits in the form [ymin ymax]; Otherwise VALUE1 must be a vector and only the first and last elements will be used for ymin and ymax respectively.

     The optional return value H is a graphics handle to the image.

     See also: image, imagesc, colormap, gray2ind, rgb2ind.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Display the image IM, where IM can be a 2-dimensional (grayscale image) or a 3-dimensional (RGB image) matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
imwrite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3288
 -- Function File: imwrite (IMG, FILENAME)
 -- Function File: imwrite (IMG, FILENAME, EXT)
 -- Function File: imwrite (IMG, MAP, FILENAME)
 -- Function File: imwrite (..., PARAM1, VAL1, ...)
     Write images in various file formats.

     The image IMG can be a binary, grayscale, RGB, or multi-dimensional image.  The size and class of IMG should be the same as what should be expected when reading it with 'imread': the 3rd and 4th dimensions reserved for color space, and multiple pages respectively.  If it's an indexed image, the colormap MAP must also be specified.

     If EXT is not supplied, the file extension of FILENAME is used to determine the format.  The actual supported formats are dependent on options made during the build of Octave.  Use 'imformats' to check the support of the different image formats.

     Depending on the file format, it is possible to configure the writing of images with PARAM, VAL pairs.  The following options are supported:

     'Alpha'
          Alpha (transparency) channel for the image.  This must be a matrix with same class, and number of rows and columns of IMG.  In case of a multipage image, the size of the 4th dimension must also match and the third dimension must be a singleton.  By default, image will be completely opaque.

     'DelayTime'
          For formats that accept animations (such as GIF), controls for how long a frame is displayed until it moves to the next one.  The value must be scalar (which will applied to all frames in IMG), or a vector of length equal to the number of frames in IM.  The value is in seconds, must be between 0 and 655.35, and defaults to 0.5.

     'DisposalMethod'
          For formats that accept animations (such as GIF), controls what happens to a frame before drawing the next one.  Its value can be one of the following strings: "doNotSpecify" (default); "leaveInPlace"; "restoreBG"; and "restorePrevious", or a cell array of those string with length equal to the number of frames in IMG.

     'LoopCount'
          For formats that accept animations (such as GIF), controls how many times the sequence is repeated.  A value of Inf means an infinite loop (default), a value of 0 or 1 that the sequence is played only once (loops zero times), while a value of 2 or above loops that number of times (looping twice means it plays the complete sequence 3 times).  This option is ignored when there is only a single image at the end of writing the file.

     'Quality'
          Set the quality of the compression.  The value should be an integer between 0 and 100, with larger values indicating higher visual quality and lower compression.  Defaults to 75.

     'WriteMode'
          Some file formats, such as TIFF and GIF, are able to store multiple images in a single file.  This option specifies if IMG should be appended to the file (if it exists) or if a new file should be created for it (possibly overwriting an existing file).  The value should be the string "Overwrite" (default), or "Append".

          Despite this option, the most efficient method of writing a multipage image is to pass a 4 dimensional IMG to 'imwrite', the same matrix that could be expected when using 'imread' with the option "Index" set to "all".

     See also: imread, imfinfo, imformats.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Write images in various file formats.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ind2gray


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 829
 -- Function File: I = ind2gray (X, MAP)
     Convert a color indexed image to a grayscale intensity image.

     The image X must be an indexed image which will be converted using the colormap CMAP.  If CMAP does not contain enough colors for the image, pixels in X outside the range are mapped to the last color in the map before conversion to grayscale.

     The output I is of the same class as the input X and may be one of 'uint8', 'uint16', 'single', or 'double'.

     Implementation Note: There are several ways of converting colors to grayscale intensities.  This functions uses the luminance value obtained from 'rgb2ntsc' which is 'I = 0.299*R + 0.587*G + 0.114*B'.  Other possibilities include the value component from 'rgb2hsv' or using a single color channel from 'ind2rgb'.

     See also: gray2ind, ind2rgb.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Convert a color indexed image to a grayscale intensity image.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ind2rgb


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 767
 -- Function File: RGB = ind2rgb (X, MAP)
 -- Function File: [R, G, B] = ind2rgb (X, MAP)
     Convert an indexed image to red, green, and blue color components.

     The image X must be an indexed image which will be converted using the colormap MAP.  If MAP does not contain enough colors for the image, pixels in X outside the range are mapped to the last color in the map.

     The output may be a single RGB image (MxNx3 matrix where M and N are the original image X dimensions, one for each of the red, green and blue channels).  Alternatively, the individual red, green, and blue color matrices of size MxN may be returned.

     Multi-dimensional indexed images (of size MxNx1xK) are also supported.

     See also: rgb2ind, ind2gray, hsv2rgb, ntsc2rgb.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Convert an indexed image to red, green, and blue color components.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
jet


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 320
 -- Function File: MAP = jet ()
 -- Function File: MAP = jet (N)
     Create color colormap.  This colormap ranges from dark blue through blue, cyan, green, yellow, red, to dark red.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lines


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 390
 -- Function File: MAP = lines ()
 -- Function File: MAP = lines (N)
     Create color colormap.  This colormap is composed of the list of colors in the current axes "ColorOrder" property.  The default is blue, green, red, cyan, pink, yellow, and gray.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ntsc2rgb


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
 -- Function File: RGB_MAP = ntsc2rgb (YIQ_MAP)
 -- Function File: RGB_IMG = ntsc2rgb (YIQ_IMG)
     Transform a colormap or image from luminance-chrominance (NTSC) space to red-green-blue (RGB) color space.

     Implementation Note: The conversion matrix is chosen to be the inverse of the matrix used for rgb2ntsc such that

          x == ntsc2rgb (rgb2ntsc (x))

     MATLAB uses a slightly different matrix where rounding means the equality above does not hold.

     See also: rgb2ntsc, hsv2rgb, ind2rgb.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Transform a colormap or image from luminance-chrominance (NTSC) space to red-green-blue (RGB) color space.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ocean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
 -- Function File: MAP = ocean ()
 -- Function File: MAP = ocean (N)
     Create color colormap.  This colormap varies from black to white with shades of blue.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pink


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 370
 -- Function File: MAP = pink ()
 -- Function File: MAP = pink (N)
     Create color colormap.  This colormap varies from black to white with shades of gray-pink.

     This colormap gives a sepia tone when used on grayscale images.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
prism


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 332
 -- Function File: MAP = prism ()
 -- Function File: MAP = prism (N)
     Create color colormap.  This colormap cycles through red, orange, yellow, green, blue and violet with each index change.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rainbow


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 317
 -- Function File: MAP = rainbow ()
 -- Function File: MAP = rainbow (N)
     Create color colormap.  This colormap ranges from red through orange, yellow, green, blue, to violet.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rgb2hsv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 549
 -- Function File: HSV_MAP = rgb2hsv (RGB)
 -- Function File: HSV_MAP = rgb2hsv (RGB)
     Transform a colormap or image from red-green-blue (RGB) space to hue-saturation-value (HSV) space.

     A color in the RGB space consists of red, green, and blue intensities.

     A color in HSV space is represented by hue, saturation, and value (brightness) levels.  Value gives the amount of light in the color.  Hue describes the dominant wavelength.  Saturation is the amount of hue mixed into the color.

     See also: hsv2rgb, rgb2ind, rgb2ntsc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Transform a colormap or image from red-green-blue (RGB) space to hue-saturation-value (HSV) space.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rgb2ind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 925
 -- Function File: [X, MAP] = rgb2ind (RGB)
 -- Function File: [X, MAP] = rgb2ind (R, G, B)
     Convert an image in red-green-blue (RGB) color space to an indexed image.

     The input image RGB can be specified as a single matrix of size MxNx3, or as three separate variables, R, G, and B, its three color channels, red, green, and blue.

     It outputs an indexed image X and a colormap MAP to interpret an image exactly the same as the input.  No dithering or other form of color quantization is performed.  The output class of the indexed image X can be uint8, uint16 or double, whichever is required to specify the number of unique colors in the image (which will be equal to the number of rows in MAP) in order

     Multi-dimensional indexed images (of size MxNx3xK) are also supported, both via a single input (RGB) or its three color channels as separate variables.

     See also: ind2rgb, rgb2hsv, rgb2ntsc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Convert an image in red-green-blue (RGB) color space to an indexed image.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rgb2ntsc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 739
 -- Function File: YIQ_MAP = rgb2ntsc (RGB_MAP)
 -- Function File: YIQ_IMG = rgb2ntsc (RGB_IMG)
     Transform a colormap or image from red-green-blue (RGB) color space to luminance-chrominance (NTSC) space.  The input may be of class uint8, uint16, single, or double.  The output is of class double.

     Implementation Note: The reference matrix for the transformation is

          /Y\     0.299  0.587  0.114  /R\
          |I|  =  0.596 -0.274 -0.322  |G|
          \Q/     0.211 -0.523  0.312  \B/

     as documented in <http://en.wikipedia.org/wiki/YIQ> and truncated to 3 significant figures.  Note: The FCC version of NTSC uses only 2 significant digits and is slightly different.

     See also: ntsc2rgb, rgb2hsv, rgb2ind.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Transform a colormap or image from red-green-blue (RGB) color space to luminance-chrominance (NTSC) space.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rgbplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 799
 -- Function File: rgbplot (CMAP)
 -- Function File: rgbplot (CMAP, STYLE)
 -- Function File: H = rgbplot (...)
     Plot the components of a colormap.

     Two different STYLEs are available for displaying the CMAP:

     profile (default)
          Plot the RGB line profile of the colormap for each of the channels (red, green and blue) with the plot lines colored appropriately.  Each line represents the intensity of each RGB components across the colormap.

     composite
          Draw the colormap across the X-axis so that the actual index colors are visible rather than the individual color components.

     The optional return value H is a graphics handle to the created plot.

     Run 'demo rgbplot' to see an example of 'rgbplot' and each style option.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Plot the components of a colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spinmap


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 627
 -- Function File: spinmap ()
 -- Function File: spinmap (T)
 -- Function File: spinmap (T, INC)
 -- Function File: spinmap ("inf")
     Cycle the colormap for T seconds with a color increment of INC.

     Both parameters are optional.  The default cycle time is 5 seconds and the default increment is 2.  If the option "inf" is given then cycle continuously until 'Control-C' is pressed.

     When rotating, the original color 1 becomes color 2, color 2 becomes color 3, etc.  A positive or negative increment is allowed and a higher value of INC will cause faster cycling through the colormap.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Cycle the colormap for T seconds with a color increment of INC.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
spring


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Function File: MAP = spring ()
 -- Function File: MAP = spring (N)
     Create color colormap.  This colormap varies from magenta to yellow.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
summer


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 280
 -- Function File: MAP = summer ()
 -- Function File: MAP = summer (N)
     Create color colormap.  This colormap varies from green to yellow.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
white


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
 -- Function File: MAP = white ()
 -- Function File: MAP = white (N)
     Create color colormap.  This colormap is completely white.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
winter


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 278
 -- Function File: MAP = winter ()
 -- Function File: MAP = winter (N)
     Create color colormap.  This colormap varies from blue to green.

     The argument N must be a scalar.  If unspecified, the length of the current colormap, or 64, is used.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Create color colormap.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
beep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 306
 -- Function File: beep ()
     Produce a beep from the speaker (or visual bell).

     This function sends the alarm character "\a" to the terminal.  Depending on the user's configuration this may produce an audible beep, a visual bell, or nothing at all.

     See also: puts, fputs, printf, fprintf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Produce a beep from the speaker (or visual bell).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
csvread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
 -- Function File: X = csvread (FILENAME)
 -- Function File: X = csvread (FILENAME, DLM_OPTS)
     Read the comma-separated-value file FILENAME into the matrix X.

     This function is equivalent to

          X = dlmread (FILENAME, "," , ...)

     See also: csvwrite, dlmread, dlmwrite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Read the comma-separated-value file FILENAME into the matrix X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
csvwrite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 300
 -- Function File: csvwrite (FILENAME, X)
 -- Function File: csvwrite (FILENAME, X, DLM_OPTS)
     Write the matrix X to the file FILENAME in comma-separated-value format.

     This function is equivalent to

          dlmwrite (FILENAME, X, ",", ...)

     See also: csvread, dlmwrite, dlmread.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Write the matrix X to the file FILENAME in comma-separated-value format.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dlmwrite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1600
 -- Function File: dlmwrite (FILE, M)
 -- Function File: dlmwrite (FILE, M, DELIM, R, C)
 -- Function File: dlmwrite (FILE, M, KEY, VAL ...)
 -- Function File: dlmwrite (FILE, M, "-append", ...)
 -- Function File: dlmwrite (FID, ...)
     Write the matrix M to the named file using delimiters.

     FILE should be a file name or writable file ID given by 'fopen'.

     The parameter DELIM specifies the delimiter to use to separate values on a row.

     The value of R specifies the number of delimiter-only lines to add to the start of the file.

     The value of C specifies the number of delimiters to prepend to each line of data.

     If the argument "-append" is given, append to the end of FILE.

     In addition, the following keyword value pairs may appear at the end of the argument list:

     "append"
          Either "on" or "off".  See "-append" above.

     "delimiter"
          See DELIM above.

     "newline"
          The character(s) to use to separate each row.  Three special cases exist for this option.  "unix" is changed into "\n", "pc" is changed into "\r\n", and "mac" is changed into "\r".  Any other value is used directly as the newline separator.

     "roffset"
          See R above.

     "coffset"
          See C above.

     "precision"
          The precision to use when writing the file.  It can either be a format string (as used by fprintf) or a number of significant digits.

          dlmwrite ("file.csv", reshape (1:16, 4, 4));

          dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\n")

     See also: dlmread, csvread, csvwrite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Write the matrix M to the named file using delimiters.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fileread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Function File: STR = fileread (FILENAME)
     Read the contents of FILENAME and return it as a string.

     See also: fread, textread, sscanf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Read the contents of FILENAME and return it as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
importdata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
 -- Function File: A = importdata (FNAME)
 -- Function File: A = importdata (FNAME, DELIMITER)
 -- Function File: A = importdata (FNAME, DELIMITER, HEADER_ROWS)
 -- Function File: [A, DELIMITER] = importdata (...)
 -- Function File: [A, DELIMITER, HEADER_ROWS] = importdata (...)
     Import data from the file FNAME.

     Input parameters:

        * FNAME The name of the file containing data.

        * DELIMITER The character separating columns of data.  Use '\t' for tab.  (Only valid for ASCII files)

        * HEADER_ROWS The number of header rows before the data begins.  (Only valid for ASCII files)

     Different file types are supported:

        * ASCII table

          Import ASCII table using the specified number of header rows and the specified delimiter.

        * Image file

        * MATLAB file

        * Spreadsheet files (depending on external software)

        * WAV file

     See also: textscan, dlmread, csvread, load.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Import data from the file FNAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
is_valid_file_id


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
 -- Function File: is_valid_file_id (FID)
     Return true if FID refers to an open file.

     See also: freport, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return true if FID refers to an open file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4661
 -- Function File: [A, ...] = strread (STR)
 -- Function File: [A, ...] = strread (STR, FORMAT)
 -- Function File: [A, ...] = strread (STR, FORMAT, FORMAT_REPEAT)
 -- Function File: [A, ...] = strread (STR, FORMAT, PROP1, VALUE1, ...)
 -- Function File: [A, ...] = strread (STR, FORMAT, FORMAT_REPEAT, PROP1, VALUE1, ...)
     Read data from a string.

     The string STR is split into words that are repeatedly matched to the specifiers in FORMAT.  The first word is matched to the first specifier, the second to the second specifier and so forth.  If there are more words than specifiers, the process is repeated until all words have been processed.

     The string FORMAT describes how the words in STR should be parsed.  It may contain any combination of the following specifiers:

     '%s'
          The word is parsed as a string.

     '%f'
     '%n'
          The word is parsed as a number and converted to double.

     '%d'
     '%u'
          The word is parsed as a number and converted to int32.

     '%*', '%*f', '%*s'
          The word is skipped.

          For %s and %d, %f, %n, %u and the associated %*s ... specifiers an optional width can be specified as %Ns, etc.  where N is an integer > 1.  For %f, format specifiers like %N.Mf are allowed.

     'literals'
          In addition the format may contain literal character strings; these will be skipped during reading.

     Parsed word corresponding to the first specifier are returned in the first output argument and likewise for the rest of the specifiers.

     By default, FORMAT is "%f", meaning that numbers are read from STR.  This will do if STR contains only numeric fields.

     For example, the string

          STR = "\
          Bunny Bugs   5.5\n\
          Duck Daffy  -7.5e-5\n\
          Penguin Tux   6"

     can be read using

          [A, B, C] = strread (STR, "%s %s %f");

     Optional numeric argument FORMAT_REPEAT can be used for limiting the number of items read:

     -1
          (default) read all of the string until the end.

     N
          Read N times NARGOUT items.  0 (zero) is an acceptable value for FORMAT_REPEAT.

     The behavior of 'strread' can be changed via property-value pairs.  The following properties are recognized:

     "commentstyle"
          Parts of STR are considered comments and will be skipped.  VALUE is the comment style and can be any of the following.

             * "shell" Everything from '#' characters to the nearest end-of-line is skipped.

             * "c" Everything between '/*' and '*/' is skipped.

             * "c++" Everything from '//' characters to the nearest end-of-line is skipped.

             * "matlab" Everything from '%' characters to the nearest end-of-line is skipped.

             * user-supplied.  Two options: (1) One string, or 1x1 cell string: Skip everything to the right of it; (2) 2x1 cell string array: Everything between the left and right strings is skipped.

     "delimiter"
          Any character in VALUE will be used to split STR into words (default value = any whitespace).

     "emptyvalue":
          Value to return for empty numeric values in non-whitespace delimited data.  The default is NaN.  When the data type does not support NaN (int32 for example), then default is zero.

     "multipledelimsasone"
          Treat a series of consecutive delimiters, without whitespace in between, as a single delimiter.  Consecutive delimiter series need not be vertically "aligned".

     "treatasempty"
          Treat single occurrences (surrounded by delimiters or whitespace) of the string(s) in VALUE as missing values.

     "returnonerror"
          If VALUE true (1, default), ignore read errors and return normally.  If false (0), return an error.

     "whitespace"
          Any character in VALUE will be interpreted as whitespace and trimmed; the string defining whitespace must be enclosed in double quotes for proper processing of special characters like "\t".  The default value for whitespace is " \b\r\n\t" (note the space).  Unless whitespace is set to "" (empty) AND at least one "%s" format conversion specifier is supplied, a space is always part of whitespace.

     When the number of words in STR doesn't match an exact multiple of the number of format conversion specifiers, strread's behavior depends on the last character of STR:

     last character = "\n"
          Data columns are padded with empty fields or Nan so that all columns have equal length

     last character is not "\n"
          Data columns are not padded; strread returns columns of unequal length

     See also: textscan, textread, load, dlmread, fscanf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Read data from a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
textscan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2392
 -- Function File: C = textscan (FID, FORMAT)
 -- Function File: C = textscan (FID, FORMAT, N)
 -- Function File: C = textscan (FID, FORMAT, PARAM, VALUE, ...)
 -- Function File: C = textscan (FID, FORMAT, N, PARAM, VALUE, ...)
 -- Function File: C = textscan (STR, ...)
 -- Function File: [C, POSITION] = textscan (FID, ...)
     Read data from a text file or string.

     The string STR or file associated with FID is read from and parsed according to FORMAT.  The function behaves like 'strread' except it can also read from file instead of a string.  See the documentation of 'strread' for details.

     In addition to the options supported by 'strread', this function supports a few more:

        * "collectoutput": A value of 1 or true instructs textscan to concatenate consecutive columns of the same class in the output cell array.  A value of 0 or false (default) leaves output in distinct columns.

        * "endofline": Specify "\r", "\n" or "\r\n" (for CR, LF, or CRLF). If no value is given, it will be inferred from the file.  If set to "" (empty string) EOLs are ignored as delimiters and added to whitespace.

        * "headerlines": The first VALUE number of lines of FID are skipped.

        * "returnonerror": If set to numerical 1 or true (default), return normally when read errors have been encountered.  If set to 0 or false, return an error and no data.  As the string or file is read by columns rather than by rows, and because textscan is fairly forgiving as regards read errors, setting this option may have little or no actual effect.

     When reading from a character string, optional input argument N specifies the number of times FORMAT should be used (i.e., to limit the amount of data read).  When reading from file, N specifies the number of data lines to read; in this sense it differs slightly from the format repeat count in strread.

     The output C is a cell array whose second dimension is determined by the number of format specifiers.

     The second output, POSITION, provides the position, in characters, from the beginning of the file.

     If the format string is empty (not: omitted) and the file contains only numeric data (excluding headerlines), textscan will return data in a number of columns matching the number of numeric fields on the first data line of the file.

     See also: dlmread, fscanf, load, strread, textread.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Read data from a text file or string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
textread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2728
 -- Function File: [A, ...] = textread (FILENAME)
 -- Function File: [A, ...] = textread (FILENAME, FORMAT)
 -- Function File: [A, ...] = textread (FILENAME, FORMAT, N)
 -- Function File: [A, ...] = textread (FILENAME, FORMAT, PROP1, VALUE1, ...)
 -- Function File: [A, ...] = textread (FILENAME, FORMAT, N, PROP1, VALUE1, ...)
     Read data from a text file.

     The file FILENAME is read and parsed according to FORMAT.  The function behaves like 'strread' except it works by parsing a file instead of a string.  See the documentation of 'strread' for details.

     In addition to the options supported by 'strread', this function supports two more:

        * "headerlines": The first VALUE number of lines of FILENAME are skipped.

        * "endofline": Specify a single character or "\r\n".  If no value is given, it will be inferred from the file.  If set to "" (empty string) EOLs are ignored as delimiters.

     The optional input N (format repeat count) specifies the number of times the format string is to be used or the number of lines to be read, whichever happens first while reading.  The former is equivalent to requesting that the data output vectors should be of length N.  Note that when reading files with format strings referring to multiple lines, N should rather be the number of lines to be read than the number of format string uses.

     If the format string is empty (not just omitted) and the file contains only numeric data (excluding headerlines), textread will return a rectangular matrix with the number of columns matching the number of numeric fields on the first data line of the file.  Empty fields are returned as zero values.

     Examples:

            Assume a data file like:
            1 a 2 b
            3 c 4 d
            5 e

            [a, b] = textread (f, "%f %s")
            returns two columns of data, one with doubles, the other a
            cellstr array:
            a = [1; 2; 3; 4; 5]
            b = {"a"; "b"; "c"; "d"; "e"}

            [a, b] = textread (f, "%f %s", 3)
            (read data into two culumns, try to use the format string
            three times)
            returns
            a = [1; 2; 3]
            b = {"a"; "b"; "c"}


            With a data file like:
            1
            a
            2
            b

            [a, b] = textread (f, "%f %s", 2)
            returns a = 1 and b = {"a"}; i.e., the format string is used
            only once because the format string refers to 2 lines of the
            data file. To obtain 2x1 data output columns, specify N = 4
            (number of data lines containing all requested data) rather
            than 2.

     See also: strread, load, dlmread, fscanf, textscan.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Read data from a text file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java_get


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 486
 -- Function File: VAL = java_get (OBJ, NAME)
     Get the value of the field NAME of the Java object OBJ.

     For static fields, OBJ can be a string representing the fully qualified name of the corresponding class.

     When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax.  For instance, the following two statements are equivalent

            java_get (x, "field1")
            x.field1

     See also: java_set, javaMethod, javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Get the value of the field NAME of the Java object OBJ.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java_set


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
 -- Function File: OBJ = java_set (OBJ, NAME, VAL)
     Set the value of the field NAME of the Java object OBJ to VAL.

     For static fields, OBJ can be a string representing the fully qualified named of the corresponding Java class.

     When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax.  For instance, the following two statements are equivalent

            java_set (x, "field1", val)
            x.field1 = val

     See also: java_get, javaMethod, javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Set the value of the field NAME of the Java object OBJ to VAL.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
javaArray


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 699
 -- Function File: JARY = javaArray (CLASSNAME, SZ)
 -- Function File: JARY = javaArray (CLASSNAME, M, N, ...)

     Create a Java array of size SZ with elements of class CLASSNAME.

     CLASSNAME may be a Java object representing a class or a string containing the fully qualified class name.  The size of the object may also be specified with individual integer arguments M, N, etc.

     The generated array is uninitialized.  All elements are set to null if CLASSNAME is a reference type, or to a default value (usually 0) if CLASSNAME is a primitive type.

     Sample code:

          jary = javaArray ("java.lang.String", 2, 2);
          jary(1,1) = "Hello";

     See also: javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Create a Java array of size SZ with elements of class CLASSNAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
javaaddpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 393
 -- Function File: javaaddpath (CLSPATH)
 -- Function File: javaaddpath (CLSPATH1, ...)
     Add CLSPATH to the dynamic class path of the Java virtual machine.

     CLSPATH may either be a directory where '.class' files are found, or a '.jar' file containing Java classes.  Multiple paths may be added at once by specifying additional arguments.

     See also: javarmpath, javaclasspath.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Add CLSPATH to the dynamic class path of the Java virtual machine.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
javachk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1517
 -- Function File: javachk (FEATURE)
 -- Function File: javachk (FEATURE, COMPONENT)
 -- Function File: MSG = javachk (...)
     Check for the presence of the Java FEATURE in the current session and print or return an error message if it is not.

     Possible features are:

     "awt"
          Abstract Window Toolkit for GUIs.

     "desktop"
          Interactive desktop is running.

     "jvm"
          Java Virtual Machine.

     "swing"
          Swing components for lightweight GUIs.

     If FEATURE is supported and

        * no output argument is requested:

          Return an empty string

        * an output argument is requested:

          Return a struct with fields "feature" and "identifier" both empty

     If FEATURE is not supported and

        * no output argument is requested:

          Emit an error message

        * an output argument is requested:

          Return a struct with field "feature" set to FEATURE and field "identifier" set to COMPONENT

     The optional input COMPONENT will be used in place of FEATURE in any error messages for greater specificity.

     'javachk' determines if specific Java features are available in an Octave session.  This function is provided for scripts which may alter their behavior based on the availability of Java.  The feature "desktop" is never available as Octave has no Java-based desktop.  Other features may be available if Octave was compiled with the Java Interface and Java is installed.

     See also: usejava, error.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Check for the presence of the Java FEATURE in the current session and print or return an error message if it is not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
javaclasspath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 969
 -- Function File: javaclasspath ()
 -- Function File: DPATH = javaclasspath ()
 -- Function File: [DPATH, SPATH] = javaclasspath ()
 -- Function File: CLSPATH = javaclasspath (WHAT)
     Return the class path of the Java virtual machine in the form of a cell array of strings.

     If called with no inputs:

        * If no output is requested, the dynamic and static classpaths are printed to the standard output.

        * If one output value DPATH is requested, the result is the dynamic classpath.

        * If two output valuesDPATH and SPATH are requested, the first variable will contain the dynamic classpath and the second will contain the static classpath.

     If called with a single input parameter WHAT:

     "-dynamic"
          Return the dynamic classpath.

     "-static"
          Return the static classpath.

     "-all"
          Return both the static and dynamic classpath in a single cellstr.

     See also: javaaddpath, javarmpath.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the class path of the Java virtual machine in the form of a cell array of strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
javamem


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1636
 -- Function File: javamem ()
 -- Function File: JMEM = javamem ()
     Show the current memory usage of the Java virtual machine (JVM) and run the garbage collector.

     When no return argument is given the info is printed to the screen.  Otherwise, the output cell array JMEM contains Maximum, Total, and Free memory (in bytes).

     All Java-based routines are run in the JVM's shared memory pool, a dedicated and separate part of memory claimed by the JVM from your computer's total memory (which comprises physical RAM and virtual memory / swap space on hard disk).

     The maximum allowable memory usage can be configured using the file 'java.opts'.  The directory where this file resides is determined by the environment variable 'OCTAVE_JAVA_DIR'.  If unset, the directory where 'javaaddpath.m' resides is used instead (typically 'OCTAVE_HOME/share/octave/OCTAVE_VERSION/m/java/').

     'java.opts' is a plain text file with one option per line.  The default initial memory size and default maximum memory size (which are both system dependent) can be overridden like so:

     -Xms64m

     -Xmx512m

     (in megabytes in this example).  You can adapt these values to your own requirements if your system has limited available physical memory or if you get Java memory errors.

     "Total memory" is what the operating system has currently assigned to the JVM and depends on actual and active memory usage.  "Free memory" is self-explanatory.  During operation of Java-based Octave functions the amount of Total and Free memory will vary, due to Java's own cleaning up and your operating system's memory management.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Show the current memory usage of the Java virtual machine (JVM) and run the garbage collector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javarmpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
 -- Function File: javarmpath (CLSPATH)
 -- Function File: javarmpath (CLSPATH1, ...)
     Remove CLSPATH from the dynamic class path of the Java virtual machine.

     CLSPATH may either be a directory where '.class' files are found, or a '.jar' file containing Java classes.  Multiple paths may be removed at once by specifying additional arguments.

     See also: javaaddpath, javaclasspath.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Remove CLSPATH from the dynamic class path of the Java virtual machine.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
usejava


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 754
 -- Function File: usejava (FEATURE)
     Return true if the Java element FEATURE is available.

     Possible features are:

     "awt"
          Abstract Window Toolkit for GUIs.

     "desktop"
          Interactive desktop is running.

     "jvm"
          Java Virtual Machine.

     "swing"
          Swing components for lightweight GUIs.

     'usejava' determines if specific Java features are available in an Octave session.  This function is provided for scripts which may alter their behavior based on the availability of Java.  The feature "desktop" always returns 'false' as Octave has no Java-based desktop.  Other features may be available if Octave was compiled with the Java Interface and Java is installed.

     See also: javachk.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if the Java element FEATURE is available.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
bandwidth


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
 -- Function File: BW = bandwidth (A, TYPE)
 -- Function File: [LOWER, UPPER] = bandwidth (A)
     Compute the bandwidth of A.

     The TYPE argument is the string "lower" for the lower bandwidth and "upper" for the upper bandwidth.  If no TYPE is specified return both the lower and upper bandwidth of A.

     The lower/upper bandwidth of a matrix is the number of subdiagonals/superdiagonals with nonzero entries.

     See also: isbanded, isdiag, istril, istriu.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the bandwidth of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
commutation_matrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 370
 -- Function File: commutation_matrix (M, N)
     Return the commutation matrix K(m,n) which is the unique M*N by M*N matrix such that K(m,n) * vec(A) = vec(A') for all m by n matrices A.

     If only one argument M is given, K(m,m) is returned.

     See Magnus and Neudecker (1988), 'Matrix Differential Calculus with Applications in Statistics and Econometrics.'
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Return the commutation matrix K(m,n) which is the unique M*N by M*N matrix such that K(m,n) * vec(A) = vec(A') for all m by n matrices A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cond


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 894
 -- Function File: cond (A)
 -- Function File: cond (A, P)
     Compute the P-norm condition number of a matrix.

     'cond (A)' is defined as 'norm (A, P) * norm (inv (A), P)'.

     By default, 'P = 2' is used which implies a (relatively slow) singular value decomposition.  Other possible selections are 'P = 1, Inf, "fro"' which are generally faster.  See 'norm' for a full discussion of possible P values.

     The condition number of a matrix quantifies the sensitivity of the matrix inversion operation when small changes are made to matrix elements.  Ideally the condition number will be close to 1.  When the number is large this indicates small changes (such as underflow or round-off error) will produce large changes in the resulting output.  In such cases the solution results from numerical computing are not likely to be accurate.

     See also: condest, rcond, norm, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the P-norm condition number of a matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
condest


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1601
 -- Function File: condest (A)
 -- Function File: condest (A, T)
 -- Function File: [EST, V] = condest (...)
 -- Function File: [EST, V] = condest (A, SOLVE, SOLVE_T, T)
 -- Function File: [EST, V] = condest (APPLY, APPLY_T, SOLVE, SOLVE_T, N, T)

     Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator.

     If T exceeds 5, then only 5 test vectors are used.

     If the matrix is not explicit, e.g., when estimating the condition number of A given an LU factorization, 'condest' uses the following functions:

     APPLY
          'A*x' for a matrix 'x' of size N by T.

     APPLY_T
          'A'*x' for a matrix 'x' of size N by T.

     SOLVE
          'A \ b' for a matrix 'b' of size N by T.

     SOLVE_T
          'A' \ b' for a matrix 'b' of size N by T.

     The implicit version requires an explicit dimension N.

     'condest' uses a randomized algorithm to approximate the 1-norms.

     'condest' returns the 1-norm condition estimate EST and a vector V satisfying 'norm (A*v, 1) == norm (A, 1) * norm (V, 1) / EST'.  When EST is large, V is an approximate null vector.

     References:

        * N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'.  SIMAX vol 21, no 4, pp 1185-1201.  <http://dx.doi.org/10.1137/S0895479899356080>

        * N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'.  <http://citeseer.ist.psu.edu/223007.html>

     See also: cond, norm, onenormest.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
cross


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 486
 -- Function File: cross (X, Y)
 -- Function File: cross (X, Y, DIM)
     Compute the vector cross product of two 3-dimensional vectors X and Y.

     If X and Y are matrices, the cross product is applied along the first dimension with three elements.

     The optional argument DIM forces the cross product to be calculated along the specified dimension.

     Example Code:

          cross ([1,1,0], [0,1,1])
               => [ 1; -1; 1 ]

     See also: dot, curl, divergence.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Compute the vector cross product of two 3-dimensional vectors X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
duplication_matrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 316
 -- Function File: duplication_matrix (N)
     Return the duplication matrix Dn which is the unique n^2 by n*(n+1)/2 matrix such that Dn vech (A) = vec (A) for all symmetric n by n matrices A.

     See Magnus and Neudecker (1988), 'Matrix Differential Calculus with Applications in Statistics and Econometrics.'
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
Return the duplication matrix Dn which is the unique n^2 by n*(n+1)/2 matrix such that Dn vech (A) = vec (A) for all symmetric n by n matrices A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
expm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 911
 -- Function File: expm (A)
     Return the exponential of a matrix.

     The matrix exponential is defined as the infinite Taylor series

          expm (A) = I + A + A^2/2! + A^3/3! + ...

     However, the Taylor series is _not_ the way to compute the matrix exponential; see Moler and Van Loan, 'Nineteen Dubious Ways to Compute the Exponential of a Matrix', SIAM Review, 1978.  This routine uses Ward's diagonal Pade' approximation method with three step preconditioning (SIAM Journal on Numerical Analysis, 1977).  Diagonal Pade' approximations are rational polynomials of matrices

               -1
          D (A)   N (A)

     whose Taylor series matches the first '2q+1' terms of the Taylor series above; direct evaluation of the Taylor series (with the same preconditioning steps) may be desirable in lieu of the Pade' approximation when 'Dq(A)' is ill-conditioned.

     See also: logm, sqrtm.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return the exponential of a matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
housh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 602
 -- Function File: [HOUSV, BETA, ZER] = housh (X, J, Z)
     Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.e.,

          (I - beta*housv*housv')x =  norm (x)*e(j) if x(j) < 0,
          (I - beta*housv*housv')x = -norm (x)*e(j) if x(j) >= 0

     Inputs

     X
          vector

     J
          index into vector

     Z
          threshold for zero (usually should be the number 0)

     Outputs (see Golub and Van Loan):

     BETA
          If beta = 0, then no reflection need be applied (zer set to 0)

     HOUSV
          householder vector
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isbanded


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 302
 -- Function File: isbanded (A, LOWER, UPPER)
     Return true if A is a matrix with entries confined between LOWER diagonals below the main diagonal and UPPER diagonals above the main diagonal.

     LOWER and UPPER must be non-negative integers.

     See also: isdiag, istril, istriu, bandwidth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Return true if A is a matrix with entries confined between LOWER diagonals below the main diagonal and UPPER diagonals above the main diagonal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isdefinite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
 -- Function File: isdefinite (A)
 -- Function File: isdefinite (A, TOL)
     Return 1 if A is symmetric positive definite within the tolerance specified by TOL or 0 if A is symmetric positive semidefinite.  Otherwise, return -1.

     If TOL is omitted, use a tolerance of '100 * eps * norm (A, "fro")'

     See also: issymmetric, ishermitian.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
Return 1 if A is symmetric positive definite within the tolerance specified by TOL or 0 if A is symmetric positive semidefinite.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isdiag


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
 -- Function File: isdiag (A)
     Return true if A is a diagonal matrix.

     See also: isbanded, istril, istriu, diag, bandwidth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return true if A is a diagonal matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
ishermitian


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
 -- Function File: ishermitian (A)
 -- Function File: ishermitian (A, TOL)
     Return true if A is Hermitian within the tolerance specified by TOL.

     The default tolerance is zero (uses faster code).

     Matrix A is considered symmetric if 'norm (A - A', Inf) / norm (A, Inf) < TOL'.

     See also: issymmetric, isdefinite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return true if A is Hermitian within the tolerance specified by TOL.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
issymmetric


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
 -- Function File: issymmetric (A)
 -- Function File: issymmetric (A, TOL)
     Return true if A is a symmetric matrix within the tolerance specified by TOL.

     The default tolerance is zero (uses faster code).

     Matrix A is considered symmetric if 'norm (A - A.', Inf) / norm (A, Inf) < TOL'.

     See also: ishermitian, isdefinite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return true if A is a symmetric matrix within the tolerance specified by TOL.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
istril


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 233
 -- Function File: istril (A)
     Return true if A is a lower triangular matrix.

     A lower triangular matrix has nonzero entries only on the main diagonal and below.

     See also: istriu, isbanded, isdiag, tril, bandwidth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Return true if A is a lower triangular matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
istriu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
 -- Function File: istriu (A)
     Return true if A is an upper triangular matrix.

     An upper triangular matrix has nonzero entries only on the main diagonal and above.

     See also: isdiag, isbanded, istril, triu, bandwidth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return true if A is an upper triangular matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
krylov


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1184
 -- Function File: [U, H, NU] = krylov (A, V, K, EPS1, PFLG)
     Construct an orthogonal basis U of block Krylov subspace

          [v a*v a^2*v ... a^(k+1)*v]

     using Householder reflections to guard against loss of orthogonality.

     If V is a vector, then H contains the Hessenberg matrix such that a*u == u*h+rk*ek', in which 'rk = a*u(:,k)-u*h(:,k)', and ek' is the vector '[0, 0, ..., 1]' of length 'k'.  Otherwise, H is meaningless.

     If V is a vector and K is greater than 'length (A) - 1', then H contains the Hessenberg matrix such that 'a*u == u*h'.

     The value of NU is the dimension of the span of the Krylov subspace (based on EPS1).

     If B is a vector and K is greater than M-1, then H contains the Hessenberg decomposition of A.

     The optional parameter EPS1 is the threshold for zero.  The default value is 1e-12.

     If the optional parameter PFLG is nonzero, row pivoting is used to improve numerical behavior.  The default value is 0.

     Reference: A. Hodel, P. Misra, 'Partial Pivoting in the Computation of Krylov Subspaces of Large Sparse Systems', Proceedings of the 42nd IEEE Conference on Decision and Control, December 2003.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Construct an orthogonal basis U of block Krylov subspace 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linsolve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1616
 -- Function File: X = linsolve (A, B)
 -- Function File: X = linsolve (A, B, OPTS)
 -- Function File: [X, R] = linsolve (...)
     Solve the linear system 'A*x = b'.

     With no options, this function is equivalent to the left division operator ('x = A \ b') or the matrix-left-divide function ('x = mldivide (A, b)').

     Octave ordinarily examines the properties of the matrix A and chooses a solver that best matches the matrix.  By passing a structure OPTS to 'linsolve' you can inform Octave directly about the matrix A.  In this case Octave will skip the matrix examination and proceed directly to solving the linear system.

     *Warning:* If the matrix A does not have the properties listed in the OPTS structure then the result will not be accurate AND no warning will be given.  When in doubt, let Octave examine the matrix and choose the appropriate solver as this step takes little time and the result is cached so that it is only done once per linear system.

     Possible OPTS fields (set value to true/false):

     LT
          A is lower triangular

     UT
          A is upper triangular

     UHESS
          A is upper Hessenberg (currently makes no difference)

     SYM
          A is symmetric or complex Hermitian (currently makes no difference)

     POSDEF
          A is positive definite

     RECT
          A is general rectangular (currently makes no difference)

     TRANSA
          Solve 'A'*x = b' by 'transpose (A) \ b'

     The optional second output R is the inverse condition number of A (zero if matrix is singular).

     See also: mldivide, matrix_type, rcond.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Solve the linear system 'A*x = b'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
logm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 512
 -- Function File: S = logm (A)
 -- Function File: S = logm (A, OPT_ITERS)
 -- Function File: [S, ITERS] = logm (...)
     Compute the matrix logarithm of the square matrix A.

     The implementation utilizes a Pade' approximant and the identity

          logm (A) = 2^k * logm (A^(1 / 2^k))

     The optional input OPT_ITERS is the maximum number of square roots to compute and defaults to 100.

     The optional output ITERS is the number of square roots actually computed.

     See also: expm, sqrtm.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the matrix logarithm of the square matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normest


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 529
 -- Function File: N = normest (A)
 -- Function File: N = normest (A, TOL)
 -- Function File: [N, C] = normest (...)
     Estimate the 2-norm of the matrix A using a power series analysis.

     This is typically used for large matrices, where the cost of calculating 'norm (A)' is prohibitive and an approximation to the 2-norm is acceptable.

     TOL is the tolerance to which the 2-norm is calculated.  By default TOL is 1e-6.

     The optional output C returns the number of iterations needed for 'normest' to converge.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Estimate the 2-norm of the matrix A using a power series analysis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
null


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
 -- Function File: null (A)
 -- Function File: null (A, TOL)
     Return an orthonormal basis of the null space of A.

     The dimension of the null space is taken as the number of singular values of A not greater than TOL.  If the argument TOL is missing, it is computed as

          max (size (A)) * max (svd (A)) * eps

     See also: orth.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return an orthonormal basis of the null space of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
onenormest


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1249
 -- Function File: [EST, V, W, ITER] = onenormest (A, T)
 -- Function File: [EST, V, W, ITER] = onenormest (APPLY, APPLY_T, N, T)

     Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors.

     If T exceeds 5, then only 5 test vectors are used.

     If the matrix is not explicit, e.g., when estimating the norm of 'inv (A)' given an LU factorization, 'onenormest' applies A and its conjugate transpose through a pair of functions APPLY and APPLY_T, respectively, to a dense matrix of size N by T.  The implicit version requires an explicit dimension N.

     Returns the norm estimate EST, two vectors V and W related by norm '(W, 1) = EST * norm (V, 1)', and the number of iterations ITER.  The number of iterations is limited to 10 and is at least 2.

     References:

        * N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'.  SIMAX vol 21, no 4, pp 1185-1201.  <http://dx.doi.org/10.1137/S0895479899356080>

        * N.J. Higham and F. Tisseur, 'A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra'.  <http://citeseer.ist.psu.edu/223007.html>

     See also: condest, norm, cond.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
orth


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
 -- Function File: orth (A)
 -- Function File: orth (A, TOL)
     Return an orthonormal basis of the range space of A.

     The dimension of the range space is taken as the number of singular values of A greater than TOL.  If the argument TOL is missing, it is computed as

          max (size (A)) * max (svd (A)) * eps

     See also: null.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return an orthonormal basis of the range space of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
planerot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
 -- Function File: [G, Y] = planerot (X)
     Given a two-element column vector, return the 2 by 2 orthogonal matrix G such that 'Y = G * X' and 'Y(2) = 0'.

     See also: givens.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Given a two-element column vector, return the 2 by 2 orthogonal matrix G such that 'Y = G * X' and 'Y(2) = 0'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
qzhess


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 777
 -- Function File: [AA, BB, Q, Z] = qzhess (A, B)
     Compute the Hessenberg-triangular decomposition of the matrix pencil '(A, B)', returning 'AA = Q * A * Z', 'BB = Q * B * Z', with Q and Z orthogonal.

     For example:

          [aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
               => aa = [ -3.02244, -4.41741;  0.92998,  0.69749 ]
               => bb = [ -8.60233, -9.99730;  0.00000, -0.23250 ]
               =>  q = [ -0.58124, -0.81373; -0.81373,  0.58124 ]
               =>  z = [ 1, 0; 0, 1 ]

     The Hessenberg-triangular decomposition is the first step in Moler and Stewart's QZ decomposition algorithm.

     Algorithm taken from Golub and Van Loan, 'Matrix Computations, 2nd edition'.

     See also: lu, chol, hess, qr, qz, schur, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
Compute the Hessenberg-triangular decomposition of the matrix pencil '(A, B)', returning 'AA = Q * A * Z', 'BB = Q * B * Z', with Q and Z orthogonal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rank


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 942
 -- Function File: rank (A)
 -- Function File: rank (A, TOL)
     Compute the rank of matrix A, using the singular value decomposition.

     The rank is taken to be the number of singular values of A that are greater than the specified tolerance TOL.  If the second argument is omitted, it is taken to be

          tol = max (size (A)) * sigma(1) * eps;

     where 'eps' is machine precision and 'sigma(1)' is the largest singular value of A.

     The rank of a matrix is the number of linearly independent rows or columns and determines how many particular solutions exist to a system of equations.  Use 'null' for finding the remaining homogenous solutions.

     Example:

          x = [1 2 3
               4 5 6
               7 8 9];
          rank (x)
            => 2

     The number of linearly independent rows is only 2 because the final row is a linear combination of -1*row1 + 2*row2.

     See also: null, sprank, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Compute the rank of matrix A, using the singular value decomposition.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 357
 -- Function File: rref (A)
 -- Function File: rref (A, TOL)
 -- Function File: [R, K] = rref (...)
     Return the reduced row echelon form of A.

     TOL defaults to 'eps * max (size (A)) * norm (A, inf)'.

     The optional return argument K contains the vector of "bound variables", which are those columns on which elimination has been performed.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Return the reduced row echelon form of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
subspace


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
 -- Function File: ANGLE = subspace (A, B)
     Determine the largest principal angle between two subspaces spanned by the columns of matrices A and B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Determine the largest principal angle between two subspaces spanned by the columns of matrices A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
trace


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
 -- Function File: trace (A)
     Compute the trace of A, the sum of the elements along the main diagonal.

     The implementation is straightforward: 'sum (diag (A))'.

     See also: eig.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Compute the trace of A, the sum of the elements along the main diagonal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
vech


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
 -- Function File: vech (X)
     Return the vector obtained by eliminating all superdiagonal elements of the square matrix X and stacking the result one column above the other.

     This has uses in matrix calculus where the underlying matrix is symmetric and it would be pointless to keep values above the main diagonal.

     See also: vec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Return the vector obtained by eliminating all superdiagonal elements of the square matrix X and stacking the result one column above the other.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ans


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 234
 -- Automatic Variable: ans
     The most recently computed result that was not explicitly assigned to a variable.

     For example, after the expression

          3^2 + 4^2

     is evaluated, the value returned by 'ans' is 25.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
The most recently computed result that was not explicitly assigned to a variable.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
bug_report


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Function File: bug_report ()
     Display information about how to submit bug reports for Octave.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Display information about how to submit bug reports for Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bunzip2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 377
 -- Function File: FILELIST = bunzip2 (BZFILE)
 -- Function File: FILELIST = bunzip2 (BZFILE, DIR)
     Unpack the bzip2 archive BZFILE.

     If DIR is specified the files are unpacked in this directory rather than the one where BZFILE is located.

     The optional output FILELIST is a list of the uncompressed files.

     See also: bzip2, unpack, gunzip, unzip, untar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Unpack the bzip2 archive BZFILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
bzip2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 777
 -- Function File: FILELIST = bzip2 (FILES)
 -- Function File: FILELIST = bzip2 (FILES, DIR)
     Compress the list of files specified in FILES.

     FILES is a character array or cell array of strings.  Shell wildcards in the filename such as '*' or '?' are accepted and expanded.  Each file is compressed separately and a new file with a '".bz2"' extension is created.  The original files are not modified, but existing compressed files will be silently overwritten.

     If DIR is defined the compressed files are placed in this directory, rather than the original directory where the uncompressed file resides.  If DIR does not exist it is created.

     The optional output FILELIST is a list of the compressed files.

     See also: bunzip2, unpack, gzip, zip, tar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Compress the list of files specified in FILES.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cast


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 667
 -- Function File: cast (VAL, "TYPE")
     Convert VAL to data type TYPE.

     VAL must be one of the numeric classes:

          "double"
          "single"
          "logical"
          "char"
          "int8"
          "int16"
          "int32"
          "int64"
          "uint8"
          "uint16"
          "uint32"
          "uint64"

     The value VAL may be modified to fit within the range of the new type.

     Examples:

          cast (-5, "uint8")
             => 0
          cast (300, "int8")
             => 127

     See also: typecast, int8, uint8, int16, uint16, int32, uint32, int64, uint64, double, single, logical, char, class, typeinfo.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Convert VAL to data type TYPE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
citation


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 664
 -- Command: citation
 -- Command: citation PACKAGE
     Display instructions for citing GNU Octave or its packages in publications.

     When called without an argument, display information on how to cite the core GNU Octave system.

     When given a package name PACKAGE, display information on citing the specific named package.  Note that some packages may not yet have instructions on how to cite them.

     The GNU Octave developers and its active community of package authors have invested a lot of time and effort in creating GNU Octave as it is today.  Please give credit where credit is due and cite GNU Octave and its packages when you use them.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Display instructions for citing GNU Octave or its packages in publications.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
comma


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Operator: ,
     Array index, function argument, or command separator.

     See also: semicolon.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Array index, function argument, or command separator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
compare_versions


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
 -- Function File: compare_versions (V1, V2, OPERATOR)
     Compare two version strings using the given OPERATOR.

     This function assumes that versions V1 and V2 are arbitrarily long strings made of numeric and period characters possibly followed by an arbitrary string (e.g., "1.2.3", "0.3", "0.1.2+", or "1.2.3.4-test1").

     The version is first split into numeric and character portions and then the parts are padded to be the same length (i.e., "1.1" would be padded to be "1.1.0" when being compared with "1.1.1", and separately, the character parts of the strings are padded with nulls).

     The operator can be any logical operator from the set

        * "==" equal

        * "<" less than

        * "<=" less than or equal to

        * ">" greater than

        * ">=" greater than or equal to

        * "!=" not equal

        * "~=" not equal

     Note that version "1.1-test2" will compare as greater than "1.1-test10".  Also, since the numeric part is compared first, "a" compares less than "1a" because the second string starts with a numeric part even though 'double ("a")' is greater than 'double ("1").'
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compare two version strings using the given OPERATOR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
computer


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1084
 -- Function File: computer ()
 -- Function File: C = computer ()
 -- Function File: [C, MAXSIZE] = computer ()
 -- Function File: [C, MAXSIZE, ENDIAN] = computer ()
 -- Function File: ARCH = computer ("arch")
     Print or return a string of the form CPU-VENDOR-OS that identifies the type of computer that Octave is running on.

     If invoked with an output argument, the value is returned instead of printed.  For example:

          computer ()
             -| i586-pc-linux-gnu

          mycomp = computer ()
             => mycomp = "i586-pc-linux-gnu"

     If two output arguments are requested, also return the maximum number of elements for an array.  This will depend on whether Octave has been compiled with 32-bit or 64-bit index vectors.

     If three output arguments are requested, also return the byte order of the current system as a character ("B" for big-endian or "L" for little-endian).

     If the argument "arch" is specified, return a string indicating the architecture of the computer on which Octave is running.

     See also: isunix, ismac, ispc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Print or return a string of the form CPU-VENDOR-OS that identifies the type of computer that Octave is running on.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
copyfile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 741
 -- Function File: [STATUS, MSG, MSGID] = copyfile (F1, F2)
 -- Function File: [STATUS, MSG, MSGID] = copyfile (F1, F2, 'f')
     Copy the source files or directories F1 to the destination F2.

     The name F1 may contain globbing patterns.  If F1 expands to multiple file names, F2 must be a directory.

     When the force flag 'f' is given any existing files will be overwritten without prompting.

     If successful, STATUS is 1, and MSG, MSGID are empty character strings ("").  Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.  Note that the status code is exactly opposite that of the 'system' command.

     See also: movefile, rename, unlink, delete, glob.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Copy the source files or directories F1 to the destination F2.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
debug


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2099
 -- Function File: debug ()
     Summary of debugging commands.

     For more information on each command and available options use 'help CMD'.

     The debugging commands available in Octave are

     'dbstop'
          Add a breakpoint.

     'dbclear'
          Remove a breakpoint.

     'dbstatus'
          List all breakpoints.

     'dbwhere'
          Report the current file and line number where execution is stopped.

     'dbtype'
          Display the code of the function being debugged, enumerating the line numbers.

     'dblist'
          List 10 lines of code centered around the line number where execution is stopped.

     'dbstep'
     'dbnext'
          Execute (step) one or more lines, follow execution into (step into) a function call, or execute until the end of a function (step out), and re-enter debug mode.

     'dbcont'
          Continue normal code execution from the debug prompt.

     'dbquit'
          Quit debugging mode immediately and return to the main prompt.

     'dbstack'
          Print a backtrace of the execution stack.

     'dbup'
          Move up the execution stack.

     'dbdown'
          Move down the execution stack.

     'keyboard'
          Force entry into debug mode from an m-file.

     'debug_on_error'
          Configure whether Octave enters debug mode when it encounters an error.

     'debug_on_warning'
          Configure whether Octave enters debug mode when it encounters a warning.

     'debug_on_interrupt'
          Configure whether Octave enters debug mode when it encounters an interrupt.

     'isdebugmode'
          Return true if in debug mode.

     When Octave encounters a breakpoint, or other reason to enter debug mode, the prompt changes to "debug>".  The workspace of the function where the breakpoint was encountered becomes available and any Octave command that is valid in that workspace context may be executed.

     See also: dbstop, dbclear, dbstatus, dbwhere, dbtype, dbcont, dbquit, dbstack, dbup, dbdown, keyboard, debug_on_error, debug_on_warning, debug_on_interrupt, isdebugmode.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Summary of debugging commands.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
delete


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
 -- Function File: delete (FILE)
 -- Function File: delete (FILE1, FILE2, ...)
 -- Function File: delete (HANDLE)
     Delete the named file or graphics handle.

     FILE may contain globbing patterns such as '*'.  Multiple files to be deleted may be specified in the same function call.

     HANDLE may be a scalar or vector of graphic handles to delete.

     Programming Note: Deleting graphics objects is the proper way to remove features from a plot without clearing the entire figure.

     See also: clf, cla, unlink, rmdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Delete the named file or graphics handle.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
desktop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
 -- Function File: USED = desktop ("-inuse")
     Return true if the desktop (GUI) is currently in use.

     See also: isguirunning.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if the desktop (GUI) is currently in use.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
dir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1351
 -- Function File: dir
 -- Function File: dir (DIRECTORY)
 -- Function File: [LIST] = dir (DIRECTORY)
     Display file listing for directory DIRECTORY.

     If DIRECTORY is not specified then list the present working directory.

     If a return value is requested, return a structure array with the fields

     name
          File or directory name.

     date
          Timestamp of file modification (string value).

     bytes
          File size in bytes.

     isdir
          True if name is a directory.

     datenum
          Timestamp of file modification as serial date number (double).

     statinfo
          Information structure returned from 'stat'.

     If DIRECTORY is a filename, rather than a directory, then return information about the named file.  DIRECTORY may also be a list rather than a single directory or file.

     DIRECTORY is subject to shell expansion if it contains any wildcard characters '*', '?', '[]'.  To find a literal example of a wildcard character the wildcard must be escaped using the backslash operator '\'.

     Note that for symbolic links, 'dir' returns information about the file that the symbolic link points to rather than the link itself.  However, if the link points to a nonexistent file, 'dir' returns information about the link.

     See also: ls, readdir, glob, what, stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Display file listing for directory DIRECTORY.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
dos


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 595
 -- Function File: dos ("COMMAND")
 -- Function File: STATUS = dos ("COMMAND")
 -- Function File: [STATUS, TEXT] = dos ("COMMAND")
 -- Function File: [...] = dos ("COMMAND", "-echo")
     Execute a system command if running under a Windows-like operating system, otherwise do nothing.

     Octave waits for the external command to finish before returning the exit status of the program in STATUS and any output in TEXT.

     When called with no output argument, or the "-echo" argument is given, then TEXT is also sent to standard output.

     See also: unix, system, isunix, ismac, ispc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Execute a system command if running under a Windows-like operating system, otherwise do nothing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
edit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3608
 -- Command: edit NAME
 -- Command: edit FIELD VALUE
 -- Command: VALUE = edit get FIELD
     Edit the named function, or change editor settings.

     If 'edit' is called with the name of a file or function as its argument it will be opened in the text editor defined by 'EDITOR'.

        * If the function NAME is available in a file on your path and that file is modifiable, then it will be edited in place.  If it is a system function, then it will first be copied to the directory 'HOME' (see below) and then edited.  If no file is found, then the m-file variant, ending with ".m", will be considered.  If still no file is found, then variants with a leading "@" and then with both a leading "@" and trailing ".m" will be considered.

        * If NAME is the name of a function defined in the interpreter but not in an m-file, then an m-file will be created in 'HOME' to contain that function along with its current definition.

        * If 'NAME.cc' is specified, then it will search for 'NAME.cc' in the path and try to modify it, otherwise it will create a new '.cc' file in the current directory.  If NAME happens to be an m-file or interpreter defined function, then the text of that function will be inserted into the .cc file as a comment.

        * If 'NAME.ext' is on your path then it will be edited, otherwise the editor will be started with 'NAME.ext' in the current directory as the filename.  If 'NAME.ext' is not modifiable, it will be copied to 'HOME' before editing.

          *Warning:* You may need to clear NAME before the new definition is available.  If you are editing a .cc file, you will need to execute 'mkoctfile NAME.cc' before the definition will be available.

     If 'edit' is called with FIELD and VALUE variables, the value of the control field FIELD will be set to VALUE.  If an output argument is requested and the first input argument is 'get' then 'edit' will return the value of the control field FIELD.  If the control field does not exist, edit will return a structure containing all fields and values.  Thus, 'edit get all' returns a complete control structure.

     The following control fields are used:

     'home'
          This is the location of user local m-files.  Be sure it is in your path.  The default is '~/octave'.

     'author'
          This is the name to put after the "## Author:" field of new functions.  By default it guesses from the 'gecos' field of the password database.

     'email'
          This is the e-mail address to list after the name in the author field.  By default it guesses '<$LOGNAME@$HOSTNAME>', and if '$HOSTNAME' is not defined it uses 'uname -n'.  You probably want to override this.  Be sure to use the format '<user@host>'.

     'license'

          'gpl'
               GNU General Public License (default).

          'bsd'
               BSD-style license without advertising clause.

          'pd'
               Public domain.

          '"text"'
               Your own default copyright and license.

          Unless you specify 'pd', edit will prepend the copyright statement with "Copyright (C) yyyy Function Author".

     'mode'
          This value determines whether the editor should be started in async mode (editor is started in the background and Octave continues) or sync mode (Octave waits until the editor exits).  Set it to "sync" to start the editor in sync mode.  The default is "async" (*note system: XREFsystem.).

     'editinplace'
          Determines whether files should be edited in place, without regard to whether they are modifiable or not.  The default is 'false'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Edit the named function, or change editor settings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
error_ids


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 859
'Octave:invalid-context'
     Indicates the error was generated by an operation that cannot be executed in the scope from which it was called.  For example, the function 'print_usage ()' when called from the Octave prompt raises this error.

'Octave:invalid-input-arg'
     Indicates that a function was called with invalid input arguments.

'Octave:invalid-fun-call'
     Indicates that a function was called in an incorrect way, e.g., wrong number of input arguments.

'Octave:invalid-indexing'
     Indicates that a data-type was indexed incorrectly, e.g., real-value index for arrays, nonexistent field of a structure.

'Octave:bad-alloc'
     Indicates that memory couldn't be allocated.

'Octave:undefined-function'
     Indicates a call to a function that is not defined.  The function may exist but Octave is unable to find it in the search path.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
'Octave:invalid-context'  Indicates the error was generated by an operation that cannot be executed in the scope from which it was called.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fact


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
 -- Command: fact
 -- Function File: TRUTH = fact ()
     Display an amazing and random fact about the world's greatest hacker.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Display an amazing and random fact about the world's greatest hacker.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
fileattrib


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1190
 -- Function File: [STATUS, RESULT, MSGID] = fileattrib (FILE)
     Return information about FILE.

     If successful, STATUS is 1, with RESULT containing a structure with the following fields:

     'Name'
          Full name of FILE.

     'archive'
          True if FILE is an archive (Windows).

     'system'
          True if FILE is a system file (Windows).

     'hidden'
          True if FILE is a hidden file (Windows).

     'directory'
          True if FILE is a directory.

     'UserRead'
     'GroupRead'
     'OtherRead'
          True if the user (group; other users) has read permission for FILE.

     'UserWrite'
     'GroupWrite'
     'OtherWrite'
          True if the user (group; other users) has write permission for FILE.

     'UserExecute'
     'GroupExecute'
     'OtherExecute'
          True if the user (group; other users) has execute permission for FILE.

     If an attribute does not apply (i.e., archive on a Unix system) then the field is set to NaN.

     With no input arguments, return information about the current directory.

     If FILE contains globbing characters, return information about all the matching files.

     See also: glob.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Return information about FILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
fileparts


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
 -- Function File: [DIR, NAME, EXT] = fileparts (FILENAME)
     Return the directory, name, and extension components of FILENAME.

     The input FILENAME is a string which is parsed.  There is no attempt to check whether the filename or directory specified actually exists.

     See also: fullfile, filesep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the directory, name, and extension components of FILENAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fullfile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 972
 -- Function File: FILENAME = fullfile (DIR1, DIR2, ..., FILE)
 -- Function File: FILENAMES = fullfile (..., FILES)
     Build complete filename from separate parts.

     Joins any number of path components intelligently.  The return value is the concatenation of each component with exactly one file separator between each non empty part and at most one leading and/or trailing file separator.

     If the last component part is a cell array, returns a cell array of filepaths, one for each element in the last component, e.g.:

          fullfile ("/home/username", "data", {"f1.csv", "f2.csv", "f3.csv"})
          =>  /home/username/data/f1.csv
              /home/username/data/f2.csv
              /home/username/data/f3.csv

     On Windows systems, while forward slash file separators do work, they are replaced by backslashes; in addition drive letters are stripped of leading file separators to obtain a valid file path.

     See also: fileparts, filesep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Build complete filename from separate parts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
genvarname


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2023
 -- Function File: VARNAME = genvarname (STR)
 -- Function File: VARNAME = genvarname (STR, EXCLUSIONS)
     Create valid unique variable name(s) from STR.

     If STR is a cellstr, then a unique variable is created for each cell in STR.

          genvarname ({"foo", "foo"})
            =>
               {
                 [1,1] = foo
                 [1,2] = foo1
               }

     If EXCLUSIONS is given, then the variable(s) will be unique to each other and to EXCLUSIONS (EXCLUSIONS may be either a string or a cellstr).

          x = 3.141;
          genvarname ("x", who ())
            => x1

     Note that the result is a char array or cell array of strings, not the variables themselves.  To define a variable, 'eval()' can be used.  The following trivial example sets 'x' to '42'.

          name = genvarname ("x");
          eval ([name " = 42"]);
            => x =  42

     This can be useful for creating unique struct field names.

          x = struct ();
          for i = 1:3
            x.(genvarname ("a", fieldnames (x))) = i;
          endfor
            => x =
               {
                 a =  1
                 a1 =  2
                 a2 =  3
               }

     Since variable names may only contain letters, digits, and underscores, 'genvarname' will replace any sequence of disallowed characters with an underscore.  Also, variables may not begin with a digit; in this case an 'x' is added before the variable name.

     Variable names beginning and ending with two underscores "__" are valid, but they are used internally by Octave and should generally be avoided; therefore, 'genvarname' will not generate such names.

     'genvarname' will also ensure that returned names do not clash with keywords such as "for" and "if".  A number will be appended if necessary.  Note, however, that this does *not* include function names such as "sin".  Such names should be included in EXCLUSIONS if necessary.

     See also: isvarname, iskeyword, exist, who, tempname, eval.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Create valid unique variable name(s) from STR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
getappdata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 458
 -- Function File: VALUE = getappdata (H, NAME)
 -- Function File: APPDATA = getappdata (H)
     Return the VALUE of the application data NAME for the graphics object with handle H.

     H may also be a vector of graphics handles.  If no second argument NAME is given then 'getappdata' returns a structure, APPDATA, whose fields correspond to the appdata properties.

     See also: setappdata, isappdata, rmappdata, guidata, get, set, getpref, setpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return the VALUE of the application data NAME for the graphics object with handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getfield


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 573
 -- Function File: VAL = getfield (S, FIELD)
 -- Function File: VAL = getfield (S, SIDX1, FIELD1, FIDX1, ...)
     Get the value of the field named FIELD from a structure or nested structure S.

     If S is a structure array then SIDX selects an element of the structure array, FIELD specifies the field name of the selected element, and FIDX selects which element of the field (in the case of an array or cell array).  See 'setfield' for a more complete description of the syntax.

     See also: setfield, rmfield, orderfields, isfield, fieldnames, isstruct, struct.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Get the value of the field named FIELD from a structure or nested structure S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gunzip


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 465
 -- Function File: FILELIST = gunzip (GZFILE)
 -- Function File: FILELIST = gunzip (GZFILE, DIR)
     Unpack the gzip archive GZFILE.

     If GZFILE is a directory, all gzfiles in the directory will be recursively unpacked.

     If DIR is specified the files are unpacked in this directory rather than the one where GZFILE is located.

     The optional output FILELIST is a list of the uncompressed files.

     See also: gzip, unpack, bunzip2, unzip, untar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Unpack the gzip archive GZFILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gzip


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 882
 -- Function File: FILELIST = gzip (FILES)
 -- Function File: FILELIST = gzip (FILES, DIR)
     Compress the list of files and directories specified in FILES.

     FILES is a character array or cell array of strings.  Shell wildcards in the filename such as '*' or '?' are accepted and expanded.  Each file is compressed separately and a new file with a '".gz"' extension is created.  The original files are not modified, but existing compressed files will be silently overwritten.  If a directory is specified then 'gzip' recursively compresses all files in the directory.

     If DIR is defined the compressed files are placed in this directory, rather than the original directory where the uncompressed file resides.  If DIR does not exist it is created.

     The optional output FILELIST is a list of the compressed files.

     See also: gunzip, unpack, bzip2, zip, tar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compress the list of files and directories specified in FILES.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
info


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
 -- Function File: info ()
     Display contact information for the GNU Octave community.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Display contact information for the GNU Octave community.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
inputname


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
 -- Function File: inputname (N)
     Return the name of the N-th argument to the calling function.

     If the argument is not a simple variable name, return an empty string.  'inputname' may only be used within a function body, not at the command line.

     See also: nargin, nthargout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return the name of the N-th argument to the calling function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isappdata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 288
 -- Function File: VALID = isappdata (H, NAME)
     Return true if the named application data, NAME, exists for the graphics object with handle H.

     H may also be a vector of graphics handles.

     See also: getappdata, setappdata, rmappdata, guidata, get, set, getpref, setpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return true if the named application data, NAME, exists for the graphics object with handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isdeployed


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 265
 -- Function File: isdeployed ()
     Return true if the current program has been compiled and is running separately from the Octave interpreter and false if it is running in the Octave interpreter.

     Currently, this function always returns false in Octave.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
Return true if the current program has been compiled and is running separately from the Octave interpreter and false if it is running in the Octave interpreter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ismac


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
 -- Function File: ismac ()
     Return true if Octave is running on a Mac OS X system and false otherwise.

     See also: isunix, ispc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return true if Octave is running on a Mac OS X system and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ispc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
 -- Function File: ispc ()
     Return true if Octave is running on a Windows system and false otherwise.

     See also: isunix, ismac.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Return true if Octave is running on a Windows system and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isunix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
 -- Function File: isunix ()
     Return true if Octave is running on a Unix-like system and false otherwise.

     See also: ismac, ispc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return true if Octave is running on a Unix-like system and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
license


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1477
 -- Command: license
 -- Command: license inuse
 -- Command: license inuse FEATURE
 -- Function File: license ("inuse")
 -- Function File: RETVAL = license ("inuse")
 -- Function File: RETVAL = license ("test", FEATURE)
 -- Function File: RETVAL = license ("checkout", FEATURE)
 -- Function File: [RETVAL, ERRMSG] = license ("checkout", FEATURE)
     Get license information for Octave and Octave packages.

     GNU Octave is free software distributed under the GNU General Public License (GPL), and a license manager makes no sense.  This function is provided only for MATLAB compatibility.

     When called with no extra input arguments, it returns the Octave license, otherwise the first input defines the operation mode and must be one of the following strings: 'inuse', 'test', and 'checkout'.  The optional FEATURE argument can either be "octave" (core), or an Octave package.

     "inuse"
          Returns a list of loaded features, i.e., octave and the list of loaded packages.  If an output is requested, it returns a struct array with the fields "feature", and "user".

     "test"
          Return true if the specified FEATURE is installed, false otherwise.

          An optional third argument "enable" or "disable" is accepted but ignored.

     "checkout"
          Return true if the specified FEATURE is installed, false otherwise.  An optional second output will have an error message if a package is not installed.

     See also: pkg, ver, version.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Get license information for Octave and Octave packages.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
list_primes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
 -- Function File: list_primes ()
 -- Function File: list_primes (N)
     List the first N primes.

     If N is unspecified, the first 25 primes are listed.

     See also: primes, isprime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
List the first N primes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
ls


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 963
 -- Command: ls
 -- Command: ls FILENAMES
 -- Command: ls OPTIONS
 -- Command: ls OPTIONS FILENAMES
 -- Function File: LIST = ls (...)

     List directory contents.

     The 'ls' command is implemented by calling the native operating system's directory listing command--available OPTIONS will vary from system to system.

     Filenames are subject to shell expansion if they contain any wildcard characters '*', '?', '[]'.  To find a literal example of a wildcard character the wildcard must be escaped using the backslash operator '\'.

     If the optional output LIST is requested then 'ls' returns a character array with one row for each file/directory name.

     Example usage on a UNIX-like system:

          ls -l
               -| total 12
               -| -rw-r--r--   1 jwe  users  4488 Aug 19 04:02 foo.m
               -| -rw-r--r--   1 jwe  users  1315 Aug 17 23:14 bar.m

     See also: dir, readdir, glob, what, stat, filesep, ls_command.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
List directory contents.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ls_command


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 179
 -- Function File: VAL = ls_command ()
 -- Function File: OLD_VAL = ls_command (NEW_VAL)
     Query or set the shell command used by Octave's 'ls' command.

     See also: ls.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Query or set the shell command used by Octave's 'ls' command.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
menu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 798
 -- Function File: CHOICE = menu (TITLE, OPT1, ...)
 -- Function File: CHOICE = menu (TITLE, {OPT1, ...})
     Display a menu with heading TITLE and options OPT1, ..., and wait for user input.

     If the GUI is running, or Java is available, the menu is displayed graphically using 'listdlg'.  Otherwise, the title and menu options are printed on the console.

     TITLE is a string and the options may be input as individual strings or as a cell array of strings.

     The return value CHOICE is the number of the option selected by the user counting from 1.

     This function is useful for interactive programs.  There is no limit to the number of options that may be passed in, but it may be confusing to present more than will fit easily on one screen.

     See also: input, listdlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Display a menu with heading TITLE and options OPT1, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
mex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 207
 -- Command: mex [options] file ...
     Compile source code written in C, C++, or Fortran, to a MEX file.

     This is equivalent to 'mkoctfile --mex [options] file'.

     See also: mkoctfile, mexext.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Compile source code written in C, C++, or Fortran, to a MEX file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mexext


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
 -- Function File: mexext ()
     Return the filename extension used for MEX files.

     See also: mex.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Return the filename extension used for MEX files.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
mkoctfile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4131
 -- Command: mkoctfile [-options] file ...
 -- Function File: [OUTPUT, STATUS] = mkoctfile (...)

     The 'mkoctfile' function compiles source code written in C, C++, or Fortran.  Depending on the options used with 'mkoctfile', the compiled code can be called within Octave or can be used as a stand-alone application.

     'mkoctfile' can be called from the shell prompt or from the Octave prompt.  Calling it from the Octave prompt simply delegates the call to the shell prompt.  The output is stored in the OUTPUT variable and the exit status in the STATUS variable.

     'mkoctfile' accepts the following options, all of which are optional except for the file name of the code you wish to compile:

     '-I DIR'
          Add the include directory DIR to compile commands.

     '-D DEF'
          Add the definition DEF to the compiler call.

     '-l LIB'
          Add the library LIB to the link command.

     '-L DIR'
          Add the library directory DIR to the link command.

     '-M'
     '--depend'
          Generate dependency files (.d) for C and C++ source files.

     '-R DIR'
          Add the run-time path to the link command.

     '-Wl,...'
          Pass flags though the linker like "-Wl,-rpath=...".  The quotes are needed since commas are interpreted as command separators.

     '-W...'
          Pass flags though the compiler like "-Wa,OPTION".

     '-c'
          Compile but do not link.

     '-g'
          Enable debugging options for compilers.

     '-o FILE'
     '--output FILE'
          Output file name.  Default extension is .oct (or .mex if '--mex' is specified) unless linking a stand-alone executable.

     '-p VAR'
     '--print VAR'
          Print the configuration variable VAR.  Recognized variables are:

                  ALL_CFLAGS                  INCFLAGS
                  ALL_CXXFLAGS                INCLUDEDIR
                  ALL_FFLAGS                  LAPACK_LIBS
                  ALL_LDFLAGS                 LD_CXX
                  AR                          LDFLAGS
                  BLAS_LIBS                   LD_STATIC_FLAG
                  CC                          LFLAGS
                  CFLAGS                      LIBDIR
                  CPICFLAG                    LIBOCTAVE
                  CPPFLAGS                    LIBOCTINTERP
                  CXX                         LIBS
                  CXXFLAGS                    OCTAVE_HOME
                  CXXPICFLAG                  OCTAVE_LIBS
                  DEPEND_EXTRA_SED_PATTERN    OCTAVE_LINK_DEPS
                  DEPEND_FLAGS                OCTAVE_LINK_OPTS
                  DL_LD                       OCTAVE_PREFIX
                  DL_LDFLAGS                  OCTINCLUDEDIR
                  F77                         OCTLIBDIR
                  F77_INTEGER8_FLAG           OCT_LINK_DEPS
                  FFLAGS                      OCT_LINK_OPTS
                  FFTW3F_LDFLAGS              RANLIB
                  FFTW3F_LIBS                 RDYNAMIC_FLAG
                  FFTW3_LDFLAGS               READLINE_LIBS
                  FFTW3_LIBS                  SED
                  FFTW_LIBS                   SPECIAL_MATH_LIB
                  FLIBS                       XTRA_CFLAGS
                  FPICFLAG                    XTRA_CXXFLAGS

     '--link-stand-alone'
          Link a stand-alone executable file.

     '--mex'
          Assume we are creating a MEX file.  Set the default output extension to ".mex".

     '-s'
     '--strip'
          Strip the output file.

     '-v'
     '--verbose'
          Echo commands as they are executed.

     'file'
          The file to compile or link.  Recognized file types are

                  .c    C source
                  .cc   C++ source
                  .C    C++ source
                  .cpp  C++ source
                  .f    Fortran source (fixed form)
                  .F    Fortran source (fixed form)
                  .f90  Fortran source (free form)
                  .F90  Fortran source (free form)
                  .o    object file
                  .a    library file

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
The 'mkoctfile' function compiles source code written in C, C++, or Fortran.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
movefile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 923
 -- Function File: movefile (F1)
 -- Function File: movefile (F1, F2)
 -- Function File: movefile (F1, F2, 'f')
 -- Function File: [STATUS, MSG, MSGID] = movefile (...)
     Move the source files or directories F1 to the destination F2.

     The name F1 may contain globbing patterns.  If F1 expands to multiple file names, F2 must be a directory.  If no destination F2 is specified then the destination is the present working directory.  If F2 is a file name then F1 is renamed to F2.

     When the force flag 'f' is given any existing files will be overwritten without prompting.

     If successful, STATUS is 1, and MSG, MSGID are empty character strings ("").  Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.  Note that the status code is exactly opposite that of the 'system' command.

     See also: rename, copyfile, unlink, delete, glob.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Move the source files or directories F1 to the destination F2.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
namelengthmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 436
 -- Function File: namelengthmax ()
     Return the MATLAB compatible maximum variable name length.

     Octave is capable of storing strings up to 2^{31} - 1 in length.  However for MATLAB compatibility all variable, function, and structure field names should be shorter than the length returned by 'namelengthmax'.  In particular, variables stored to a MATLAB file format ('*.mat') will have their names truncated to this length.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the MATLAB compatible maximum variable name length.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
news


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 306
 -- Command: news
 -- Command: news PACKAGE
     Display the current NEWS file for Octave or an installed package.

     When called without an argument, display the NEWS file for Octave.

     When given a package name PACKAGE, display the current NEWS file for that package.

     See also: ver, pkg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Display the current NEWS file for Octave or an installed package.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
open


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 493
 -- Function File: OUTPUT = open FILE
 -- Function File: OUTPUT = open (FILE)
     Open the file FILE in Octave or in an external application based on the file type as determined by the file name extension.

     Recognized file types are

     '.m'
          Open file in the editor.

     '.mat'
          Load the file in the base workspace.

     '.exe'
          Execute the program (on Windows systems only).

     Other file types are opened in the appropriate external application.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Open the file FILE in Octave or in an external application based on the file type as determined by the file name extension.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
orderfields


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1960
 -- Function File: SOUT] = orderfields (S1)
 -- Function File: SOUT] = orderfields (S1, S2)
 -- Function File: SOUT] = orderfields (S1, {CELLSTR})
 -- Function File: SOUT] = orderfields (S1, P)
 -- Function File: [SOUT, P] = orderfields (...)
     Return a _copy_ of S1 with fields arranged alphabetically, or as specified by the second input.

     Given one input struct S1, arrange field names alphabetically.

     If a second struct argument is given, arrange field names in S1 as they appear in S2.  The second argument may also specify the order in a cell array of strings CELLSTR.  The second argument may also be a permutation vector.

     The optional second output argument P is the permutation vector which converts the original name order to the new name order.

     Examples:

          s = struct ("d", 4, "b", 2, "a", 1, "c", 3);
          t1 = orderfields (s)
               => t1 =
                  {
                    a =  1
                    b =  2
                    c =  3
                    d =  4
                  }
          t = struct ("d", {}, "c", {}, "b", {}, "a", {});
          t2 = orderfields (s, t)
               => t2 =
                  {
                    d =  4
                    c =  3
                    b =  2
                    a =  1
                  }
          t3 = orderfields (s, [3, 2, 4, 1])
               => t3 =
                  {
                    a =  1
                    b =  2
                    c =  3
                    d =  4
                  }
          [t4, p] = orderfields (s, {"d", "c", "b", "a"})
               => t4 =
                  {
                    d =  4
                    c =  3
                    b =  2
                    a =  1
                  }
                  p =
                     1
                     4
                     2
                     3

     See also: fieldnames, getfield, setfield, rmfield, isfield, isstruct, struct.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return a _copy_ of S1 with fields arranged alphabetically, or as specified by the second input.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pack


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
 -- Function File: pack ()
     Consolidate workspace memory in MATLAB.

     This function is provided for compatibility, but does nothing in Octave.

     See also: clear.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Consolidate workspace memory in MATLAB.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
paren


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
 -- Operator: (
 -- Operator: )
     Array index or function argument delimeter.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Array index or function argument delimeter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
parseparams


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1172
 -- Function File: [REG, PROP] = parseparams (PARAMS)
 -- Function File: [REG, VAR1, ...] = parseparams (PARAMS, NAME1, DEFAULT1, ...)
     Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element.

     For example:

          [reg, prop] = parseparams ({1, 2, "linewidth", 10})
          reg =
          {
            [1,1] = 1
            [1,2] = 2
          }
          prop =
          {
            [1,1] = linewidth
            [1,2] = 10
          }

     The parseparams function may be used to separate regular numeric arguments from additional arguments given as property/value pairs of the VARARGIN cell array.

     In the second form of the call, available options are specified directly with their default values given as name-value pairs.  If PARAMS do not form name-value pairs, or if an option occurs that does not match any of the available options, an error occurs.

     When called from an m-file function, the error is prefixed with the name of the caller function.

     The matching of options is case-insensitive.

     See also: varargin, inputParser.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
perl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 469
 -- Function File: OUTPUT = perl (SCRIPTFILE)
 -- Function File: OUTPUT = perl (SCRIPTFILE, ARGUMENT1, ARGUMENT2, ...)
 -- Function File: [OUTPUT, STATUS] = perl (...)
     Invoke Perl script SCRIPTFILE, possibly with a list of command line arguments.

     Return output in OUTPUT and optional status in STATUS.  If SCRIPTFILE is not an absolute file name it is searched for in the current directory and then in the Octave loadpath.

     See also: system, python.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Invoke Perl script SCRIPTFILE, possibly with a list of command line arguments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
python


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 475
 -- Function File: OUTPUT = python (SCRIPTFILE)
 -- Function File: OUTPUT = python (SCRIPTFILE, ARGUMENT1, ARGUMENT2, ...)
 -- Function File: [OUTPUT, STATUS] = python (...)
     Invoke Python script SCRIPTFILE, possibly with a list of command line arguments.

     Return output in OUTPUT and optional status in STATUS.  If SCRIPTFILE is not an absolute file name it is searched for in the current directory and then in the Octave loadpath.

     See also: system, perl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Invoke Python script SCRIPTFILE, possibly with a list of command line arguments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
recycle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 580
 -- Function File: CURRENT_STATE = recycle ()
 -- Function File: OLD_STATE = recycle (NEW_STATE)
     Query or set the preference for recycling deleted files.

     When recycling is enabled, commands which would permanently erase files instead move them to a temporary location (such as the directory labeled Trash).

     Programming Note: This function is provided for MATLAB compatibility, but recycling is not implemented in Octave.  To help avoid accidental data loss an error will be raised if an attempt is made to enable file recycling.

     See also: delete, rmdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Query or set the preference for recycling deleted files.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
rmappdata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 360
 -- Function File: rmappdata (H, NAME)
 -- Function File: rmappdata (H, NAME1, NAME2, ...)
     Delete the application data NAME from the graphics object with handle H.

     H may also be a vector of graphics handles.  Multiple application data names may be supplied to delete several properties at once.

     See also: setappdata, getappdata, isappdata.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Delete the application data NAME from the graphics object with handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
run


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 920
 -- Command: run SCRIPT
 -- Function File: run ("SCRIPT")
     Run SCRIPT in the current workspace.

     Scripts which reside in directories specified in Octave's load path, and which end with the extension '".m"', can be run simply by typing their name.  For scripts not located on the load path, use 'run'.

     The file name SCRIPT can be a bare, fully qualified, or relative filename and with or without a file extension.  If no extension is specified, Octave will first search for a script with the '".m"' extension before falling back to the script name without an extension.

     Implementation Note: If SCRIPT includes a path component, then 'run' first changes the working directory to the directory where SCRIPT is found.  Next, the script is executed.  Finally, 'run' returns to the original working directory unless 'script' has specifically changed directories.

     See also: path, addpath, source.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Run SCRIPT in the current workspace.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
semicolon


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
 -- Operator: ;
     Array row or command separator.

     See also: comma.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Array row or command separator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
setappdata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 474
 -- Function File: setappdata (H, NAME, VALUE)
 -- Function File: setappdata (H, NAME1, VALUE1, NAME2, VALUE3, ...)
     Set the application data NAME to VALUE for the graphics object with handle H.

     H may also be a vector of graphics handles.  If the application data with the specified NAME does not exist, it is created.  Multiple NAME/VALUE pairs can be specified at a time.

     See also: getappdata, isappdata, rmappdata, guidata, get, set, getpref, setpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Set the application data NAME to VALUE for the graphics object with handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setfield


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2570
 -- Function File: SOUT = setfield (S, FIELD, VAL)
 -- Function File: SOUT = setfield (S, SIDX1, FIELD1, FIDX1, SIDX2, FIELD2, FIDX2, ..., VAL)

     Return a _copy_ of the structure S with the field member FIELD set to the value VAL.

     For example:

          S = struct ();
          S = setfield (S, "foo bar", 42);

     This is equivalent to

          S.("foo bar") = 42;

     Note that ordinary structure syntax 'S.foo bar = 42' cannot be used here, as the field name is not a valid Octave identifier because of the space character.  Using arbitrary strings for field names is incompatible with MATLAB, and this usage will emit a warning if the warning ID 'Octave:language-extension' is enabled.  *Note XREFwarning_ids::.

     With the second calling form, set a field of a structure array.  The input SIDX selects an element of the structure array, FIELD specifies the field name of the selected element, and FIDX selects which element of the field (in the case of an array or cell array).  The SIDX, FIELD, and FIDX inputs can be repeated to address nested structure array elements.  The structure array index and field element index must be cell arrays while the field name must be a string.

     For example:

          S = struct ("baz", 42);
          setfield (S, {1}, "foo", {1}, "bar", 54)
          =>
            ans =
              scalar structure containing the fields:
                baz =  42
                foo =
                  scalar structure containing the fields:
                    bar =  54

     The example begins with an ordinary scalar structure to which a nested scalar structure is added.  In all cases, if the structure index SIDX is not specified it defaults to 1 (scalar structure).  Thus, the example above could be written more concisely as 'setfield (S, "foo", "bar", 54)'

     Finally, an example with nested structure arrays:

          SA.foo = 1;
          SA = setfield (SA, {2}, "bar", {3}, "baz", {1, 4}, 5);
          SA(2).bar(3)
          =>
            ans =
              scalar structure containing the fields:
                baz =  0   0   0   5

     Here SA is a structure array whose field at elements 1 and 2 is in turn another structure array whose third element is a simple scalar structure.  The terminal scalar structure has a field which contains a matrix value.

     Note that the same result as in the above example could be achieved by:

          SA.foo = 1;
          SA(2).bar(3).baz(1,4) = 5

     See also: getfield, rmfield, orderfields, isfield, fieldnames, isstruct, struct.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return a _copy_ of the structure S with the field member FIELD set to the value VAL.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
substruct


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 583
 -- Function File: substruct (TYPE, SUBS, ...)
     Create a subscript structure for use with 'subsref' or 'subsasgn'.

     For example:

          idx = substruct ("()", {3, ":"})
               =>
                 idx =
                 {
                   type = ()
                   subs =
                   {
                     [1,1] =  3
                     [1,2] = :
                   }
                 }
          x = [1, 2, 3;
               4, 5, 6;
               7, 8, 9];
          subsref (x, idx)
             => 7  8  9

     See also: subsref, subsasgn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Create a subscript structure for use with 'subsref' or 'subsasgn'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
swapbytes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 259
 -- Function File: swapbytes (X)
     Swap the byte order on values, converting from little endian to big endian and vice versa.

     For example:

          swapbytes (uint16 (1:4))
          => [   256   512   768  1024]

     See also: typecast, cast.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Swap the byte order on values, converting from little endian to big endian and vice versa.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
symvar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 467
 -- Function File: VARS = symvar (STR)
     Identify the symbolic variable names in the string STR.

     Common constant names such as 'i', 'j', 'pi', 'Inf' and Octave functions such as 'sin' or 'plot' are ignored.

     Any names identified are returned in a cell array of strings.  The array is empty if no variables were found.

     Example:

          symvar ("x^2 + y^2 == 4")
          => {
               [1,1] = x
               [2,1] = y
             }
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Identify the symbolic variable names in the string STR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
tar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 703
 -- Function File: FILELIST = tar (TARFILE, FILES)
 -- Function File: FILELIST = tar (TARFILE, FILES, ROOTDIR)
     Pack the list of files and directories specified in FILES into the TAR archive TARFILE.

     FILES is a character array or cell array of strings.  Shell wildcards in the filename such as '*' or '?' are accepted and expanded.  Directories are recursively traversed and all files are added to the archive.

     If ROOTDIR is defined then any files without absolute pathnames are located relative to ROOTDIR rather than the current directory.

     The optional output FILELIST is a list of the files that were included in the archive.

     See also: untar, unpack, bzip2, gzip, zip.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Pack the list of files and directories specified in FILES into the TAR archive TARFILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tempdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 321
 -- Function File: DIR = tempdir ()
     Return the name of the host system's directory for temporary files.

     The directory name is taken first from the environment variable 'TMPDIR'.  If that does not exist the system default returned by 'P_tmpdir' is used.

     See also: P_tmpdir, tempname, mkstemp, tmpfile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Return the name of the host system's directory for temporary files.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
tmpnam


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 948
 -- Function File: FNAME = tmpnam ()
 -- Function File: FNAME = tmpnam (DIR)
 -- Function File: FNAME = tmpnam (DIR, PREFIX)
     Return a unique temporary file name as a string.

     If PREFIX is omitted, a value of "oct-" is used.

     If DIR is also omitted, the default directory for temporary files ('P_tmpdir' is used.  If DIR is provided, it must exist, otherwise the default directory for temporary files is used.

     Programming Note: Because the named file is not opened by 'tmpnam', it is possible, though relatively unlikely, that it will not be available by the time your program attempts to open it.  If this is a concern, see 'tmpfile'.  The functions 'tmpnam' and 'tempname' are equivalent with the latter provided for MATLAB compatibility.

     *Caution*: 'tmpnam' will be removed in a future version of Octave.  Use the equivalent 'tempname' in all new code.

     See also: tempname, mkstemp, tempdir, P_tmpdir, tmpfile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return a unique temporary file name as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
unix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 595
 -- Function File: unix ("COMMAND")
 -- Function File: STATUS = unix ("COMMAND")
 -- Function File: [STATUS, TEXT] = unix ("COMMAND")
 -- Function File: [...] = unix ("COMMAND", "-echo")
     Execute a system command if running under a Unix-like operating system, otherwise do nothing.

     Octave waits for the external command to finish before returning the exit status of the program in STATUS and any output in TEXT.

     When called with no output argument, or the "-echo" argument is given, then TEXT is also sent to standard output.

     See also: dos, system, isunix, ismac, ispc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Execute a system command if running under a Unix-like operating system, otherwise do nothing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unpack


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1201
 -- Function File: FILES = unpack (FILE)
 -- Function File: FILES = unpack (FILE, DIR)
 -- Function File: FILES = unpack (FILE, DIR, FILETYPE)
     Unpack the archive FILE based on its extension to the directory DIR.

     If FILE is a list of strings, then each file is unpacked individually.  Shell wildcards in the filename such as '*' or '?' are accepted and expanded.

     If DIR is not specified or is empty ('[]'), it defaults to the current directory.  If a directory is in the file list, then FILETYPE must also be specified.

     The specific archive filetype is inferred from the extension of the file.  The FILETYPE may also be specified directly using a string which corresponds to a known extension.

     Valid filetype extensions:

     'bz'
     'bz2'
          bzip archive

     'gz'
          gzip archive

     'tar'
          tar archive

     'tarbz'
     'tarbz2'
     'tbz'
     'tbz2'
          tar + bzip archive

     'targz'
     'tgz'
          tar + gzip archive

     'z'
          compress archive

     'zip'
          zip archive

     The optional return value is a list of FILES unpacked.

     See also: bunzip2, gunzip, unzip, untar, bzip2, gzip, zip, tar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Unpack the archive FILE based on its extension to the directory DIR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
untar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
 -- Function File: untar (TARFILE)
 -- Function File: untar (TARFILE, DIR)
     Unpack the TAR archive TARFILE.

     If DIR is specified the files are unpacked in this directory rather than the one where TARFILE is located.

     The optional output FILELIST is a list of the uncompressed files.

     See also: tar, unpack, bunzip2, gunzip, unzip.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Unpack the TAR archive TARFILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
unzip


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 375
 -- Function File: FILELIST = unzip (ZIPFILE)
 -- Function File: FILELIST = unzip (ZIPFILE, DIR)
     Unpack the ZIP archive ZIPFILE.

     If DIR is specified the files are unpacked in this directory rather than the one where ZIPFILE is located.

     The optional output FILELIST is a list of the uncompressed files.

     See also: zip, unpack, bunzip2, gunzip, untar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Unpack the ZIP archive ZIPFILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ver


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 830
 -- Function File: ver
 -- Function File: ver Octave
 -- Function File: ver PACKAGE
 -- Function File: v = ver (...)

     Display a header containing the current Octave version number, license string, and operating system.  The header is followed by a list of installed packages, versions, and installation directories.

     Use the package name PACKAGE or Octave to limit the listing to a desired component.

     When called with an output argument, return a vector of structures describing Octave and each installed package.  The structure includes the following fields.

     'Name'
          Package name.

     'Version'
          Version of the package.

     'Revision'
          Revision of the package.

     'Date'
          Date of the version/revision.

     See also: version, octave_config_info, usejava, pkg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Display a header containing the current Octave version number, license string, and operating system.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
version


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 209
 -- Function File: version ()
     Return the version number of Octave as a string.

     This is an alias for the function 'OCTAVE_VERSION' provided for compatibility.

     See also: OCTAVE_VERSION, ver.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the version number of Octave as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
warning_ids


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10266
'Octave:abbreviated-property-match'
     By default, the 'Octave:abbreviated-property-match' warning is enabled.

'Octave:array-to-scalar'
     If the 'Octave:array-to-scalar' warning is enabled, Octave will warn when an implicit conversion from an array to a scalar value is attempted.  By default, the 'Octave:array-to-scalar' warning is disabled.

'Octave:array-to-vector'
     If the 'Octave:array-to-vector' warning is enabled, Octave will warn when an implicit conversion from an array to a vector value is attempted.  By default, the 'Octave:array-to-vector' warning is disabled.

'Octave:assign-as-truth-value'
     If the 'Octave:assign-as-truth-value' warning is enabled, a warning is issued for statements like

          if (s = t)
            ...

     since such statements are not common, and it is likely that the intent was to write

          if (s == t)
            ...

     instead.

     There are times when it is useful to write code that contains assignments within the condition of a 'while' or 'if' statement.  For example, statements like

          while (c = getc ())
            ...

     are common in C programming.

     It is possible to avoid all warnings about such statements by disabling the 'Octave:assign-as-truth-value' warning, but that may also let real errors like

          if (x = 1)  # intended to test (x == 1)!
            ...

     slip by.

     In such cases, it is possible suppress errors for specific statements by writing them with an extra set of parentheses.  For example, writing the previous example as

          while ((c = getc ()))
            ...

     will prevent the warning from being printed for this statement, while allowing Octave to warn about other assignments used in conditional contexts.

     By default, the 'Octave:assign-as-truth-value' warning is enabled.

'Octave:associativity-change'
     If the 'Octave:associativity-change' warning is enabled, Octave will warn about possible changes in the meaning of some code due to changes in associativity for some operators.  Associativity changes have typically been made for MATLAB compatibility.  By default, the 'Octave:associativity-change' warning is enabled.

'Octave:autoload-relative-file-name'
     If the 'Octave:autoload-relative-file-name' is enabled, Octave will warn when parsing autoload() function calls with relative paths to function files.  This usually happens when using autoload() calls in PKG_ADD files, when the PKG_ADD file is not in the same directory as the .oct file referred to by the autoload() command.  By default, the 'Octave:autoload-relative-file-name' warning is enabled.

'Octave:built-in-variable-assignment'
     By default, the 'Octave:built-in-variable-assignment' warning is enabled.

'Octave:deprecated-keyword'
     If the 'Octave:deprecated-keyword' warning is enabled, a warning is issued when Octave encounters a keyword that is obsolete and scheduled for removal from Octave.  By default, the 'Octave:deprecated-keyword' warning is enabled.

'Octave:divide-by-zero'
     If the 'Octave:divide-by-zero' warning is enabled, a warning is issued when Octave encounters a division by zero.  By default, the 'Octave:divide-by-zero' warning is enabled.

'Octave:fopen-file-in-path'
     By default, the 'Octave:fopen-file-in-path' warning is enabled.

'Octave:function-name-clash'
     If the 'Octave:function-name-clash' warning is enabled, a warning is issued when Octave finds that the name of a function defined in a function file differs from the name of the file.  (If the names disagree, the name declared inside the file is ignored.)  By default, the 'Octave:function-name-clash' warning is enabled.

'Octave:future-time-stamp'
     If the 'Octave:future-time-stamp' warning is enabled, Octave will print a warning if it finds a function file with a time stamp that is in the future.  By default, the 'Octave:future-time-stamp' warning is enabled.

'Octave:glyph-render'
     By default, the 'Octave:glyph-render' warning is enabled.

'Octave:imag-to-real'
     If the 'Octave:imag-to-real' warning is enabled, a warning is printed for implicit conversions of complex numbers to real numbers.  By default, the 'Octave:imag-to-real' warning is disabled.

'Octave:language-extension'
     Print warnings when using features that are unique to the Octave language and that may still be missing in MATLAB.  By default, the 'Octave:language-extension' warning is disabled.  The '--traditional' or '--braindead' startup options for Octave may also be of use, *note Command Line Options::.

'Octave:load-file-in-path'
     By default, the 'Octave:load-file-in-path' warning is enabled.

'Octave:logical-conversion'
     By default, the 'Octave:logical-conversion' warning is enabled.

'Octave:md5sum-file-in-path'
     By default, the 'Octave:md5sum-file-in-path' warning is enabled.

'Octave:missing-glyph'
     By default, the 'Octave:missing-glyph' warning is enabled.

'Octave:missing-semicolon'
     If the 'Octave:missing-semicolon' warning is enabled, Octave will warn when statements in function definitions don't end in semicolons.  By default the 'Octave:missing-semicolon' warning is disabled.

'Octave:mixed-string-concat'
     If the 'Octave:mixed-string-concat' warning is enabled, print a warning when concatenating a mixture of double and single quoted strings.  By default, the 'Octave:mixed-string-concat' warning is disabled.

'Octave:neg-dim-as-zero'
     If the 'Octave:neg-dim-as-zero' warning is enabled, print a warning for expressions like

          eye (-1)

     By default, the 'Octave:neg-dim-as-zero' warning is disabled.

'Octave:nested-functions-coerced'
     By default, the 'Octave:nested-functions-coerced' warning is enabled.

'Octave:noninteger-range-as-index'
     By default, the 'Octave:noninteger-range-as-index' warning is enabled.

'Octave:num-to-str'
     If the 'Octave:num-to-str' warning is enable, a warning is printed for implicit conversions of numbers to their ASCII character equivalents when strings are constructed using a mixture of strings and numbers in matrix notation.  For example,

          [ "f", 111, 111 ]
          => "foo"

     elicits a warning if the 'Octave:num-to-str' warning is enabled.  By default, the 'Octave:num-to-str' warning is enabled.

'Octave:possible-matlab-short-circuit-operator'
     If the 'Octave:possible-matlab-short-circuit-operator' warning is enabled, Octave will warn about using the not short circuiting operators '&' and '|' inside 'if' or 'while' conditions.  They normally never short circuit, but MATLAB always short circuits if any logical operators are used in a condition.  You can turn on the option

          do_braindead_shortcircuit_evaluation (1)

     if you would like to enable this short-circuit evaluation in Octave.  Note that the '&&' and '||' operators always short circuit in both Octave and MATLAB, so it's only necessary to enable MATLAB-style short-circuiting if it's too arduous to modify existing code that relies on this behavior.  By default, the 'Octave:possible-matlab-short-circuit-operator' warning is enabled.

'Octave:precedence-change'
     If the 'Octave:precedence-change' warning is enabled, Octave will warn about possible changes in the meaning of some code due to changes in precedence for some operators.  Precedence changes have typically been made for MATLAB compatibility.  By default, the 'Octave:precedence-change' warning is enabled.

'Octave:recursive-path-search'
     By default, the 'Octave:recursive-path-search' warning is enabled.

'Octave:remove-init-dir'
     The 'path' function changes the search path that Octave uses to find functions.  It is possible to set the path to a value which excludes Octave's own built-in functions.  If the 'Octave:remove-init-dir' warning is enabled then Octave will warn when the 'path' function has been used in a way that may render Octave unworkable.  By default, the 'Octave:remove-init-dir' warning is enabled.

'Octave:reload-forces-clear'
     If several functions have been loaded from the same file, Octave must clear all the functions before any one of them can be reloaded.  If the 'Octave:reload-forces-clear' warning is enabled, Octave will warn you when this happens, and print a list of the additional functions that it is forced to clear.  By default, the 'Octave:reload-forces-clear' warning is enabled.

'Octave:resize-on-range-error'
     If the 'Octave:resize-on-range-error' warning is enabled, print a warning when a matrix is resized by an indexed assignment with indices outside the current bounds.  By default, the ## 'Octave:resize-on-range-error' warning is disabled.

'Octave:separator-insert'
     Print warning if commas or semicolons might be inserted automatically in literal matrices.  By default, the 'Octave:separator-insert' warning is disabled.

'Octave:shadowed-function'
     By default, the 'Octave:shadowed-function' warning is enabled.

'Octave:single-quote-string'
     Print warning if a single quote character is used to introduce a string constant.  By default, the 'Octave:single-quote-string' warning is disabled.

'Octave:nearly-singular-matrix'
'Octave:singular-matrix'
     By default, the 'Octave:nearly-singular-matrix' and 'Octave:singular-matrix' warnings are enabled.

'Octave:sqrtm:SingularMatrix'
     By default, the 'Octave:sqrtm:SingularMatrix' warning is enabled.

'Octave:str-to-num'
     If the 'Octave:str-to-num' warning is enabled, a warning is printed for implicit conversions of strings to their numeric ASCII equivalents.  For example,

          "abc" + 0
          => 97 98 99

     elicits a warning if the 'Octave:str-to-num' warning is enabled.  By default, the 'Octave:str-to-num' warning is disabled.

'Octave:undefined-return-values'
     If the 'Octave:undefined-return-values' warning is disabled, print a warning if a function does not define all the values in the return list which are expected.  By default, the 'Octave:undefined-return-values' warning is enabled.

'Octave:variable-switch-label'
     If the 'Octave:variable-switch-label' warning is enabled, Octave will print a warning if a switch label is not a constant or constant expression.  By default, the 'Octave:variable-switch-label' warning is disabled.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
'Octave:abbreviated-property-match'  By default, the 'Octave:abbreviated-property-match' warning is enabled.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
what


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1037
 -- Command: what
 -- Command: what DIR
 -- Function File: w = what (DIR)
     List the Octave specific files in directory DIR.

     If DIR is not specified then the current directory is used.

     If a return argument is requested, the files found are returned in the structure W.  The structure contains the following fields:

     path
          Full path to directory DIR

     m
          Cell array of m-files

     mat
          Cell array of mat files

     mex
          Cell array of mex files

     oct
          Cell array of oct files

     mdl
          Cell array of mdl files

     slx
          Cell array of slx files

     p
          Cell array of p-files

     classes
          Cell array of class directories ('@CLASSNAME/')

     packages
          Cell array of package directories ('+PKGNAME/')

     Compatibility Note: Octave does not support mdl, slx, and p files; nor does it support package directories.  'what' will always return an empty list for these categories.

     See also: which, ls, exist.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
List the Octave specific files in directory DIR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
xor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3778
 -- Function File: Z = xor (X, Y)
 -- Function File: Z = xor (X1, X2, ...)
     Return the "exclusive or" of X and Y.

     For boolean expressions X and Y, 'xor (X, Y)' is true if and only if one of X or Y is true.  Otherwise, if X and Y are both true or both false, 'xor' returns false.

     The truth table for the xor operation is

                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X                               Y                                                   Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -                               -                                                   -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0                               0                                                   0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1                               0                                                   1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0                               1                                                   1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1                               1                                                   0

     If more than two arguments are given the xor operation is applied cumulatively from left to right:

          (...((x1 XOR x2) XOR x3) XOR ...)

     See also: and, or, not.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the "exclusive or" of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
zip


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 722
 -- Function File: FILELIST = zip (ZIPFILE, FILES)
 -- Function File: FILELIST = zip (ZIPFILE, FILES, ROOTDIR)
     Compress the list of files and directories specified in FILES into the ZIP archive ZIPFILE.

     FILES is a character array or cell array of strings.  Shell wildcards in the filename such as '*' or '?' are accepted and expanded.  Directories are recursively traversed and all files are compressed and added to the archive.

     If ROOTDIR is defined then any files without absolute pathnames are located relative to ROOTDIR rather than the current directory.

     The optional output FILELIST is a list of the files that were included in the archive.

     See also: unzip, unpack, bzip2, gzip, tar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Compress the list of files and directories specified in FILES into the ZIP archive ZIPFILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fminbnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1184
 -- Function File: [X, FVAL, INFO, OUTPUT] = fminbnd (FUN, A, B, OPTIONS)
     Find a minimum point of a univariate function.

     FUN should be a function handle or name.  A, B specify a starting interval.  OPTIONS is a structure specifying additional options.  Currently, 'fminbnd' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "MaxIter", "MaxFunEvals".  For a description of these options, see *note optimset: XREFoptimset.

     On exit, the function returns X, the approximate minimum point and FVAL, the function value thereof.

     INFO is an exit flag that can have these values:

        * 1 The algorithm converged to a solution.

        * 0 Maximum number of iterations or function evaluations has been exhausted.

        * -1 The algorithm has been terminated from user output function.

     Notes: The search for a minimum is restricted to be in the interval bound by A and B.  If you only have an initial point to begin searching from you will need to use an unconstrained minimization algorithm such as 'fminunc' or 'fminsearch'.  'fminbnd' internally uses a Golden Section search strategy.

     See also: fzero, fminunc, fminsearch, optimset.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Find a minimum point of a univariate function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
fminsearch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 999
 -- Function File: X = fminsearch (FUN, X0)
 -- Function File: X = fminsearch (FUN, X0, OPTIONS)
 -- Function File: [X, FVAL] = fminsearch (...)

     Find a value of X which minimizes the function FUN.

     The search begins at the point X0 and iterates using the Nelder & Mead Simplex algorithm (a derivative-free method).  This algorithm is better-suited to functions which have discontinuities or for which a gradient-based search such as 'fminunc' fails.

     Options for the search are provided in the parameter OPTIONS using the function 'optimset'.  Currently, 'fminsearch' accepts the options: "TolX", "MaxFunEvals", "MaxIter", "Display".  For a description of these options, see 'optimset'.

     On exit, the function returns X, the minimum point, and FVAL, the function value thereof.

     Example usages:

          fminsearch (@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0])

          fminsearch (inline ("(x(1)-5).^2+(x(2)-8).^4", "x"), [0;0])

     See also: fminbnd, fminunc, optimset.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Find a value of X which minimizes the function FUN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fminunc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2542
 -- Function File: fminunc (FCN, X0)
 -- Function File: fminunc (FCN, X0, OPTIONS)
 -- Function File: [X, FVAL, INFO, OUTPUT, GRAD, HESS] = fminunc (FCN, ...)
     Solve an unconstrained optimization problem defined by the function FCN.

     FCN should accept a vector (array) defining the unknown variables, and return the objective function value, optionally with gradient.  'fminunc' attempts to determine a vector X such that 'FCN (X)' is a local minimum.

     X0 determines a starting guess.  The shape of X0 is preserved in all calls to FCN, but otherwise is treated as a column vector.

     OPTIONS is a structure specifying additional options.  Currently, 'fminunc' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "TolFun", "MaxIter", "MaxFunEvals", "GradObj", "FinDiffType", "TypicalX", "AutoScaling".

     If "GradObj" is "on", it specifies that FCN, when called with 2 output arguments, also returns the Jacobian matrix of partial first derivatives at the requested point.  'TolX' specifies the termination tolerance for the unknown variables X, while 'TolFun' is a tolerance for the objective function value FVAL.  The default is '1e-7' for both options.

     For a description of the other options, see 'optimset'.

     On return, X is the location of the minimum and FVAL contains the value of the objective function at X.

     INFO may be one of the following values:

     1
          Converged to a solution point.  Relative gradient error is less than specified by 'TolFun'.

     2
          Last relative step size was less than 'TolX'.

     3
          Last relative change in function value was less than 'TolFun'.

     0
          Iteration limit exceeded--either maximum number of algorithm iterations 'MaxIter' or maximum number of function evaluations 'MaxFunEvals'.

     -1
          Algorithm terminated by 'OutputFcn'.

     -3
          The trust region radius became excessively small.

     Optionally, 'fminunc' can return a structure with convergence statistics (OUTPUT), the output gradient (GRAD) at the solution X, and approximate Hessian (HESS) at the solution X.

     Application Notes: If have only a single nonlinear equation of one variable then using 'fminbnd' is usually a better choice.

     The algorithm used by 'fminsearch' is a gradient search which depends on the objective function being differentiable.  If the function has discontinuities it may be better to use a derivative-free algorithm such as 'fminsearch'.

     See also: fminbnd, fminsearch, optimset.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Solve an unconstrained optimization problem defined by the function FCN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fsolve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4353
 -- Function File: fsolve (FCN, X0, OPTIONS)
 -- Function File: [X, FVEC, INFO, OUTPUT, FJAC] = fsolve (FCN, ...)
     Solve a system of nonlinear equations defined by the function FCN.

     FCN should accept a vector (array) defining the unknown variables, and return a vector of left-hand sides of the equations.  Right-hand sides are defined to be zeros.  In other words, this function attempts to determine a vector X such that 'FCN (X)' gives (approximately) all zeros.

     X0 determines a starting guess.  The shape of X0 is preserved in all calls to FCN, but otherwise it is treated as a column vector.

     OPTIONS is a structure specifying additional options.  Currently, 'fsolve' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "TolFun", "MaxIter", "MaxFunEvals", "Jacobian", "Updating", "ComplexEqn" "TypicalX", "AutoScaling" and "FinDiffType".

     If "Jacobian" is "on", it specifies that FCN, called with 2 output arguments also returns the Jacobian matrix of right-hand sides at the requested point.  "TolX" specifies the termination tolerance in the unknown variables, while "TolFun" is a tolerance for equations.  Default is '1e-7' for both "TolX" and "TolFun".

     If "AutoScaling" is on, the variables will be automatically scaled according to the column norms of the (estimated) Jacobian.  As a result, TolF becomes scaling-independent.  By default, this option is off because it may sometimes deliver unexpected (though mathematically correct) results.

     If "Updating" is "on", the function will attempt to use Broyden updates to update the Jacobian, in order to reduce the amount of Jacobian calculations.  If your user function always calculates the Jacobian (regardless of number of output arguments) then this option provides no advantage and should be set to false.

     "ComplexEqn" is "on", 'fsolve' will attempt to solve complex equations in complex variables, assuming that the equations possess a complex derivative (i.e., are holomorphic).  If this is not what you want, you should unpack the real and imaginary parts of the system to get a real system.

     For description of the other options, see 'optimset'.

     On return, FVAL contains the value of the function FCN evaluated at X.

     INFO may be one of the following values:

     1
          Converged to a solution point.  Relative residual error is less than specified by TolFun.

     2
          Last relative step size was less that TolX.

     3
          Last relative decrease in residual was less than TolF.

     0
          Iteration limit exceeded.

     -3
          The trust region radius became excessively small.

     Note: If you only have a single nonlinear equation of one variable, using 'fzero' is usually a much better idea.

     Note about user-supplied Jacobians: As an inherent property of the algorithm, a Jacobian is always requested for a solution vector whose residual vector is already known, and it is the last accepted successful step.  Often this will be one of the last two calls, but not always.  If the savings by reusing intermediate results from residual calculation in Jacobian calculation are significant, the best strategy is to employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is called with that vector, then the intermediate results should be saved for future Jacobian evaluation, and should be kept until a Jacobian evaluation is requested or until OutputFcn is called with a different vector, in which case they should be dropped in favor of this most recent vector.  A short example how this can be achieved follows:

          function [fvec, fjac] = user_func (x, optimvalues, state)
          persistent sav = [], sav0 = [];
          if (nargin == 1)
            ## evaluation call
            if (nargout == 1)
              sav0.x = x; # mark saved vector
              ## calculate fvec, save results to sav0.
            elseif (nargout == 2)
              ## calculate fjac using sav.
            endif
          else
            ## outputfcn call.
            if (all (x == sav0.x))
              sav = sav0;
            endif
            ## maybe output iteration status, etc.
          endif
          endfunction

          ## ...

          fsolve (@user_func, x0, optimset ("OutputFcn", @user_func, ...))

     See also: fzero, optimset.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Solve a system of nonlinear equations defined by the function FCN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fzero


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1864
 -- Function File: fzero (FUN, X0)
 -- Function File: fzero (FUN, X0, OPTIONS)
 -- Function File: [X, FVAL, INFO, OUTPUT] = fzero (...)
     Find a zero of a univariate function.

     FUN is a function handle, inline function, or string containing the name of the function to evaluate.

     X0 should be a two-element vector specifying two points which bracket a zero.  In other words, there must be a change in sign of the function between X0(1) and X0(2).  More mathematically, the following must hold

          sign (FUN(X0(1))) * sign (FUN(X0(2))) <= 0

     If X0 is a single scalar then several nearby and distant values are probed in an attempt to obtain a valid bracketing.  If this is not successful, the function fails.

     OPTIONS is a structure specifying additional options.  Currently, 'fzero' recognizes these options: "FunValCheck", "OutputFcn", "TolX", "MaxIter", "MaxFunEvals".  For a description of these options, see *note optimset: XREFoptimset.

     On exit, the function returns X, the approximate zero point and FVAL, the function value thereof.

     INFO is an exit flag that can have these values:

        * 1 The algorithm converged to a solution.

        * 0 Maximum number of iterations or function evaluations has been reached.

        * -1 The algorithm has been terminated from user output function.

        * -5 The algorithm may have converged to a singular point.

     OUTPUT is a structure containing runtime information about the 'fzero' algorithm.  Fields in the structure are:

        * iterations Number of iterations through loop.

        * nfev Number of function evaluations.

        * bracketx A two-element vector with the final bracketing of the zero along the x-axis.

        * brackety A two-element vector with the final bracketing of the zero along the y-axis.

     See also: optimset, fsolve.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Find a zero of a univariate function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
glpk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11032
 -- Function File: [XOPT, FMIN, ERRNUM, EXTRA] = glpk (C, A, B, LB, UB, CTYPE, VARTYPE, SENSE, PARAM)
     Solve a linear program using the GNU GLPK library.

     Given three arguments, 'glpk' solves the following standard LP:

          min C'*x

     subject to

          A*x  = b
            x >= 0

     but may also solve problems of the form

          [ min | max ] C'*x

     subject to

          A*x [ "=" | "<=" | ">=" ] b
            x >= LB
            x <= UB

     Input arguments:

     C
          A column array containing the objective function coefficients.

     A
          A matrix containing the constraints coefficients.

     B
          A column array containing the right-hand side value for each constraint in the constraint matrix.

     LB
          An array containing the lower bound on each of the variables.  If LB is not supplied, the default lower bound for the variables is zero.

     UB
          An array containing the upper bound on each of the variables.  If UB is not supplied, the default upper bound is assumed to be infinite.

     CTYPE
          An array of characters containing the sense of each constraint in the constraint matrix.  Each element of the array may be one of the following values

          "F"
               A free (unbounded) constraint (the constraint is ignored).

          "U"
               An inequality constraint with an upper bound ('A(i,:)*x <= b(i)').

          "S"
               An equality constraint ('A(i,:)*x = b(i)').

          "L"
               An inequality with a lower bound ('A(i,:)*x >= b(i)').

          "D"
               An inequality constraint with both upper and lower bounds ('A(i,:)*x >= -b(i)') _and_ ('A(i,:)*x <= b(i)').

     VARTYPE
          A column array containing the types of the variables.

          "C"
               A continuous variable.

          "I"
               An integer variable.

     SENSE
          If SENSE is 1, the problem is a minimization.  If SENSE is -1, the problem is a maximization.  The default value is 1.

     PARAM
          A structure containing the following parameters used to define the behavior of solver.  Missing elements in the structure take on default values, so you only need to set the elements that you wish to change from the default.

          Integer parameters:

          'msglev (default: 1)'
               Level of messages output by solver routines:

               0 ('GLP_MSG_OFF')
                    No output.

               1 ('GLP_MSG_ERR')
                    Error and warning messages only.

               2 ('GLP_MSG_ON')
                    Normal output.

               3 ('GLP_MSG_ALL')
                    Full output (includes informational messages).

          'scale (default: 16)'
               Scaling option.  The values can be combined with the bitwise OR operator and may be the following:

               1 ('GLP_SF_GM')
                    Geometric mean scaling.

               16 ('GLP_SF_EQ')
                    Equilibration scaling.

               32 ('GLP_SF_2N')
                    Round scale factors to power of two.

               64 ('GLP_SF_SKIP')
                    Skip if problem is well scaled.

               Alternatively, a value of 128 ('GLP_SF_AUTO') may be also specified, in which case the routine chooses the scaling options automatically.

          'dual (default: 1)'
               Simplex method option:

               1 ('GLP_PRIMAL')
                    Use two-phase primal simplex.

               2 ('GLP_DUALP')
                    Use two-phase dual simplex, and if it fails, switch to the primal simplex.

               3 ('GLP_DUAL')
                    Use two-phase dual simplex.

          'price (default: 34)'
               Pricing option (for both primal and dual simplex):

               17 ('GLP_PT_STD')
                    Textbook pricing.

               34 ('GLP_PT_PSE')
                    Steepest edge pricing.

          'itlim (default: intmax)'
               Simplex iterations limit.  It is decreased by one each time when one simplex iteration has been performed, and reaching zero value signals the solver to stop the search.

          'outfrq (default: 200)'
               Output frequency, in iterations.  This parameter specifies how frequently the solver sends information about the solution to the standard output.

          'branch (default: 4)'
               Branching technique option (for MIP only):

               1 ('GLP_BR_FFV')
                    First fractional variable.

               2 ('GLP_BR_LFV')
                    Last fractional variable.

               3 ('GLP_BR_MFV')
                    Most fractional variable.

               4 ('GLP_BR_DTH')
                    Heuristic by Driebeck and Tomlin.

               5 ('GLP_BR_PCH')
                    Hybrid pseudocost heuristic.

          'btrack (default: 4)'
               Backtracking technique option (for MIP only):

               1 ('GLP_BT_DFS')
                    Depth first search.

               2 ('GLP_BT_BFS')
                    Breadth first search.

               3 ('GLP_BT_BLB')
                    Best local bound.

               4 ('GLP_BT_BPH')
                    Best projection heuristic.

          'presol (default: 1)'
               If this flag is set, the simplex solver uses the built-in LP presolver.  Otherwise the LP presolver is not used.

          'lpsolver (default: 1)'
               Select which solver to use.  If the problem is a MIP problem this flag will be ignored.

               1
                    Revised simplex method.

               2
                    Interior point method.

          'rtest (default: 34)'
               Ratio test technique:

               17 ('GLP_RT_STD')
                    Standard ("textbook").

               34 ('GLP_RT_HAR')
                    Harris' two-pass ratio test.

          'tmlim (default: intmax)'
               Searching time limit, in milliseconds.

          'outdly (default: 0)'
               Output delay, in seconds.  This parameter specifies how long the solver should delay sending information about the solution to the standard output.

          'save (default: 0)'
               If this parameter is nonzero, save a copy of the problem in CPLEX LP format to the file '"outpb.lp"'.  There is currently no way to change the name of the output file.

          Real parameters:

          'tolbnd (default: 1e-7)'
               Relative tolerance used to check if the current basic solution is primal feasible.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

          'toldj (default: 1e-7)'
               Absolute tolerance used to check if the current basic solution is dual feasible.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

          'tolpiv (default: 1e-10)'
               Relative tolerance used to choose eligible pivotal elements of the simplex table.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

          'objll (default: -DBL_MAX)'
               Lower limit of the objective function.  If the objective function reaches this limit and continues decreasing, the solver stops the search.  This parameter is used in the dual simplex method only.

          'objul (default: +DBL_MAX)'
               Upper limit of the objective function.  If the objective function reaches this limit and continues increasing, the solver stops the search.  This parameter is used in the dual simplex only.

          'tolint (default: 1e-5)'
               Relative tolerance used to check if the current basic solution is integer feasible.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

          'tolobj (default: 1e-7)'
               Relative tolerance used to check if the value of the objective function is not better than in the best known integer feasible solution.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

     Output values:

     XOPT
          The optimizer (the value of the decision variables at the optimum).

     FOPT
          The optimum value of the objective function.

     ERRNUM
          Error code.

          0
               No error.

          1 ('GLP_EBADB')
               Invalid basis.

          2 ('GLP_ESING')
               Singular matrix.

          3 ('GLP_ECOND')
               Ill-conditioned matrix.

          4 ('GLP_EBOUND')
               Invalid bounds.

          5 ('GLP_EFAIL')
               Solver failed.

          6 ('GLP_EOBJLL')
               Objective function lower limit reached.

          7 ('GLP_EOBJUL')
               Objective function upper limit reached.

          8 ('GLP_EITLIM')
               Iterations limit exhausted.

          9 ('GLP_ETMLIM')
               Time limit exhausted.

          10 ('GLP_ENOPFS')
               No primal feasible solution.

          11 ('GLP_ENODFS')
               No dual feasible solution.

          12 ('GLP_EROOT')
               Root LP optimum not provided.

          13 ('GLP_ESTOP')
               Search terminated by application.

          14 ('GLP_EMIPGAP')
               Relative MIP gap tolerance reached.

          15 ('GLP_ENOFEAS')
               No primal/dual feasible solution.

          16 ('GLP_ENOCVG')
               No convergence.

          17 ('GLP_EINSTAB')
               Numerical instability.

          18 ('GLP_EDATA')
               Invalid data.

          19 ('GLP_ERANGE')
               Result out of range.

     EXTRA
          A data structure containing the following fields:

          'lambda'
               Dual variables.

          'redcosts'
               Reduced Costs.

          'time'
               Time (in seconds) used for solving LP/MIP problem.

          'status'
               Status of the optimization.

               1 ('GLP_UNDEF')
                    Solution status is undefined.

               2 ('GLP_FEAS')
                    Solution is feasible.

               3 ('GLP_INFEAS')
                    Solution is infeasible.

               4 ('GLP_NOFEAS')
                    Problem has no feasible solution.

               5 ('GLP_OPT')
                    Solution is optimal.

               6 ('GLP_UNBND')
                    Problem has no unbounded solution.

     Example:

          c = [10, 6, 4]';
          A = [ 1, 1, 1;
               10, 4, 5;
                2, 2, 6];
          b = [100, 600, 300]';
          lb = [0, 0, 0]';
          ub = [];
          ctype = "UUU";
          vartype = "CCC";
          s = -1;

          param.msglev = 1;
          param.itlim = 100;

          [xmin, fmin, status, extra] = ...
             glpk (c, A, b, lb, ub, ctype, vartype, s, param);
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve a linear program using the GNU GLPK library.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
lsqnonneg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1435
 -- Function File: X = lsqnonneg (C, D)
 -- Function File: X = lsqnonneg (C, D, X0)
 -- Function File: X = lsqnonneg (C, D, X0, OPTIONS)
 -- Function File: [X, RESNORM] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL, EXITFLAG] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT, LAMBDA] = lsqnonneg (...)
     Minimize 'norm (C*X - d)' subject to 'X >= 0'.

     C and D must be real.

     X0 is an optional initial guess for X.

     Currently, 'lsqnonneg' recognizes these options: "MaxIter", "TolX". For a description of these options, see *note optimset: XREFoptimset.

     Outputs:

        * resnorm

          The squared 2-norm of the residual: norm (C*X-D)^2

        * residual

          The residual: D-C*X

        * exitflag

          An indicator of convergence.  0 indicates that the iteration count was exceeded, and therefore convergence was not reached; >0 indicates that the algorithm converged.  (The algorithm is stable and will converge given enough iterations.)

        * output

          A structure with two fields:

             * "algorithm": The algorithm used ("nnls")

             * "iterations": The number of iterations taken.

        * lambda

          Not implemented.

     See also: optimset, pqpnonneg, lscov.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Minimize 'norm (C*X - d)' subject to 'X >= 0'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
optimget


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 342
 -- Function File: optimget (OPTIONS, PARNAME)
 -- Function File: optimget (OPTIONS, PARNAME, DEFAULT)
     Return the specific option PARNAME from the optimization options structure OPTIONS created by 'optimset'.

     If PARNAME is not defined then return DEFAULT if supplied, otherwise return an empty matrix.

     See also: optimset.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Return the specific option PARNAME from the optimization options structure OPTIONS created by 'optimset'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
optimset


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3041
 -- Function File: optimset ()
 -- Function File: OPTIONS = optimset ()
 -- Function File: OPTIONS = optimset (PAR, VAL, ...)
 -- Function File: OPTIONS = optimset (OLD, PAR, VAL, ...)
 -- Function File: OPTIONS = optimset (OLD, NEW)
     Create options structure for optimization functions.

     When called without any input or output arguments, 'optimset' prints a list of all valid optimization parameters.

     When called with one output and no inputs, return an options structure with all valid option parameters initialized to '[]'.

     When called with a list of parameter/value pairs, return an options structure with only the named parameters initialized.

     When the first input is an existing options structure OLD, the values are updated from either the PAR/VAL list or from the options structure NEW.

     Valid parameters are:

     AutoScaling

     ComplexEqn

     Display
          Request verbose display of results from optimizations.  Values are:

          "off" [default]
               No display.

          "iter"
               Display intermediate results for every loop iteration.

          "final"
               Display the result of the final loop iteration.

          "notify"
               Display the result of the final loop iteration if the function has failed to converge.

     FinDiffType

     FunValCheck
          When enabled, display an error if the objective function returns an invalid value (a complex number, NaN, or Inf).  Must be set to "on" or "off" [default].  Note: the functions 'fzero' and 'fminbnd' correctly handle Inf values and only complex values or NaN will cause an error in this case.

     GradObj
          When set to "on", the function to be minimized must return a second argument which is the gradient, or first derivative, of the function at the point X.  If set to "off" [default], the gradient is computed via finite differences.

     Jacobian
          When set to "on", the function to be minimized must return a second argument which is the Jacobian, or first derivative, of the function at the point X.  If set to "off" [default], the Jacobian is computed via finite differences.

     MaxFunEvals
          Maximum number of function evaluations before optimization stops.  Must be a positive integer.

     MaxIter
          Maximum number of algorithm iterations before optimization stops.  Must be a positive integer.

     OutputFcn
          A user-defined function executed once per algorithm iteration.

     TolFun
          Termination criterion for the function output.  If the difference in the calculated objective function between one algorithm iteration and the next is less than 'TolFun' the optimization stops.  Must be a positive scalar.

     TolX
          Termination criterion for the function input.  If the difference in X, the current search point, between one algorithm iteration and the next is less than 'TolX' the optimization stops.  Must be a positive scalar.

     TypicalX

     Updating

     See also: optimget.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Create options structure for optimization functions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
pqpnonneg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1152
 -- Function File: X = pqpnonneg (C, D)
 -- Function File: X = pqpnonneg (C, D, X0)
 -- Function File: [X, MINVAL] = pqpnonneg (...)
 -- Function File: [X, MINVAL, EXITFLAG] = pqpnonneg (...)
 -- Function File: [X, MINVAL, EXITFLAG, OUTPUT] = pqpnonneg (...)
 -- Function File: [X, MINVAL, EXITFLAG, OUTPUT, LAMBDA] = pqpnonneg (...)
     Minimize '1/2*x'*c*x + d'*x' subject to 'X >= 0'.

     C ## and D must be real, and C must be symmetric and positive definite.

     X0 is an optional initial guess for X.

     Outputs:

        * minval

          The minimum attained model value, 1/2*xmin'*c*xmin + d'*xmin

        * exitflag

          An indicator of convergence.  0 indicates that the iteration count was exceeded, and therefore convergence was not reached; >0 indicates that the algorithm converged.  (The algorithm is stable and will converge given enough iterations.)

        * output

          A structure with two fields:

             * "algorithm": The algorithm used ("nnls")

             * "iterations": The number of iterations taken.

        * lambda

          Not implemented.

     See also: optimset, lsqnonneg, qp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Minimize '1/2*x'*c*x + d'*x' subject to 'X >= 0'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1873
 -- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H)
 -- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q)
 -- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B)
 -- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B, LB, UB)
 -- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B, LB, UB, A_LB, A_IN, A_UB)
 -- Function File: [X, OBJ, INFO, LAMBDA] = qp (..., OPTIONS)
     Solve a quadratic program (QP).

     Solve the quadratic program defined by

          min 0.5 x'*H*x + x'*q
           x

     subject to

          A*x = b
          lb <= x <= ub
          A_lb <= A_in*x <= A_ub

     using a null-space active-set method.

     Any bound (A, B, LB, UB, A_LB, A_UB) may be set to the empty matrix ('[]') if not present.  If the initial guess is feasible the algorithm is faster.

     OPTIONS
          An optional structure containing the following parameter(s) used to define the behavior of the solver.  Missing elements in the structure take on default values, so you only need to set the elements that you wish to change from the default.

          'MaxIter (default: 200)'
               Maximum number of iterations.

     INFO
          Structure containing run-time information about the algorithm.  The following fields are defined:

          'solveiter'
               The number of iterations required to find the solution.

          'info'
               An integer indicating the status of the solution.

               0
                    The problem is feasible and convex.  Global solution found.

               1
                    The problem is not convex.  Local solution found.

               2
                    The problem is not convex and unbounded.

               3
                    Maximum number of iterations reached.

               6
                    The problem is infeasible.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Solve a quadratic program (QP).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sqp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4175
 -- Function File: [X, OBJ, INFO, ITER, NF, LAMBDA] = sqp (X0, PHI)
 -- Function File: [...] = sqp (X0, PHI, G)
 -- Function File: [...] = sqp (X0, PHI, G, H)
 -- Function File: [...] = sqp (X0, PHI, G, H, LB, UB)
 -- Function File: [...] = sqp (X0, PHI, G, H, LB, UB, MAXITER)
 -- Function File: [...] = sqp (X0, PHI, G, H, LB, UB, MAXITER, TOL)
     Minimize an objective function using sequential quadratic programming (SQP).

     Solve the nonlinear program

          min phi (x)
           x

     subject to

          g(x)  = 0
          h(x) >= 0
          lb <= x <= ub

     using a sequential quadratic programming method.

     The first argument is the initial guess for the vector X0.

     The second argument is a function handle pointing to the objective function PHI.  The objective function must accept one vector argument and return a scalar.

     The second argument may also be a 2- or 3-element cell array of function handles.  The first element should point to the objective function, the second should point to a function that computes the gradient of the objective function, and the third should point to a function that computes the Hessian of the objective function.  If the gradient function is not supplied, the gradient is computed by finite differences.  If the Hessian function is not supplied, a BFGS update formula is used to approximate the Hessian.

     When supplied, the gradient function 'PHI{2}' must accept one vector argument and return a vector.  When supplied, the Hessian function 'PHI{3}' must accept one vector argument and return a matrix.

     The third and fourth arguments G and H are function handles pointing to functions that compute the equality constraints and the inequality constraints, respectively.  If the problem does not have equality (or inequality) constraints, then use an empty matrix ([]) for G (or H).  When supplied, these equality and inequality constraint functions must accept one vector argument and return a vector.

     The third and fourth arguments may also be 2-element cell arrays of function handles.  The first element should point to the constraint function and the second should point to a function that computes the gradient of the constraint function:

                      [ d f(x)   d f(x)        d f(x) ]
          transpose ( [ ------   -----   ...   ------ ] )
                      [  dx_1     dx_2          dx_N  ]

     The fifth and sixth arguments, LB and UB, contain lower and upper bounds on X.  These must be consistent with the equality and inequality constraints G and H.  If the arguments are vectors then X(i) is bound by LB(i) and UB(i).  A bound can also be a scalar in which case all elements of X will share the same bound.  If only one bound (lb, ub) is specified then the other will default to (-REALMAX, +REALMAX).

     The seventh argument MAXITER specifies the maximum number of iterations.  The default value is 100.

     The eighth argument TOL specifies the tolerance for the stopping criteria.  The default value is 'sqrt (eps)'.

     The value returned in INFO may be one of the following:

     101
          The algorithm terminated normally.  All constraints meet the specified tolerance.

     102
          The BFGS update failed.

     103
          The maximum number of iterations was reached.

     104
          The stepsize has become too small, i.e., delta X, is less than 'TOL * norm (x)'.

     An example of calling 'sqp':

          function r = g (x)
            r = [ sumsq(x)-10;
                  x(2)*x(3)-5*x(4)*x(5);
                  x(1)^3+x(2)^3+1 ];
          endfunction

          function obj = phi (x)
            obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
          endfunction

          x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];

          [x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])

          x =

            -1.71714
             1.59571
             1.82725
            -0.76364
            -0.76364

          obj = 0.053950
          info = 101
          iter = 8
          nf = 10
          lambda =

            -0.0401627
             0.0379578
            -0.0052227

     See also: qp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Minimize an objective function using sequential quadratic programming (SQP).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
matlabroot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 216
 -- Function File: matlabroot ()
     Return the name of the top-level Octave installation directory.

     This is an alias for the function 'OCTAVE_HOME' provided for compatibility.

     See also: OCTAVE_HOME.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the name of the top-level Octave installation directory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
pathdef


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
 -- Function File: VAL = pathdef ()
     Return the default path for Octave.

     The path information is extracted from one of four sources.  The possible sources, in order of preference, are:

       1. '.octaverc'

       2. '~/.octaverc'

       3. '<OCTAVE_HOME>/.../<version>/m/startup/octaverc'

       4. Octave's path prior to changes by any octaverc file.

     See also: path, addpath, rmpath, genpath, savepath.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return the default path for Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
savepath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 985
 -- Function File: savepath ()
 -- Function File: savepath (FILE)
 -- Function File: STATUS = savepath (...)
     Save the unique portion of the current function search path that is not set during Octave's initialization process to FILE.

     If FILE is omitted, Octave looks in the current directory for a project-specific '.octaverc' file in which to save the path information.  If no such file is present then the user's configuration file '~/.octaverc' is used.

     If successful, 'savepath' returns 0.

     The 'savepath' function makes it simple to customize a user's configuration file to restore the working paths necessary for a particular instance of Octave.  Assuming no filename is specified, Octave will automatically restore the saved directory paths from the appropriate '.octaverc' file when starting up.  If a filename has been specified then the paths may be restored manually by calling 'source FILE'.

     See also: path, addpath, rmpath, genpath, pathdef.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Save the unique portion of the current function search path that is not set during Octave's initialization process to FILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pkg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7061
 -- Command: pkg COMMAND PKG_NAME
 -- Command: pkg COMMAND OPTION PKG_NAME
     Manage packages (groups of add-on functions) for Octave.

     Different actions are available depending on the value of COMMAND.

     Available commands:

     'install'
          Install named packages.  For example,

               pkg install image-1.0.0.tar.gz

          installs the package found in the file 'image-1.0.0.tar.gz'.

          The OPTION variable can contain options that affect the manner in which a package is installed.  These options can be one or more of

          '-nodeps'
               The package manager will disable dependency checking.  With this option it is possible to install a package even when it depends on another package which is not installed on the system.  *Use this option with care.*

          '-noauto'
               The package manager will not automatically load the installed package when starting Octave.  This overrides any setting within the package.

          '-auto'
               The package manager will automatically load the installed package when starting Octave.  This overrides any setting within the package.

          '-local'
               A local installation (package available only to current user) is forced, even if the user has system privileges.

          '-global'
               A global installation (package available to all users) is forced, even if the user doesn't normally have system privileges.

          '-forge'
               Install a package directly from the Octave-Forge repository.  This requires an internet connection and the cURL library.

          '-verbose'
               The package manager will print the output of all commands as they are performed.

     'update'
          Check installed Octave-Forge packages against repository and update any outdated items.  This requires an internet connection and the cURL library.  Usage:

               pkg update

     'uninstall'
          Uninstall named packages.  For example,

               pkg uninstall image

          removes the 'image' package from the system.  If another installed package depends on the 'image' package an error will be issued.  The package can be uninstalled anyway by using the '-nodeps' option.

     'load'
          Add named packages to the path.  After loading a package it is possible to use the functions provided by the package.  For example,

               pkg load image

          adds the 'image' package to the path.  It is possible to load all installed packages at once with the keyword 'all'.  Usage:

               pkg load all

     'unload'
          Remove named packages from the path.  After unloading a package it is no longer possible to use the functions provided by the package.  It is possible to unload all installed packages at once with the keyword 'all'.  Usage:

               pkg unload all

     'list'
          Show the list of currently installed packages.  For example,

               pkg list

          will produce a short report with the package name, version, and installation directory for each installed package.  Supply a package name to limit reporting to a particular package.  For example:

               pkg list image

          If a single return argument is requested then 'pkg' returns a cell array where each element is a structure with information on a single package.

               installed_packages = pkg ("list")

          If two output arguments are requested 'pkg' splits the list of installed packages into those which were installed by the current user, and those which were installed by the system administrator.

               [user_packages, system_packages] = pkg ("list")

          The "-forge" option lists packages available at the Octave-Forge repository.  This requires an internet connection and the cURL library.  For example:

               oct_forge_pkgs = pkg ("list", "-forge")

     'describe'
          Show a short description of the named installed packages, with the option "-verbose" also list functions provided by the package.  For example,

               pkg describe -verbose all

          will describe all installed packages and the functions they provide.  If one output is requested a cell of structure containing the description and list of functions of each package is returned as output rather than printed on screen:

               desc = pkg ("describe", "secs1d", "image")

          If any of the requested packages is not installed, 'pkg' returns an error, unless a second output is requested:

               [desc, flag] = pkg ("describe", "secs1d", "image")

          FLAG will take one of the values "Not installed", "Loaded", or "Not loaded" for each of the named packages.

     'prefix'
          Set the installation prefix directory.  For example,

               pkg prefix ~/my_octave_packages

          sets the installation prefix to '~/my_octave_packages'.  Packages will be installed in this directory.

          It is possible to get the current installation prefix by requesting an output argument.  For example:

               pfx = pkg ("prefix")

          The location in which to install the architecture dependent files can be independently specified with an addition argument.  For example:

               pkg prefix ~/my_octave_packages ~/my_arch_dep_pkgs

     'local_list'
          Set the file in which to look for information on locally installed packages.  Locally installed packages are those that are available only to the current user.  For example:

               pkg local_list ~/.octave_packages

          It is possible to get the current value of local_list with the following

               pkg local_list

     'global_list'
          Set the file in which to look for information on globally installed packages.  Globally installed packages are those that are available to all users.  For example:

               pkg global_list /usr/share/octave/octave_packages

          It is possible to get the current value of global_list with the following

               pkg global_list

     'build'
          Build a binary form of a package or packages.  The binary file produced will itself be an Octave package that can be installed normally with 'pkg'.  The form of the command to build a binary package is

               pkg build builddir image-1.0.0.tar.gz ...

          where 'builddir' is the name of a directory where the temporary installation will be produced and the binary packages will be found.  The options '-verbose' and '-nodeps' are respected, while all other options are ignored.

     'rebuild'
          Rebuild the package database from the installed directories.  This can be used in cases where the package database has been corrupted.  It can also take the '-auto' and '-noauto' options to allow the autoloading state of a package to be changed.  For example,

               pkg rebuild -noauto image

          will remove the autoloading status of the image package.

     See also: ver, news.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Manage packages (groups of add-on functions) for Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
annotation


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4711
 -- Function File: annotation (TYPE)
 -- Function File: annotation ("line", X, Y)
 -- Function File: annotation ("arrow", X, Y)
 -- Function File: annotation ("doublearrow", X, Y)
 -- Function File: annotation ("textarrow", X, Y)
 -- Function File: annotation ("textbox", POS)
 -- Function File: annotation ("rectangle", POS)
 -- Function File: annotation ("ellipse", POS)
 -- Function File: annotation (..., PROP, VAL)
 -- Function File: annotation (HF, ...)
 -- Function File: H = annotation (...)
     Draw annotations to emphasize parts of a figure.

     You may build a default annotation by specifying only the TYPE of the annotation.

     Otherwise you can select the type of annotation and then set its position using either X and Y coordinates for line-based annotations or a position vector POS for others.  In either case, coordinates are interpreted using the "units" property of the annotation object.  The default is "normalized", which means the lower left hand corner of the figure has coordinates '[0 0]' and the upper right hand corner '[1 1]'.

     If the first argument HF is a figure handle, then plot into this figure, rather than the current figure returned by 'gcf'.

     Further arguments can be provided in the form of PROP/VAL pairs to customize the annotation appearance.

     The optional return value H is a graphics handle to the created annotation object.  This can be used with the 'set' function to customize an existing annotation object.

     All annotation objects share two properties:

        * "units": the units in which coordinates are interpreted.
          Its value may be one of "centimeters" | "characters" | "inches" | "{normalized}" | "pixels" | "points".

        * "position": a four-element vector [x0 y0 width height].
          The vector specifies the coordinates (x0,y0) of the origin of the annotation object, its width, and its height.  The width and height may be negative, depending on the orientation of the object.

     Valid annotation types and their specific properties are described below:

     "line"
          Constructs a line.  X and Y must be two-element vectors specifying the x and y coordinates of the two ends of the line.

          The line can be customized using "linewidth", "linestyle", and "color" properties the same way as for 'line' objects.

     "arrow"
          Construct an arrow.  The second point in vectors X and Y specifies the arrowhead coordinates.

          Besides line properties, the arrowhead can be customized using "headlength", "headwidth", and "headstyle" properties.  Supported values for "headstyle" property are: ["diamond" | "ellipse" | "plain" | "rectangle" | "vback1" | "{vback2}" | "vback3"]

     "doublearrow"
          Construct a double arrow.  Vectors X and Y specify the arrowhead coordinates.

          The line and the arrowhead can be customized as for arrow annotations, but some property names are duplicated: "head1length"/"head2length", "head1width"/"head2width", etc.  The index 1 marks the properties of the arrowhead at the first point in X and Y coordinates.

     "textarrow"
          Construct an arrow with a text label at the opposite end from the arrowhead.

          The line and the arrowhead can be customized as for arrow annotations, and the text can be customized using the same properties as 'text' graphics objects.  Note, however, that some text property names are prefixed with "text" to distinguish them from arrow properties: "textbackgroundcolor", "textcolor", "textedgecolor", "textlinewidth", "textmargin", "textrotation".

     "textbox"
          Construct a box with text inside.  POS specifies the "position" property of the annotation.

          You may use "backgroundcolor", "edgecolor", "linestyle", and "linewidth" properties to customize the box background color and edge appearance.  A limited set of 'text' objects properties are also available; Besides "font..." properties, you may also use "horizontalalignment" and "verticalalignment" to position the text inside the box.

          Finally, the "fitboxtotext" property controls the actual extent of the box.  If "on" (the default) the box limits are fitted to the text extent.

     "rectangle"
          Construct a rectangle.  POS specifies the "position" property of the annotation.

          You may use "facecolor", "color", "linestyle", and "linewidth" properties to customize the rectangle background color and edge appearance.

     "ellipse"
          Construct an ellipse.  POS specifies the "position" property of the annotation.

          See "rectangle" annotations for customization.

     See also: xlabel, ylabel, zlabel, title, text, gtext, legend, colorbar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Draw annotations to emphasize parts of a figure.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
axis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2831
 -- Function File: axis ()
 -- Function File: axis ([X_lo X_hi])
 -- Function File: axis ([X_lo X_hi Y_lo Y_hi])
 -- Function File: axis ([X_lo X_hi Y_lo Y_hi Z_lo Z_hi])
 -- Function File: axis (OPTION)
 -- Function File: axis (..., OPTION)
 -- Function File: axis (HAX, ...)
 -- Function File: LIMITS = axis ()
     Set axis limits and appearance.

     The argument LIMITS should be a 2-, 4-, or 6-element vector.  The first and second elements specify the lower and upper limits for the x-axis.  The third and fourth specify the limits for the y-axis, and the fifth and sixth specify the limits for the z-axis.  The special values -Inf and Inf may be used to indicate that the limit should automatically be computed based on the data in the axis.

     Without any arguments, 'axis' turns autoscaling on.

     With one output argument, 'LIMITS = axis' returns the current axis limits.

     The vector argument specifying limits is optional, and additional string arguments may be used to specify various axis properties.  For example,

          axis ([1, 2, 3, 4], "square");

     forces a square aspect ratio, and

          axis ("tic", "labely");

     turns tic marks on for all axes and tic mark labels on for the y-axis only.

     The following options control the aspect ratio of the axes.

     "square"
          Force a square aspect ratio.

     "equal"
          Force x distance to equal y-distance.

     "normal"
          Restore default aspect ratio.

     The following options control the way axis limits are interpreted.

     "auto"
          Set the specified axes to have nice limits around the data or all if no axes are specified.

     "manual"
          Fix the current axes limits.

     "tight"
          Fix axes to the limits of the data.

     "image"
          Equivalent to "tight" and "equal".

     The following options affect the appearance of tic marks.

     "on"
          Turn tic marks and labels on for all axes.

     "off"
          Turn tic marks off for all axes.

     "tic[xyz]"
          Turn tic marks on for all axes, or turn them on for the specified axes and off for the remainder.

     "label[xyz]"
          Turn tic labels on for all axes, or turn them on for the specified axes and off for the remainder.

     "nolabel"
          Turn tic labels off for all axes.

     Note, if there are no tic marks for an axis, there can be no labels.

     The following options affect the direction of increasing values on the axes.

     "ij"
          Reverse y-axis, so lower values are nearer the top.

     "xy"
          Restore y-axis, so higher values are nearer the top.

     If the first argument HAX is an axes handle, then operate on this axes rather than the current axes returned by 'gca'.

     See also: xlim, ylim, zlim, daspect, pbaspect, box, grid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Set axis limits and appearance.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
box


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 390
 -- Command: box
 -- Command: box on
 -- Command: box off
 -- Function File: box (HAX, ...)
     Control display of the axis border.

     The argument may be either "on" or "off".  If it is omitted, the current box state is toggled.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     See also: axis, grid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Control display of the axis border.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
caxis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1008
 -- Function File: caxis ([cmin cmax])
 -- Function File: caxis ("auto")
 -- Function File: caxis ("manual")
 -- Function File: caxis (HAX, ...)
 -- Function File: LIMITS = caxis ()
     Query or set color axis limits for plots.

     The limits argument should be a 2-element vector specifying the lower and upper limits to assign to the first and last value in the colormap.  Data values outside this range are clamped to the first and last colormap entries.

     If the "auto" option is given then automatic colormap limits are applied.  The automatic algorithm sets CMIN to the minimum data value and CMAX to the maximum data value.  If "manual" is specified then the "climmode" property is set to "manual" and the numeric values in the "clim" property are used for limits.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     Called without arguments the current color axis limits are returned.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Query or set color axis limits for plots.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
clabel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1652
 -- Function File: clabel (C, H)
 -- Function File: clabel (C, H, V)
 -- Function File: clabel (C, H, "manual")
 -- Function File: clabel (C)
 -- Function File: clabel (..., PROP, VAL, ...)
 -- Function File: H = clabel (...)
     Add labels to the contours of a contour plot.

     The contour levels are specified by the contour matrix C which is returned by 'contour', 'contourc', 'contourf', and 'contour3'.  Contour labels are rotated to match the local line orientation and centered on the line.  The position of labels along the contour line is chosen randomly.

     If the argument H is a handle to a contour group object, then label this plot rather than the one in the current axes returned by 'gca'.

     By default, all contours are labeled.  However, the contours to label can be specified by the vector V.  If the "manual" argument is given then the contours to label can be selected with the mouse.

     Additional property/value pairs that are valid properties of text objects can be given and are passed to the underlying text objects.  Moreover, the contour group property "LabelSpacing" is available which determines the spacing between labels on a contour to be specified.  The default is 144 points, or 2 inches.

     The optional return value H is a vector of graphics handles to the text objects representing each label.  The "userdata" property of the text objects contains the numerical value of the contour label.

     An example of the use of 'clabel' is

          [c, h] = contour (peaks (), -4 : 6);
          clabel (c, h, -4:2:6, "fontsize", 12);

     See also: contour, contourf, contour3, meshc, surfc, text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Add labels to the contours of a contour plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
daspect


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 753
 -- Function File: DATA_ASPECT_RATIO = daspect ()
 -- Function File: daspect (DATA_ASPECT_RATIO)
 -- Function File: daspect (MODE)
 -- Function File: DATA_ASPECT_RATIO_MODE = daspect ("mode")
 -- Function File: daspect (HAX, ...)
     Query or set the data aspect ratio of the current axes.

     The aspect ratio is a normalized 3-element vector representing the span of the x, y, and z-axis limits.

     'daspect (MODE)'

     Set the data aspect ratio mode of the current axes.  MODE is either "auto" or "manual".

     'daspect ("mode")'

     Return the data aspect ratio mode of the current axes.

     'daspect (HAX, ...)'

     Operate on the axes in handle HAX instead of the current axes.

     See also: axis, pbaspect, xlim, ylim, zlim.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Query or set the data aspect ratio of the current axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
datetick


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 600
 -- Function File: datetick ()
 -- Function File: datetick (FORM)
 -- Function File: datetick (AXIS, FORM)
 -- Function File: datetick (..., "keeplimits")
 -- Function File: datetick (..., "keepticks")
 -- Function File: datetick (HAX, ...)
     Add date formatted tick labels to an axis.

     The axis to apply the ticks to is determined by AXIS which can take the values "x", "y", or "z".  The default value is "x".

     The formatting of the labels is determined by the variable FORM, which can either be a string or positive integer that 'datestr' accepts.

     See also: datenum, datestr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Add date formatted tick labels to an axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
diffuse


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
 -- Function File: diffuse (SX, SY, SZ, LV)
     Calculate the diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ.

     The light source location vector LV can be given as a 2-element vector [azimuth, elevation] in degrees or as a 3-element vector [x, y, z].

     See also: specular, surfl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Calculate the diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
grid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 734
 -- Command: grid
 -- Command: grid on
 -- Command: grid off
 -- Command: grid minor
 -- Command: grid minor on
 -- Command: grid minor off
 -- Function File: grid (HAX, ...)
     Control the display of plot grid lines.

     The function state input may be either "on" or "off".  If it is omitted, the current grid state is toggled.

     When the first argument is "minor" all subsequent commands modify the minor grid rather than the major grid.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     To control the grid lines for an individual axis use the 'set' function.  For example:

          set (gca, "ygrid", "on");

     See also: axis, box.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Control the display of plot grid lines.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gtext


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 726
 -- Function File: gtext (S)
 -- Function File: gtext ({S1, S2, ...})
 -- Function File: gtext ({S1; S2; ...})
 -- Function File: gtext (..., PROP, VAL, ...)
 -- Function File: H = gtext (...)
     Place text on the current figure using the mouse.

     The text is defined by the string S.  If S is a cell string organized as a row vector then each string of the cell array is written to a separate line.  If S is organized as a column vector then one string element of the cell array is placed for every mouse click.

     Optional property/value pairs are passed directly to the underlying text objects.

     The optional return value H is a graphics handle to the created text object(s).

     See also: ginput, text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Place text on the current figure using the mouse.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hidden


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 787
 -- Command: hidden
 -- Command: hidden on
 -- Command: hidden off
 -- Function File: MODE = hidden (...)
     Control mesh hidden line removal.

     When called with no argument the hidden line removal state is toggled.

     When called with one of the modes "on" or "off" the state is set accordingly.

     The optional output argument MODE is the current state.

     Hidden Line Removal determines what graphic objects behind a mesh plot are visible.  The default is for the mesh to be opaque and lines behind the mesh are not visible.  If hidden line removal is turned off then objects behind the mesh can be seen through the faces (openings) of the mesh, although the mesh grid lines are still opaque.

     See also: mesh, meshc, meshz, ezmesh, ezmeshc, trimesh, waterfall.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Control mesh hidden line removal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
legend


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5893
 -- Function File: legend (STR1, STR2, ...)
 -- Function File: legend (MATSTR)
 -- Function File: legend (CELLSTR)
 -- Function File: legend (..., "location", POS)
 -- Function File: legend (..., "orientation", ORIENT)
 -- Function File: legend (HAX, ...)
 -- Function File: legend (HOBJS, ...)
 -- Function File: legend (HAX, HOBJS, ...)
 -- Function File: legend ("OPTION")
 -- Function File: [HLEG, HLEG_OBJ, HPLOT, LABELS] = legend (...)

     Display a legend for the current axes using the specified strings as labels.

     Legend entries may be specified as individual character string arguments, a character array, or a cell array of character strings.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.  If the handles, HOBJS, are not specified then the legend's strings will be associated with the axes' descendants.  'legend' works on line graphs, bar graphs, etc.  A plot must exist before legend is called.

     The optional parameter POS specifies the location of the legend as follows:

                                                                   pos                                                                                                                                             location of the legend
     ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                   north                                                                                                                                           center top
                                                                   south                                                                                                                                           center bottom
                                                                   east                                                                                                                                            right center
                                                                   west                                                                                                                                            left center
                                                                   northeast                                                                                                                                       right top (default)
                                                                   northwest                                                                                                                                       left top
                                                                   southeast                                                                                                                                       right bottom
                                                                   southwest                                                                                                                                       left bottom
                                                                   outside                                                                                                                                         can be appended to any location string

     The optional parameter ORIENT determines if the key elements are placed vertically or horizontally.  The allowed values are "vertical" (default) or "horizontal".

     The following customizations are available using OPTION:

     "show"
          Show legend on the plot

     "hide"
          Hide legend on the plot

     "toggle"
          Toggles between "hide" and "show"

     "boxon"
          Show a box around legend (default)

     "boxoff"
          Hide the box around legend

     "right"
          Place label text to the right of the keys (default)

     "left"
          Place label text to the left of the keys

     "off"
          Delete the legend object

     The optional output values are

     HLEG
          The graphics handle of the legend object.

     HLEG_OBJ
          Graphics handles to the text and line objects which make up the legend.

     HPLOT
          Graphics handles to the plot objects which were used in making the legend.

     LABELS
          A cell array of strings of the labels in the legend.

     The legend label text is either provided in the call to 'legend' or is taken from the DisplayName property of graphics objects.  If no labels or DisplayNames are available, then the label text is simply "data1", "data2", ..., "dataN".

     Implementation Note: A legend is implemented as an additional axes object of the current figure with the "tag" set to "legend".  Properties of the legend object may be manipulated directly by using 'set'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Display a legend for the current axes using the specified strings as labels.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
orient


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1014
 -- Function File: orient (ORIENTATION)
 -- Function File: orient (HFIG, ORIENTATION)
 -- Function File: ORIENTATION = orient ()
 -- Function File: ORIENTATION = orient (HFIG)
     Query or set the print orientation for figure HFIG.

     Valid values for ORIENTATION are "portrait", "landscape", and "tall".

     The "landscape" option changes the orientation so the plot width is larger than the plot height.  The "paperposition" is also modified so that the plot fills the page, while leaving a 0.25 inch border.

     The "tall" option sets the orientation to "portrait" and fills the page with the plot, while leaving a 0.25 inch border.

     The "portrait" option (default) changes the orientation so the plot height is larger than the plot width.  It also restores the default "paperposition" property.

     When called with no arguments, return the current print orientation.

     If the argument HFIG is omitted, then operate on the current figure returned by 'gcf'.

     See also: print, saveas.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Query or set the print orientation for figure HFIG.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
pbaspect


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 790
 -- Function File: PLOT_BOX_ASPECT_RATIO = pbaspect ( )
 -- Function File: pbaspect (PLOT_BOX_ASPECT_RATIO)
 -- Function File: pbaspect (MODE)
 -- Function File: PLOT_BOX_ASPECT_RATIO_MODE = pbaspect ("mode")
 -- Function File: pbaspect (HAX, ...)

     Query or set the plot box aspect ratio of the current axes.

     The aspect ratio is a normalized 3-element vector representing the rendered lengths of the x, y, and z axes.

     'pbaspect(MODE)'

     Set the plot box aspect ratio mode of the current axes.  MODE is either "auto" or "manual".

     'pbaspect ("mode")'

     Return the plot box aspect ratio mode of the current axes.

     'pbaspect (HAX, ...)'

     Operate on the axes in handle HAX instead of the current axes.

     See also: axis, daspect, xlim, ylim, zlim.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the plot box aspect ratio of the current axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
shading


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 603
 -- Function File: shading (TYPE)
 -- Function File: shading (HAX, TYPE)
     Set the shading of patch or surface graphic objects.

     Valid arguments for TYPE are

     "flat"
          Single colored patches with invisible edges.

     "faceted"
          Single colored patches with visible edges.

     "interp"
          Color between patch vertices are interpolated and the patch edges are invisible.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     See also: fill, mesh, patch, pcolor, surf, surface, hidden.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Set the shading of patch or surface graphic objects.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
specular


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 623
 -- Function File: specular (SX, SY, SZ, LV, VV)
 -- Function File: specular (SX, SY, SZ, LV, VV, SE)
     Calculate the specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation.

     The light source location and viewer location vectors are specified using parameters LV and VV respectively.  The location vectors can given as 2-element vectors [azimuth, elevation] in degrees or as 3-element vectors [x, y, z].

     An optional sixth argument specifies the specular exponent (spread) SE.  If not given, SE defaults to 10.

     See also: diffuse, surfl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Calculate the specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
text


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 641
 -- Function File: text (X, Y, STRING)
 -- Function File: text (X, Y, Z, STRING)
 -- Function File: text (..., PROP, VAL, ...)
 -- Function File: H = text (...)
     Create a text object with text STRING at position X, Y, (Z) on the current axes.

     Multiple locations can be specified if X, Y, (Z) are vectors.  Multiple strings can be specified with a character matrix or a cell array of strings.

     Optional property/value pairs may be used to control the appearance of the text.

     The optional return value H is a vector of graphics handles to the created text objects.

     See also: gtext, title, xlabel, ylabel, zlabel.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create a text object with text STRING at position X, Y, (Z) on the current axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
title


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 592
 -- Function File: title (STRING)
 -- Function File: title (STRING, PROP, VAL, ...)
 -- Function File: title (HAX, ...)
 -- Function File: H = title (...)
     Specify the string used as a title for the current axis.

     An optional list of PROPERTY/VALUE pairs can be used to change the appearance of the created title text object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created text object.

     See also: xlabel, ylabel, zlabel, text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Specify the string used as a title for the current axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
view


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 932
 -- Function File: view (AZIMUTH, ELEVATION)
 -- Function File: view ([AZIMUTH ELEVATION])
 -- Function File: view ([X Y Z])
 -- Function File: view (2)
 -- Function File: view (3)
 -- Function File: view (HAX, ...)
 -- Function File: [AZIMUTH, ELEVATION] = view ()
     Query or set the viewpoint for the current axes.

     The parameters AZIMUTH and ELEVATION can be given as two arguments or as 2-element vector.  The viewpoint can also be specified with Cartesian coordinates X, Y, and Z.

     The call 'view (2)' sets the viewpoint to AZIMUTH = 0 and ELEVATION = 90, which is the default for 2-D graphs.

     The call 'view (3)' sets the viewpoint to AZIMUTH = -37.5 and ELEVATION = 30, which is the default for 3-D graphs.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     If no inputs are given, return the current AZIMUTH and ELEVATION.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Query or set the viewpoint for the current axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
whitebg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 775
 -- Function File: whitebg ()
 -- Function File: whitebg (COLOR)
 -- Function File: whitebg ("none")
 -- Function File: whitebg (HFIG, ...)
     Invert the colors in the current color scheme.

     The root properties are also inverted such that all subsequent plot use the new color scheme.

     If the optional argument COLOR is present then the background color is set to COLOR rather than inverted.  COLOR may be a string representing one of the eight known colors or an RGB triplet.  The special string argument "none" restores the plot to the default colors.

     If the first argument HFIG is a figure handle, then operate on this figure rather than the current figure returned by 'gcf'.  The root properties will not be changed.

     See also: reset, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Invert the colors in the current color scheme.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
xlabel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 610
 -- Function File: xlabel (STRING)
 -- Function File: xlabel (STRING, PROPERTY, VAL, ...)
 -- Function File: xlabel (HAX, ...)
 -- Function File: H = xlabel (...)
     Specify the string used to label the x-axis of the current axis.

     An optional list of PROPERTY/VALUE pairs can be used to change the properties of the created text label.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created text object.

     See also: ylabel, zlabel, datetick, title, text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Specify the string used to label the x-axis of the current axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
xlim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
 -- Function File: XLIMITS = xlim ()
 -- Function File: XMODE = xlim ("mode")
 -- Function File: xlim ([X_LO X_HI])
 -- Function File: xlim ("auto")
 -- Function File: xlim ("manual")
 -- Function File: xlim (HAX, ...)
     Query or set the limits of the x-axis for the current plot.

     Called without arguments 'xlim' returns the x-axis limits of the current plot.

     With the input query "mode", return the current x-limit calculation mode which is either "auto" or "manual".

     If passed a 2-element vector [X_LO X_HI], the limits of the x-axis are set to these values and the mode is set to "manual".

     The current plotting mode can be changed by using either "auto" or "manual" as the argument.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     See also: ylim, zlim, axis, set, get, gca.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the limits of the x-axis for the current plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ylabel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 672
 -- Function File: ylabel (STRING)
 -- Function File: ylabel (STRING, PROPERTY, VAL, ...)
 -- Function File: ylabel (HAX, ...)
 -- Function File: H = ylabel (...)
     Specify the string used to label the y-axis of the current axis.

     If HAX is specified then label the axis defined by HAX.

     An optional list of PROPERTY/VALUE pairs can be used to change the properties of the created text label.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created text object.

     See also: xlabel, zlabel, datetick, title, text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Specify the string used to label the y-axis of the current axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ylim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
 -- Function File: YLIMITS = ylim ()
 -- Function File: XMODE = ylim ("mode")
 -- Function File: ylim ([Y_LO Y_HI])
 -- Function File: ylim ("auto")
 -- Function File: ylim ("manual")
 -- Function File: ylim (HAX, ...)
     Query or set the limits of the y-axis for the current plot.

     Called without arguments 'ylim' returns the y-axis limits of the current plot.

     With the input query "mode", return the current y-limit calculation mode which is either "auto" or "manual".

     If passed a 2-element vector [Y_LO Y_HI], the limits of the y-axis are set to these values and the mode is set to "manual".

     The current plotting mode can be changed by using either "auto" or "manual" as the argument.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     See also: xlim, zlim, axis, set, get, gca.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the limits of the y-axis for the current plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zlabel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 622
 -- Function File: zlabel (STRING)
 -- Function File: zlabel (STRING, PROPERTY, VAL, ...)
 -- Function File: zlabel (HAX, ...)
 -- Function File: H = zlabel (...)
     Specify the string used to label the z-axis of the current axis.

     An optional list of PROPERTY/VALUE pairs can be used to change the properties of the created text label.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created text object.

     See also: xlabel, ylabel, datetick, title, text.
   Author: jwe 


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Specify the string used to label the z-axis of the current axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
zlim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
 -- Function File: ZLIMITS = zlim ()
 -- Function File: XMODE = zlim ("mode")
 -- Function File: zlim ([Z_LO Z_HI])
 -- Function File: zlim ("auto")
 -- Function File: zlim ("manual")
 -- Function File: zlim (HAX, ...)
     Query or set the limits of the z-axis for the current plot.

     Called without arguments 'zlim' returns the z-axis limits of the current plot.

     With the input query "mode", return the current z-limit calculation mode which is either "auto" or "manual".

     If passed a 2-element vector [Z_LO Z_HI], the limits of the x-axis are set to these values and the mode is set to "manual".

     The current plotting mode can be changed by using either "auto" or "manual" as the argument.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     See also: xlim, ylim, axis, set, get, gca.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Query or set the limits of the z-axis for the current plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
area


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1306
 -- Function File: area (Y)
 -- Function File: area (X, Y)
 -- Function File: area (..., LVL)
 -- Function File: area (..., PROP, VAL, ...)
 -- Function File: area (HAX, ...)
 -- Function File: H = area (...)
     Area plot of the columns of Y.

     This plot shows the contributions of each column value to the row sum.  It is functionally similar to 'plot (X, cumsum (Y, 2))', except that the area under the curve is shaded.

     If the X argument is omitted it defaults to '1:rows (Y)'.  A value LVL can be defined that determines where the base level of the shading under the curve should be defined.  The default level is 0.

     Additional property/value pairs are passed directly to the underlying patch object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the hggroup object comprising the area patch objects.  The "BaseValue" property of the hggroup can be used to adjust the level where shading begins.

     Example: Verify identity sin^2 + cos^2 = 1

          t = linspace (0, 2*pi, 100)';
          y = [sin(t).^2, cos(t).^2];
          area (t, y);
          legend ("sin^2", "cos^2", "location", "NorthEastOutside");

     See also: plot, patch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Area plot of the columns of Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
barh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1710
 -- Function File: barh (Y)
 -- Function File: barh (X, Y)
 -- Function File: barh (..., W)
 -- Function File: barh (..., STYLE)
 -- Function File: barh (..., PROP, VAL, ...)
 -- Function File: barh (HAX, ...)
 -- Function File: H = barh (..., PROP, VAL, ...)
     Produce a horizontal bar graph from two vectors of X-Y data.

     If only one argument is given, it is taken as a vector of Y values and the X coordinates are the range '1:numel (Y)'.

     The optional input W controls the width of the bars.  A value of 1.0 will cause each bar to exactly touch any adjacent bars.  The default width is 0.8.

     If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph.  By default the columns are plotted side-by-side.  This behavior can be changed by the STYLE argument which can take the following values:

     "grouped" (default)
          Side-by-side bars with a gap between bars and centered over the Y-coordinate.

     "stacked"
          Bars are stacked so that each Y value has a single bar composed of multiple segments.

     "hist"
          Side-by-side bars with no gap between bars and centered over the Y-coordinate.

     "histc"
          Side-by-side bars with no gap between bars and left-aligned to the Y-coordinate.

     Optional property/value pairs are passed directly to the underlying patch objects.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created bar series hggroup.  For a description of the use of the bar series, *note bar: XREFbar.

     See also: bar, hist, pie, plot, patch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce a horizontal bar graph from two vectors of X-Y data.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
bar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2561
 -- Function File: bar (Y)
 -- Function File: bar (X, Y)
 -- Function File: bar (..., W)
 -- Function File: bar (..., STYLE)
 -- Function File: bar (..., PROP, VAL, ...)
 -- Function File: bar (HAX, ...)
 -- Function File: H = bar (..., PROP, VAL, ...)
     Produce a bar graph from two vectors of X-Y data.

     If only one argument is given, Y, it is taken as a vector of Y values and the X coordinates are the range '1:numel (Y)'.

     The optional input W controls the width of the bars.  A value of 1.0 will cause each bar to exactly touch any adjacent bars.  The default width is 0.8.

     If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph.  By default the columns are plotted side-by-side.  This behavior can be changed by the STYLE argument which can take the following values:

     "grouped" (default)
          Side-by-side bars with a gap between bars and centered over the X-coordinate.

     "stacked"
          Bars are stacked so that each X value has a single bar composed of multiple segments.

     "hist"
          Side-by-side bars with no gap between bars and centered over the X-coordinate.

     "histc"
          Side-by-side bars with no gap between bars and left-aligned to the X-coordinate.

     Optional property/value pairs are passed directly to the underlying patch objects.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of handles to the created "bar series" hggroups with one handle per column of the variable Y.  This series makes it possible to change a common element in one bar series object and have the change reflected in the other "bar series".  For example,

          h = bar (rand (5, 10));
          set (h(1), "basevalue", 0.5);

     changes the position on the base of all of the bar series.

     The following example modifies the face and edge colors using property/value pairs.

          bar (randn (1, 100), "facecolor", "r", "edgecolor", "b");

     The color of the bars is taken from the figure's colormap, such that

          bar (rand (10, 3));
          colormap (summer (64));

     will change the colors used for the bars.  The color of bars can also be set manually using the "facecolor" property as shown below.

          h = bar (rand (10, 3));
          set (h(1), "facecolor", "r")
          set (h(2), "facecolor", "g")
          set (h(3), "facecolor", "b")

     See also: barh, hist, pie, plot, patch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Produce a bar graph from two vectors of X-Y data.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
colorbar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2180
 -- Command: colorbar
 -- Function File: colorbar (LOC)
 -- Function File: colorbar (DELETE_OPTION)
 -- Function File: colorbar (HCB, ...)
 -- Function File: colorbar (HAX, ...)
 -- Function File: colorbar (..., "peer", HAX, ...)
 -- Function File: colorbar (..., "location", LOC, ...)
 -- Function File: colorbar (..., PROP, VAL, ...)
 -- Function File: H = colorbar (...)
     Add a colorbar to the current axes.

     A colorbar displays the current colormap along with numerical rulings so that the color scale can be interpreted.

     The optional input LOC determines the location of the colorbar.  Valid values for LOC are

     "EastOutside"
          Place the colorbar outside the plot to the right.  This is the default.

     "East"
          Place the colorbar inside the plot to the right.

     "WestOutside"
          Place the colorbar outside the plot to the left.

     "West"
          Place the colorbar inside the plot to the left.

     "NorthOutside"
          Place the colorbar above the plot.

     "North"
          Place the colorbar at the top of the plot.

     "SouthOutside"
          Place the colorbar under the plot.

     "South"
          Place the colorbar at the bottom of the plot.

     To remove a colorbar from a plot use any one of the following keywords for the DELETE_OPTION: "delete", "hide", "off".

     If the argument "peer" is given, then the following argument is treated as the axes handle in which to add the colorbar.  Alternatively, If the first argument HAX is an axes handle, then the colorbar is added to this axis, rather than the current axes returned by 'gca'.

     If the first argument HCB is a handle to a colorbar object, then operate on this colorbar directly.

     Additional property/value pairs are passed directly to the underlying axes object.

     The optional return value H is a graphics handle to the created colorbar object.

     Implementation Note: A colorbar is created as an additional axes to the current figure with the "tag" property set to "colorbar".  The created axes object has the extra property "location" which controls the positioning of the colorbar.

     See also: colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Add a colorbar to the current axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
comet3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 647
 -- Function File: comet3 (Z)
 -- Function File: comet3 (X, Y, Z)
 -- Function File: comet3 (X, Y, Z, P)
 -- Function File: comet3 (HAX, ...)
     Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y, Z).

     If only Z is specified then X, Y default to the indices of Z.

     The speed of the comet may be controlled by P, which represents the time each point is displayed before moving to the next one.  The default for P is 0.1 seconds.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     See also: comet.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y, Z).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
comet


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 628
 -- Function File: comet (Y)
 -- Function File: comet (X, Y)
 -- Function File: comet (X, Y, P)
 -- Function File: comet (HAX, ...)
     Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y).

     If X is not specified it defaults to the indices of Y.

     The speed of the comet may be controlled by P, which represents the time each point is displayed before moving to the next one.  The default for P is 0.1 seconds.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     See also: comet3.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
compass


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 956
 -- Function File: compass (U, V)
 -- Function File: compass (Z)
 -- Function File: compass (..., STYLE)
 -- Function File: compass (HAX, ...)
 -- Function File: H = compass (...)

     Plot the '(U, V)' components of a vector field emanating from the origin of a polar plot.

     The arrow representing each vector has one end at the origin and the tip at [U(i), V(i)].  If a single complex argument Z is given, then 'U = real (Z)' and 'V = imag (Z)'.

     The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of graphics handles to the line objects representing the drawn vectors.

          a = toeplitz ([1;randn(9,1)], [1,randn(1,9)]);
          compass (eig (a));

     See also: polar, feather, quiver, rose, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Plot the '(U, V)' components of a vector field emanating from the origin of a polar plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contour3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1420
 -- Function File: contour3 (Z)
 -- Function File: contour3 (Z, VN)
 -- Function File: contour3 (X, Y, Z)
 -- Function File: contour3 (X, Y, Z, VN)
 -- Function File: contour3 (..., STYLE)
 -- Function File: contour3 (HAX, ...)
 -- Function File: [C, H] = contour3 (...)
     Create a 3-D contour plot.

     'contour3' plots level curves (contour lines) of the matrix Z at a Z level corresponding to each contour.  This is in contrast to 'contour' which plots all of the contour lines at the same Z level and produces a 2-D plot.

     The level curves are taken from the contour matrix C computed by 'contourc' for the same arguments; see the latter for their interpretation.

     The appearance of contour lines can be defined with a line style STYLE in the same manner as 'plot'.  Only line style and color are used; Any markers defined by STYLE are ignored.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional output C are the contour levels in 'contourc' format.

     The optional return value H is a graphics handle to the hggroup comprising the contour lines.

     Example:

          contour3 (peaks (19));
          colormap cool;
          hold on;
          surf (peaks (19), "facecolor", "none", "edgecolor", "black");

     See also: contour, contourc, contourf, clabel, meshc, surfc, caxis, colormap, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Create a 3-D contour plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contourc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1473
 -- Function File: [C, LEV] = contourc (Z)
 -- Function File: [C, LEV] = contourc (Z, VN)
 -- Function File: [C, LEV] = contourc (X, Y, Z)
 -- Function File: [C, LEV] = contourc (X, Y, Z, VN)
     Compute contour lines (isolines of constant Z value).

     The matrix Z contains height values above the rectangular grid determined by X and Y.  If only a single input Z is provided then X is taken to be '1:rows (Z)' and Y is taken to be '1:columns (Z)'.

     The optional input VN is either a scalar denoting the number of contour lines to compute or a vector containing the Z values where lines will be computed.  When VN is a vector the number of contour lines is 'numel (VN)'.  However, to compute a single contour line at a given value use 'VN = [val, val]'.  If VN is omitted it defaults to 10.

     The return value C is a 2xN matrix containing the contour lines in the following format

          C = [lev1, x1, x2, ..., levn, x1, x2, ...
               len1, y1, y2, ..., lenn, y1, y2, ...]

     in which contour line N has a level (height) of LEVN and length of LENN.

     The optional return value LEV is a vector with the Z values of the contour levels.

     Example:

          x = 0:2;
          y = x;
          z = x' * y;
          contourc (x, y, z, 2:3)
             =>   2.0000   2.0000   1.0000   3.0000   1.5000   2.0000
                  2.0000   1.0000   2.0000   2.0000   2.0000   1.5000

     See also: contour, contourf, contour3, clabel.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute contour lines (isolines of constant Z value).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contourf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1340
 -- Function File: contourf (Z)
 -- Function File: contourf (Z, VN)
 -- Function File: contourf (X, Y, Z)
 -- Function File: contourf (X, Y, Z, VN)
 -- Function File: contourf (..., STYLE)
 -- Function File: contourf (HAX, ...)
 -- Function File: [C, H] = contourf (...)
     Create a 2-D contour plot with filled intervals.

     Plot level curves (contour lines) of the matrix Z and fill the region between lines with colors from the current colormap.

     The level curves are taken from the contour matrix C computed by 'contourc' for the same arguments; see the latter for their interpretation.

     The appearance of contour lines can be defined with a line style STYLE in the same manner as 'plot'.  Only line style and color are used; Any markers defined by STYLE are ignored.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional output C contains the contour levels in 'contourc' format.

     The optional return value H is a graphics handle to the hggroup comprising the contour lines.

     The following example plots filled contours of the 'peaks' function.

          [x, y, z] = peaks (50);
          contourf (x, y, z, -7:9)

     See also: ezcontourf, contour, contourc, contour3, clabel, meshc, surfc, caxis, colormap, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Create a 2-D contour plot with filled intervals.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
contour


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1171
 -- Function File: contour (Z)
 -- Function File: contour (Z, VN)
 -- Function File: contour (X, Y, Z)
 -- Function File: contour (X, Y, Z, VN)
 -- Function File: contour (..., STYLE)
 -- Function File: contour (HAX, ...)
 -- Function File: [C, H] = contour (...)
     Create a 2-D contour plot.

     Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by 'contourc' from the same arguments; see the latter for their interpretation.

     The appearance of contour lines can be defined with a line style STYLE in the same manner as 'plot'.  Only line style and color are used; Any markers defined by STYLE are ignored.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional output C contains the contour levels in 'contourc' format.

     The optional return value H is a graphics handle to the hggroup comprising the contour lines.

     Example:

          x = 0:2;
          y = x;
          z = x' * y;
          contour (x, y, z, 2:3)

     See also: ezcontour, contourc, contourf, contour3, clabel, meshc, surfc, caxis, colormap, plot.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Create a 2-D contour plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cylinder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 917
 -- Command: cylinder
 -- Function File: cylinder (R)
 -- Function File: cylinder (R, N)
 -- Function File: cylinder (HAX, ...)
 -- Function File: [X, Y, Z] = cylinder (...)
     Plot a 3-D unit cylinder.

     The optional input R is a vector specifying the radius along the unit z-axis.  The default is [1 1] indicating radius 1 at 'Z == 0' and at 'Z == 1'.

     The optional input N determines the number of faces around the circumference of the cylinder.  The default value is 20.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     If outputs are requested 'cylinder' returns three matrices in 'meshgrid' format, such that 'surf (X, Y, Z)' generates a unit cylinder.

     Example:

          [x, y, z] = cylinder (10:-1:0, 50);
          surf (x, y, z);
          title ("a cone");

     See also: ellipsoid, rectangle, sphere.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Plot a 3-D unit cylinder.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ellipsoid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 773
 -- Function File: ellipsoid (XC, YC, ZC, XR, YR, ZR, N)
 -- Function File: ellipsoid (..., N)
 -- Function File: ellipsoid (HAX, ...)
 -- Function File: [X, Y, Z] = ellipsoid (...)
     Plot a 3-D ellipsoid.

     The inputs XC, YC, ZC specify the center of the ellipsoid.  The inputs XR, YR, ZR specify the semi-major axis lengths.

     The optional input N determines the number of faces around the circumference of the cylinder.  The default value is 20.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     If outputs are requested 'ellipsoid' returns three matrices in 'meshgrid' format, such that 'surf (X, Y, Z)' generates the ellipsoid.

     See also: cylinder, rectangle, sphere.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Plot a 3-D ellipsoid.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
errorbar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4165
 -- Function File: errorbar (Y, EY)
 -- Function File: errorbar (Y, ..., FMT)
 -- Function File: errorbar (X, Y, EY)
 -- Function File: errorbar (X, Y, ERR, FMT)
 -- Function File: errorbar (X, Y, LERR, UERR, FMT)
 -- Function File: errorbar (X, Y, EX, EY, FMT)
 -- Function File: errorbar (X, Y, LX, UX, LY, UY, FMT)
 -- Function File: errorbar (X1, Y1, ..., FMT, XN, YN, ...)
 -- Function File: errorbar (HAX, ...)
 -- Function File: H = errorbar (...)
     Create a 2-D plot with errorbars.

     Many different combinations of arguments are possible.  The simplest form is

          errorbar (Y, EY)

     where the first argument is taken as the set of Y coordinates, the second argument EY are the errors around the Y values, and the X coordinates are taken to be the indices of the elements ('1:numel (Y)').

     The general form of the function is

          errorbar (X, Y, ERR1, ..., FMT, ...)

     After the X and Y arguments there can be 1, 2, or 4 parameters specifying the error values depending on the nature of the error values and the plot format FMT.

     ERR (scalar)
          When the error is a scalar all points share the same error value.  The errorbars are symmetric and are drawn from DATA-ERR to DATA+ERR.  The FMT argument determines whether ERR is in the x-direction, y-direction (default), or both.

     ERR (vector or matrix)
          Each data point has a particular error value.  The errorbars are symmetric and are drawn from DATA(n)-ERR(n) to DATA(n)+ERR(n).

     LERR, UERR (scalar)
          The errors have a single low-side value and a single upper-side value.  The errorbars are not symmetric and are drawn from DATA-LERR to DATA+UERR.

     LERR, UERR (vector or matrix)
          Each data point has a low-side error and an upper-side error.  The errorbars are not symmetric and are drawn from DATA(n)-LERR(n) to DATA(n)+UERR(n).

     Any number of data sets (X1,Y1, X2,Y2, ...) may appear as long as they are separated by a format string FMT.

     If Y is a matrix, X and the error parameters must also be matrices having the same dimensions.  The columns of Y are plotted versus the corresponding columns of X and errorbars are taken from the corresponding columns of the error parameters.

     If FMT is missing, the yerrorbars ("~") plot style is assumed.

     If the FMT argument is supplied then it is interpreted, as in normal plots, to specify the line style, marker, and color.  In addition, FMT may include an errorbar style which *must precede* the ordinary format codes.  The following errorbar styles are supported:

     '~'
          Set yerrorbars plot style (default).

     '>'
          Set xerrorbars plot style.

     '~>'
          Set xyerrorbars plot style.

     '#~'
          Set yboxes plot style.

     '#'
          Set xboxes plot style.

     '#~>'
          Set xyboxes plot style.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a handle to the hggroup object representing the data plot and errorbars.

     Note: For compatibility with MATLAB a line is drawn through all data points.  However, most scientific errorbar plots are a scatter plot of points with errorbars.  To accomplish this, add a marker style to the FMT argument such as ".".  Alternatively, remove the line by modifying the returned graphic handle with 'set (h, "linestyle", "none")'.

     Examples:

          errorbar (X, Y, EX, ">.r")

     produces an xerrorbar plot of Y versus X with X errorbars drawn from X-EX to X+EX.  The marker "."  is used so no connecting line is drawn and the errorbars appear in red.

          errorbar (X, Y1, EY, "~",
                    X, Y2, LY, UY)

     produces yerrorbar plots with Y1 and Y2 versus X.  Errorbars for Y1 are drawn from Y1-EY to Y1+EY, errorbars for Y2 from Y2-LY to Y2+UY.

          errorbar (X, Y, LX, UX,
                    LY, UY, "~>")

     produces an xyerrorbar plot of Y versus X in which X errorbars are drawn from X-LX to X+UX and Y errorbars from Y-LY to Y+UY.

     See also: semilogxerr, semilogyerr, loglogerr, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Create a 2-D plot with errorbars.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ezcontourf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1107
 -- Function File: ezcontourf (F)
 -- Function File: ezcontourf (..., DOM)
 -- Function File: ezcontourf (..., N)
 -- Function File: ezcontourf (HAX, ...)
 -- Function File: H = ezcontourf (...)

     Plot the filled contour lines of a function.

     F is a string, inline function, or function handle with two arguments defining the function.  By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum values of both X and Y.  If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.

     N is a scalar defining the number of points to use in each dimension.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     Example:

          f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
          ezcontourf (f, [-3, 3]);

     See also: contourf, ezcontour, ezplot, ezmeshc, ezsurfc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Plot the filled contour lines of a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ezcontour


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1094
 -- Function File: ezcontour (F)
 -- Function File: ezcontour (..., DOM)
 -- Function File: ezcontour (..., N)
 -- Function File: ezcontour (HAX, ...)
 -- Function File: H = ezcontour (...)

     Plot the contour lines of a function.

     F is a string, inline function, or function handle with two arguments defining the function.  By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum values of both X and Y.  If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.

     N is a scalar defining the number of points to use in each dimension.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     Example:

          f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
          ezcontour (f, [-3, 3]);

     See also: contour, ezcontourf, ezplot, ezmeshc, ezsurfc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Plot the contour lines of a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezmeshc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1522
 -- Function File: ezmeshc (F)
 -- Function File: ezmeshc (FX, FY, FZ)
 -- Function File: ezmeshc (..., DOM)
 -- Function File: ezmeshc (..., N)
 -- Function File: ezmeshc (..., "circ")
 -- Function File: ezmeshc (HAX, ...)
 -- Function File: H = ezmeshc (...)

     Plot the mesh and contour lines defined by a function.

     F is a string, inline function, or function handle with two arguments defining the function.  By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.

     If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.

     If DOM is a two element vector, it represents the minimum and maximum values of both X and Y.  If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.

     N is a scalar defining the number of points to use in each dimension.

     If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a 2-element vector with a graphics handle for the created mesh plot and a second handle for the created contour plot.

     Example: 2-argument function

          f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
          ezmeshc (f, [-3, 3]);

     See also: meshc, ezmesh, ezplot, ezsurf, ezsurfc, hidden.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Plot the mesh and contour lines defined by a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ezmesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1653
 -- Function File: ezmesh (F)
 -- Function File: ezmesh (FX, FY, FZ)
 -- Function File: ezmesh (..., DOM)
 -- Function File: ezmesh (..., N)
 -- Function File: ezmesh (..., "circ")
 -- Function File: ezmesh (HAX, ...)
 -- Function File: H = ezmesh (...)

     Plot the mesh defined by a function.

     F is a string, inline function, or function handle with two arguments defining the function.  By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.

     If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.

     If DOM is a two element vector, it represents the minimum and maximum values of both X and Y.  If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.

     N is a scalar defining the number of points to use in each dimension.

     If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     Example 1: 2-argument function

          f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
          ezmesh (f, [-3, 3]);

     Example 2: parametrically defined function

          fx = @(s,t) cos (s) .* cos (t);
          fy = @(s,t) sin (s) .* cos (t);
          fz = @(s,t) sin (t);
          ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

     See also: mesh, ezmeshc, ezplot, ezsurf, ezsurfc, hidden.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Plot the mesh defined by a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezplot3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 993
 -- Function File: ezplot3 (FX, FY, FZ)
 -- Function File: ezplot3 (..., DOM)
 -- Function File: ezplot3 (..., N)
 -- Function File: ezplot3 (HAX, ...)
 -- Function File: H = ezplot3 (...)

     Plot a parametrically defined curve in three dimensions.

     FX, FY, and FZ are strings, inline functions, or function handles with one argument defining the function.  By default the plot is over the domain '0 <= T <= 2*pi' with 500 points.

     If DOM is a two element vector, it represents the minimum and maximum values of T.

     N is a scalar defining the number of points to use in plotting the function.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

          fx = @(t) cos (t);
          fy = @(t) sin (t);
          fz = @(t) t;
          ezplot3 (fx, fy, fz, [0, 10*pi], 100);

     See also: plot3, ezplot, ezmesh, ezsurf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Plot a parametrically defined curve in three dimensions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ezplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1575
 -- Function File: ezplot (F)
 -- Function File: ezplot (F2V)
 -- Function File: ezplot (FX, FY)
 -- Function File: ezplot (..., DOM)
 -- Function File: ezplot (..., N)
 -- Function File: ezplot (HAX, ...)
 -- Function File: H = ezplot (...)

     Plot the 2-D curve defined by the function F.

     The function F may be a string, inline function, or function handle and can have either one or two variables.  If F has one variable, then the function is plotted over the domain '-2*pi < X < 2*pi' with 500 points.

     If F2V is a function of two variables then the implicit function 'F(X,Y) = 0' is calculated over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.

     For example:

          ezplot (@(X, Y) X.^2 - Y.^2 - 1)

     If two functions are passed as inputs then the parametric function

          X = FX (T)
          Y = FY (T)

     is plotted over the domain '-2*pi <= T <= 2*pi' with 500 points.

     If DOM is a two element vector, it represents the minimum and maximum values of both X and Y, or T for a parametric plot.  If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.

     N is a scalar defining the number of points to use in plotting the function.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of graphics handles to the created line objects.

     See also: plot, ezplot3, ezpolar, ezcontour, ezcontourf, ezmesh, ezmeshc, ezsurf, ezsurfc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Plot the 2-D curve defined by the function F.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezpolar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 934
 -- Function File: ezpolar (F)
 -- Function File: ezpolar (..., DOM)
 -- Function File: ezpolar (..., N)
 -- Function File: ezpolar (HAX, ...)
 -- Function File: H = ezpolar (...)

     Plot a 2-D function in polar coordinates.

     The function F is a string, inline function, or function handle with a single argument.  The expected form of the function is 'RHO = F(THETA)'.  By default the plot is over the domain '0 <= THETA <= 2*pi' with 500 points.

     If DOM is a two element vector, it represents the minimum and maximum values of THETA.

     N is a scalar defining the number of points to use in plotting the function.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     Example:

          ezpolar (@(t) sin (5/4 * t), [0, 8*pi]);

     See also: polar, ezplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Plot a 2-D function in polar coordinates.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ezsurfc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1509
 -- Function File: ezsurfc (F)
 -- Function File: ezsurfc (FX, FY, FZ)
 -- Function File: ezsurfc (..., DOM)
 -- Function File: ezsurfc (..., N)
 -- Function File: ezsurfc (..., "circ")
 -- Function File: ezsurfc (HAX, ...)
 -- Function File: H = ezsurfc (...)

     Plot the surface and contour lines defined by a function.

     F is a string, inline function, or function handle with two arguments defining the function.  By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.

     If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.

     If DOM is a two element vector, it represents the minimum and maximum values of both X and Y.  If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.

     N is a scalar defining the number of points to use in each dimension.

     If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a 2-element vector with a graphics handle for the created surface plot and a second handle for the created contour plot.

     Example:

          f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
          ezsurfc (f, [-3, 3]);

     See also: surfc, ezsurf, ezplot, ezmesh, ezmeshc, shading.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Plot the surface and contour lines defined by a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ezsurf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1657
 -- Function File: ezsurf (F)
 -- Function File: ezsurf (FX, FY, FZ)
 -- Function File: ezsurf (..., DOM)
 -- Function File: ezsurf (..., N)
 -- Function File: ezsurf (..., "circ")
 -- Function File: ezsurf (HAX, ...)
 -- Function File: H = ezsurf (...)

     Plot the surface defined by a function.

     F is a string, inline function, or function handle with two arguments defining the function.  By default the plot is over the meshed domain '-2*pi <= X | Y <= 2*pi' with 60 points in each dimension.

     If three functions are passed, then plot the parametrically defined function '[FX (S, T), FY (S, T), FZ (S, T)]'.

     If DOM is a two element vector, it represents the minimum and maximum values of both X and Y.  If DOM is a four element vector, then the minimum and maximum values are '[xmin xmax ymin ymax]'.

     N is a scalar defining the number of points to use in each dimension.

     If the argument "circ" is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     Example 1: 2-argument function

          f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
          ezsurf (f, [-3, 3]);

     Example 2: parametrically defined function

          fx = @(s,t) cos (s) .* cos (t);
          fy = @(s,t) sin (s) .* cos (t);
          fz = @(s,t) sin (t);
          ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

     See also: surf, ezsurfc, ezplot, ezmesh, ezmeshc, shading.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Plot the surface defined by a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
feather


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
 -- Function File: feather (U, V)
 -- Function File: feather (Z)
 -- Function File: feather (..., STYLE)
 -- Function File: feather (HAX, ...)
 -- Function File: H = feather (...)

     Plot the '(U, V)' components of a vector field emanating from equidistant points on the x-axis.

     If a single complex argument Z is given, then 'U = real (Z)' and 'V = imag (Z)'.

     The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of graphics handles to the line objects representing the drawn vectors.

          phi = [0 : 15 : 360] * pi/180;
          feather (sin (phi), cos (phi));

     See also: plot, quiver, compass.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Plot the '(U, V)' components of a vector field emanating from equidistant points on the x-axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fill


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1668
 -- Function File: fill (X, Y, C)
 -- Function File: fill (X1, Y1, C1, X2, Y2, C2)
 -- Function File: fill (..., PROP, VAL)
 -- Function File: fill (HAX, ...)
 -- Function File: H = fill (...)
     Create one or more filled 2-D polygons.

     The inputs X and Y are the coordinates of the polygon vertices.  If the inputs are matrices then the rows represent different vertices and each column produces a different polygon.  'fill' will close any open polygons before plotting.

     The input C determines the color of the polygon.  The simplest form is a single color specification such as a 'plot' format or an RGB-triple.  In this case the polygon(s) will have one unique color.  If C is a vector or matrix then the color data is first scaled using 'caxis' and then indexed into the current colormap.  A row vector will color each polygon (a column from matrices X and Y) with a single computed color.  A matrix C of the same size as X and Y will compute the color of each vertex and then interpolate the face color between the vertices.

     Multiple property/value pairs for the underlying patch object may be specified, but they must appear in pairs.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of graphics handles to the created patch objects.

     Example: red square

          vertices = [0 0
                      1 0
                      1 1
                      0 1];
          fill (vertices(:,1), vertices(:,2), "r");
          axis ([-0.5 1.5, -0.5 1.5])
          axis equal

     See also: patch, caxis, colormap.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Create one or more filled 2-D polygons.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1813
 -- Function File: fplot (FN, LIMITS)
 -- Function File: fplot (..., TOL)
 -- Function File: fplot (..., N)
 -- Function File: fplot (..., FMT)
 -- Function File: [X, Y] = fplot (...)
     Plot a function FN within the range defined by LIMITS.

     FN is a function handle, inline function, or string containing the name of the function to evaluate.

     The limits of the plot are of the form '[XLO, XHI]' or '[XLO, XHI, YLO, YHI]'.

     The next three arguments are all optional and any number of them may be given in any order.

     TOL is the relative tolerance to use for the plot and defaults to 2e-3 (.2%).

     N is the minimum number of points to use.  When N is specified, the maximum stepsize will be 'XHI - XLO / N'.  More than N points may still be used in order to meet the relative tolerance requirement.

     The FMT argument specifies the linestyle to be used by the plot command.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     With no output arguments the results are immediately plotted.  With two output arguments the 2-D plot data is returned.  The data can subsequently be plotted manually with 'plot (X, Y)'.

     Example:

          fplot (@cos, [0, 2*pi])
          fplot ("[cos(x), sin(x)]", [0, 2*pi])

     Programming Notes:

     'fplot' works best with continuous functions.  Functions with discontinuities are unlikely to plot well.  This restriction may be removed in the future.

     'fplot' requires that the function accept and return a vector argument.  Consider this when writing user-defined functions and use '.*', './', etc.  See the function 'vectorize' for potentially converting inline or anonymous functions to vectorized versions.

     See also: ezplot, plot, vectorize.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Plot a function FN within the range defined by LIMITS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hist


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1619
 -- Function File: hist (Y)
 -- Function File: hist (Y, X)
 -- Function File: hist (Y, NBINS)
 -- Function File: hist (Y, X, NORM)
 -- Function File: hist (..., PROP, VAL, ...)
 -- Function File: hist (HAX, ...)
 -- Function File: [NN, XX] = hist (...)
     Produce histogram counts or plots.

     With one vector input argument, Y, plot a histogram of the values with 10 bins.  The range of the histogram bins is determined by the range of the data.  With one matrix input argument, Y, plot a histogram where each bin contains a bar per input column.

     Given a second vector argument, X, use that as the centers of the bins, with the width of the bins determined from the adjacent values in the vector.

     If scalar, the second argument, NBINS, defines the number of bins.

     If a third argument is provided, the histogram is normalized such that the sum of the bars is equal to NORM.

     Extreme values are lumped into the first and last bins.

     The histogram's appearance may be modified by specifying property/value pairs.  For example the face and edge color may be modified.

          hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");

     The histogram's colors also depend upon the current colormap.

          hist (rand (10, 3));
          colormap (summer ());

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     With two output arguments, produce the values NN (numbers of elements) and XX (bin centers) such that 'bar (XX, NN)' will plot the histogram.

     See also: histc, bar, pie, rose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Produce histogram counts or plots.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isocolors


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3351
 -- Function File: [CD] = isocolors (C, V)
 -- Function File: [CD] = isocolors (X, Y, Z, C, V)
 -- Function File: [CD] = isocolors (X, Y, Z, R, G, B, V)
 -- Function File: [CD] = isocolors (R, G, B, V)
 -- Function File: [CD] = isocolors (..., P)
 -- Function File: isocolors (...)

     Compute isosurface colors.

     If called with one output argument and the first input argument C is a three-dimensional array that contains color values and the second input argument V keeps the vertices of a geometry then return a matrix CD with color data information for the geometry at computed points '[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.  The output argument CD can be taken to manually set FaceVertexCData of a patch.

     If called with further input arguments X, Y and Z which are three-dimensional arrays of the same size than C then the color data is taken at those given points.  Instead of the color data C this function can also be called with RGB values R, G, B.  If input argumnets X, Y, Z are not given then again 'meshgrid' computed values are taken.

     Optionally, the patch handle P can be given as the last input argument to all variations of function calls instead of the vertices data V.  Finally, if no output argument is given then directly change the colors of a patch that is given by the patch handle P.

     For example:

          function [] = isofinish (p)
            set (gca, "PlotBoxAspectRatioMode", "manual", ...
                      "PlotBoxAspectRatio", [1 1 1]);
            set (p, "FaceColor", "interp");
            ## set (p, "FaceLighting", "flat");
            ## light ("Position", [1 1 5]);  # Available with JHandles
          endfunction

          N = 15;    # Increase number of vertices in each direction
          iso = .4;  # Change isovalue to .1 to display a sphere
          lin = linspace (0, 2, N);
          [x, y, z] = meshgrid (lin, lin, lin);
          c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
          figure (); # Open another figure window

          subplot (2,2,1); view (-38, 20);
          [f, v] = isosurface (x, y, z, c, iso);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          cdat = rand (size (c));       # Compute random patch color data
          isocolors (x, y, z, cdat, p); # Directly set colors of patch
          isofinish (p);                # Call user function isofinish

          subplot (2,2,2); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          [r, g, b] = meshgrid (lin, 2-lin, 2-lin);
          cdat = isocolors (x, y, z, c, v); # Compute color data vertices
          set (p, "FaceVertexCData", cdat); # Set color data manually
          isofinish (p);

          subplot (2,2,3); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          cdat = isocolors (r, g, b, c, p); # Compute color data patch
          set (p, "FaceVertexCData", cdat); # Set color data manually
          isofinish (p);

          subplot (2,2,4); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          r = g = b = repmat ([1:N] / N, [N, 1, N]); # Black to white
          cdat = isocolors (x, y, z, r, g, b, v);
          set (p, "FaceVertexCData", cdat);
          isofinish (p);

     See also: isosurface, isonormals.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Compute isosurface colors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isonormals


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3282
 -- Function File: [N] = isonormals (VAL, V)
 -- Function File: [N] = isonormals (VAL, P)
 -- Function File: [N] = isonormals (X, Y, Z, VAL, V)
 -- Function File: [N] = isonormals (X, Y, Z, VAL, P)
 -- Function File: [N] = isonormals (..., "negate")
 -- Function File: isonormals (..., P)

     Calculate normals to an isosurface.

     If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data for an isosurface geometry and the second input argument V keeps the vertices of an isosurface then return the normals N in form of a matrix with the same size than V at computed points '[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.  The output argument N can be taken to manually set VERTEXNORMALS of a patch.

     If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points.  Instead of the vertices data V a patch handle P can be passed to this function.

     If given the string input argument "negate" as last input argument then compute the reverse vector normals of an isosurface geometry.

     If no output argument is given then directly redraw the patch that is given by the patch handle P.

     For example:

          function [] = isofinish (p)
            set (gca, "PlotBoxAspectRatioMode", "manual", ...
                      "PlotBoxAspectRatio", [1 1 1]);
            set (p, "VertexNormals", -get (p,"VertexNormals")); # Revert normals
            set (p, "FaceColor", "interp");
            ## set (p, "FaceLighting", "phong");
            ## light ("Position", [1 1 5]); # Available with JHandles
          endfunction

          N = 15;    # Increase number of vertices in each direction
          iso = .4;  # Change isovalue to .1 to display a sphere
          lin = linspace (0, 2, N);
          [x, y, z] = meshgrid (lin, lin, lin);
          c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
          figure (); # Open another figure window

          subplot (2,2,1); view (-38, 20);
          [f, v, cdat] = isosurface (x, y, z, c, iso, y);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
                     "FaceColor", "interp", "EdgeColor", "none");
          isofinish (p);  # Call user function isofinish

          subplot (2,2,2); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
                     "FaceColor", "interp", "EdgeColor", "none");
          isonormals (x, y, z, c, p); # Directly modify patch
          isofinish (p);

          subplot (2,2,3); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
                     "FaceColor", "interp", "EdgeColor", "none");
          n = isonormals (x, y, z, c, v); # Compute normals of isosurface
          set (p, "VertexNormals", n);    # Manually set vertex normals
          isofinish (p);

          subplot (2,2,4); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
                     "FaceColor", "interp", "EdgeColor", "none");
          isonormals (x, y, z, c, v, "negate"); # Use reverse directly
          isofinish (p);

     See also: isosurface, isocolors.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Calculate normals to an isosurface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
isosurface


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4058
 -- Function File: [FV] = isosurface (VAL, ISO)
 -- Function File: [FV] = isosurface (X, Y, Z, VAL, ISO)
 -- Function File: [FV] = isosurface (..., "noshare", "verbose")
 -- Function File: [FVC] = isosurface (..., COL)
 -- Function File: [F, V] = isosurface (X, Y, Z, VAL, ISO)
 -- Function File: [F, V, C] = isosurface (X, Y, Z, VAL, ISO, COL)
 -- Function File: isosurface (X, Y, Z, VAL, ISO, COL, OPT)

     Calculate isosurface of 3-D data.

     If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data of an isosurface geometry and the second input argument ISO keeps the isovalue as a scalar value then return a structure array FV that contains the fields FACES and VERTICES at computed points '[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.  The output argument FV can directly be taken as an input argument for the 'patch' function.

     If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points.

     The string input argument "noshare" is only for compatibility and has no effect.  If given the string input argument "verbose" then print messages to the command line interface about the current progress.

     If called with the input argument COL which is a three-dimensional array of the same size than VAL then take those values for the interpolation of coloring the isosurface geometry.  Add the field FACEVERTEXCDATA to the structure array FV.

     If called with two or three output arguments then return the information about the faces F, vertices V and color data C as separate arrays instead of a single structure array.

     If called with no output argument then directly process the isosurface geometry with the 'patch' command.

     For example,

          [x, y, z] = meshgrid (1:5, 1:5, 1:5);
          val = rand (5, 5, 5);
          isosurface (x, y, z, val, .5);

     will directly draw a random isosurface geometry in a graphics window.  Another example for an isosurface geometry with different additional coloring

          N = 15;    # Increase number of vertices in each direction
          iso = .4;  # Change isovalue to .1 to display a sphere
          lin = linspace (0, 2, N);
          [x, y, z] = meshgrid (lin, lin, lin);
          c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
          figure (); # Open another figure window

          subplot (2,2,1); view (-38, 20);
          [f, v] = isosurface (x, y, z, c, iso);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          set (gca, "PlotBoxAspectRatioMode", "manual", ...
                    "PlotBoxAspectRatio", [1 1 1]);
          # set (p, "FaceColor", "green", "FaceLighting", "phong");
          # light ("Position", [1 1 5]); # Available with the JHandles package

          subplot (2,2,2); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "blue");
          set (gca, "PlotBoxAspectRatioMode", "manual", ...
                    "PlotBoxAspectRatio", [1 1 1]);
          # set (p, "FaceColor", "none", "FaceLighting", "phong");
          # light ("Position", [1 1 5]);

          subplot (2,2,3); view (-38, 20);
          [f, v, c] = isosurface (x, y, z, c, iso, y);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...
                     "FaceColor", "interp", "EdgeColor", "none");
          set (gca, "PlotBoxAspectRatioMode", "manual", ...
                    "PlotBoxAspectRatio", [1 1 1]);
          # set (p, "FaceLighting", "phong");
          # light ("Position", [1 1 5]);

          subplot (2,2,4); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...
                     "FaceColor", "interp", "EdgeColor", "blue");
          set (gca, "PlotBoxAspectRatioMode", "manual", ...
                    "PlotBoxAspectRatio", [1 1 1]);
          # set (p, "FaceLighting", "phong");
          # light ("Position", [1 1 5]);

     See also: isonormals, isocolors.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Calculate isosurface of 3-D data.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
line


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 799
 -- Function File: line ()
 -- Function File: line (X, Y)
 -- Function File: line (X, Y, PROPERTY, VALUE, ...)
 -- Function File: line (X, Y, Z)
 -- Function File: line (X, Y, Z, PROPERTY, VALUE, ...)
 -- Function File: line (PROPERTY, VALUE, ...)
 -- Function File: line (HAX, ...)
 -- Function File: H = line (...)
     Create line object from X and Y (and possibly Z) and insert in the current axes.

     Multiple property-value pairs may be specified for the line object, but they must appear in pairs.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle (or vector of handles) to the line objects created.

     See also: image, patch, rectangle, surface, text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create line object from X and Y (and possibly Z) and insert in the current axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
loglogerr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1051
 -- Function File: loglogerr (Y, EY)
 -- Function File: loglogerr (Y, ..., FMT)
 -- Function File: loglogerr (X, Y, EY)
 -- Function File: loglogerr (X, Y, ERR, FMT)
 -- Function File: loglogerr (X, Y, LERR, UERR, FMT)
 -- Function File: loglogerr (X, Y, EX, EY, FMT)
 -- Function File: loglogerr (X, Y, LX, UX, LY, UY, FMT)
 -- Function File: loglogerr (X1, Y1, ..., FMT, XN, YN, ...)
 -- Function File: loglogerr (HAX, ...)
 -- Function File: H = loglogerr (...)
     Produce 2-D plots on a double logarithm axis with errorbars.

     Many different combinations of arguments are possible.  The most common form is

          loglogerr (X, Y, EY, FMT)

     which produces a double logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT.  *Note errorbar: XREFerrorbar, for available formats and additional information.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     See also: errorbar, semilogxerr, semilogyerr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce 2-D plots on a double logarithm axis with errorbars.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
loglog


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 635
 -- Function File: loglog (Y)
 -- Function File: loglog (X, Y)
 -- Function File: loglog (X, Y, PROP, VALUE, ...)
 -- Function File: loglog (X, Y, FMT)
 -- Function File: loglog (HAX, ...)
 -- Function File: H = loglog (...)
     Produce a 2-D plot using logarithmic scales for both axes.

     See the documentation of 'plot' for a description of the arguments that 'loglog' will accept.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     See also: plot, semilogx, semilogy.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Produce a 2-D plot using logarithmic scales for both axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
meshc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1480
 -- Function File: meshc (X, Y, Z)
 -- Function File: meshc (Z)
 -- Function File: meshc (..., C)
 -- Function File: meshc (..., PROP, VAL, ...)
 -- Function File: meshc (HAX, ...)
 -- Function File: H = meshc (...)
     Plot a 3-D wireframe mesh with underlying contour lines.

     The wireframe mesh is plotted using rectangles.  The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'.  over a 2-D rectangular region in the x-y plane.  Z determines the height above the plane of each vertex.  If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'.  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally the color of the mesh can be specified independently of Z by supplying a color matrix, C.

     Any property/value pairs are passed directly to the underlying surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a 2-element vector with a graphics handle to the created surface object and to the created contour plot.

     See also: ezmeshc, mesh, meshz, contour, surfc, surface, meshgrid, hidden, shading, colormap, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Plot a 3-D wireframe mesh with underlying contour lines.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1397
 -- Function File: mesh (X, Y, Z)
 -- Function File: mesh (Z)
 -- Function File: mesh (..., C)
 -- Function File: mesh (..., PROP, VAL, ...)
 -- Function File: mesh (HAX, ...)
 -- Function File: H = mesh (...)
     Plot a 3-D wireframe mesh.

     The wireframe mesh is plotted using rectangles.  The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'.  over a 2-D rectangular region in the x-y plane.  Z determines the height above the plane of each vertex.  If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'.  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally, the color of the mesh can be specified independently of Z by supplying a color matrix, C.

     Any property/value pairs are passed directly to the underlying surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     See also: ezmesh, meshc, meshz, trimesh, contour, surf, surface, meshgrid, hidden, shading, colormap, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Plot a 3-D wireframe mesh.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
meshz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1430
 -- Function File: meshz (X, Y, Z)
 -- Function File: meshz (Z)
 -- Function File: meshz (..., C)
 -- Function File: meshz (..., PROP, VAL, ...)
 -- Function File: meshz (HAX, ...)
 -- Function File: H = meshz (...)
     Plot a 3-D wireframe mesh with a surrounding curtain.

     The wireframe mesh is plotted using rectangles.  The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'.  over a 2-D rectangular region in the x-y plane.  Z determines the height above the plane of each vertex.  If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 0:columns (Z) - 1, Y = 0:rows (Z) - 1'.  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally the color of the mesh can be specified independently of Z by supplying a color matrix, C.

     Any property/value pairs are passed directly to the underlying surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     See also: mesh, meshc, contour, surf, surface, waterfall, meshgrid, hidden, shading, colormap, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Plot a 3-D wireframe mesh with a surrounding curtain.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pareto


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1706
 -- Function File: pareto (Y)
 -- Function File: pareto (Y, X)
 -- Function File: pareto (HAX, ...)
 -- Function File: H = pareto (...)
     Draw a Pareto chart.

     A Pareto chart is a bar graph that arranges information in such a way that priorities for process improvement can be established; It organizes and displays information to show the relative importance of data.  The chart is similar to the histogram or bar chart, except that the bars are arranged in decreasing magnitude from left to right along the x-axis.

     The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the majority of an effect is due to a small subset of the causes.  For quality improvement, the first few contributing causes (leftmost bars as presented on the diagram) to a problem usually account for the majority of the result.  Thus, targeting these "major causes" for elimination results in the most cost-effective improvement scheme.

     Typically only the magnitude data Y is present in which case X is taken to be the range '1 : length (Y)'.  If X is given it may be a string array, a cell array of strings, or a numerical vector.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a 2-element vector with a graphics handle for the created bar plot and a second handle for the created line plot.

     An example of the use of 'pareto' is

          Cheese = {"Cheddar", "Swiss", "Camembert", ...
                    "Munster", "Stilton", "Blue"};
          Sold = [105, 30, 70, 10, 15, 20];
          pareto (Sold, Cheese);

     See also: bar, barh, hist, pie, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Draw a Pareto chart.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
patch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2374
 -- Function File: patch ()
 -- Function File: patch (X, Y, C)
 -- Function File: patch (X, Y, Z, C)
 -- Function File: patch (FV)
 -- Function File: patch ("Faces", FACES, "Vertices", VERTS, ...)
 -- Function File: patch (..., PROP, VAL, ...)
 -- Function File: patch (HAX, ...)
 -- Function File: H = patch (...)
     Create patch object in the current axes with vertices at locations (X, Y) and of color C.

     If the vertices are matrices of size MxN then each polygon patch has M vertices and a total of N polygons will be created.  If some polygons do not have M vertices use NaN to represent "no vertex".  If the Z input is present then 3-D patches will be created.

     The color argument C can take many forms.  To create polygons which all share a single color use a string value (e.g., "r" for red), a scalar value which is scaled by 'caxis' and indexed into the current colormap, or a 3-element RGB vector with the precise TrueColor.

     If C is a vector of length N then the ith polygon will have a color determined by scaling entry C(i) according to 'caxis' and then indexing into the current colormap.  More complicated coloring situations require directly manipulating patch property/value pairs.

     Instead of specifying polygons by matrices X and Y, it is possible to present a unique list of vertices and then a list of polygon faces created from those vertices.  In this case the "Vertices" matrix will be an Nx2 (2-D patch) or Nx3 (3-D path).  The MxN "Faces" matrix describes M polygons having N vertices--each row describes a single polygon and each column entry is an index into the "Vertices" matrix to identify a vertex.  The patch object can be created by directly passing the property/value pairs "Vertices"/VERTS, "Faces"/FACES as inputs.

     A third input form is to create a structure FV with the fields "vertices", "faces", and optionally "facevertexcdata".

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created patch object.

     Implementation Note: Patches are highly configurable objects.  To truly customize them requires setting patch properties directly.  Useful patch properties are: "cdata", "edgecolor", "facecolor", "faces", "facevertexcdata".

     See also: fill, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Create patch object in the current axes with vertices at locations (X, Y) and of color C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pcolor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1537
 -- Function File: pcolor (X, Y, C)
 -- Function File: pcolor (C)
 -- Function File: pcolor (HAX, ...)
 -- Function File: H = pcolor (...)
     Produce a 2-D density plot.

     A 'pcolor' plot draws rectangles with colors from the matrix C over the two-dimensional region represented by the matrices X and Y.  X and Y are the coordinates of the mesh's vertices and are typically the output of 'meshgrid'.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), C(i,j)).  Thus, columns of C correspond to different X values and rows of C correspond to different Y values.

     The values in C are scaled to span the range of the current colormap.  Limits may be placed on the color axis by the command 'caxis', or by setting the 'clim' property of the parent axis.

     The face color of each cell of the mesh is determined by interpolating the values of C for each of the cell's vertices; Contrast this with 'imagesc' which renders one cell for each element of C.

     'shading' modifies an attribute determining the manner by which the face color of each cell is interpolated from the values of C, and the visibility of the cells' edges.  By default the attribute is "faceted", which renders a single color for each cell's face with the edge visible.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     See also: caxis, shading, meshgrid, contour, imagesc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Produce a 2-D density plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
peaks


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1056
 -- Function File: peaks ()
 -- Function File: peaks (N)
 -- Function File: peaks (X, Y)
 -- Function File: Z = peaks (...)
 -- Function File: [X, Y, Z] = peaks (...)
     Plot a function with lots of local maxima and minima.

     The function has the form

     f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ...
              - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
              - 1/3*exp(-(x+1)^2 - y^2)

     Called without a return argument, 'peaks' plots the surface of the above function using 'surf'.

     If N is a scalar, 'peaks' plots the value of the above function on an N-by-N mesh over the range [-3,3].  The default value for N is 49.

     If N is a vector, then it represents the grid values over which to calculate the function.  If X and Y are specified then the function value is calculated over the specified grid of vertices.

     When called with output arguments, return the data for the function evaluated over the meshgrid.  This can subsequently be plotted with 'surf (X, Y, Z)'.

     See also: sombrero, meshgrid, mesh, surf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Plot a function with lots of local maxima and minima.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pie3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1227
 -- Function File: pie3 (X)
 -- Function File: pie3 (..., EXPLODE)
 -- Function File: pie3 (..., LABELS)
 -- Function File: pie3 (HAX, ...);
 -- Function File: H = pie3 (...);
     Plot a 3-D pie chart.

     Called with a single vector argument, produces a 3-D pie chart of the elements in X.  The size of the ith slice is the percentage that the element Xi represents of the total sum of X: 'pct = X(i) / sum (X)'.

     The optional input EXPLODE is a vector of the same length as X that, if nonzero, "explodes" the slice from the pie chart.

     The optional input LABELS is a cell array of strings of the same length as X specifying the label for each slice.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a list of graphics handles to the patch, surface, and text objects generating the plot.

     Note: If 'sum (X) <= 1' then the elements of X are interpreted as percentages directly and are not normalized by 'sum (x)'.  Furthermore, if the sum is less than 1 then there will be a missing slice in the pie plot to represent the missing, unspecified percentage.

     See also: pie, bar, hist, rose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Plot a 3-D pie chart.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pie


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1204
 -- Function File: pie (X)
 -- Function File: pie (..., EXPLODE)
 -- Function File: pie (..., LABELS)
 -- Function File: pie (HAX, ...);
 -- Function File: H = pie (...);
     Plot a 2-D pie chart.

     When called with a single vector argument, produce a pie chart of the elements in X.  The size of the ith slice is the percentage that the element Xi represents of the total sum of X: 'pct = X(i) / sum (X)'.

     The optional input EXPLODE is a vector of the same length as X that, if nonzero, "explodes" the slice from the pie chart.

     The optional input LABELS is a cell array of strings of the same length as X specifying the label for each slice.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a list of handles to the patch and text objects generating the plot.

     Note: If 'sum (X) <= 1' then the elements of X are interpreted as percentages directly and are not normalized by 'sum (x)'.  Furthermore, if the sum is less than 1 then there will be a missing slice in the pie plot to represent the missing, unspecified percentage.

     See also: pie3, bar, hist, rose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Plot a 2-D pie chart.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
plot3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2083
 -- Function File: plot3 (X, Y, Z)
 -- Function File: plot3 (X, Y, Z, PROP, VALUE, ...)
 -- Function File: plot3 (X, Y, Z, FMT)
 -- Function File: plot3 (X, CPLX)
 -- Function File: plot3 (CPLX)
 -- Function File: plot3 (HAX, ...)
 -- Function File: H = plot3 (...)
     Produce 3-D plots.

     Many different combinations of arguments are possible.  The simplest form is

          plot3 (X, Y, Z)

     in which the arguments are taken to be the vertices of the points to be plotted in three dimensions.  If all arguments are vectors of the same length, then a single continuous line is drawn.  If all arguments are matrices, then each column of is treated as a separate line.  No attempt is made to transpose the arguments to make the number of rows match.

     If only two arguments are given, as

          plot3 (X, CPLX)

     the real and imaginary parts of the second argument are used as the Y and Z coordinates, respectively.

     If only one argument is given, as

          plot3 (CPLX)

     the real and imaginary parts of the argument are used as the Y and Z values, and they are plotted versus their index.

     Arguments may also be given in groups of three as

          plot3 (X1, Y1, Z1, X2, Y2, Z2, ...)

     in which each set of three arguments is treated as a separate line or set of lines in three dimensions.

     To plot multiple one- or two-argument groups, separate each group with an empty format string, as

          plot3 (X1, C1, "", C2, "", ...)

     Multiple property-value pairs may be specified which will affect the line objects drawn by 'plot3'.  If the FMT argument is supplied it will format the line objects in the same manner as 'plot'.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     Example:

          z = [0:0.05:5];
          plot3 (cos (2*pi*z), sin (2*pi*z), z, ";helix;");
          plot3 (z, exp (2i*pi*z), ";complex sinusoid;");

     See also: ezplot3, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Produce 3-D plots.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
plot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6229
 -- Function File: plot (Y)
 -- Function File: plot (X, Y)
 -- Function File: plot (X, Y, FMT)
 -- Function File: plot (..., PROPERTY, VALUE, ...)
 -- Function File: plot (X1, Y1, ..., XN, YN)
 -- Function File: plot (HAX, ...)
 -- Function File: H = plot (...)
     Produce 2-D plots.

     Many different combinations of arguments are possible.  The simplest form is

          plot (Y)

     where the argument is taken as the set of Y coordinates and the X coordinates are taken to be the range '1:numel (Y)'.

     If more than one argument is given, they are interpreted as

          plot (Y, PROPERTY, VALUE, ...)

     or

          plot (X, Y, PROPERTY, VALUE, ...)

     or

          plot (X, Y, FMT, ...)

     and so on.  Any number of argument sets may appear.  The X and Y values are interpreted as follows:

        * If a single data argument is supplied, it is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements, starting with 1.

        * If X and Y are scalars, a single point is plotted.

        * 'squeeze()' is applied to arguments with more than two dimensions, but no more than two singleton dimensions.

        * If both arguments are vectors, the elements of Y are plotted versus the elements of X.

        * If X is a vector and Y is a matrix, then the columns (or rows) of Y are plotted versus X.  (using whichever combination matches, with columns tried first.)

        * If the X is a matrix and Y is a vector, Y is plotted versus the columns (or rows) of X.  (using whichever combination matches, with columns tried first.)

        * If both arguments are matrices, the columns of Y are plotted versus the columns of X.  In this case, both matrices must have the same number of rows and columns and no attempt is made to transpose the arguments to make the number of rows match.

     Multiple property-value pairs may be specified, but they must appear in pairs.  These arguments are applied to the line objects drawn by 'plot'.  Useful properties to modify are "linestyle", "linewidth", "color", "marker", "markersize", "markeredgecolor", "markerfacecolor".

     The FMT format argument can also be used to control the plot style.  The format is composed of three parts: linestyle, markerstyle, color.  When a markerstyle is specified, but no linestyle, only the markers are plotted.  Similarly, if a linestyle is specified, but no markerstyle, then only lines are drawn.  If both are specified then lines and markers will be plotted.  If no FMT and no PROPERTY/VALUE pairs are given, then the default plot style is solid lines with no markers and the color determined by the "colororder" property of the current axes.

     Format arguments:

     linestyle

          '-'                                                           Use solid lines (default).
          '--'                                                          Use dashed lines.
          ':'                                                           Use dotted lines.
          '-.'                                                          Use dash-dotted lines.

     markerstyle

          '+'                                                           crosshair
          'o'                                                           circle
          '*'                                                           star
          '.'                                                           point
          'x'                                                           cross
          's'                                                           square
          'd'                                                           diamond
          '^'                                                           upward-facing triangle
          'v'                                                           downward-facing triangle
          '>'                                                           right-facing triangle
          '<'                                                           left-facing triangle
          'p'                                                           pentagram
          'h'                                                           hexagram

     color

          'k'                                                           blacK
          'r'                                                           Red
          'g'                                                           Green
          'b'                                                           Blue
          'm'                                                           Magenta
          'c'                                                           Cyan
          'w'                                                           White

     ";key;"
          Here "key" is the label to use for the plot legend.

     The FMT argument may also be used to assign legend keys.  To do so, include the desired label between semicolons after the formatting sequence described above, e.g., "+b;Key Title;".  Note that the last semicolon is required and Octave will generate an error if it is left out.

     Here are some plot examples:

          plot (x, y, "or", x, y2, x, y3, "m", x, y4, "+")

     This command will plot 'y' with red circles, 'y2' with solid lines, 'y3' with solid magenta lines, and 'y4' with points displayed as '+'.

          plot (b, "*", "markersize", 10)

     This command will plot the data in the variable 'b', with points displayed as '*' and a marker size of 10.

          t = 0:0.1:6.3;
          plot (t, cos(t), "-;cos(t);", t, sin(t), "-b;sin(t);");

     This will plot the cosine and sine functions and label them accordingly in the legend.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of graphics handles to the created line objects.

     To save a plot, in one of several image formats such as PostScript or PNG, use the 'print' command.

     See also: axis, box, grid, hold, legend, title, xlabel, ylabel, xlim, ylim, ezplot, errorbar, fplot, line, plot3, polar, loglog, semilogx, semilogy, subplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Produce 2-D plots.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
plotmatrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1440
 -- Function File: plotmatrix (X, Y)
 -- Function File: plotmatrix (X)
 -- Function File: plotmatrix (..., STYLE)
 -- Function File: plotmatrix (HAX, ...)
 -- Function File: [H, AX, BIGAX, P, PAX] = plotmatrix (...)
     Scatter plot of the columns of one matrix against another.

     Given the arguments X and Y that have a matching number of rows, 'plotmatrix' plots a set of axes corresponding to

          plot (X(:, i), Y(:, j))

     When called with a single argument X this is equivalent to

          plotmatrix (X, X)

     except that the diagonal of the set of axes will be replaced with the histogram 'hist (X(:, i))'.

     The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the 'plot' command.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H provides handles to the individual graphics objects in the scatter plots, whereas AX returns the handles to the scatter plot axis objects.

     BIGAX is a hidden axis object that surrounds the other axes, such that the commands 'xlabel', 'title', etc., will be associated with this hidden axis.

     Finally, P returns the graphics objects associated with the histogram and PAX the corresponding axes objects.

     Example:

          plotmatrix (randn (100, 3), "g+")

     See also: scatter, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Scatter plot of the columns of one matrix against another.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
plotyy


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1292
 -- Function File: plotyy (X1, Y1, X2, Y2)
 -- Function File: plotyy (..., FUN)
 -- Function File: plotyy (..., FUN1, FUN2)
 -- Function File: plotyy (HAX, ...)
 -- Function File: [AX, H1, H2] = plotyy (...)
     Plot two sets of data with independent y-axes and a common x-axis.

     The arguments X1 and Y1 define the arguments for the first plot and X1 and Y2 for the second.

     By default the arguments are evaluated with 'feval (@plot, X, Y)'.  However the type of plot can be modified with the FUN argument, in which case the plots are generated by 'feval (FUN, X, Y)'.  FUN can be a function handle, an inline function, or a string of a function name.

     The function to use for each of the plots can be independently defined with FUN1 and FUN2.

     If the first argument HAX is an axes handle, then it defines the principal axis in which to plot the X1 and Y1 data.

     The return value AX is a vector with the axis handles of the two y-axes.  H1 and H2 are handles to the objects generated by the plot commands.

          x = 0:0.1:2*pi;
          y1 = sin (x);
          y2 = exp (x - 1);
          ax = plotyy (x, y1, x - 1, y2, @plot, @semilogy);
          xlabel ("X");
          ylabel (ax(1), "Axis 1");
          ylabel (ax(2), "Axis 2");

     See also: plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Plot two sets of data with independent y-axes and a common x-axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
polar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1286
 -- Function File: polar (THETA, RHO)
 -- Function File: polar (THETA, RHO, FMT)
 -- Function File: polar (CPLX)
 -- Function File: polar (CPLX, FMT)
 -- Function File: polar (HAX, ...)
 -- Function File: H = polar (...)
     Create a 2-D plot from polar coordinates THETA and RHO.

     If a single complex input CPLX is given then the real part is used for THETA and the imaginary part is used for RHO.

     The optional argument FMT specifies the line format in the same way as 'plot'.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     Implementation Note: The polar axis is drawn using line and text objects encapsulated in an hggroup.  The hggroup properties are linked to the original axes object such that altering an appearance property, for example 'fontname', will update the polar axis.  Two new properties are added to the original axes-'rtick', 'ttick'-which replace 'xtick', 'ytick'.  The first is a list of tick locations in the radial (rho) direction; The second is a list of tick locations in the angular (theta) direction specified in degrees, i.e., in the range 0-359.

     See also: rose, compass, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Create a 2-D plot from polar coordinates THETA and RHO.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
quiver3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1656
 -- Function File: quiver3 (U, V, W)
 -- Function File: quiver3 (X, Y, Z, U, V, W)
 -- Function File: quiver3 (..., S)
 -- Function File: quiver3 (..., STYLE)
 -- Function File: quiver3 (..., "filled")
 -- Function File: quiver3 (HAX, ...)
 -- Function File: H = quiver3 (...)

     Plot a 3-D vector field with arrows.

     Plot the (U, V, W) components of a vector field in an (X, Y, Z) meshgrid.  If the grid is uniform then X, Y, and Z can be specified as vectors.

     If X, Y, and Z are undefined they are assumed to be '(1:M, 1:N, 1:P)' where '[M, N] = size (U)' and 'P = max (size (W))'.

     The variable S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing.  A value of 0 disables all scaling.  The default value is 0.9.

     The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.  If a marker is specified then markers at the grid points of the vectors are drawn rather than arrows.  If the argument "filled" is given then the markers are filled.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to a quiver object.  A quiver object regroups the components of the quiver plot (body, arrow, and marker), and allows them to be changed together.

          [x, y, z] = peaks (25);
          surf (x, y, z);
          hold on;
          [u, v, w] = surfnorm (x, y, z / 10);
          h = quiver3 (x, y, z, u, v, w);
          set (h, "maxheadsize", 0.33);

     See also: quiver, compass, feather, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Plot a 3-D vector field with arrows.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
quiver


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1545
 -- Function File: quiver (U, V)
 -- Function File: quiver (X, Y, U, V)
 -- Function File: quiver (..., S)
 -- Function File: quiver (..., STYLE)
 -- Function File: quiver (..., "filled")
 -- Function File: quiver (HAX, ...)
 -- Function File: H = quiver (...)

     Plot a 2-D vector field with arrows.

     Plot the (U, V) components of a vector field in an (X, Y) meshgrid.  If the grid is uniform then X and Y can be specified as vectors.

     If X and Y are undefined they are assumed to be '(1:M, 1:N)' where '[M, N] = size (U)'.

     The variable S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing.  A value of 0 disables all scaling.  The default value is 0.9.

     The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.  If a marker is specified then markers at the grid points of the vectors are drawn rather than arrows.  If the argument "filled" is given then the markers are filled.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to a quiver object.  A quiver object regroups the components of the quiver plot (body, arrow, and marker), and allows them to be changed together.

     Example:

          [x, y] = meshgrid (1:2:20);
          h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
          set (h, "maxheadsize", 0.33);

     See also: quiver3, compass, feather, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Plot a 2-D vector field with arrows.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
rectangle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1517
 -- Function File: rectangle ()
 -- Function File: rectangle (..., "Position", POS)
 -- Function File: rectangle (..., "Curvature", CURV)
 -- Function File: rectangle (..., "EdgeColor", EC)
 -- Function File: rectangle (..., "FaceColor", FC)
 -- Function File: rectangle (HAX, ...)
 -- Function File: H = rectangle (...)
     Draw a rectangular patch defined by POS and CURV.

     The variable 'POS(1:2)' defines the lower left-hand corner of the patch and 'POS(3:4)' defines its width and height.  By default, the value of POS is '[0, 0, 1, 1]'.

     The variable CURV defines the curvature of the sides of the rectangle and may be a scalar or two-element vector with values between 0 and 1.  A value of 0 represents no curvature of the side, whereas a value of 1 means that the side is entirely curved into the arc of a circle.  If CURV is a two-element vector, then the first element is the curvature along the x-axis of the patch and the second along y-axis.

     If CURV is a scalar, it represents the curvature of the shorter of the two sides of the rectangle and the curvature of the other side is defined by

          min (pos(1:2)) / max (pos(1:2)) * curv

     Additional property/value pairs are passed to the underlying patch command.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created rectangle object.

See also: patch, line, cylinder, ellipsoid, sphere. 


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Draw a rectangular patch defined by POS and CURV.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ribbon


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 682
 -- Function File: ribbon (Y)
 -- Function File: ribbon (X, Y)
 -- Function File: ribbon (X, Y, WIDTH)
 -- Function File: ribbon (HAX, ...)
 -- Function File: H = ribbon (...)
     Draw a ribbon plot for the columns of Y vs.  X.

     The optional parameter WIDTH specifies the width of a single ribbon (default is 0.75).  If X is omitted, a vector containing the row numbers is assumed ('1:rows (Y)').

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of graphics handles to the surface objects representing each ribbon.

     See also: surface, waterfall.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Draw a ribbon plot for the columns of Y vs.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rose


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1139
 -- Function File: rose (TH)
 -- Function File: rose (TH, NBINS)
 -- Function File: rose (TH, BINS)
 -- Function File: rose (HAX, ...)
 -- Function File: H = rose (...)
 -- Function File: [THOUT ROUT] = rose (...)
     Plot an angular histogram.

     With one vector argument, TH, plot the histogram with 20 angular bins.  If TH is a matrix then each column of TH produces a separate histogram.

     If NBINS is given and is a scalar, then the histogram is produced with NBIN bins.  If BINS is a vector, then the center of each bin is defined by the values of BINS and the number of bins is given by the number of elements in BINS.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a vector of graphics handles to the line objects representing each histogram.

     If two output arguments are requested then no plot is made and the polar vectors necessary to plot the histogram are returned instead.

          [th, r] = rose ([2*randn(1e5,1), pi + 2*randn(1e5,1)]);
          polar (th, r);

     See also: hist, polar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Plot an angular histogram.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
scatter3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1692
 -- Function File: scatter3 (X, Y, Z)
 -- Function File: scatter3 (X, Y, Z, S)
 -- Function File: scatter3 (X, Y, Z, S, C)
 -- Function File: scatter3 (..., STYLE)
 -- Function File: scatter3 (..., "filled")
 -- Function File: scatter3 (..., PROP, VAL)
 -- Function File: scatter3 (HAX, ...)
 -- Function File: H = scatter3 (...)
     Draw a 3-D scatter plot.

     A marker is plotted at each point defined by the coordinates in the vectors X, Y, and Z.

     The size of the markers is determined by S, which can be a scalar or a vector of the same length as X, Y, and Z.  If S is not given, or is an empty matrix, then a default value of 8 points is used.

     The color of the markers is determined by C, which can be a string defining a fixed color; a 3-element vector giving the red, green, and blue components of the color; a vector of the same length as X that gives a scaled index into the current colormap; or an Nx3 matrix defining the RGB color of each marker individually.

     The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the 'plot' command.  If no marker is specified it defaults to "o" or circles.  If the argument "filled" is given then the markers are filled.

     Additional property/value pairs are passed directly to the underlying patch object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the hggroup object representing the points.

          [x, y, z] = peaks (20);
          scatter3 (x(:), y(:), z(:), [], z(:));

     See also: scatter, patch, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Draw a 3-D scatter plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
scatter


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1697
 -- Function File: scatter (X, Y)
 -- Function File: scatter (X, Y, S)
 -- Function File: scatter (X, Y, S, C)
 -- Function File: scatter (..., STYLE)
 -- Function File: scatter (..., "filled")
 -- Function File: scatter (..., PROP, VAL, ...)
 -- Function File: scatter (HAX, ...)
 -- Function File: H = scatter (...)
     Draw a 2-D scatter plot.

     A marker is plotted at each point defined by the coordinates in the vectors X and Y.

     The size of the markers is determined by S, which can be a scalar or a vector of the same length as X and Y.  If S is not given, or is an empty matrix, then a default value of 8 points is used.

     The color of the markers is determined by C, which can be a string defining a fixed color; a 3-element vector giving the red, green, and blue components of the color; a vector of the same length as X that gives a scaled index into the current colormap; or an Nx3 matrix defining the RGB color of each marker individually.

     The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the 'plot' command.  If no marker is specified it defaults to "o" or circles.  If the argument "filled" is given then the markers are filled.

     Additional property/value pairs are passed directly to the underlying patch object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created patch object.

     Example:

          x = randn (100, 1);
          y = randn (100, 1);
          scatter (x, y, [], sqrt (x.^2 + y.^2));

     See also: scatter3, patch, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Draw a 2-D scatter plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
semilogxerr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1103
 -- Function File: semilogxerr (Y, EY)
 -- Function File: semilogxerr (Y, ..., FMT)
 -- Function File: semilogxerr (X, Y, EY)
 -- Function File: semilogxerr (X, Y, ERR, FMT)
 -- Function File: semilogxerr (X, Y, LERR, UERR, FMT)
 -- Function File: semilogxerr (X, Y, EX, EY, FMT)
 -- Function File: semilogxerr (X, Y, LX, UX, LY, UY, FMT)
 -- Function File: semilogxerr (X1, Y1, ..., FMT, XN, YN, ...)
 -- Function File: semilogxerr (HAX, ...)
 -- Function File: H = semilogxerr (...)
     Produce 2-D plots using a logarithmic scale for the x-axis and errorbars at each data point.

     Many different combinations of arguments are possible.  The most common form is

          semilogxerr (X, Y, EY, FMT)

     which produces a semi-logarithmic plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT.  *Note errorbar: XREFerrorbar, for available formats and additional information.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     See also: errorbar, semilogyerr, loglogerr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Produce 2-D plots using a logarithmic scale for the x-axis and errorbars at each data point.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
semilogx


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 653
 -- Function File: semilogx (Y)
 -- Function File: semilogx (X, Y)
 -- Function File: semilogx (X, Y, PROPERTY, VALUE, ...)
 -- Function File: semilogx (X, Y, FMT)
 -- Function File: semilogx (HAX, ...)
 -- Function File: H = semilogx (...)
     Produce a 2-D plot using a logarithmic scale for the x-axis.

     See the documentation of 'plot' for a description of the arguments that 'semilogx' will accept.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     See also: plot, semilogy, loglog.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce a 2-D plot using a logarithmic scale for the x-axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
semilogyerr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1103
 -- Function File: semilogyerr (Y, EY)
 -- Function File: semilogyerr (Y, ..., FMT)
 -- Function File: semilogyerr (X, Y, EY)
 -- Function File: semilogyerr (X, Y, ERR, FMT)
 -- Function File: semilogyerr (X, Y, LERR, UERR, FMT)
 -- Function File: semilogyerr (X, Y, EX, EY, FMT)
 -- Function File: semilogyerr (X, Y, LX, UX, LY, UY, FMT)
 -- Function File: semilogyerr (X1, Y1, ..., FMT, XN, YN, ...)
 -- Function File: semilogyerr (HAX, ...)
 -- Function File: H = semilogyerr (...)
     Produce 2-D plots using a logarithmic scale for the y-axis and errorbars at each data point.

     Many different combinations of arguments are possible.  The most common form is

          semilogyerr (X, Y, EY, FMT)

     which produces a semi-logarithmic plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT.  *Note errorbar: XREFerrorbar, for available formats and additional information.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     See also: errorbar, semilogxerr, loglogerr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Produce 2-D plots using a logarithmic scale for the y-axis and errorbars at each data point.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
semilogy


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 651
 -- Function File: semilogy (Y)
 -- Function File: semilogy (X, Y)
 -- Function File: semilogy (X, Y, PROPERTY, VALUE, ...)
 -- Function File: semilogy (X, Y, FMT)
 -- Function File: semilogy (H, ...)
 -- Function File: H = semilogy (...)
     Produce a 2-D plot using a logarithmic scale for the y-axis.

     See the documentation of 'plot' for a description of the arguments that 'semilogy' will accept.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created plot.

     See also: plot, semilogx, loglog.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Produce a 2-D plot using a logarithmic scale for the y-axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
shrinkfaces


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1714
 -- Function File: shrinkfaces (P, SF)
 -- Function File: NFV = shrinkfaces (P, SF)
 -- Function File: NFV = shrinkfaces (FV, SF)
 -- Function File: NFV = shrinkfaces (F, V, SF)
 -- Function File: [NF, NV] = shrinkfaces (...)

     Reduce the size of faces in a patch by the shrink factor SF.

     The patch object can be specified by a graphics handle (P), a patch structure (FV) with the fields "faces" and "vertices", or as two separate matrices (F, V) of faces and vertices.

     The shrink factor SF is a positive number specifying the percentage of the original area the new face will occupy.  If no factor is given the default is 0.3 (a reduction to 30% of the original size).  A factor greater than 1.0 will result in the expansion of faces.

     Given a patch handle as the first input argument and no output parameters, perform the shrinking of the patch faces in place and redraw the patch.

     If called with one output argument, return a structure with fields "faces", "vertices", and "facevertexcdata" containing the data after shrinking.  This structure can be used directly as an input argument to the 'patch' function.

     *Caution:*: Performing the shrink operation on faces which are not convex can lead to undesirable results.

     Example: a triangulated 3/4 circle and the corresponding shrunken version.

          [phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4));
          tri = delaunay (phi(:), r(:));
          v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))];
          clf ()
          p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none");
          fv = shrinkfaces (p);
          patch (fv)
          axis equal
          grid on

     See also: patch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Reduce the size of faces in a patch by the shrink factor SF.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
slice


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1900
 -- Function File: slice (X, Y, Z, V, SX, SY, SZ)
 -- Function File: slice (X, Y, Z, V, XI, YI, ZI)
 -- Function File: slice (V, SX, SY, SZ)
 -- Function File: slice (V, XI, YI, ZI)
 -- Function File: slice (..., METHOD)
 -- Function File: slice (HAX, ...)
 -- Function File: H = slice (...)
     Plot slices of 3-D data/scalar fields.

     Each element of the 3-dimensional array V represents a scalar value at a location given by the parameters X, Y, and Z.  The parameters X, X, and Z are either 3-dimensional arrays of the same size as the array V in the "meshgrid" format or vectors.  The parameters XI, etc.  respect a similar format to X, etc., and they represent the points at which the array VI is interpolated using interp3.  The vectors SX, SY, and SZ contain points of orthogonal slices of the respective axes.

     If X, Y, Z are omitted, they are assumed to be 'x = 1:size (V, 2)', 'y = 1:size (V, 1)' and 'z = 1:size (V, 3)'.

     METHOD is one of:

     "nearest"
          Return the nearest neighbor.

     "linear"
          Linear interpolation from nearest neighbors.

     "cubic"
          Cubic interpolation from four nearest neighbors (not implemented yet).

     "spline"
          Cubic spline interpolation--smooth first and second derivatives throughout the curve.

     The default method is "linear".

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     Examples:

          [x, y, z] = meshgrid (linspace (-8, 8, 32));
          v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
          slice (x, y, z, v, [], 0, []);

          [xi, yi] = meshgrid (linspace (-7, 7));
          zi = xi + yi;
          slice (x, y, z, v, xi, yi, zi);

     See also: interp3, surface, pcolor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Plot slices of 3-D data/scalar fields.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sombrero


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 711
 -- Function File: sombrero ()
 -- Function File: sombrero (N)
 -- Function File: Z = sombrero (...)
 -- Function File: [X, Y, Z] = sombrero (...)
     Plot the familiar 3-D sombrero function.

     The function plotted is

          z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))

     Called without a return argument, 'sombrero' plots the surface of the above function over the meshgrid [-8,8] using 'surf'.

     If N is a scalar the plot is made with N grid lines.  The default value for N is 41.

     When called with output arguments, return the data for the function evaluated over the meshgrid.  This can subsequently be plotted with 'surf (X, Y, Z)'.

     See also: peaks, meshgrid, mesh, surf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Plot the familiar 3-D sombrero function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sphere


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 750
 -- Function File: sphere ()
 -- Function File: sphere (N)
 -- Function File: sphere (HAX, ...)
 -- Function File: [X, Y, Z] = sphere (...)
     Plot a 3-D unit sphere.

     The optional input N determines the number of faces around the circumference of the sphere.  The default value is 20.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     If outputs are requested 'sphere' returns three matrices in 'meshgrid' format such that 'surf (X, Y, Z)' generates a unit sphere.

     Example:

          [x, y, z] = sphere (40);
          surf (3*x, 3*y, 3*z);
          axis equal;
          title ("sphere of radius 3");

     See also: cylinder, ellipsoid, rectangle.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Plot a 3-D unit sphere.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
stairs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1173
 -- Function File: stairs (Y)
 -- Function File: stairs (X, Y)
 -- Function File: stairs (..., STYLE)
 -- Function File: stairs (..., PROP, VAL, ...)
 -- Function File: stairs (HAX, ...)
 -- Function File: H = stairs (...)
 -- Function File: [XSTEP, YSTEP] = stairs (...)
     Produce a stairstep plot.

     The arguments X and Y may be vectors or matrices.  If only one argument is given, it is taken as a vector of Y values and the X coordinates are taken to be the indices of the elements.

     The style to use for the plot can be defined with a line style STYLE of the same format as the 'plot' command.

     Multiple property/value pairs may be specified, but they must appear in pairs.

     If the first argument HAX is an axis handle, then plot into this axis, rather than the current axis handle returned by 'gca'.

     If one output argument is requested, return a graphics handle to the created plot.  If two output arguments are specified, the data are generated but not plotted.  For example,

          stairs (x, y);

     and

          [xs, ys] = stairs (x, y);
          plot (xs, ys);

     are equivalent.

     See also: bar, hist, plot, stem.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Produce a stairstep plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
stem3


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1350
 -- Function File: stem3 (X, Y, Z)
 -- Function File: stem3 (..., LINESPEC)
 -- Function File: stem3 (..., "filled")
 -- Function File: stem3 (..., PROP, VAL, ...)
 -- Function File: stem3 (HAX, ...)
 -- Function File: H = stem3 (...)
     Plot a 3-D stem graph.

     Stems are drawn from the height Z to the location in the x-y plane determined by X and Y.  The default color is "b" (blue), the default line style is "-", and the default marker is "o".

     The line style can be altered by the 'linespec' argument in the same manner as the 'plot' command.  If the "filled" argument is present the markers at the top of the stems will be filled in.

     Optional property/value pairs may be specified to control the appearance of the plot.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a handle to the "stem series" hggroup containing the line and marker objects used for the plot.  *Note stem: XREFstem, for a description of the "stem series" object.

     Example:

          theta = 0:0.2:6;
          stem3 (cos (theta), sin (theta), theta);

     plots 31 stems with heights from 0 to 6 lying on a circle.

     Implementation Note: Color definitions with RGB-triples are not valid.

     See also: stem, bar, hist, plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Plot a 3-D stem graph.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
stemleaf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2454
 -- Function File: stemleaf (X, CAPTION)
 -- Function File: stemleaf (X, CAPTION, STEM_SZ)
 -- Function File: PLOTSTR = stemleaf (...)
     Compute and display a stem and leaf plot of the vector X.

     The input X should be a vector of integers.  Any non-integer values will be converted to integer by 'X = fix (X)'.  By default each element of X will be plotted with the last digit of the element as a leaf value and the remaining digits as the stem.  For example, 123 will be plotted with the stem '12' and the leaf '3'.  The second argument, CAPTION, should be a character array which provides a description of the data.  It is included as a heading for the output.

     The optional input STEM_SZ sets the width of each stem.  The stem width is determined by '10^(STEM_SZ + 1)'.  The default stem width is 10.

     The output of 'stemleaf' is composed of two parts: a "Fenced Letter Display," followed by the stem-and-leaf plot itself.  The Fenced Letter Display is described in 'Exploratory Data Analysis'.  Briefly, the entries are as shown:


                  Fenced Letter Display
          #% nx|___________________     nx = numel (x)
          M% mi|       md         |     mi median index, md median
          H% hi|hl              hu| hs  hi lower hinge index, hl,hu hinges,
          1    |x(1)         x(nx)|     hs h_spreadx(1), x(nx) first
                     _______            and last data value.
               ______|step |_______     step 1.5*h_spread
              f|ifl            ifh|     inner fence, lower and higher
               |nfl            nfh|     no.\ of data points within fences
              F|ofl            ofh|     outer fence, lower and higher
               |nFl            nFh|     no.\ of data points outside outer
                                        fences

     The stem-and-leaf plot shows on each line the stem value followed by the string made up of the leaf digits.  If the STEM_SZ is not 1 the successive leaf values are separated by ",".

     With no return argument, the plot is immediately displayed.  If an output argument is provided, the plot is returned as an array of strings.

     The leaf digits are not sorted.  If sorted leaf values are desired, use 'XS = sort (X)' before calling 'stemleaf (XS)'.

     The stem and leaf plot and associated displays are described in: Ch.  3, 'Exploratory Data Analysis' by J. W. Tukey, Addison-Wesley, 1977.

     See also: hist, printd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Compute and display a stem and leaf plot of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
stem


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2780
 -- Function File: stem (Y)
 -- Function File: stem (X, Y)
 -- Function File: stem (..., LINESPEC)
 -- Function File: stem (..., "filled")
 -- Function File: stem (..., PROP, VAL, ...)
 -- Function File: stem (HAX, ...)
 -- Function File: H = stem (...)
     Plot a 2-D stem graph.

     If only one argument is given, it is taken as the y-values and the x-coordinates are taken from the indices of the elements.

     If Y is a matrix, then each column of the matrix is plotted as a separate stem graph.  In this case X can either be a vector, the same length as the number of rows in Y, or it can be a matrix of the same size as Y.

     The default color is "b" (blue), the default line style is "-", and the default marker is "o".  The line style can be altered by the 'linespec' argument in the same manner as the 'plot' command.  If the "filled" argument is present the markers at the top of the stems will be filled in.  For example,

          x = 1:10;
          y = 2*x;
          stem (x, y, "r");

     plots 10 stems with heights from 2 to 20 in red;

     Optional property/value pairs may be specified to control the appearance of the plot.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a handle to a "stem series" hggroup.  The single hggroup handle has all of the graphical elements comprising the plot as its children; This allows the properties of multiple graphics objects to be changed by modifying just a single property of the "stem series" hggroup.

     For example,

          x = [0:10]';
          y = [sin(x), cos(x)]
          h = stem (x, y);
          set (h(2), "color", "g");
          set (h(1), "basevalue", -1)

     changes the color of the second "stem series" and moves the base line of the first.

     Stem Series Properties

     linestyle
          The linestyle of the stem.  (Default: "-")

     linewidth
          The width of the stem.  (Default: 0.5)

     color
          The color of the stem, and if not separately specified, the marker.  (Default: "b" [blue])

     marker
          The marker symbol to use at the top of each stem.  (Default: "o")

     markeredgecolor
          The edge color of the marker.  (Default: "color" property)

     markerfacecolor
          The color to use for "filling" the marker.  (Default: "none" [unfilled])

     markersize
          The size of the marker.  (Default: 6)

     baseline
          The handle of the line object which implements the baseline.  Use 'set' with the returned handle to change graphic properties of the baseline.

     basevalue
          The y-value where the baseline is drawn.  (Default: 0)

     See also: stem3, bar, hist, plot, stairs.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Plot a 2-D stem graph.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
surface


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1026
 -- Function File: surface (X, Y, Z, C)
 -- Function File: surface (X, Y, Z)
 -- Function File: surface (Z, C)
 -- Function File: surface (Z)
 -- Function File: surface (..., PROP, VAL, ...)
 -- Function File: surface (HAX, ...)
 -- Function File: H = surface (...)
     Create a surface graphic object given matrices X and Y from 'meshgrid' and a matrix of values Z corresponding to the X and Y coordinates of the surface.

     If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  If only a single input Z is given then X is taken to be '1:rows (Z)' and Y is '1:columns (Z)'.

     Any property/value input pairs are assigned to the surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     See also: surf, mesh, patch, line.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Create a surface graphic object given matrices X and Y from 'meshgrid' and a matrix of values Z corresponding to the X and Y coordinates of the surface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
surfc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1601
 -- Function File: surfc (X, Y, Z)
 -- Function File: surfc (Z)
 -- Function File: surfc (..., C)
 -- Function File: surfc (..., PROP, VAL, ...)
 -- Function File: surfc (HAX, ...)
 -- Function File: H = surfc (...)
     Plot a 3-D surface mesh with underlying contour lines.

     The surface mesh is plotted using shaded rectangles.  The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'.  over a 2-D rectangular region in the x-y plane.  Z determines the height above the plane of each vertex.  If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'.  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The color of the surface is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally, the color of the surface can be specified independently of Z by supplying a color matrix, C.

     Any property/value pairs are passed directly to the underlying surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     Note: The exact appearance of the surface can be controlled with the 'shading' command or by using 'set' to control surface object properties.

     See also: ezsurfc, surf, surfl, surfnorm, trisurf, contour, mesh, surface, meshgrid, hidden, shading, colormap, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Plot a 3-D surface mesh with underlying contour lines.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
surfl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2011
 -- Function File: surfl (Z)
 -- Function File: surfl (X, Y, Z)
 -- Function File: surfl (..., LSRC)
 -- Function File: surfl (X, Y, Z, LSRC, P)
 -- Function File: surfl (..., "cdata")
 -- Function File: surfl (..., "light")
 -- Function File: surfl (HAX, ...)
 -- Function File: H = surfl (...)
     Plot a 3-D surface using shading based on various lighting models.

     The surface mesh is plotted using shaded rectangles.  The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'.  over a 2-D rectangular region in the x-y plane.  Z determines the height above the plane of each vertex.  If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'.  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The default lighting mode "cdata", changes the cdata property of the surface object to give the impression of a lighted surface.  *Warning:* The alternative mode "light" mode which creates a light object to illuminate the surface is not implemented (yet).

     The light source location can be specified using LSRC.  It can be given as a 2-element vector [azimuth, elevation] in degrees, or as a 3-element vector [lx, ly, lz].  The default value is rotated 45 degrees counterclockwise to the current view.

     The material properties of the surface can specified using a 4-element vector P = [AM D SP EXP] which defaults to P = [0.55 0.6 0.4 10].

     "AM" strength of ambient light

     "D" strength of diffuse reflection

     "SP" strength of specular reflection

     "EXP" specular exponent

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     Example:

          colormap (bone (64));
          surfl (peaks);
          shading interp;

     See also: diffuse, specular, surf, shading, colormap, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Plot a 3-D surface using shading based on various lighting models.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
surf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1565
 -- Function File: surf (X, Y, Z)
 -- Function File: surf (Z)
 -- Function File: surf (..., C)
 -- Function File: surf (..., PROP, VAL, ...)
 -- Function File: surf (HAX, ...)
 -- Function File: H = surf (...)
     Plot a 3-D surface mesh.

     The surface mesh is plotted using shaded rectangles.  The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'.  over a 2-D rectangular region in the x-y plane.  Z determines the height above the plane of each vertex.  If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'.  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The color of the surface is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally, the color of the surface can be specified independently of Z by supplying a color matrix, C.

     Any property/value pairs are passed directly to the underlying surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     Note: The exact appearance of the surface can be controlled with the 'shading' command or by using 'set' to control surface object properties.

     See also: ezsurf, surfc, surfl, surfnorm, trisurf, contour, mesh, surface, meshgrid, hidden, shading, colormap, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Plot a 3-D surface mesh.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
surfnorm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1460
 -- Function File: surfnorm (X, Y, Z)
 -- Function File: surfnorm (Z)
 -- Function File: surfnorm (..., PROP, VAL, ...)
 -- Function File: surfnorm (HAX, ...)
 -- Function File: [NX, NY, NZ] = surfnorm (...)
     Find the vectors normal to a meshgridded surface.

     If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  If only a single input Z is given then X is taken to be '1:rows (Z)' and Y is '1:columns (Z)'.

     If no return arguments are requested, a surface plot with the normal vectors to the surface is plotted.

     Any property/value input pairs are assigned to the surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     If output arguments are requested then the components of the normal vectors are returned in NX, NY, and NZ and no plot is made.

     An example of the use of 'surfnorm' is

          surfnorm (peaks (25));

     Algorithm: The normal vectors are calculated by taking the cross product of the diagonals of each of the quadrilaterals in the meshgrid to find the normal vectors of the centers of these quadrilaterals.  The four nearest normal vectors to the meshgrid points are then averaged to obtain the normal to the surface at the meshgridded points.

     See also: isonormals, quiver3, surf, meshgrid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Find the vectors normal to a meshgridded surface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
tetramesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1305
 -- Function File: tetramesh (T, X)
 -- Function File: tetramesh (T, X, C)
 -- Function File: tetramesh (..., PROPERTY, VAL, ...)
 -- Function File: H = tetramesh (...)
     Display the tetrahedrons defined in the m-by-4 matrix T as 3-D patches.

     T is typically the output of a Delaunay triangulation of a 3-D set of points.  Every row of T contains four indices into the n-by-3 matrix X of the vertices of a tetrahedron.  Every row in X represents one point in 3-D space.

     The vector C specifies the color of each tetrahedron as an index into the current colormap.  The default value is 1:m where m is the number of tetrahedrons; the indices are scaled to map to the full range of the colormap.  If there are more tetrahedrons than colors in the colormap then the values in C are cyclically repeated.

     Calling 'tetramesh (..., "property", "value", ...)' passes all property/value pairs directly to the patch function as additional arguments.

     The optional return value H is a vector of patch handles where each handle represents one tetrahedron in the order given by T.  A typical use case for H is to turn the respective patch "visible" property "on" or "off".

     Type 'demo tetramesh' to see examples on using 'tetramesh'.

     See also: trimesh, delaunay, delaunayn, patch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Display the tetrahedrons defined in the m-by-4 matrix T as 3-D patches.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
trimesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1357
 -- Function File: trimesh (TRI, X, Y, Z, C)
 -- Function File: trimesh (TRI, X, Y, Z)
 -- Function File: trimesh (TRI, X, Y)
 -- Function File: trimesh (..., PROP, VAL, ...)
 -- Function File: H = trimesh (...)
     Plot a 3-D triangular wireframe mesh.

     In contrast to 'mesh', which plots a mesh using rectangles, 'trimesh' plots the mesh using triangles.

     TRI is typically the output of a Delaunay triangulation over the grid of X, Y.  Every row of TRI represents one triangle and contains three indices into [X, Y] which are the vertices of the triangles in the x-y plane.  Z determines the height above the plane of each vertex.  If no Z input is given then the triangles are plotted as a 2-D figure.

     The color of the trimesh is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally, the color of the mesh can be specified independently of Z by supplying a color matrix, C.  If Z has N elements, then C should be an Nx1 vector for colormap data or an Nx3 matrix for RGB data.

     Any property/value pairs are passed directly to the underlying patch object.

     The optional return value H is a graphics handle to the created patch object.

     See also: mesh, tetramesh, triplot, trisurf, delaunay, patch, hidden.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Plot a 3-D triangular wireframe mesh.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
triplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 643
 -- Function File: triplot (TRI, X, Y)
 -- Function File: triplot (TRI, X, Y, LINESPEC)
 -- Function File: H = triplot (...)
     Plot a 2-D triangular mesh.

     TRI is typically the output of a Delaunay triangulation over the grid of X, Y.  Every row of TRI represents one triangle and contains three indices into [X, Y] which are the vertices of the triangles in the x-y plane.

     The linestyle to use for the plot can be defined with the argument LINESPEC of the same format as the 'plot' command.

     The optional return value H is a graphics handle to the created patch object.

     See also: plot, trimesh, trisurf, delaunay.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Plot a 2-D triangular mesh.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
trisurf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1237
 -- Function File: trisurf (TRI, X, Y, Z, C)
 -- Function File: trisurf (TRI, X, Y, Z)
 -- Function File: trisurf (..., PROP, VAL, ...)
 -- Function File: H = trisurf (...)
     Plot a 3-D triangular surface.

     In contrast to 'surf', which plots a surface mesh using rectangles, 'trisurf' plots the mesh using triangles.

     TRI is typically the output of a Delaunay triangulation over the grid of X, Y.  Every row of TRI represents one triangle and contains three indices into [X, Y] which are the vertices of the triangles in the x-y plane.  Z determines the height above the plane of each vertex.

     The color of the trimesh is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally, the color of the mesh can be specified independently of Z by supplying a color matrix, C.  If Z has N elements, then C should be an Nx1 vector for colormap data or an Nx3 matrix for RGB data.

     Any property/value pairs are passed directly to the underlying patch object.

     The optional return value H is a graphics handle to the created patch object.

     See also: surf, triplot, trimesh, delaunay, patch, shading.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Plot a 3-D triangular surface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
waterfall


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1538
 -- Function File: waterfall (X, Y, Z)
 -- Function File: waterfall (Z)
 -- Function File: waterfall (..., C)
 -- Function File: waterfall (..., PROP, VAL, ...)
 -- Function File: waterfall (HAX, ...)
 -- Function File: H = waterfall (...)
     Plot a 3-D waterfall plot.

     A waterfall plot is similar to a 'meshz' plot except only mesh lines for the rows of Z (x-values) are shown.

     The wireframe mesh is plotted using rectangles.  The vertices of the rectangles [X, Y] are typically the output of 'meshgrid'.  over a 2-D rectangular region in the x-y plane.  Z determines the height above the plane of each vertex.  If only a single Z matrix is given, then it is plotted over the meshgrid 'X = 1:columns (Z), Y = 1:rows (Z)'.  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The color of the mesh is computed by linearly scaling the Z values to fit the range of the current colormap.  Use 'caxis' and/or change the colormap to control the appearance.

     Optionally the color of the mesh can be specified independently of Z by supplying a color matrix, C.

     Any property/value pairs are passed directly to the underlying surface object.

     If the first argument HAX is an axes handle, then plot into this axis, rather than the current axes returned by 'gca'.

     The optional return value H is a graphics handle to the created surface object.

     See also: meshz, mesh, meshc, contour, surf, surface, ribbon, meshgrid, hidden, shading, colormap, caxis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Plot a 3-D waterfall plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
allchild


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 441
 -- Function File: H = allchild (HANDLES)
     Find all children, including hidden children, of a graphics object.

     This function is similar to 'get (h, "children")', but also returns hidden objects (HandleVisibility = "off").

     If HANDLES is a scalar, H will be a vector.  Otherwise, H will be a cell matrix of the same size as HANDLES and each cell will contain a vector of handles.

     See also: findall, findobj, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Find all children, including hidden children, of a graphics object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ancestor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 605
 -- Function File: PARENT = ancestor (H, TYPE)
 -- Function File: PARENT = ancestor (H, TYPE, "toplevel")
     Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string.

     If TYPE is a cell array of strings, return the first parent whose type matches any of the given type strings.

     If the handle object H itself is of type TYPE, return H.

     If "toplevel" is given as a third argument, return the highest parent in the object hierarchy that matches the condition, instead of the first (nearest) one.

     See also: findobj, findall, allchild.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
axes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 708
 -- Function File: axes ()
 -- Function File: axes (PROPERTY, VALUE, ...)
 -- Function File: axes (HAX)
 -- Function File: H = axes (...)
     Create an axes object and return a handle to it, or set the current axes to HAX.

     Called without any arguments, or with PROPERTY/VALUE pairs, construct a new axes.  For accepted properties and corresponding values, *note set: XREFset.

     Called with a single axes handle argument HAX, the function makes HAX the current axis.  It also restacks the axes in the corresponding figure so that HAX is the first entry in the list of children.  This causes HAX to be displayed on top of any other axes objects (Z-order stacking).

     See also: gca, set, get.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create an axes object and return a handle to it, or set the current axes to HAX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cla


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 633
 -- Command: cla
 -- Command: cla reset
 -- Function File: cla (HAX)
 -- Function File: cla (HAX, "reset")
     Clear the current axes.

     'cla' operates by deleting child graphic objects with visible handles (HandleVisibility = "on").

     If the optional argument "reset" is specified, delete all child objects including those with hidden handles and reset all axis properties to their defaults.  However, the following properties are not reset: Position, Units.

     If the first argument HAX is an axes handle, then operate on this axis rather than the current axes returned by 'gca'.

     See also: clf, delete, reset.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Clear the current axes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
clf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 816
 -- Command: clf
 -- Command: clf reset
 -- Function File: clf (HFIG)
 -- Function File: clf (HFIG, "reset")
 -- Function File: H = clf (...)
     Clear the current figure window.

     'clf' operates by deleting child graphics objects with visible handles (HandleVisibility = "on").

     If the optional argument "reset" is specified, delete all child objects including those with hidden handles and reset all figure properties to their defaults.  However, the following properties are not reset: Position, Units, PaperPosition, PaperUnits.

     If the first argument HFIG is a figure handle, then operate on this figure rather than the current figure returned by 'gcf'.

     The optional return value H is the graphics handle of the figure window that was cleared.

     See also: cla, close, delete, reset.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Clear the current figure window.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
close


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1190
 -- Command: close
 -- Command: close (H)
 -- Command: close H
 -- Command: close all
 -- Command: close all hidden
 -- Command: close all force
     Close figure window(s).

     When called with no arguments, close the current figure.  This is equivalent to 'close (gcf)'.  If the input H is a graphic handle, or vector of graphics handles, then close each figure in H.

     If the argument "all" is given then all figures with visible handles (HandleVisibility = "on") are closed.

     If the argument "all hidden" is given then all figures, including hidden ones, are closed.

     If the argument "all force" is given then all figures are closed even when "closerequestfcn" has been altered to prevent closing the window.

     Implementation Note: 'close' operates by calling the function specified by the "closerequestfcn" property for each figure.  By default, the function 'closereq' is used.  It is possible that the function invoked will delay or abort removing the figure.  To remove a figure without executing any callback functions use 'delete'.  When writing a callback function to close a window do not use 'close' to avoid recursion.

     See also: closereq, delete.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Close figure window(s).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
closereq


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
 -- Function File: closereq ()
     Close the current figure and delete all graphics objects associated with it.

     By default, the "closerequestfcn" property of a new plot figure points to this function.

     See also: close, delete.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Close the current figure and delete all graphics objects associated with it.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
colstyle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
 -- Function File: [STYLE, COLOR, MARKER, MSG] = colstyle (LINESPEC)
     Parse LINESPEC and return the line style, color, and markers given.

     In the case of an error, the string MSG will return the text of the error.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Parse LINESPEC and return the line style, color, and markers given.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
copyobj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
 -- Function File: HNEW = copyobj (HORIG)
 -- Function File: HNEW = copyobj (HORIG, HPARENT)
     Construct a copy of the graphic object associated with handle HORIG and return a handle HNEW to the new object.

     If a parent handle HPARENT (root, figure, axes, or hggroup) is specified, the copied object will be created as a child of HPARENT.

     See also: struct2hdl, hdl2struct, findobj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Construct a copy of the graphic object associated with handle HORIG and return a handle HNEW to the new object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
figure


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 763
 -- Command: figure
 -- Command: figure N
 -- Function File: figure (N)
 -- Function File: figure (..., "PROPERTY", VALUE, ...)
 -- Function File: H = figure (...)
     Create a new figure window for plotting.

     If no arguments are specified, a new figure with the next available number is created.

     If called with an integer N, and no such numbered figure exists, then a new figure with the specified number is created.  If the figure already exists then it is made visible and becomes the current figure for plotting.

     Multiple property-value pairs may be specified for the figure object, but they must appear in pairs.

     The optional return value H is a graphics handle to the created figure object.

     See also: axes, gcf, clf, close.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Create a new figure window for plotting.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findall


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 832
 -- Function File: H = findall ()
 -- Function File: H = findall (PROP_NAME, PROP_VALUE, ...)
 -- Function File: H = findall (PROP_NAME, PROP_VALUE, "-LOGICAL_OP", PROP_NAME, PROP_VALUE)
 -- Function File: H = findall ("-property", PROP_NAME)
 -- Function File: H = findall ("-regexp", PROP_NAME, PATTERN)
 -- Function File: H = findall (HLIST, ...)
 -- Function File: H = findall (HLIST, "flat", ...)
 -- Function File: H = findall (HLIST, "-depth", D, ...)
     Find graphics object, including hidden ones, with specified property values.

     The return value H is a list of handles to the found graphic objects.

     'findall' performs the same search as 'findobj', but it includes hidden objects (HandleVisibility = "off").  For full documentation, *note findobj: XREFfindobj.

     See also: findobj, allchild, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Find graphics object, including hidden ones, with specified property values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
findfigs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 173
 -- Function File: findfigs ()
     Find all visible figures that are currently off the screen and move them onto the screen.

     See also: allchild, figure, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Find all visible figures that are currently off the screen and move them onto the screen.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findobj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1988
 -- Function File: H = findobj ()
 -- Function File: H = findobj (PROP_NAME, PROP_VALUE, ...)
 -- Function File: H = findobj (PROP_NAME, PROP_VALUE, "-LOGICAL_OP", PROP_NAME, PROP_VALUE)
 -- Function File: H = findobj ("-property", PROP_NAME)
 -- Function File: H = findobj ("-regexp", PROP_NAME, PATTERN)
 -- Function File: H = findobj (HLIST, ...)
 -- Function File: H = findobj (HLIST, "flat", ...)
 -- Function File: H = findobj (HLIST, "-depth", D, ...)
     Find graphics object with specified property values.

     The simplest form is

          findobj (PROP_NAME, PROP_VALUE)

     which returns the handles of all objects which have a property named PROP_NAME that has the value PROP_VALUE.  If multiple property/value pairs are specified then only objects meeting all of the conditions are returned.

     The search can be limited to a particular set of objects and their descendants, by passing a handle or set of handles HLIST as the first argument.

     The depth of the object hierarchy to search can be limited with the "-depth" argument.  An example of searching only three generations of children is:

          findobj (HLIST, "-depth", 3, PROP_NAME, PROP_VALUE)

     Specifying a depth D of 0, limits the search to the set of objects passed in HLIST.  A depth D of 0 is equivalent to the "flat" argument.

     A specified logical operator may be applied to the pairs of PROP_NAME and PROP_VALUE.  The supported logical operators are: "-and", "-or", "-xor", "-not".

     Objects may also be matched by comparing a regular expression to the property values, where property values that match 'regexp (PROP_VALUE, PATTERN)' are returned.

     Finally, objects may be matched by property name only by using the "-property" option.

     Implementation Note: The search only includes objects with visible handles (HandleVisibility = "on").  *Note findall: XREFfindall, to search for all objects including hidden ones.

     See also: findall, allchild, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Find graphics object with specified property values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
frame2im


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 420
 -- Function File: [X, MAP] = frame2im (F)
     Convert movie frame to indexed image.

     A movie frame is simply a struct with the fields "cdata" and "colormap".

     Support for N-dimensional images or movies is given when F is a struct array.  In such cases, X will be a MxNx1xK or MxNx3xK for indexed and RGB movies respectively, with each frame concatenated along the 4th dimension.

     See also: im2frame.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert movie frame to indexed image.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gca


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 840
 -- Function File: H = gca ()
     Return a handle to the current axis object.

     The current axis is the default target for graphics output.  In the case of a figure with multiple axes, 'gca' returns the last created axes or the last axes that was clicked on with the mouse.

     If no current axes object exists, create one and return its handle.  The handle may then be used to examine or set properties of the axes.  For example,

          ax = gca ();
          set (ax, "position", [0.5, 0.5, 0.5, 0.5]);

     creates an empty axes object and then changes its location and size in the figure window.

     Note: To find the current axis without creating a new axes object if it does not exist, query the "CurrentAxes" property of a figure.

          get (gcf, "currentaxes");

     See also: gcf, gco, gcbf, gcbo, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return a handle to the current axis object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gcbf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
 -- Function File: FIG = gcbf ()
     Return a handle to the figure containing the object whose callback is currently executing.

     If no callback is executing, this function returns the empty matrix.  The handle returned by this function is the same as the second output argument of 'gcbo'.

     See also: gcbo, gcf, gco, gca, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return a handle to the figure containing the object whose callback is currently executing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gcbo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 563
 -- Function File: H = gcbo ()
 -- Function File: [H, FIG] = gcbo ()
     Return a handle to the object whose callback is currently executing.

     If no callback is executing, this function returns the empty matrix.  This handle is obtained from the root object property "CallbackObject".

     When called with a second output argument, return the handle of the figure containing the object whose callback is currently executing.  If no callback is executing the second output is also set to the empty matrix.

     See also: gcbf, gco, gca, gcf, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return a handle to the object whose callback is currently executing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gcf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 914
 -- Function File: H = gcf ()
     Return a handle to the current figure.

     The current figure is the default target for graphics output.  If multiple figures exist, 'gcf' returns the last created figure or the last figure that was clicked on with the mouse.

     If a current figure does not exist, create one and return its handle.  The handle may then be used to examine or set properties of the figure.  For example,

          fplot (@sin, [-10, 10]);
          fig = gcf ();
          set (fig, "numbertitle", "off", "name", "sin plot")

     plots a sine wave, finds the handle of the current figure, and then renames the figure window to describe the contents.

     Note: To find the current figure without creating a new one if it does not exist, query the "CurrentFigure" property of the root graphics object.

          get (0, "currentfigure");

     See also: gca, gco, gcbf, gcbo, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return a handle to the current figure.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
 -- Function File: H = gco ()
 -- Function File: H = gco (FIG)
     Return a handle to the current object of the current figure, or a handle to the current object of the figure with handle FIG.

     The current object of a figure is the object that was last clicked on.  It is stored in the "CurrentObject" property of the target figure.

     If the last mouse click did not occur on any child object of the figure, then the current object is the figure itself.

     If no mouse click occurred in the target figure, this function returns an empty matrix.

     Programming Note: The value returned by this function is not necessarily the same as the one returned by 'gcbo' during callback execution.  An executing callback can be interrupted by another callback and the current object may be changed.

     See also: gcbo, gca, gcf, gcbf, get, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Return a handle to the current object of the current figure, or a handle to the current object of the figure with handle FIG.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ginput


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 849
 -- Function File: [X, Y, BUTTONS] = ginput (N)
 -- Function File: [X, Y, BUTTONS] = ginput ()
     Return the position and type of mouse button clicks and/or key strokes in the current figure window.

     If N is defined, then capture N events before returning.  When N is not defined 'ginput' will loop until the return key <RET> is pressed.

     The return values X, Y are the coordinates where the mouse was clicked in the units of the current axes.  The return value BUTTON is 1, 2, or 3 for the left, middle, or right button.  If a key is pressed the ASCII value is returned in BUTTON.

     Implementation Note: 'ginput' is intenteded for 2-D plots.  For 3-D plots see the CURRENTPOINT property of the current axes which can be transformed with knowledge of the current 'view' into data units.

     See also: gtext, waitforbuttonpress.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Return the position and type of mouse button clicks and/or key strokes in the current figure window.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
graphics_toolkit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 817
 -- Function File: NAME = graphics_toolkit ()
 -- Function File: NAME = graphics_toolkit (HLIST)
 -- Function File: graphics_toolkit (NAME)
 -- Function File: graphics_toolkit (HLIST, NAME)
     Query or set the default graphics toolkit which is assigned to new figures.

     With no inputs, return the current default graphics toolkit.  If the input is a list of figure graphic handles, HLIST, then return the name of the graphics toolkit in use for each figure.

     When called with a single input NAME set the default graphics toolkit to NAME.  If the toolkit is not already loaded, it is initialized by calling the function '__init_NAME__'.  If the first input is a list of figure handles, HLIST, then the graphics toolkit is set to NAME for these figures only.

     See also: available_graphics_toolkits.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Query or set the default graphics toolkit which is assigned to new figures.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
hdl2struct


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 314
 -- Function File: S = hdl2struct (H)
     Return a structure, S, whose fields describe the properties of the object, and its children, associated with the handle, H.

     The fields of the structure S are "type", "handle", "properties", "children", and "special".

     See also: struct2hdl, hgsave, findobj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Return a structure, S, whose fields describe the properties of the object, and its children, associated with the handle, H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hggroup


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 880
 -- Function File: hggroup ()
 -- Function File: hggroup (HAX)
 -- Function File: hggroup (..., PROPERTY, VALUE, ...)
 -- Function File: H = hggroup (...)
     Create handle graphics group object with axes parent HAX.

     If no parent is specified, the group is created in the current axes.

     Multiple property/value pairs may be specified for the hggroup, but they must appear in pairs.

     The optional return value H is a graphics handle to the created hggroup object.

     Programming Note: An hggroup is a way to group base graphics objects such as line objects or patch objects into a single unit which can react appropriately.  For example, the individual lines of a contour plot are collected into a single hggroup so that they can be made visible/invisible with a single command, 'set (hg_handle, "visible", "off")'.

     See also: addproperty, addlistener.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Create handle graphics group object with axes parent HAX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hgload


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 271
 -- Function File: H = hgload (FILENAME)
     Load the graphics object in FILENAME into the graphics handle H.

     If FILENAME has no extension, Octave will try to find the file with and without the standard extension of '.ofig'.

     See also: hgsave, struct2hdl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Load the graphics object in FILENAME into the graphics handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hgsave


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 864
 -- Function File: hgsave (FILENAME)
 -- Function File: hgsave (H, FILENAME)
 -- Function File: hgsave (H, FILENAME, FMT)
     Save the graphics handle H to the file FILENAME in the format FMT.

     If unspecified, H is the current figure as returned by 'gcf'.

     When FILENAME does not have an extension the default filename extension '.ofig' will be appended.

     If present, FMT should be one of the following:

        * '-binary', '-float-binary'

        * '-hdf5', '-float-hdf5'

        * '-V7', '-v7', '-7', '-mat7-binary'

        * '-V6', '-v6', '-6', '-mat6-binary'

        * '-text'

        * '-zip', '-z'

     When producing graphics for final publication use 'print' or 'saveas'.  When it is important to be able to continue to edit a figure as an Octave object, use 'hgsave'/'hgload'.

     See also: hgload, hdl2struct, saveas, print.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Save the graphics handle H to the file FILENAME in the format FMT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hold


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1033
 -- Command: hold
 -- Command: hold on
 -- Command: hold off
 -- Command: hold all
 -- Function File: hold (HAX, ...)
     Toggle or set the "hold" state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.

     'hold on'
          Retain plot data and settings so that subsequent plot commands are displayed on a single graph.

     'hold all'
          Retain plot line color, line style, data, and settings so that subsequent plot commands are displayed on a single graph with the next line color and style.

     'hold off'
          Restore default graphics settings which clear the graph and reset axis properties before each new plot command.  (default).

     'hold'
          Toggle the current hold state.

     When given the additional argument HAX, the hold state is modified for this axis rather than the current axes returned by 'gca'.

     To query the current hold state use the 'ishold' function.

     See also: ishold, cla, clf, newplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
Toggle or set the "hold" state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
im2frame


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 434
 -- Function File: im2frame (RGB)
 -- Function File: im2frame (X, MAP)
     Convert image to movie frame.

     A movie frame is simply a struct with the fields "cdata" and "colormap".

     Support for N-dimensional images is given when each image projection, matrix sizes of MxN and MxNx3 for RGB images, is concatenated along the fourth dimension.  In such cases, the returned value is a struct array.

     See also: frame2im.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Convert image to movie frame.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isaxes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Function File: isaxes (H)
     Return true if H is an axes graphics handle and false otherwise.

     If H is a matrix then return a logical array which is true where the elements of H are axes graphics handles and false where they are not.

     See also: isaxes, ishandle.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return true if H is an axes graphics handle and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isfigure


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 287
 -- Function File: isfigure (H)
     Return true if H is a figure graphics handle and false otherwise.

     If H is a matrix then return a logical array which is true where the elements of H are figure graphics handles and false where they are not.

     See also: isaxes, ishandle.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return true if H is a figure graphics handle and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ishghandle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 222
 -- Function File: ishghandle (H)
     Return true if H is a graphics handle and false otherwise.

     This function is equivalent to 'ishandle' and is provided for compatibility with MATLAB.

     See also: ishandle.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ishold


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 389
 -- Command: ishold
 -- Function File: ishold (HAX)
 -- Function File: ishold (HFIG)
     Return true if the next plot will be added to the current plot, or false if the plot device will be cleared before drawing the next plot.

     If the first argument is an axes handle HAX or figure handle HFIG then operate on this plot rather than the current one.

     See also: hold, newplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Return true if the next plot will be added to the current plot, or false if the plot device will be cleared before drawing the next plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isprop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
 -- Function File: RES = isprop (OBJ, "PROP")
     Return true if PROP is a property of the object OBJ.

     OBJ may also be an array of objects in which case RES will be a logical array indicating whether each handle has the property PROP.

     For plotting, OBJ is a handle to a graphics object.  Otherwise, OBJ should be an instance of a class.

     See also: get, set, ismethod, isobject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return true if PROP is a property of the object OBJ.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linkaxes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 808
 -- Function File: linkaxes (HAX)
 -- Function File: linkaxes (HAX, OPTSTR)
     Link the axis limits of 2-D plots such that a change in one is propagated to the others.

     The axes handles to be linked are passed as the first argument HAX.

     The optional second argument is a string which defines which axis limits will be linked.  The possible values for OPTSTR are:

     "x"
          Link x-axes

     "y"
          Link y-axes

     "xy" (default)
          Link both axes

     "off"
          Turn off linking

     If unspecified the default is to link both X and Y axes.

     When linking, the limits from the first axes in HAX are applied to the other axes in the list.  Subsequent changes to any one of the axes will be propagated to the others.

     See also: linkprop, addproperty.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Link the axis limits of 2-D plots such that a change in one is propagated to the others.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linkprop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1236
 -- Function File: HLINK = linkprop (H, "PROP")
 -- Function File: HLINK = linkprop (H, {"PROP1", "PROP2", ...})
     Link graphic object properties, such that a change in one is propagated to the others.

     The input H is a vector of graphic handles to link.

     PROP may be a string when linking a single property, or a cell array of strings for multiple properties.  During the linking process all properties in PROP will initially be set to the values that exist on the first object in the list H.

     The function returns HLINK which is a special object describing the link.  As long as the reference HLINK exists the link between graphic objects will be active.  This means that HLINK must be preserved in a workspace variable, a global variable, or otherwise stored using a function such as 'setappdata', 'guidata'.  To unlink properties, execute 'clear HLINK'.

     An example of the use of 'linkprop' is

          x = 0:0.1:10;
          subplot (1,2,1);
          h1 = plot (x, sin (x));
          subplot (1,2,2);
          h2 = plot (x, cos (x));
          hlink = linkprop ([h1, h2], {"color","linestyle"});
          set (h1, "color", "green");
          set (h2, "linestyle", "--");

     See also: linkaxes.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Link graphic object properties, such that a change in one is propagated to the others.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
meshgrid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1523
 -- Function File: [XX, YY] = meshgrid (X, Y)
 -- Function File: [XX, YY, ZZ] = meshgrid (X, Y, Z)
 -- Function File: [XX, YY] = meshgrid (X)
 -- Function File: [XX, YY, ZZ] = meshgrid (X)
     Given vectors of X and Y coordinates, return matrices XX and YY corresponding to a full 2-D grid.

     The rows of XX are copies of X, and the columns of YY are copies of Y.  If Y is omitted, then it is assumed to be the same as X.

     If the optional Z input is given, or ZZ is requested, then the output will be a full 3-D grid.

     'meshgrid' is most frequently used to produce input for a 2-D or 3-D function that will be plotted.  The following example creates a surface plot of the "sombrero" function.

          f = @(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
          range = linspace (-8, 8, 41);
          [X, Y] = meshgrid (range, range);
          Z = f (X, Y);
          surf (X, Y, Z);

     Programming Note: 'meshgrid' is restricted to 2-D or 3-D grid generation.  The 'ndgrid' function will generate 1-D through N-D grids.  However, the functions are not completely equivalent.  If X is a vector of length M and Y is a vector of length N, then 'meshgrid' will produce an output grid which is NxM.  'ndgrid' will produce an output which is MxN (transpose) for the same input.  Some core functions expect 'meshgrid' input and others expect 'ndgrid' input.  Check the documentation for the function in question to determine the proper input format.

     See also: ndgrid, mesh, contour, surf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Given vectors of X and Y coordinates, return matrices XX and YY corresponding to a full 2-D grid.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ndgrid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 860
 -- Function File: [Y1, Y2, ..., Yn] = ndgrid (X1, X2, ..., Xn)
 -- Function File: [Y1, Y2, ..., Yn] = ndgrid (X)
     Given n vectors X1, ..., Xn, 'ndgrid' returns n arrays of dimension n.

     The elements of the i-th output argument contains the elements of the vector Xi repeated over all dimensions different from the i-th dimension.  Calling ndgrid with only one input argument X is equivalent to calling ndgrid with all n input arguments equal to X:

     [Y1, Y2, ..., Yn] = ndgrid (X, ..., X)

     Programming Note: 'ndgrid' is very similar to the function 'meshgrid' except that the first two dimensions are transposed in comparison to 'meshgrid'.  Some core functions expect 'meshgrid' input and others expect 'ndgrid' input.  Check the documentation for the function in question to determine the proper input format.

     See also: meshgrid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Given n vectors X1, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
newplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7506
 -- Function File: newplot ()
 -- Function File: newplot (HFIG)
 -- Function File: newplot (HAX)
 -- Function File: HAX = newplot (...)
     Prepare graphics engine to produce a new plot.

     This function is called at the beginning of all high-level plotting functions.  It is not normally required in user programs.  'newplot' queries the "NextPlot" field of the current figure and axis to determine what to do.

     Figure NextPlot                                                                                                                                                                                                                                                  Action
     ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
     "new"                                                                                                                                                                                                                                                            Create a new figure and make it the current figure.
                                                                                                                                                                                                                                                                      
     "add" (default)                                                                                                                                                                                                                                                  Add new graphic objects to the current figure.
                                                                                                                                                                                                                                                                      
     "replacechildren"                                                                                                                                                                                                                                                Delete child objects whose HandleVisibility is set to "on".  Set NextPlot property to "add".  This typically clears a figure, but leaves in place hidden objects such as menubars.  This is equivalent to 'clf'.
                                                                                                                                                                                                                                                                      
     "replace"                                                                                                                                                                                                                                                        Delete all child objects of the figure and reset all figure properties to their defaults.  However, the following four properties are not reset: Position, Units, PaperPosition, PaperUnits.  This is equivalent to 'clf reset'.

     Axis NextPlot                                                                                                                                                                                                                                                    Action
     ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
     "add"                                                                                                                                                                                                                                                            Add new graphic objects to the current axes.  This is equivalent to 'hold on'.
                                                                                                                                                                                                                                                                      
     "replacechildren"                                                                                                                                                                                                                                                Delete child objects whose HandleVisibility is set to "on", but leave axis properties unmodified.  This typically clears a plot, but preserves special settings such as log scaling for axes.  This is equivalent to 'cla'.
                                                                                                                                                                                                                                                                      
     "replace" (default)                                                                                                                                                                                                                                              Delete all child objects of the axis and reset all axis properties to their defaults.  However, the following properties are not reset: Position, Units.  This is equivalent to 'cla reset'.

     If the optional input HFIG or HAX is given then prepare the specified figure or axes rather than the current figure and axes.

     The optional return value HAX is a graphics handle to the created axes object (not figure).

     *Caution:* Calling 'newplot' may change the current figure and current axis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Prepare graphics engine to produce a new plot.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 594
 -- Command: pan
 -- Command: pan on
 -- Command: pan off
 -- Command: pan xon
 -- Command: pan yon
 -- Function File: pan (HFIG, OPTION)
     Control the interactive panning mode of a figure in the GUI.

     Given the option "on" or "off", set the interactive pan mode on or off.

     With no arguments, toggle the current pan mode on or off.

     Given the option "xon" or "yon", enable pan mode for the x or y axis only.

     If the first argument HFIG is a figure, then operate on the given figure rather than the current figure as returned by 'gcf'.

     See also: rotate3d, zoom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Control the interactive panning mode of a figure in the GUI.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
printd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
 -- Function File: printd (OBJ, FILENAME)
 -- Function File: OUT_FILE = printd (...)

     Convert any object acceptable to 'disp' into the format selected by the suffix of FILENAME.

     If the return argument OUT_FILE is given, the name of the created file is returned.

     This function is intended to facilitate manipulation of the output of functions such as 'stemleaf'.

     See also: stemleaf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Convert any object acceptable to 'disp' into the format selected by the suffix of FILENAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
print


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8025
 -- Function File: print ()
 -- Function File: print (OPTIONS)
 -- Function File: print (FILENAME, OPTIONS)
 -- Function File: print (H, FILENAME, OPTIONS)
     Print a plot, or save it to a file.

     Both output formatted for printing (PDF and PostScript), and many bitmapped and vector image formats are supported.

     FILENAME defines the name of the output file.  If the file name has no suffix, one is inferred from the specified device and appended to the file name.  If no filename is specified, the output is sent to the printer.

     H specifies the handle of the figure to print.  If no handle is specified the current figure is used.

     For output to a printer, PostScript file, or PDF file, the paper size is specified by the figure's 'papersize' property.  The location and size of the image on the page are specified by the figure's 'paperposition' property.  The orientation of the page is specified by the figure's 'paperorientation' property.

     The width and height of images are specified by the figure's 'paperpositon(3:4)' property values.

     The 'print' command supports many OPTIONS:

     '-fH'
          Specify the handle, H, of the figure to be printed.  The default is the current figure.

     '-PPRINTER'
          Set the PRINTER name to which the plot is sent if no FILENAME is specified.

     '-GGHOSTSCRIPT_COMMAND'
          Specify the command for calling Ghostscript.  For Unix and Windows the defaults are "gs" and "gswin32c", respectively.

     '-color'
     '-mono'
          Color or monochrome output.

     '-solid'
     '-dashed'
          Force all lines to be solid or dashed, respectively.

     '-portrait'
     '-landscape'
          Specify the orientation of the plot for printed output.  For non-printed output the aspect ratio of the output corresponds to the plot area defined by the "paperposition" property in the orientation specified.  This option is equivalent to changing the figure's "paperorientation" property.

     '-TextAlphaBits=N'
     '-GraphicsAlphaBits=N'
          Octave is able to produce output for various printers, bitmaps, and vector formats by using Ghostscript.  For bitmap and printer output anti-aliasing is applied using Ghostscript's TextAlphaBits and GraphicsAlphaBits options.  The default number of bits for each is 4.  Allowed values for N are 1, 2, or 4.

     '-dDEVICE'
          The available output format is specified by the option DEVICE, and is one of:

          'ps'
          'ps2'
          'psc'
          'psc2'
               PostScript (level 1 and 2, mono and color).  The FLTK graphics toolkit generates PostScript level 3.0.

          'eps'
          'eps2'
          'epsc'
          'epsc2'
               Encapsulated PostScript (level 1 and 2, mono and color).  The FLTK graphic toolkit generates PostScript level 3.0.

          'pslatex'
          'epslatex'
          'pdflatex'
          'pslatexstandalone'
          'epslatexstandalone'
          'pdflatexstandalone'
               Generate a LaTeX file 'FILENAME.tex' for the text portions of a plot and a file 'FILENAME.(ps|eps|pdf)' for the remaining graphics.  The graphics file suffix .ps|eps|pdf is determined by the specified device type.  The LaTeX file produced by the 'standalone' option can be processed directly by LaTeX.  The file generated without the 'standalone' option is intended to be included from another LaTeX document.  In either case, the LaTeX file contains an '\includegraphics' command so that the generated graphics file is automatically included when the LaTeX file is processed.  The text that is written to the LaTeX file contains the strings *exactly* as they were specified in the plot.  If any special characters of the TeX mode interpreter were used, the file must be edited before LaTeX processing.  Specifically, the special characters must be enclosed with dollar signs ('$ ... $'), and other characters that are recognized by LaTeX may also need editing (.e.g., braces).  The 'pdflatex' device, and any
               of the 'standalone' formats, are not available with the Gnuplot toolkit.

          'tikz'
               Generate a LaTeX file using PGF/TikZ.  For the FLTK toolkit the result is PGF.

          'ill'
          'aifm'
               Adobe Illustrator (Obsolete for Gnuplot versions > 4.2)

          'cdr'
          'corel'
               CorelDraw

          'dxf'
               AutoCAD

          'emf'
          'meta'
               Microsoft Enhanced Metafile

          'fig'
               XFig.  For the Gnuplot graphics toolkit, the additional options '-textspecial' or '-textnormal' can be used to control whether the special flag should be set for the text in the figure.  (default is '-textnormal')

          'hpgl'
               HP plotter language

          'mf'
               Metafont

          'png'
               Portable network graphics

          'jpg'
          'jpeg'
               JPEG image

          'gif'
               GIF image (only available for the Gnuplot graphics toolkit)

          'pbm'
               PBMplus

          'svg'
               Scalable vector graphics

          'pdf'
               Portable document format

               NOTE: The gnuplot binary as shipped by Debian cannot create PDF files, see http://bugs.debian.org/478677

          If the device is omitted, it is inferred from the file extension, or if there is no filename it is sent to the printer as PostScript.

     '-dGHOSTSCRIPT_DEVICE'
          Additional devices are supported by Ghostscript.  Some examples are;

          'pdfwrite'
               Produces pdf output from eps

          'ljet2p'
               HP LaserJet IIP

          'pcx24b'
               24-bit color PCX file format

          'ppm'
               Portable Pixel Map file format

          For a complete list, type 'system ("gs -h")' to see what formats and devices are available.

          When Ghostscript output is sent to a printer the size is determined by the figure's "papersize" property.  When the output is sent to a file the size is determined by the plot box defined by the figure's "paperposition" property.

     '-append'
          Append PostScript or PDF output to a pre-existing file of the same type.

     '-rNUM'
          Resolution of bitmaps in pixels per inch.  For both metafiles and SVG the default is the screen resolution; for other formats it is 150 dpi.  To specify screen resolution, use "-r0".

     '-loose'
     '-tight'
          Force a tight or loose bounding box for eps files.  The default is loose.

     '-PREVIEW'
          Add a preview to eps files.  Supported formats are:

          '-interchange'
               Provide an interchange preview.

          '-metafile'
               Provide a metafile preview.

          '-pict'
               Provide pict preview.

          '-tiff'
               Provide a tiff preview.

     '-SXSIZE,YSIZE'
          Plot size in pixels for EMF, GIF, JPEG, PBM, PNG, and SVG.  For PS, EPS, PDF, and other vector formats the plot size is in points.  This option is equivalent to changing the size of the plot box associated with the "paperposition" property.  When using the command form of the print function you must quote the XSIZE,YSIZE option.  For example, by writing "-S640,480".

     '-FFONTNAME'
     '-FFONTNAME:SIZE'
     '-F:SIZE'
          Use FONTNAME and/or FONTSIZE for all text.  FONTNAME is ignored for some devices: dxf, fig, hpgl, etc.

     The filename and options can be given in any order.

     Example: Print to a file using the pdf device.

          figure (1);
          clf ();
          surf (peaks);
          print figure1.pdf

     Example: Print to a file using jpg device.

          clf ();
          surf (peaks);
          print -djpg figure2.jpg

     Example: Print to printer named PS_printer using ps format.

          clf ();
          surf (peaks);
          print -dpswrite -PPS_printer

     See also: saveas, hgsave, orient, figure.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Print a plot, or save it to a file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
refreshdata


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 939
 -- Function File: refreshdata ()
 -- Function File: refreshdata (H)
 -- Function File: refreshdata (H, WORKSPACE)
     Evaluate any 'datasource' properties of the current figure and update the plot if the corresponding data has changed.

     If the first argument H is a list of graphic handles, then operate on these objects rather than the current figure returned by 'gcf'.

     The optional second argument WORKSPACE can take the following values:

     "base"
          Evaluate the datasource properties in the base workspace.  (default).

     "caller"
          Evaluate the datasource properties in the workspace of the function that called 'refreshdata'.

     An example of the use of 'refreshdata' is:

          x = 0:0.1:10;
          y = sin (x);
          plot (x, y, "ydatasource", "y");
          for i = 1 : 100
            pause (0.1);
            y = sin (x + 0.1*i);
            refreshdata ();
          endfor
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Evaluate any 'datasource' properties of the current figure and update the plot if the corresponding data has changed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
refresh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 264
 -- Function File: refresh ()
 -- Function File: refresh (H)
     Refresh a figure, forcing it to be redrawn.

     When called without an argument the current figure is redrawn.  Otherwise, the figure with graphic handle H is redrawn.

     See also: drawnow.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Refresh a figure, forcing it to be redrawn.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rotate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 451
 -- Function File: rotate (H, DIR, ALPHA)
 -- Function File: rotate (..., ORIGIN)
     Rotate the plot object H through ALPHA degrees around the line with direction DIR and origin ORIGIN.

     The default value of ORIGIN is the center of the axes object that is the parent of H.

     If H is a vector of handles, they must all have the same parent axes object.

     Graphics objects that may be rotated are lines, surfaces, patches, and images.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Rotate the plot object H through ALPHA degrees around the line with direction DIR and origin ORIGIN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rotate3d


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 497
 -- Command: rotate3d
 -- Command: rotate3d on
 -- Command: rotate3d off
 -- Function File: rotate3d (HFIG, OPTION)
     Control the interactive 3-D rotation mode of a figure in the GUI.

     Given the option "on" or "off", set the interactive rotate mode on or off.

     With no arguments, toggle the current rotate mode on or off.

     If the first argument HFIG is a figure, then operate on the given figure rather than the current figure as returned by 'gcf'.

     See also: pan, zoom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Control the interactive 3-D rotation mode of a figure in the GUI.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
saveas


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 720
 -- Function File: saveas (H, FILENAME)
 -- Function File: saveas (H, FILENAME, FMT)
     Save graphic object H to the file FILENAME in graphic format FMT.

     FMT should be one of the following formats:

     'ps'
          PostScript

     'eps'
          Encapsulated PostScript

     'jpg'
          JPEG Image

     'png'
          PNG Image

     'emf'
          Enhanced Meta File

     'pdf'
          Portable Document Format

     All device formats specified in 'print' may also be used.  If FMT is omitted it is extracted from the extension of FILENAME.  The default format is "pdf".

          clf ();
          surf (peaks);
          saveas (1, "figure1.png");

     See also: print, hgsave, orient.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Save graphic object H to the file FILENAME in graphic format FMT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
shg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
 -- Command: shg
     Show the graph window.

     Currently, this is the same as executing 'drawnow'.

     See also: drawnow, figure.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Show the graph window.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
struct2hdl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 786
 -- Function File: H = struct2hdl (S)
 -- Function File: H = struct2hdl (S, P)
 -- Function File: H = struct2hdl (S, P, HILEV)
     Construct a graphics handle object H from the structure S.

     The structure must contain the fields "handle", "type", "children", "properties", and "special".

     If the handle of an existing figure or axes is specified, P, the new object will be created as a child of that object.  If no parent handle is provided then a new figure and the necessary children will be constructed using the default values from the root figure.

     A third boolean argument HILEV can be passed to specify whether the function should preserve listeners/callbacks, e.g., for legends or hggroups.  The default is false.

     See also: hdl2struct, hgload, findobj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Construct a graphics handle object H from the structure S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
subplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2166
 -- Function File: subplot (ROWS, COLS, INDEX)
 -- Function File: subplot (RCN)
 -- Function File: subplot (HAX)
 -- Function File: subplot (..., "align")
 -- Function File: subplot (..., "replace")
 -- Function File: subplot (..., "position", POS)
 -- Function File: subplot (..., PROP, VAL, ...)
 -- Function File: HAX = subplot (...)
     Set up a plot grid with ROWS by COLS subwindows and set the current axes for plotting ('gca') to the location given by INDEX.

     If only one numeric argument is supplied, then it must be a three digit value specifying the number of rows in digit 1, the number of columns in digit 2, and the plot index in digit 3.

     The plot index runs row-wise; First, all columns in a row are numbered and then the next row is filled.

     For example, a plot with 2x3 grid will have plot indices running as follows:

          +-----+-----+-----+
          |  1  |  2  |  3  |
          +-----+-----+-----+
          |  4  |  5  |  6  |
          +-----+-----+-----+

     INDEX may also be a vector.  In this case, the new axis will enclose the grid locations specified.  The first demo illustrates this:

          demo ("subplot", 1)

     The index of the subplot to make active may also be specified by its axes handle, HAX, returned from a previous 'subplot' command.

     If the option "align" is given then the plot boxes of the subwindows will align, but this may leave no room for axis tick marks or labels.

     If the option "replace" is given then the subplot axis will be reset, rather than just switching the current axis for plotting to the requested subplot.

     The "position" property can be used to exactly position the subplot axes within the current figure.  The option POS is a 4-element vector [x, y, width, height] that determines the location and size of the axes.  The values in POS are normalized in the range [0,1].

     Any property/value pairs are passed directly to the underlying axes object.

     If the output HAX is requested, subplot returns the axis handle for the subplot.  This is useful for modifying the properties of a subplot using 'set'.

     See also: axes, plot, gca, set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Set up a plot grid with ROWS by COLS subwindows and set the current axes for plotting ('gca') to the location given by INDEX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
zoom


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1194
 -- Command: zoom
 -- Command: zoom (FACTOR)
 -- Command: zoom on
 -- Command: zoom off
 -- Command: zoom xon
 -- Command: zoom yon
 -- Command: zoom out
 -- Command: zoom reset
 -- Command: zoom (HFIG, OPTION)
     Zoom the current axes object or control the interactive zoom mode of a figure in the GUI.

     Given a numeric argument greater than zero, zoom by the given factor.  If the zoom factor is greater than one, zoom in on the plot.  If the factor is less than one, zoom out.  If the zoom factor is a two- or three-element vector, then the elements specify the zoom factors for the x, y, and z axes respectively.

     Given the option "on" or "off", set the interactive zoom mode on or off.

     With no arguments, toggle the current zoom mode on or off.

     Given the option "xon" or "yon", enable zoom mode for the x or y-axis only.

     Given the option "out", zoom to the initial zoom setting.

     Given the option "reset", store the current zoom setting so that 'zoom out' will return to this zoom level.

     If the first argument HFIG is a figure, then operate on the given figure rather than the current figure as returned by 'gcf'.

     See also: pan, rotate3d.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Zoom the current axes object or control the interactive zoom mode of a figure in the GUI.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
compan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 869
 -- Function File: compan (C)
     Compute the companion matrix corresponding to polynomial coefficient vector C.

     The companion matrix is

               _                                                        _
              |  -c(2)/c(1)   -c(3)/c(1)  ...  -c(N)/c(1)  -c(N+1)/c(1)  |
              |       1            0      ...       0             0      |
              |       0            1      ...       0             0      |
          A = |       .            .      .         .             .      |
              |       .            .       .        .             .      |
              |       .            .        .       .             .      |
              |_      0            0      ...       1             0     _|

     The eigenvalues of the companion matrix are equal to the roots of the polynomial.

     See also: roots, poly, eig.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Compute the companion matrix corresponding to polynomial coefficient vector C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
conv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 597
 -- Function File: conv (A, B)
 -- Function File: conv (A, B, SHAPE)
     Convolve two vectors A and B.

     The output convolution is a vector with length equal to 'length (A) + length (B) - 1'.  When A and B are the coefficient vectors of two polynomials, the convolution represents the coefficient vector of the product polynomial.

     The optional SHAPE argument may be

     SHAPE = "full"
          Return the full convolution.  (default)

     SHAPE = "same"
          Return the central part of the convolution with the same size as A.

     See also: deconv, conv2, convn, fftconv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Convolve two vectors A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
deconv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
 -- Function File: deconv (Y, A)
     Deconvolve two vectors.

     '[b, r] = deconv (y, a)' solves for B and R such that 'y = conv (a, b) + r'.

     If Y and A are polynomial coefficient vectors, B will contain the coefficients of the polynomial quotient and R will be a remainder polynomial of lowest order.

     See also: conv, residue.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Deconvolve two vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mkpp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 997
 -- Function File: PP = mkpp (BREAKS, COEFS)
 -- Function File: PP = mkpp (BREAKS, COEFS, D)

     Construct a piecewise polynomial (pp) structure from sample points BREAKS and coefficients COEFS.

     BREAKS must be a vector of strictly increasing values.  The number of intervals is given by 'NI = length (BREAKS) - 1'.

     When M is the polynomial order COEFS must be of size: NI x M + 1.

     The i-th row of COEFS, 'COEFS (I,:)', contains the coefficients for the polynomial over the I-th interval, ordered from highest (M) to lowest (0).

     COEFS may also be a multi-dimensional array, specifying a vector-valued or array-valued polynomial.  In that case the polynomial order is defined by the length of the last dimension of COEFS.  The size of first dimension(s) are given by the scalar or vector D.  If D is not given it is set to '1'.  In any case COEFS is reshaped to a 2-D matrix of size '[NI*prod(D M)] '

     See also: unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Construct a piecewise polynomial (pp) structure from sample points BREAKS and coefficients COEFS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mpoles


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 890
 -- Function File: [MULTP, IDXP] = mpoles (P)
 -- Function File: [MULTP, IDXP] = mpoles (P, TOL)
 -- Function File: [MULTP, IDXP] = mpoles (P, TOL, REORDER)
     Identify unique poles in P and their associated multiplicity.

     The output is ordered from largest pole to smallest pole.

     If the relative difference of two poles is less than TOL then they are considered to be multiples.  The default value for TOL is 0.001.

     If the optional parameter REORDER is zero, poles are not sorted.

     The output MULTP is a vector specifying the multiplicity of the poles.  'MULTP(n)' refers to the multiplicity of the Nth pole 'P(IDXP(n))'.

     For example:

          p = [2 3 1 1 2];
          [m, n] = mpoles (p)
             => m = [1; 1; 2; 1; 2]
             => n = [2; 5; 1; 4; 3]
             => p(n) = [3, 2, 2, 1, 1]

     See also: residue, poly, roots, conv, deconv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Identify unique poles in P and their associated multiplicity.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
pchip


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1070
 -- Function File: PP = pchip (X, Y)
 -- Function File: YI = pchip (X, Y, XI)
     Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of points X and Y.

     If called with two arguments, return the piecewise polynomial PP that may be used with 'ppval' to evaluate the polynomial at specific points.

     When called with a third input argument, 'pchip' evaluates the pchip polynomial at the points XI.  The third calling form is equivalent to 'ppval (pchip (X, Y), XI)'.

     The variable X must be a strictly monotonic vector (either increasing or decreasing) of length N.

     Y can be either a vector or array.  If Y is a vector then it must be the same length N as X.  If Y is an array then the size of Y must have the form '[S1, S2, ..., SK, N]' The array is reshaped internally to a matrix where the leading dimension is given by 'S1 * S2 * ... * SK' and each row of this matrix is then treated separately.  Note that this is exactly opposite to 'interp1' but is done for MATLAB compatibility.

     See also: spline, ppval, mkpp, unmkpp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of points X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
poly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 938
 -- Function File: poly (A)
 -- Function File: poly (X)
     If A is a square N-by-N matrix, 'poly (A)' is the row vector of the coefficients of 'det (z * eye (N) - A)', the characteristic polynomial of A.

     For example, the following code finds the eigenvalues of A which are the roots of 'poly (A)'.

          roots (poly (eye (3)))
              => 1.00001 + 0.00001i
                 1.00001 - 0.00001i
                 0.99999 + 0.00000i

     In fact, all three eigenvalues are exactly 1 which emphasizes that for numerical performance the 'eig' function should be used to compute eigenvalues.

     If X is a vector, 'poly (X)' is a vector of the coefficients of the polynomial whose roots are the elements of X.  That is, if C is a polynomial, then the elements of 'D = roots (poly (C))' are contained in C.  The vectors C and D are not identical, however, due to sorting and numerical errors.

     See also: roots, eig.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
If A is a square N-by-N matrix, 'poly (A)' is the row vector of the coefficients of 'det (z * eye (N) - A)', the characteristic polynomial of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
polyaffine


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 323
 -- Function File: polyaffine (F, MU)
     Return the coefficients of the polynomial vector F after an affine transformation.

     If F is the vector representing the polynomial f(x), then 'G = polyaffine (F, MU)' is the vector representing:

          g(x) = f( (x - MU(1)) / MU(2) )

     See also: polyval, polyfit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Return the coefficients of the polynomial vector F after an affine transformation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 516
 -- Function File: polyder (P)
 -- Function File: [K] = polyder (A, B)
 -- Function File: [Q, D] = polyder (B, A)
     Return the coefficients of the derivative of the polynomial whose coefficients are given by the vector P.

     If a pair of polynomials is given, return the derivative of the product A*B.

     If two inputs and two outputs are given, return the derivative of the polynomial quotient B/A.  The quotient numerator is in Q and the denominator in D.

     See also: polyint, polyval, polyreduce.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Return the coefficients of the derivative of the polynomial whose coefficients are given by the vector P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyeig


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 545
 -- Function File: Z = polyeig (C0, C1, ..., CL)
 -- Function File: [V, Z] = polyeig (C0, C1, ..., CL)

     Solve the polynomial eigenvalue problem of degree L.

     Given an N*N matrix polynomial

     'C(s) = C0 + C1 s + ... + CL s^l'

     'polyeig' solves the eigenvalue problem

     '(C0 + C1 + ... + CL)v = 0'.

     Note that the eigenvalues Z are the zeros of the matrix polynomial.  Z is a row vector with N*L elements.  V is a matrix (N x N*L) with columns that correspond to the eigenvectors.

     See also: eig, eigs, compan.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Solve the polynomial eigenvalue problem of degree L.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyfit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1583
 -- Function File: P = polyfit (X, Y, N)
 -- Function File: [P, S] = polyfit (X, Y, N)
 -- Function File: [P, S, MU] = polyfit (X, Y, N)
     Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit to the points '[X, Y]'.

     If N is a logical vector, it is used as a mask to selectively force the corresponding polynomial coefficients to be used or ignored.

     The polynomial coefficients are returned in a row vector.

     The optional output S is a structure containing the following fields:

     'R'
          Triangular factor R from the QR decomposition.

     'X'
          The Vandermonde matrix used to compute the polynomial coefficients.

     'C'
          The unscaled covariance matrix, formally equal to the inverse of X'*X, but computed in a way minimizing roundoff error propagation.

     'df'
          The degrees of freedom.

     'normr'
          The norm of the residuals.

     'yf'
          The values of the polynomial for each value of X.

     The second output may be used by 'polyval' to calculate the statistical error limits of the predicted values.  In particular, the standard deviation of P coefficients is given by

     'sqrt (diag (s.C)/s.df)*s.normr'.

     When the third output, MU, is present the coefficients, P, are associated with a polynomial in

     'XHAT = (X - MU(1)) / MU(2)'
     where MU(1) = mean (X), and MU(2) = std (X).

     This linear transformation of X improves the numerical stability of the fit.

     See also: polyval, polyaffine, roots, vander, zscore.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit to the points '[X, Y]'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polygcd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 727
 -- Function File: Q = polygcd (B, A)
 -- Function File: Q = polygcd (B, A, TOL)

     Find the greatest common divisor of two polynomials.

     This is equivalent to the polynomial found by multiplying together all the common roots.  Together with deconv, you can reduce a ratio of two polynomials.

     The tolerance TOL defaults to 'sqrt (eps)'.

     *Caution:* This is a numerically unstable algorithm and should not be used on large polynomials.

     Example code:

          polygcd (poly (1:8), poly (3:12)) - poly (3:8)
          => [ 0, 0, 0, 0, 0, 0, 0 ]
          deconv (poly (1:8), polygcd (poly (1:8), poly (3:12))) - poly (1:2)
          => [ 0, 0, 0 ]

     See also: poly, roots, conv, deconv, residue.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Find the greatest common divisor of two polynomials.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
 -- Function File: polyint (P)
 -- Function File: polyint (P, K)
     Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector P.

     The variable K is the constant of integration, which by default is set to zero.

     See also: polyder, polyval.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyout


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 459
 -- Function File: polyout (C)
 -- Function File: polyout (C, X)
 -- Function File: STR = polyout (...)
     Display a formatted version of the polynomial C.

     The formatted polynomial

          c(x) = c(1) * x^n + ... + c(n) x + c(n+1)

     is returned as a string or written to the screen if 'nargout' is zero.

     The second argument X specifies the variable name to use for each term and defaults to the string "s".

     See also: polyreduce.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Display a formatted version of the polynomial C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
polyreduce


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
 -- Function File: polyreduce (C)
     Reduce a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros.

     See also: polyout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Reduce a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
polyval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 750
 -- Function File: Y = polyval (P, X)
 -- Function File: Y = polyval (P, X, [], MU)
 -- Function File: [Y, DY] = polyval (P, X, S)
 -- Function File: [Y, DY] = polyval (P, X, S, MU)

     Evaluate the polynomial P at the specified values of X.

     If X is a vector or matrix, the polynomial is evaluated for each of the elements of X.

     When MU is present, evaluate the polynomial for (X-MU(1))/MU(2).

     In addition to evaluating the polynomial, the second output represents the prediction interval, Y +/- DY, which contains at least 50% of the future predictions.  To calculate the prediction interval, the structured variable S, originating from 'polyfit', must be supplied.

     See also: polyvalm, polyaffine, polyfit, roots, poly.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Evaluate the polynomial P at the specified values of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
polyvalm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
 -- Function File: polyvalm (C, X)
     Evaluate a polynomial in the matrix sense.

     'polyvalm (C, X)' will evaluate the polynomial in the matrix sense, i.e., matrix multiplication is used instead of element by element multiplication as used in 'polyval'.

     The argument X must be a square matrix.

     See also: polyval, roots, poly.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Evaluate a polynomial in the matrix sense.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ppval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 397
 -- Function File: YI = ppval (PP, XI)
     Evaluate the piecewise polynomial structure PP at the points XI.

     If PP describes a scalar polynomial function, the result is an array of the same shape as XI.  Otherwise, the size of the result is '[pp.dim, length(XI)]' if XI is a vector, or '[pp.dim, size(XI)]' if it is a multi-dimensional array.

     See also: mkpp, unmkpp, spline, pchip.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Evaluate the piecewise polynomial structure PP at the points XI.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ppder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 252
 -- Function File: ppd = ppder (pp)
 -- Function File: ppd = ppder (pp, m)
     Compute the piecewise M-th derivative of a piecewise polynomial struct PP.

     If M is omitted the first derivative is calculated.

     See also: mkpp, ppval, ppint.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Compute the piecewise M-th derivative of a piecewise polynomial struct PP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ppint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 230
 -- Function File: PPI = ppint (PP)
 -- Function File: PPI = ppint (PP, C)
     Compute the integral of the piecewise polynomial struct PP.

     C, if given, is the constant of integration.

     See also: mkpp, ppval, ppder.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the integral of the piecewise polynomial struct PP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ppjumps


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 239
 -- Function File: JUMPS = ppjumps (PP)
     Evaluate the boundary jumps of a piecewise polynomial.

     If there are n intervals, and the dimensionality of PP is d, the resulting array has dimensions '[d, n-1]'.

     See also: mkpp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Evaluate the boundary jumps of a piecewise polynomial.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
residue


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2384
 -- Function File: [R, P, K, E] = residue (B, A)
 -- Function File: [B, A] = residue (R, P, K)
 -- Function File: [B, A] = residue (R, P, K, E)
     The first calling form computes the partial fraction expansion for the quotient of the polynomials, B and A.

     The quotient is defined as

          B(s)    M       r(m)        N
          ---- = SUM ------------- + SUM k(i)*s^(N-i)
          A(s)   m=1 (s-p(m))^e(m)   i=1

     where M is the number of poles (the length of the R, P, and E), the K vector is a polynomial of order N-1 representing the direct contribution, and the E vector specifies the multiplicity of the m-th residue's pole.

     For example,

          b = [1, 1, 1];
          a = [1, -5, 8, -4];
          [r, p, k, e] = residue (b, a)
             => r = [-2; 7; 3]
             => p = [2; 2; 1]
             => k = [](0x0)
             => e = [1; 2; 1]

     which represents the following partial fraction expansion

                  s^2 + s + 1       -2        7        3
             ------------------- = ----- + ------- + -----
             s^3 - 5s^2 + 8s - 4   (s-2)   (s-2)^2   (s-1)

     The second calling form performs the inverse operation and computes the reconstituted quotient of polynomials, B(s)/A(s), from the partial fraction expansion; represented by the residues, poles, and a direct polynomial specified by R, P and K, and the pole multiplicity E.

     If the multiplicity, E, is not explicitly specified the multiplicity is determined by the function 'mpoles'.

     For example:

          r = [-2; 7; 3];
          p = [2; 2; 1];
          k = [1, 0];
          [b, a] = residue (r, p, k)
             => b = [1, -5, 9, -3, 1]
             => a = [1, -5, 8, -4]

          where mpoles is used to determine e = [1; 2; 1]

     Alternatively the multiplicity may be defined explicitly, for example,

          r = [7; 3; -2];
          p = [2; 1; 2];
          k = [1, 0];
          e = [2; 1; 1];
          [b, a] = residue (r, p, k, e)
             => b = [1, -5, 9, -3, 1]
             => a = [1, -5, 8, -4]

     which represents the following partial fraction expansion

           -2        7        3         s^4 - 5s^3 + 9s^2 - 3s + 1
          ----- + ------- + ----- + s = --------------------------
          (s-2)   (s-2)^2   (s-1)          s^3 - 5s^2 + 8s - 4

     See also: mpoles, poly, roots, conv, deconv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
The first calling form computes the partial fraction expansion for the quotient of the polynomials, B and A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
roots


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 517
 -- Function File: roots (C)

     Compute the roots of the polynomial C.

     For a vector C with N components, return the roots of the polynomial

          c(1) * x^(N-1) + ... + c(N-1) * x + c(N)

     As an example, the following code finds the roots of the quadratic polynomial

          p(x) = x^2 - 5.

          c = [1, 0, -5];
          roots (c)
          =>  2.2361
          => -2.2361

     Note that the true result is +/- sqrt(5) which is roughly +/- 2.2361.

     See also: poly, compan, fzero.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Compute the roots of the polynomial C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
spline


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1275
 -- Function File: PP = spline (X, Y)
 -- Function File: YI = spline (X, Y, XI)
     Return the cubic spline interpolant of points X and Y.

     When called with two arguments, return the piecewise polynomial PP that may be used with 'ppval' to evaluate the polynomial at specific points.

     When called with a third input argument, 'spline' evaluates the spline at the points XI.  The third calling form 'spline (X, Y, XI)' is equivalent to 'ppval (spline (X, Y), XI)'.

     The variable X must be a vector of length N.

     Y can be either a vector or array.  If Y is a vector it must have a length of either N or 'N + 2'.  If the length of Y is N, then the "not-a-knot" end condition is used.  If the length of Y is 'N + 2', then the first and last values of the vector Y are the values of the first derivative of the cubic spline at the endpoints.

     If Y is an array, then the size of Y must have the form '[S1, S2, ..., SK, N]' or '[S1, S2, ..., SK, N + 2]'.  The array is reshaped internally to a matrix where the leading dimension is given by 'S1 * S2 * ... * SK' and each row of this matrix is then treated separately.  Note that this is exactly the opposite of 'interp1' but is done for MATLAB compatibility.

     See also: pchip, ppval, mkpp, unmkpp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return the cubic spline interpolant of points X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
splinefit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2668
 -- Function File: PP = splinefit (X, Y, BREAKS)
 -- Function File: PP = splinefit (X, Y, P)
 -- Function File: PP = splinefit (..., "periodic", PERIODIC)
 -- Function File: PP = splinefit (..., "robust", ROBUST)
 -- Function File: PP = splinefit (..., "beta", BETA)
 -- Function File: PP = splinefit (..., "order", ORDER)
 -- Function File: PP = splinefit (..., "constraints", CONSTRAINTS)

     Fit a piecewise cubic spline with breaks (knots) BREAKS to the noisy data, X and Y.

     X is a vector, and Y is a vector or N-D array.  If Y is an N-D array, then X(j) is matched to Y(:,...,:,j).

     P is a positive integer defining the number of intervals along X, and P+1 is the number of breaks.  The number of points in each interval differ by no more than 1.

     The optional property PERIODIC is a logical value which specifies whether a periodic boundary condition is applied to the spline.  The length of the period is 'max (BREAKS) - min (BREAKS)'.  The default value is 'false'.

     The optional property ROBUST is a logical value which specifies if robust fitting is to be applied to reduce the influence of outlying data points.  Three iterations of weighted least squares are performed.  Weights are computed from previous residuals.  The sensitivity of outlier identification is controlled by the property BETA.  The value of BETA is restricted to the range, 0 < BETA < 1.  The default value is BETA = 1/2.  Values close to 0 give all data equal weighting.  Increasing values of BETA reduce the influence of outlying data.  Values close to unity may cause instability or rank deficiency.

     The fitted spline is returned as a piecewise polynomial, PP, and may be evaluated using 'ppval'.

     The splines are constructed of polynomials with degree ORDER.  The default is a cubic, ORDER=3.  A spline with P pieces has P+ORDER degrees of freedom.  With periodic boundary conditions the degrees of freedom are reduced to P.

     The optional property, CONSTAINTS, is a structure specifying linear constraints on the fit.  The structure has three fields, "xc", "yc", and "cc".

     "xc"
          Vector of the x-locations of the constraints.

     "yc"
          Constraining values at the locations XC.  The default is an array of zeros.

     "cc"
          Coefficients (matrix).  The default is an array of ones.  The number of rows is limited to the order of the piecewise polynomials, ORDER.

     Constraints are linear combinations of derivatives of order 0 to ORDER-1 according to

          cc(1,j) * y(xc(j)) + cc(2,j) * y'(xc(j)) + ... = yc(:,...,:,j).

     See also: interp1, unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Fit a piecewise cubic spline with breaks (knots) BREAKS to the noisy data, X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unmkpp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 666
 -- Function File: [X, P, N, K, D] = unmkpp (PP)

     Extract the components of a piecewise polynomial structure PP.

     The components are:

     X
          Sample points.

     P
          Polynomial coefficients for points in sample interval.  'P (I, :)' contains the coefficients for the polynomial over interval I ordered from highest to lowest.  If 'D > 1', 'P (R, I, :)' contains the coefficients for the r-th polynomial defined on interval I.

     N
          Number of polynomial pieces.

     K
          Order of the polynomial plus 1.

     D
          Number of polynomials defined for each interval.

     See also: mkpp, ppval, spline, pchip.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Extract the components of a piecewise polynomial structure PP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
addpref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 494
 -- Function File: addpref (GROUP, PREF, VAL)
     Add a preference PREF and associated value VAL to the named preference group GROUP.

     The named preference group must be a character string.

     The preference PREF may be a character string or a cell array of character strings.

     The corresponding value VAL may be any value, or, if PREF is a cell array of strings, VAL must be a cell array of values with the same size as PREF.

     See also: setpref, getpref, ispref, rmpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Add a preference PREF and associated value VAL to the named preference group GROUP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getpref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 914
 -- Function File: getpref (GROUP, PREF)
 -- Function File: getpref (GROUP, PREF, DEFAULT)
 -- Function File: getpref (GROUP)
     Return the preference value corresponding to the named preference PREF in the preference group GROUP.

     The named preference group must be a character string.

     If PREF does not exist in GROUP and DEFAULT is specified, return DEFAULT.

     The preference PREF may be a character string or a cell array of character strings.

     The corresponding default value DEFAULT may be any value, or, if PREF is a cell array of strings, DEFAULT must be a cell array of values with the same size as PREF.

     If neither PREF nor DEFAULT are specified, return a structure of preferences for the preference group GROUP.

     If no arguments are specified, return a structure containing all groups of preferences and their values.

     See also: addpref, setpref, ispref, rmpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Return the preference value corresponding to the named preference PREF in the preference group GROUP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ispref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 445
 -- Function File: ispref (GROUP, PREF)
 -- Function File: ispref (GROUP)
     Return true if the named preference PREF exists in the preference group GROUP.

     The named preference group must be a character string.

     The preference PREF may be a character string or a cell array of character strings.

     If PREF is not specified, return true if the preference group GROUP exists.

     See also: getpref, addpref, setpref, rmpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Return true if the named preference PREF exists in the preference group GROUP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
prefdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 316
 -- Command: prefdir
 -- Command: DIR = prefdir
     Return the directory that contains the preferences for Octave.

     Examples:

     Display the preferences directory

          prefdir

     Change to the preferences folder

          cd (prefdir)

     See also: getpref, setpref, addpref, rmpref, ispref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return the directory that contains the preferences for Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
preferences


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
 -- Command: preferences
     Display the GUI preferences dialog window for Octave.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Display the GUI preferences dialog window for Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rmpref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
 -- Function File: rmpref (GROUP, PREF)
 -- Function File: rmpref (GROUP)
     Remove the named preference PREF from the preference group GROUP.

     The named preference group must be a character string.

     The preference PREF may be a character string or cell array of strings.

     If PREF is not specified, remove the preference group GROUP.

     It is an error to remove a nonexistent preference or group.

     See also: addpref, ispref, setpref, getpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Remove the named preference PREF from the preference group GROUP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
setpref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 554
 -- Function File: setpref (GROUP, PREF, VAL)
     Set a preference PREF to the given VAL in the named preference group GROUP.

     The named preference group must be a character string.

     The preference PREF may be a character string or a cell array of character strings.

     The corresponding value VAL may be any value, or, if PREF is a cell array of strings, VAL must be a cell array of values with the same size as PREF.

     If the named preference or group does not exist, it is added.

     See also: addpref, getpref, ispref, rmpref.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Set a preference PREF to the given VAL in the named preference group GROUP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
intersect


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 647
 -- Function File: C = intersect (A, B)
 -- Function File: C = intersect (A, B, "rows")
 -- Function File: [C, IA, IB] = intersect (...)

     Return the unique elements common to both A and B sorted in ascending order.

     If A and B are both row vectors then return a row vector; Otherwise, return a column vector.  The inputs may also be cell arrays of strings.

     If the optional input "rows" is given then return the common rows of A and B.  The inputs must be 2-D matrices to use this option.

     If requested, return index vectors IA and IB such that 'C = A(IA)' and 'C = B(IB)'.

See also: unique, union, setdiff, setxor, ismember. 


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Return the unique elements common to both A and B sorted in ascending order.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ismember


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1198
 -- Function File: TF = ismember (A, S)
 -- Function File: TF = ismember (A, S, "rows")
 -- Function File: [TF, S_IDX] = ismember (...)

     Return a logical matrix TF with the same shape as A which is true (1) if the element in A is found in S and false (0) if it is not.

     If a second output argument is requested then the index into S of each matching element is also returned.

          a = [3, 10, 1];
          s = [0:9];
          [tf, s_idx] = ismember (a, s)
               => tf = [1, 0, 1]
               => s_idx = [4, 0, 2]

     The inputs A and S may also be cell arrays.

          a = {"abc"};
          s = {"abc", "def"};
          [tf, s_idx] = ismember (a, s)
               => tf = [1, 0]
               => s_idx = [1, 0]

     If the optional third argument "rows" is given then compare rows in A with rows in S.  The inputs must be 2-D matrices with the same number of columns to use this option.

          a = [1:3; 5:7; 4:6];
          s = [0:2; 1:3; 2:4; 3:5; 4:6];
          [tf, s_idx] = ismember (a, s, "rows")
               => tf = logical ([1; 0; 1])
               => s_idx = [2; 0; 5];

     See also: lookup, unique, union, intersect, setdiff, setxor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
Return a logical matrix TF with the same shape as A which is true (1) if the element in A is found in S and false (0) if it is not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
powerset


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 502
 -- Function File: powerset (A)
 -- Function File: powerset (A, "rows")
     Compute the powerset (all subsets) of the set A.

     The set A must be a numerical matrix or a cell array of strings.  The output will always be a cell array of either vectors or strings.

     With the optional argument "rows", each row of the set A is considered one element of the set.  The input must be a 2-D numeric matrix to use this argument.

     See also: unique, union, intersect, setdiff, setxor, ismember.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the powerset (all subsets) of the set A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
setdiff


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 618
 -- Function File: C = setdiff (A, B)
 -- Function File: C = setdiff (A, B, "rows")
 -- Function File: [C, IA] = setdiff (...)
     Return the unique elements in A that are not in B sorted in ascending order.

     If A is a row vector return a column vector; Otherwise, return a column vector.  The inputs may also be cell arrays of strings.

     If the optional input "rows" is given then return the rows in A that are not in B.  The inputs must be 2-D matrices to use this option.

     If requested, return the index vector IA such that 'C = A(IA)'.

     See also: unique, union, intersect, setxor, ismember.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Return the unique elements in A that are not in B sorted in ascending order.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
setxor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 686
 -- Function File: C = setxor (A, B)
 -- Function File: C = setxor (A, B, "rows")
 -- Function File: [C, IA, IB] = setxor (...)

     Return the unique elements exclusive to sets A or B sorted in ascending order.

     If A and B are both row vectors then return a row vector; Otherwise, return a column vector.  The inputs may also be cell arrays of strings.

     If the optional input "rows" is given then return the rows exclusive to sets A and B.  The inputs must be 2-D matrices to use this option.

     If requested, return index vectors IA and IB such that 'A(IA)' and 'B(IB)' are disjoint sets whose union is C.

     See also: unique, union, intersect, setdiff, ismember.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Return the unique elements exclusive to sets A or B sorted in ascending order.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
union


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 685
 -- Function File: C = union (A, B)
 -- Function File: C = union (A, B, "rows")
 -- Function File: [C, IA, IB] = union (...)

     Return the unique elements that are in either A or B sorted in ascending order.

     If A and B are both row vectors then return a row vector; Otherwise, return a column vector.  The inputs may also be cell arrays of strings.

     If the optional input "rows" is given then return rows that are in either A or B.  The inputs must be 2-D matrices to use this option.

     The optional outputs IA and IB are index vectors such that 'A(IA)' and 'B(IB)' are disjoint sets whose union is C.

     See also: unique, intersect, setdiff, setxor, ismember.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return the unique elements that are in either A or B sorted in ascending order.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unique


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 980
 -- Function File: unique (X)
 -- Function File: unique (X, "rows")
 -- Function File: [Y, I, J] = unique (...)
 -- Function File: [Y, I, J] = unique (..., "first")
 -- Function File: [Y, I, J] = unique (..., "last")
     Return the unique elements of X sorted in ascending order.

     If the input X is a column vector then return a column vector; Otherwise, return a row vector.  X may also be a cell array of strings.

     If the optional argument "rows" is given then return the unique rows of X sorted in ascending order.  The input must be a 2-D matrix to use this option.

     If requested, return index vectors I and J such that 'Y = X(I)' and 'X = Y(J)'.

     Additionally, if I is a requested output then one of "first" or "last" may be given as an input.  If "last" is specified, return the highest possible indices in I, otherwise, if "first" is specified, return the lowest.  The default is "last".

     See also: union, intersect, setdiff, setxor, ismember.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the unique elements of X sorted in ascending order.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arch_fit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 864
 -- Function File: [A, B] = arch_fit (Y, X, P, ITER, GAMMA, A0, B0)
     Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.

     The model is

          y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
          h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2

     in which e(t) is N(0, h(t)), given a time-series vector Y up to time t-1 and a matrix of (ordinary) regressors X up to t.  The order of the regression of the residual variance is specified by P.

     If invoked as 'arch_fit (Y, K, P)' with a positive integer K, fit an ARCH(K, P) process, i.e., do the above with the t-th row of X given by

          [1, y(t-1), ..., y(t-k)]

     Optionally, one can specify the number of iterations ITER, the updating factor GAMMA, and initial values a0 and b0 for the scoring algorithm.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arch_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 374
 -- Function File: arch_rnd (A, B, T)
     Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A.

     The result y(t) follows the model

          y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t),

     where e(t), given Y up to time t-1, is N(0, h(t)), with

          h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
arch_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 949
 -- Function File: [PVAL, LM] = arch_test (Y, X, P)
     For a linear regression model

          y = x * b + e

     perform a Lagrange Multiplier (LM) test of the null hypothesis of no conditional heteroscedascity against the alternative of CH(P).

     I.e., the model is

          y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),

     given Y up to t-1 and X up to t, e(t) is N(0, h(t)) with

          h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2,

     and the null is a(1) == ... == a(p) == 0.

     If the second argument is a scalar integer, k, perform the same test in a linear autoregression model of order k, i.e., with

          [1, y(t-1), ..., y(t-K)]

     as the t-th row of X.

     Under the null, LM approximately has a chisquare distribution with P degrees of freedom and PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
For a linear regression model 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arma_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 597
 -- Function File: arma_rnd (A, B, V, T, N)
     Return a simulation of the ARMA model.

     The ARMA model is defined by

          x(n) = a(1) * x(n-1) + ... + a(k) * x(n-k)
               + e(n) + b(1) * e(n-1) + ... + b(l) * e(n-l)

     in which K is the length of vector A, L is the length of vector B and E is Gaussian white noise with variance V.  The function returns a vector of length T.

     The optional parameter N gives the number of dummy X(I) used for initialization, i.e., a sequence of length T+N is generated and X(N+1:T+N) is returned.  If N is omitted, N = 100 is used.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return a simulation of the ARMA model.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
autoreg_matrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 356
 -- Function File: autoreg_matrix (Y, K)
     Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.

     In other words, for T > K, '[1, Y(T-1), ..., Y(T-K)]' is the t-th row of the result.

     The resulting matrix may be used as a regressor matrix in autoregressions.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bartlett


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
 -- Function File: bartlett (M)
     Return the filter coefficients of a Bartlett (triangular) window of length M.

     For a definition of the Bartlett window see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return the filter coefficients of a Bartlett (triangular) window of length M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
blackman


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 585
 -- Function File: blackman (M)
 -- Function File: blackman (M, "periodic")
 -- Function File: blackman (M, "symmetric")
     Return the filter coefficients of a Blackman window of length M.

     If the optional argument "periodic" is given, the periodic form of the window is returned.  This is equivalent to the window of length M+1 with the last coefficient removed.  The optional argument "symmetric" is equivalent to not specifying a second argument.

     For a definition of the Blackman window, see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return the filter coefficients of a Blackman window of length M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
detrend


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 547
 -- Function File: detrend (X, P)
     If X is a vector, 'detrend (X, P)' removes the best fit of a polynomial of order P from the data X.

     If X is a matrix, 'detrend (X, P)' does the same for each column in X.

     The second argument P is optional.  If it is not specified, a value of 1 is assumed.  This corresponds to removing a linear trend.

     The order of the polynomial can also be given as a string, in which case P must be either "constant" (corresponds to 'P=0') or "linear" (corresponds to 'P=1').

     See also: polyfit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
If X is a vector, 'detrend (X, P)' removes the best fit of a polynomial of order P from the data X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
diffpara


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 702
 -- Function File: [D, DD] = diffpara (X, A, B)
     Return the estimator D for the differencing parameter of an integrated time series.

     The frequencies from [2*pi*a/t, 2*pi*b/T] are used for the estimation.  If B is omitted, the interval [2*pi/T, 2*pi*a/T] is used.  If both B and A are omitted then a = 0.5 * sqrt (T) and b = 1.5 * sqrt (T) is used, where T is the sample size.  If X is a matrix, the differencing parameter of each column is estimated.

     The estimators for all frequencies in the intervals described above is returned in DD.

     The value of D is simply the mean of DD.

     Reference: P.J. Brockwell & R.A. Davis.  'Time Series: Theory and Methods'.  Springer 1987.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return the estimator D for the differencing parameter of an integrated time series.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
durbinlevinson


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 389
 -- Function File: durbinlevinson (C, OLDPHI, OLDV)
     Perform one step of the Durbin-Levinson algorithm.

     The vector C specifies the autocovariances '[gamma_0, ..., gamma_t]' from lag 0 to T, OLDPHI specifies the coefficients based on C(T-1) and OLDV specifies the corresponding error.

     If OLDPHI and OLDV are omitted, all steps from 1 to T of the algorithm are performed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Perform one step of the Durbin-Levinson algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fftconv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 530
 -- Function File: fftconv (X, Y)
 -- Function File: fftconv (X, Y, N)
     Convolve two vectors using the FFT for computation.

     'c = fftconv (X, Y)' returns a vector of length equal to 'length (X) + length (Y) - 1'.  If X and Y are the coefficient vectors of two polynomials, the returned value is the coefficient vector of the product polynomial.

     The computation uses the FFT by calling the function 'fftfilt'.  If the optional argument N is specified, an N-point FFT is used.

     See also: deconv, conv, conv2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Convolve two vectors using the FFT for computation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fftfilt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 545
 -- Function File: fftfilt (B, X)
 -- Function File: fftfilt (B, X, N)
     Filter X with the FIR filter B using the FFT.

     If X is a matrix, filter each column of the matrix.

     Given the optional third argument, N, 'fftfilt' uses the overlap-add method to filter X with B using an N-point FFT.  The FFT size must be an even power of 2 and must be greater than or equal to the length of B.  If the specified N does not meet these criteria, it is automatically adjusted to the nearest value that does.

     See also: filter, filter2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Filter X with the FIR filter B using the FFT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fftshift


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 709
 -- Function File: fftshift (X)
 -- Function File: fftshift (X, DIM)
     Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.

     If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift (fft (X))' corresponds to frequencies

          f = [ -(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df ]

     where df = 1 / dt.

     If X is a matrix, the same holds for rows and columns.  If X is an array, then the same holds along each dimension.

     The optional DIM argument can be used to limit the dimension along which the permutation occurs.

     See also: ifftshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
filter2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 552
 -- Function File: Y = filter2 (B, X)
 -- Function File: Y = filter2 (B, X, SHAPE)
     Apply the 2-D FIR filter B to X.

     If the argument SHAPE is specified, return an array of the desired shape.  Possible values are:

     "full"
          pad X with zeros on all sides before filtering.

     "same"
          unpadded X (default)

     "valid"
          trim X after filtering so edge effects are no included.

     Note this is just a variation on convolution, with the parameters reversed and B rotated 180 degrees.

     See also: conv2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Apply the 2-D FIR filter B to X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
fractdiff


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
 -- Function File: fractdiff (X, D)
     Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
freqz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1415
 -- Function File: [H, W] = freqz (B, A, N, "whole")
 -- Function File: [H, W] = freqz (B)
 -- Function File: [H, W] = freqz (B, A)
 -- Function File: [H, W] = freqz (B, A, N)
 -- Function File: H = freqz (B, A, W)
 -- Function File: [H, W] = freqz (..., FS)
 -- Function File: freqz (...)

     Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively.

     The response is evaluated at N angular frequencies between 0 and 2*pi.

     The output value W is a vector of the frequencies.

     If A is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR filter).

     If N is omitted, a value of 512 is assumed.  For fastest computation, N should factor into a small number of small primes.

     If the fourth argument, "whole", is omitted the response is evaluated at frequencies between 0 and pi.

     'freqz (B, A, W)'

     Evaluate the response at the specific frequencies in the vector W.  The values for W are measured in radians.

     '[...] = freqz (..., FS)'

     Return frequencies in Hz instead of radians assuming a sampling rate FS.  If you are evaluating the response at specific frequencies W, those frequencies should be requested in Hz rather than radians.

     'freqz (...)'

     Plot the magnitude and phase response of H rather than returning them.

     See also: freqz_plot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
freqz_plot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
 -- Function File: freqz_plot (W, H)
 -- Function File: freqz_plot (W, H, FREQ_NORM)
     Plot the magnitude and phase response of H.

     If the optional FREQ_NORM argument is true, the frequency vector W is in units of normalized radians.  If FREQ_NORM is false, or not given, then W is measured in Hertz.

     See also: freqz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Plot the magnitude and phase response of H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hamming


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 579
 -- Function File: hamming (M)
 -- Function File: hamming (M, "periodic")
 -- Function File: hamming (M, "symmetric")
     Return the filter coefficients of a Hamming window of length M.

     If the optional argument "periodic" is given, the periodic form of the window is returned.  This is equivalent to the window of length M+1 with the last coefficient removed.  The optional argument "symmetric" is equivalent to not specifying a second argument.

     For a definition of the Hamming window see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the filter coefficients of a Hamming window of length M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hanning


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 579
 -- Function File: hanning (M)
 -- Function File: hanning (M, "periodic")
 -- Function File: hanning (M, "symmetric")
     Return the filter coefficients of a Hanning window of length M.

     If the optional argument "periodic" is given, the periodic form of the window is returned.  This is equivalent to the window of length M+1 with the last coefficient removed.  The optional argument "symmetric" is equivalent to not specifying a second argument.

     For a definition of the Hanning window see, e.g., A.V. Oppenheim & R. W. Schafer, 'Discrete-Time Signal Processing'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the filter coefficients of a Hanning window of length M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
hurst


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
 -- Function File: hurst (X)
     Estimate the Hurst parameter of sample X via the rescaled range statistic.

     If X is a matrix, the parameter is estimated for every column.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Estimate the Hurst parameter of sample X via the rescaled range statistic.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ifftshift


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 238
 -- Function File: ifftshift (X)
 -- Function File: ifftshift (X, DIM)
     Undo the action of the 'fftshift' function.

     For even length X, 'fftshift' is its own inverse, but odd lengths differ slightly.

     See also: fftshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Undo the action of the 'fftshift' function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
periodogram


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1908
 -- Function File: [PXX, W] = periodogram (X)
 -- Function File: [PXX, W] = periodogram (X, WIN)
 -- Function File: [PXX, W] = periodogram (X, WIN, NFFT)
 -- Function File: [PXX, F] = periodogram (X, WIN, NFFT, FS)
 -- Function File: [PXX, F] = periodogram (..., "RANGE")
 -- Function File: periodogram (...)
     Return the periodogram (Power Spectral Density) of X.

     The possible inputs are:

     X

          data vector.  If X is real-valued a one-sided spectrum is estimated.  If X is complex-valued, or "RANGE" specifies "twosided", the full spectrum is estimated.

     WIN
          window weight data.  If window is empty or unspecified a default rectangular window is used.  Otherwise, the window is applied to the signal ('X .* WIN') before computing the periodogram.  The window data must be a vector of the same length as X.

     NFFT
          number of frequency bins.  The default is 256 or the next higher power of 2 greater than the length of X ('max (256, 2.^nextpow2 (length (x)))').  If NFFT is greater than the length of the input then X will be zero-padded to the length of NFFT.

     FS
          sampling rate.  The default is 1.

     RANGE
          range of spectrum.  "onesided" computes spectrum from [0..nfft/2+1].  "twosided" computes spectrum from [0..nfft-1].

     The optional second output W are the normalized angular frequencies.  For a one-sided calculation W is in the range [0, pi] if NFFT is even and [0, pi) if NFFT is odd.  Similarly, for a two-sided calculation W is in the range [0, 2*pi] or [0, 2*pi) depending on NFFT.

     If a sampling frequency is specified, FS, then the output frequencies F will be in the range [0, FS/2] or [0, FS/2) for one-sided calculations.  For two-sided calculations the range will be [0, FS).

     When called with no outputs the periodogram is immediately plotted in the current figure window.

     See also: fft.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return the periodogram (Power Spectral Density) of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sinc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
 -- Function File: sinc (X)
     Compute the sinc function.

     Return sin (pi*x) / (pi*x).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Compute the sinc function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sinetone


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 323
 -- Function File: sinetone (FREQ, RATE, SEC, AMPL)
     Return a sinetone of frequency FREQ with a length of SEC seconds at sampling rate RATE and with amplitude AMPL.

     The arguments FREQ and AMPL may be vectors of common size.

     The defaults are RATE = 8000, SEC = 1, and AMPL = 64.

     See also: sinewave.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Return a sinetone of frequency FREQ with a length of SEC seconds at sampling rate RATE and with amplitude AMPL.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sinewave


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 225
 -- Function File: sinewave (M, N, D)
     Return an M-element vector with I-th element given by 'sin (2 * pi * (I+D-1) / N)'.

     The default value for D is 0 and the default value for N is M.

     See also: sinetone.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return an M-element vector with I-th element given by 'sin (2 * pi * (I+D-1) / N)'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
spectral_adf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 484
 -- Function File: spectral_adf (C)
 -- Function File: spectral_adf (C, WIN)
 -- Function File: spectral_adf (C, WIN, B)
     Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.

     The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_lw'.

     If WIN is omitted, the triangle window is used.

     If B is omitted, '1 / sqrt (length (X))' is used.

     See also: spectral_xdf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
spectral_xdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 470
 -- Function File: spectral_xdf (X)
 -- Function File: spectral_xdf (X, WIN)
 -- Function File: spectral_xdf (X, WIN, B)
     Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.

     The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_sw'.

     If WIN is omitted, the triangle window is used.

     If B is omitted, '1 / sqrt (length (X))' is used.

     See also: spectral_adf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spencer


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
 -- Function File: spencer (X)
     Return Spencer's 15 point moving average of each column of X.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return Spencer's 15 point moving average of each column of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
stft


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1204
 -- Function File: Y = stft (X)
 -- Function File: Y = stft (X, WIN_SIZE)
 -- Function File: Y = stft (X, WIN_SIZE, INC)
 -- Function File: Y = stft (X, WIN_SIZE, INC, NUM_COEF)
 -- Function File: Y = stft (X, WIN_SIZE, INC, NUM_COEF, WIN_TYPE)
 -- Function File: [Y, C] = stft (...)
     Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.

     Before computing the Fourier transform, one of the following windows is applied:

     "hanning"
          win_type = 1

     "hamming"
          win_type = 2

     "rectangle"
          win_type = 3

     The window names can be passed as strings or by the WIN_TYPE number.

     The following defaults are used for unspecified arguments: WIN_SIZE = 80, INC = 24, NUM_COEF = 64, and WIN_TYPE = 1.

     'Y = stft (X, ...)' returns the absolute values of the Fourier coefficients according to the NUM_COEF positive frequencies.

     '[Y, C] = stft (x, ...)' returns the entire STFT-matrix Y and a 3-element vector C containing the window size, increment, and window type, which is needed by the 'synthesis' function.

     See also: synthesis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
synthesis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Function File: X = synthesis (Y, C)
     Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.

     The values Y and C can be derived by

          [Y, C] = stft (X , ...)

     See also: stft.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unwrap


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 371
 -- Function File: B = unwrap (X)
 -- Function File: B = unwrap (X, TOL)
 -- Function File: B = unwrap (X, TOL, DIM)

     Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL.

     TOL defaults to pi.

     Unwrap will work along the dimension DIM.  If DIM is unspecified it defaults to the first non-singleton dimension.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
yulewalker


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
 -- Function File: [A, V] = yulewalker (C)
     Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'.

     Returns the AR coefficients, A, and the variance of white noise, V.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
bicg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1631
 -- Function File: X = bicg (A, B, RTOL, MAXIT, M1, M2, X0)
 -- Function File: X = bicg (A, B, RTOL, MAXIT, P)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC] = bicg (A, B, ...)
     Solve 'A x = b' using the Bi-conjugate gradient iterative method.

        - RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

        - MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.

        - X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.

     A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x, "notransp") = A*x' and 'f(x, "transp") = A'*x'.

     The preconditioner P is given as 'P = M1 * M2'.  Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x, "notransp") = M1 \ x' or 'g(x, "notransp") = M2 \ x' and 'g(x, "transp") = M1' \ x' or 'g(x, "transp") = M2' \ x'.

     If called with more than one output parameter

        - FLAG indicates the exit status:

             - 0: iteration converged to the within the chosen tolerance

             - 1: the maximum number of iterations was reached before convergence

             - 3: the algorithm reached stagnation

          (the value 2 is unused but skipped for compatibility).

        - RELRES is the final value of the relative residual.

        - ITER is the number of iterations performed.

        - RESVEC is a vector containing the relative residual at each iteration.

     See also: bicgstab, cgs, gmres, pcg, qmr.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Solve 'A x = b' using the Bi-conjugate gradient iterative method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bicgstab


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1526
 -- Function File: X = bicgstab (A, B, RTOL, MAXIT, M1, M2, X0)
 -- Function File: X = bicgstab (A, B, RTOL, MAXIT, P)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC] = bicgstab (A, B, ...)
     Solve 'A x = b' using the stabilizied Bi-conjugate gradient iterative method.

        - RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

        - MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.

        - X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.

     A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x) = A*x'.

     The preconditioner P is given as 'P = M1 * M2'.  Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x) = M1 \ x' or 'g(x) = M2 \ x'.

     If called with more than one output parameter

        - FLAG indicates the exit status:

             - 0: iteration converged to the within the chosen tolerance

             - 1: the maximum number of iterations was reached before convergence

             - 3: the algorithm reached stagnation

          (the value 2 is unused but skipped for compatibility).

        - RELRES is the final value of the relative residual.

        - ITER is the number of iterations performed.

        - RESVEC is a vector containing the relative residual at each iteration.

     See also: bicg, cgs, gmres, pcg, qmr.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Solve 'A x = b' using the stabilizied Bi-conjugate gradient iterative method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cgs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1528
 -- Function File: X = cgs (A, B, RTOL, MAXIT, M1, M2, X0)
 -- Function File: X = cgs (A, B, RTOL, MAXIT, P)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC] = cgs (A, B, ...)
     Solve 'A x = b', where A is a square matrix, using the Conjugate Gradients Squared method.

        - RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

        - MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.

        - X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.

     A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x) = A*x'.

     The preconditioner P is given as 'P = M1 * M2'.  Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x) = M1 \ x' or 'g(x) = M2 \ x'.

     If called with more than one output parameter

        - FLAG indicates the exit status:

             - 0: iteration converged to the within the chosen tolerance

             - 1: the maximum number of iterations was reached before convergence

             - 3: the algorithm reached stagnation

          (the value 2 is unused but skipped for compatibility).

        - RELRES is the final value of the relative residual.

        - ITER is the number of iterations performed.

        - RESVEC is a vector containing the relative residual at each iteration.

     See also: pcg, bicgstab, bicg, gmres, qmr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Solve 'A x = b', where A is a square matrix, using the Conjugate Gradients Squared method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
colperm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
 -- Function File: P = colperm (S)
     Return the column permutations such that the columns of 'S (:, P)' are ordered in terms of increasing number of nonzero elements.

     If S is symmetric, then P is chosen such that 'S (P, P)' orders the rows and columns with increasing number of nonzeros elements.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
Return the column permutations such that the columns of 'S (:, P)' are ordered in terms of increasing number of nonzero elements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
eigs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5549
 -- Function File: D = eigs (A)
 -- Function File: D = eigs (A, K)
 -- Function File: D = eigs (A, K, SIGMA)
 -- Function File: D = eigs (A, K, SIGMA, OPTS)
 -- Function File: D = eigs (A, B)
 -- Function File: D = eigs (A, B, K)
 -- Function File: D = eigs (A, B, K, SIGMA)
 -- Function File: D = eigs (A, B, K, SIGMA, OPTS)
 -- Function File: D = eigs (AF, N)
 -- Function File: D = eigs (AF, N, B)
 -- Function File: D = eigs (AF, N, K)
 -- Function File: D = eigs (AF, N, B, K)
 -- Function File: D = eigs (AF, N, K, SIGMA)
 -- Function File: D = eigs (AF, N, B, K, SIGMA)
 -- Function File: D = eigs (AF, N, K, SIGMA, OPTS)
 -- Function File: D = eigs (AF, N, B, K, SIGMA, OPTS)
 -- Function File: [V, D] = eigs (A, ...)
 -- Function File: [V, D] = eigs (AF, N, ...)
 -- Function File: [V, D, FLAG] = eigs (A, ...)
 -- Function File: [V, D, FLAG] = eigs (AF, N, ...)
     Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria.

     The number of eigenvalues and eigenvectors to calculate is given by K and defaults to 6.

     By default, 'eigs' solve the equation 'A * v = lambda * v', where 'lambda' is a scalar representing one of the eigenvalues, and 'v' is the corresponding eigenvector.  If given the positive definite matrix B then 'eigs' solves the general eigenvalue equation 'A * v = lambda * B * v'.

     The argument SIGMA determines which eigenvalues are returned.  SIGMA can be either a scalar or a string.  When SIGMA is a scalar, the K eigenvalues closest to SIGMA are returned.  If SIGMA is a string, it must have one of the following values.

     "lm"
          Largest Magnitude (default).

     "sm"
          Smallest Magnitude.

     "la"
          Largest Algebraic (valid only for real symmetric problems).

     "sa"
          Smallest Algebraic (valid only for real symmetric problems).

     "be"
          Both Ends, with one more from the high-end if K is odd (valid only for real symmetric problems).

     "lr"
          Largest Real part (valid only for complex or unsymmetric problems).

     "sr"
          Smallest Real part (valid only for complex or unsymmetric problems).

     "li"
          Largest Imaginary part (valid only for complex or unsymmetric problems).

     "si"
          Smallest Imaginary part (valid only for complex or unsymmetric problems).

     If OPTS is given, it is a structure defining possible options that 'eigs' should use.  The fields of the OPTS structure are:

     'issym'
          If AF is given, then flags whether the function AF defines a symmetric problem.  It is ignored if A is given.  The default is false.

     'isreal'
          If AF is given, then flags whether the function AF defines a real problem.  It is ignored if A is given.  The default is true.

     'tol'
          Defines the required convergence tolerance, calculated as 'tol * norm (A)'.  The default is 'eps'.

     'maxit'
          The maximum number of iterations.  The default is 300.

     'p'
          The number of Lanzcos basis vectors to use.  More vectors will result in faster convergence, but a greater use of memory.  The optimal value of 'p' is problem dependent and should be in the range K to N.  The default value is '2 * K'.

     'v0'
          The starting vector for the algorithm.  An initial vector close to the final vector will speed up convergence.  The default is for ARPACK to randomly generate a starting vector.  If specified, 'v0' must be an N-by-1 vector where 'N = rows (A)'

     'disp'
          The level of diagnostic printout (0|1|2).  If 'disp' is 0 then diagnostics are disabled.  The default value is 0.

     'cholB'
          Flag if 'chol (B)' is passed rather than B.  The default is false.

     'permB'
          The permutation vector of the Cholesky factorization of B if 'cholB' is true.  That is 'chol (B(permB, permB))'.  The default is '1:N'.

     It is also possible to represent A by a function denoted AF.  AF must be followed by a scalar argument N defining the length of the vector argument accepted by AF.  AF can be a function handle, an inline function, or a string.  When AF is a string it holds the name of the function to use.

     AF is a function of the form 'y = af (x)' where the required return value of AF is determined by the value of SIGMA.  The four possible forms are

     'A * x'
          if SIGMA is not given or is a string other than "sm".

     'A \ x'
          if SIGMA is 0 or "sm".

     '(A - sigma * I) \ x'
          for the standard eigenvalue problem, where 'I' is the identity matrix of the same size as A.

     '(A - sigma * B) \ x'
          for the general eigenvalue problem.

     The return arguments of 'eigs' depend on the number of return arguments requested.  With a single return argument, a vector D of length K is returned containing the K eigenvalues that have been found.  With two return arguments, V is a N-by-K matrix whose columns are the K eigenvectors corresponding to the returned eigenvalues.  The eigenvalues themselves are returned in D in the form of a N-by-K matrix, where the elements on the diagonal are the eigenvalues.

     Given a third return argument FLAG, 'eigs' returns the status of the convergence.  If FLAG is 0 then all eigenvalues have converged.  Any other value indicates a failure to converge.

     This function is based on the ARPACK package, written by R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang.  For more information see <http://www.caam.rice.edu/software/ARPACK/>.

     See also: eig, svds.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
etreeplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
 -- Function File: etreeplot (A)
 -- Function File: etreeplot (A, NODE_STYLE, EDGE_STYLE)
     Plot the elimination tree of the matrix A or A+A' if A in not symmetric.

     The optional parameters NODE_STYLE and EDGE_STYLE define the output style.

     See also: treeplot, gplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Plot the elimination tree of the matrix A or A+A' if A in not symmetric.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gmres


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1678
 -- Function File: X = gmres (A, B, M, RTOL, MAXIT, M1, M2, X0)
 -- Function File: X = gmres (A, B, M, RTOL, MAXIT, P)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC] = gmres (...)
     Solve 'A x = b' using the Preconditioned GMRES iterative method with restart, a.k.a.  PGMRES(m).

        - RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

        - MAXIT is the maximum number of outer iterations, if not given or set to [] the default value 'min (10, numel (b) / restart)' is used.

        - X0 is the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.

        - M is the restart parameter, if not given or set to [] the default value 'numel (b)' is used.

     Argument A can be passed as a matrix, function handle, or inline function 'f' such that 'f(x) = A*x'.

     The preconditioner P is given as 'P = M1 * M2'.  Both M1 and M2 can be passed as a matrix, function handle, or inline function 'g' such that 'g(x) = M1\x' or 'g(x) = M2\x'.

     Besides the vector X, additional outputs are:

        - FLAG indicates the exit status:

          0 : iteration converged to within the specified tolerance

          1 : maximum number of iterations exceeded

          2 : unused, but skipped for compatibility

          3 : algorithm reached stagnation (no change between iterations)

        - RELRES is the final value of the relative residual.

        - ITER is a vector containing the number of outer iterations and total iterations performed.

        - RESVEC is a vector containing the relative residual at each iteration.

     See also: bicg, bicgstab, cgs, pcg, pcr, qmr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Solve 'A x = b' using the Preconditioned GMRES iterative method with restart, a.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 572
 -- Function File: gplot (A, XY)
 -- Function File: gplot (A, XY, LINE_STYLE)
 -- Function File: [X, Y] = gplot (A, XY)
     Plot a graph defined by A and XY in the graph theory sense.

     A is the adjacency matrix of the array to be plotted and XY is an N-by-2 matrix containing the coordinates of the nodes of the graph.

     The optional parameter LINE_STYLE defines the output style for the plot.  Called with no output arguments the graph is plotted directly.  Otherwise, return the coordinates of the plot in X and Y.

     See also: treeplot, etreeplot, spy.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Plot a graph defined by A and XY in the graph theory sense.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ichol


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3987
 -- Function File: L = ichol (A)
 -- Function File: L = ichol (A, OPTS)

     Compute the incomplete Cholesky factorization of the sparse square matrix A.

     By default, 'ichol' uses only the lower triangle of A and produces a lower triangular factor L such that L*L' approximates A.

     The factor given by this routine may be useful as a preconditioner for a system of linear equations being solved by iterative methods such as PCG (Preconditioned Conjugate Gradient).

     The factorization may be modified by passing options in a structure OPTS.  The option name is a field of the structure and the setting is the value of field.  Names and specifiers are case sensitive.

     type
          Type of factorization.

          "nofill" (default)
               Incomplete Cholesky factorization with no fill-in (IC(0)).

          "ict"
               Incomplete Cholesky factorization with threshold dropping (ICT).

     diagcomp
          A non-negative scalar ALPHA for incomplete Cholesky factorization of 'A + ALPHA * diag (diag (A))' instead of A.  This can be useful when A is not positive definite.  The default value is 0.

     droptol
          A non-negative scalar specifying the drop tolerance for factorization if performing ICT.  The default value is 0 which produces the complete Cholesky factorization.

          Non-diagonal entries of L are set to 0 unless

          'abs (L(i,j)) >= droptol * norm (A(j:end, j), 1)'.

     michol
          Modified incomplete Cholesky factorization:

          "off" (default)
               Row and column sums are not necessarily preserved.

          "on"
               The diagonal of L is modified so that row (and column) sums are preserved even when elements have been dropped during the factorization.  The relationship preserved is: 'A * e = L * L' * e', where e is a vector of ones.

     shape

          "lower" (default)
               Use only the lower triangle of A and return a lower triangular factor L such that L*L' approximates A.

          "upper"
               Use only the upper triangle of A and return an upper triangular factor U such that 'U'*U' approximates A.

     EXAMPLES

     The following problem demonstrates how to factorize a sample symmetric positive definite matrix with the full Cholesky decomposition and with the incomplete one.

          A = [ 0.37, -0.05,  -0.05,  -0.07;
               -0.05,  0.116,  0.0,   -0.05;
               -0.05,  0.0,    0.116, -0.05;
               -0.07, -0.05,  -0.05,   0.202];
          A = sparse (A);
          nnz (tril (A))
          ans =  9
          L = chol (A, "lower");
          nnz (L)
          ans =  10
          norm (A - L * L', "fro") / norm (A, "fro")
          ans =  1.1993e-16
          opts.type = "nofill";
          L = ichol (A, opts);
          nnz (L)
          ans =  9
          norm (A - L * L', "fro") / norm (A, "fro")
          ans =  0.019736

     Another example for decomposition is a finite difference matrix used to solve a boundary value problem on the unit square.

          nx = 400; ny = 200;
          hx = 1 / (nx + 1); hy = 1 / (ny + 1);
          Dxx = spdiags ([ones(nx, 1), -2*ones(nx, 1), ones(nx, 1)],
                         [-1 0 1 ], nx, nx) / (hx ^ 2);
          Dyy = spdiags ([ones(ny, 1), -2*ones(ny, 1), ones(ny, 1)],
                         [-1 0 1 ], ny, ny) / (hy ^ 2);
          A = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
          nnz (tril (A))
          ans =  239400
          opts.type = "nofill";
          L = ichol (A, opts);
          nnz (tril (A))
          ans =  239400
          norm (A - L * L', "fro") / norm (A, "fro")
          ans =  0.062327

     References for implemented algorithms:

     [1] Y. Saad.  "Preconditioning Techniques."  'Iterative Methods for Sparse Linear Systems', PWS Publishing Company, 1996.

     [2] M. Jones, P. Plassmann: 'An Improved Incomplete Cholesky Factorization', 1992.

     See also: chol, ilu, pcg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Compute the incomplete Cholesky factorization of the sparse square matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ilu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4241
 -- Function File: ilu (A)
 -- Function File: ilu (A, OPTS)
 -- Function File: [L, U] = ilu (...)
 -- Function File: [L, U, P] = ilu (...)

     Compute the incomplete LU factorization of the sparse square matrix A.

     'ilu' returns a unit lower triangular matrix L, an upper triangular matrix U, and optionally a permutation matrix P, such that 'L*U' approximates 'P*A'.

     The factors given by this routine may be useful as preconditioners for a system of linear equations being solved by iterative methods such as BICG (BiConjugate Gradients) or GMRES (Generalized Minimum Residual Method).

     The factorization may be modified by passing options in a structure OPTS.  The option name is a field of the structure and the setting is the value of field.  Names and specifiers are case sensitive.

     'type'
          Type of factorization.

          "nofill"
               ILU factorization with no fill-in (ILU(0)).

               Additional supported options: 'milu'.

          "crout"
               Crout version of ILU factorization (ILUC).

               Additional supported options: 'milu', 'droptol'.

          "ilutp" (default)
               ILU factorization with threshold and pivoting.

               Additional supported options: 'milu', 'droptol', 'udiag', 'thresh'.

     'droptol'
          A non-negative scalar specifying the drop tolerance for factorization.  The default value is 0 which produces the complete LU factorization.

          Non-diagonal entries of U are set to 0 unless

          'abs (U(i,j)) >= droptol * norm (A(:,j))'.

          Non-diagonal entries of L are set to 0 unless

          'abs (L(i,j)) >= droptol * norm (A(:,j))/U(j,j)'.

     'milu'
          Modified incomplete LU factorization:

          "row"
               Row-sum modified incomplete LU factorization.  The factorization preserves row sums: 'A * e = L * U * e', where e is a vector of ones.

          "col"
               Column-sum modified incomplete LU factorization.  The factorization preserves column sums: 'e' * A = e' * L * U'.

          "off" (default)
               Row and column sums are not necessarily preserved.

     'udiag'
          If true, any zeros on the diagonal of the upper triangular factor are replaced by the local drop tolerance 'droptol * norm (A(:,j))/U(j,j)'.  The default is false.

     'thresh'
          Pivot threshold for factorization.  It can range between 0 (diagonal pivoting) and 1 (default), where the maximum magnitude entry in the column is chosen to be the pivot.

     If 'ilu' is called with just one output, the returned matrix is 'L + U - speye (size (A))', where L is unit lower triangular and U is upper triangular.

     With two outputs, 'ilu' returns a unit lower triangular matrix L and an upper triangular matrix U.  For OPTS.type == "ilutp", one of the factors is permuted based on the value of OPTS.milu.  When OPTS.milu == "row", U is a column permuted upper triangular factor.  Otherwise, L is a row-permuted unit lower triangular factor.

     If there are three named outputs and OPTS.milu != "row", P is returned such that L and U are incomplete factors of 'P*A'.  When OPTS.milu == "row", P is returned such that L and U are incomplete factors of 'A*P'.

     EXAMPLES

          A = gallery ("neumann", 1600) + speye (1600);
          opts.type = "nofill";
          nnz (A)
          ans = 7840

          nnz (lu (A))
          ans = 126478

          nnz (ilu (A, opts))
          ans = 7840

     This shows that A has 7,840 nonzeros, the complete LU factorization has 126,478 nonzeros, and the incomplete LU factorization, with 0 level of fill-in, has 7,840 nonzeros, the same amount as A.  Taken from: http://www.mathworks.com/help/matlab/ref/ilu.html

          A = gallery ("wathen", 10, 10);
          b = sum (A, 2);
          tol = 1e-8;
          maxit = 50;
          opts.type = "crout";
          opts.droptol = 1e-4;
          [L, U] = ilu (A, opts);
          x = bicg (A, b, tol, maxit, L, U);
          norm (A * x - b, inf)

     This example uses ILU as preconditioner for a random FEM-Matrix, which has a large condition number.  Without L and U BICG would not converge.

     See also: lu, ichol, bicg, gmres.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Compute the incomplete LU factorization of the sparse square matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nonzeros


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
 -- Function File: nonzeros (S)
     Return a vector of the nonzero values of the sparse matrix S.

     See also: find, nnz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return a vector of the nonzero values of the sparse matrix S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pcg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5539
 -- Function File: X = pcg (A, B, TOL, MAXIT, M1, M2, X0, ...)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC, EIGEST] = pcg (...)

     Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Gradient iterative method.

     The input arguments are

        * A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes 'A * X'.  In principle, A should be symmetric and positive definite; if 'pcg' finds A not to be positive definite, a warning is printed and the FLAG output will be set.

        * B is the right-hand side vector.

        * TOL is the required relative tolerance for the residual error, 'B - A * X'.  The iteration stops if 'norm (B - A * X)' <= TOL * norm (B).  If TOL is omitted or empty then a tolerance of 1e-6 is used.

        * MAXIT is the maximum allowable number of iterations; if MAXIT is omitted or empty then a value of 20 is used.

        * M = M1 * M2 is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by 'pcg' 'P * X = M \ B', with 'P = M \ A'.  Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method.  Instead of matrices M1 and M2, the user may pass two functions which return the results of applying the inverse of M1 and M2 to a vector (usually this is the preferred way of using the preconditioner).  If M1 is omitted or empty '[]' then no preconditioning is applied.  If M2 is omitted, M = M1 will be used as a preconditioner.

        * X0 is the initial guess.  If X0 is omitted or empty then the function sets X0 to a zero vector by default.

     The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to 'pcg'.  See the examples below for further details.  The output arguments are

        * X is the computed approximation to the solution of 'A * X = B'.

        * FLAG reports on the convergence.  A value of 0 means the solution converged and the tolerance criterion given by TOL is satisfied.  A value of 1 means that the MAXIT limit for the iteration count was reached.  A value of 3 indicates that the (preconditioned) matrix was found not to be positive definite.

        * RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.

        * ITER is the actual number of iterations performed.

        * RESVEC describes the convergence history of the method.  'RESVEC(i,1)' is the Euclidean norm of the residual, and 'RESVEC(i,2)' is the preconditioned residual norm, after the (I-1)-th iteration, 'I = 1, 2, ..., ITER+1'.  The preconditioned residual norm is defined as 'norm (R) ^ 2 = R' * (M \ R)' where 'R = B - A * X', see also the description of M.  If EIGEST is not required, only 'RESVEC(:,1)' is returned.

        * EIGEST returns the estimate for the smallest 'EIGEST(1)' and largest 'EIGEST(2)' eigenvalues of the preconditioned matrix 'P = M \ A'.  In particular, if no preconditioning is used, the estimates for the extreme eigenvalues of A are returned.  'EIGEST(1)' is an overestimate and 'EIGEST(2)' is an underestimate, so that 'EIGEST(2) / EIGEST(1)' is a lower bound for 'cond (P, 2)', which nevertheless in the limit should theoretically be equal to the actual value of the condition number.  The method which computes EIGEST works only for symmetric positive definite A and M, and the user is responsible for verifying this assumption.

     Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)

          n = 10;
          A = diag (sparse (1:n));
          b = rand (n, 1);
          [l, u, p] = ilu (A, struct ("droptol", 1.e-3));

     EXAMPLE 1: Simplest use of 'pcg'

          x = pcg (A, b)

     EXAMPLE 2: 'pcg' with a function which computes 'A * X'

          function y = apply_a (x)
            y = [1:N]' .* x;
          endfunction

          x = pcg ("apply_a", b)

     EXAMPLE 3: 'pcg' with a preconditioner: L * U

          x = pcg (A, b, 1.e-6, 500, l*u)

     EXAMPLE 4: 'pcg' with a preconditioner: L * U.  Faster than EXAMPLE 3 since lower and upper triangular matrices are easier to invert

          x = pcg (A, b, 1.e-6, 500, l, u)

     EXAMPLE 5: Preconditioned iteration, with full diagnostics.  The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function

          function y = apply_m (x)
            k = floor (length (x) - 2);
            y = x;
            y(1:k) = x(1:k) ./ [1:k]';
          endfunction

          [x, flag, relres, iter, resvec, eigest] = ...
                             pcg (A, b, [], [], "apply_m");
          semilogy (1:iter+1, resvec);

     EXAMPLE 6: Finally, a preconditioner which depends on a parameter K.

          function y = apply_M (x, varargin)
            K = varargin{1};
            y = x;
            y(1:K) = x(1:K) ./ [1:K]';
          endfunction

          [x, flag, relres, iter, resvec, eigest] = ...
               pcg (A, b, [], [], "apply_m", [], [], 3)

     References:

       1. C.T. Kelley, 'Iterative Methods for Linear and Nonlinear Equations', SIAM, 1995.  (the base PCG algorithm)

       2. Y. Saad, 'Iterative Methods for Sparse Linear Systems', PWS 1996.  (condition number estimate from PCG) Revised version of this book is available online at <http://www-users.cs.umn.edu/~saad/books.html>

     See also: sparse, pcr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Gradient iterative method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pcr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4047
 -- Function File: X = pcr (A, B, TOL, MAXIT, M, X0, ...)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC] = pcr (...)

     Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Residuals iterative method.

     The input arguments are

        * A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes 'A * X'.  In principle A should be symmetric and non-singular; if 'pcr' finds A to be numerically singular, you will get a warning message and the FLAG output parameter will be set.

        * B is the right hand side vector.

        * TOL is the required relative tolerance for the residual error, 'B - A * X'.  The iteration stops if 'norm (B - A * X) <= TOL * norm (B - A * X0)'.  If TOL is empty or is omitted, the function sets 'TOL = 1e-6' by default.

        * MAXIT is the maximum allowable number of iterations; if '[]' is supplied for 'maxit', or 'pcr' has less arguments, a default value equal to 20 is used.

        * M is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by 'pcr' 'P * X = M \ B', with 'P = M \ A'.  Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method.  Instead of matrix M, the user may pass a function which returns the results of applying the inverse of M to a vector (usually this is the preferred way of using the preconditioner).  If '[]' is supplied for M, or M is omitted, no preconditioning is applied.

        * X0 is the initial guess.  If X0 is empty or omitted, the function sets X0 to a zero vector by default.

     The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to 'pcr'.  See the examples below for further details.

     The output arguments are

        * X is the computed approximation to the solution of 'A * X = B'.

        * FLAG reports on the convergence.  'FLAG = 0' means the solution converged and the tolerance criterion given by TOL is satisfied.  'FLAG = 1' means that the MAXIT limit for the iteration count was reached.  'FLAG = 3' reports a 'pcr' breakdown, see [1] for details.

        * RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.

        * ITER is the actual number of iterations performed.

        * RESVEC describes the convergence history of the method, so that 'RESVEC (i)' contains the Euclidean norms of the residual after the (I-1)-th iteration, 'I = 1,2, ..., ITER+1'.

     Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)

          n = 10;
          A = sparse (diag (1:n));
          b = rand (N, 1);

     EXAMPLE 1: Simplest use of 'pcr'

          x = pcr (A, b)

     EXAMPLE 2: 'pcr' with a function which computes 'A * X'.

          function y = apply_a (x)
            y = [1:10]' .* x;
          endfunction

          x = pcr ("apply_a", b)

     EXAMPLE 3: Preconditioned iteration, with full diagnostics.  The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function

          function y = apply_m (x)
            k = floor (length (x) - 2);
            y = x;
            y(1:k) = x(1:k) ./ [1:k]';
          endfunction

          [x, flag, relres, iter, resvec] = ...
                             pcr (A, b, [], [], "apply_m")
          semilogy ([1:iter+1], resvec);

     EXAMPLE 4: Finally, a preconditioner which depends on a parameter K.

          function y = apply_m (x, varargin)
            k = varargin{1};
            y = x;
            y(1:k) = x(1:k) ./ [1:k]';
          endfunction

          [x, flag, relres, iter, resvec] = ...
                             pcr (A, b, [], [], "apply_m"', [], 3)

     References:

     [1] W. Hackbusch, 'Iterative Solution of Large Sparse Systems of Equations', section 9.5.4; Springer, 1994

     See also: sparse, pcg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Solve the linear system of equations 'A * X = B' by means of the Preconditioned Conjugate Residuals iterative method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
qmr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2064
 -- Function File: X = qmr (A, B, RTOL, MAXIT, M1, M2, X0)
 -- Function File: X = qmr (A, B, RTOL, MAXIT, P)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC] = qmr (A, B, ...)
     Solve 'A x = b' using the Quasi-Minimal Residual iterative method (without look-ahead).

        - RTOL is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

        - MAXIT the maximum number of outer iterations, if not given or set to [] the default value 'min (20, numel (b))' is used.

        - X0 the initial guess, if not given or set to [] the default value 'zeros (size (b))' is used.

     A can be passed as a matrix or as a function handle or inline function 'f' such that 'f(x, "notransp") = A*x' and 'f(x, "transp") = A'*x'.

     The preconditioner P is given as 'P = M1 * M2'.  Both M1 and M2 can be passed as a matrix or as a function handle or inline function 'g' such that 'g(x, "notransp") = M1 \ x' or 'g(x, "notransp") = M2 \ x' and 'g(x, "transp") = M1' \ x' or 'g(x, "transp") = M2' \ x'.

     If called with more than one output parameter

        - FLAG indicates the exit status:

             - 0: iteration converged to the within the chosen tolerance

             - 1: the maximum number of iterations was reached before convergence

             - 3: the algorithm reached stagnation

          (the value 2 is unused but skipped for compatibility).

        - RELRES is the final value of the relative residual.

        - ITER is the number of iterations performed.

        - RESVEC is a vector containing the residual norms at each iteration.

     References:

       1. R. Freund and N. Nachtigal, 'QMR: a quasi-minimal residual method for non-Hermitian linear systems', Numerische Mathematik, 1991, 60, pp.  315-339.

       2. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhour, R. Pozo, C. Romine, and H. van der Vorst, 'Templates for the solution of linear systems: Building blocks for iterative methods', SIAM, 2nd ed., 1994.

     See also: bicg, bicgstab, cgs, gmres, pcg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Solve 'A x = b' using the Quasi-Minimal Residual iterative method (without look-ahead).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
spaugment


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1299
 -- Function File: S = spaugment (A, C)
     Create the augmented matrix of A.

     This is given by

          [C * eye(M, M), A;
                      A', zeros(N, N)]

     This is related to the least squares solution of 'A \ B', by

          S * [ R / C; x] = [ B, zeros(N, columns(B)) ]

     where R is the residual error

          R = B - A * X

     As the matrix S is symmetric indefinite it can be factorized with 'lu', and the minimum norm solution can therefore be found without the need for a 'qr' factorization.  As the residual error will be 'zeros (M, M)' for underdetermined problems, and example can be

          m = 11; n = 10; mn = max (m, n);
          A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],
                       [-1, 0, 1], m, n);
          x0 = A \ ones (m,1);
          s = spaugment (A);
          [L, U, P, Q] = lu (s);
          x1 = Q * (U \ (L \ (P  * [ones(m,1); zeros(n,1)])));
          x1 = x1(end - n + 1 : end);

     To find the solution of an overdetermined problem needs an estimate of the residual error R and so it is more complex to formulate a minimum norm solution using the 'spaugment' function.

     In general the left division operator is more stable and faster than using the 'spaugment' function.

     See also: mldivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Create the augmented matrix of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
spconvert


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 424
 -- Function File: X = spconvert (M)
     Convert a simple sparse matrix format easily generated by other programs into Octave's internal sparse format.

     The input M is either a 3 or 4 column real matrix, containing the row, column, real, and imaginary parts of the elements of the sparse matrix.  An element with a zero real and imaginary part can be used to force a particular matrix size.

     See also: sparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Convert a simple sparse matrix format easily generated by other programs into Octave's internal sparse format.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spdiags


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1119
 -- Function File: B = spdiags (A)
 -- Function File: [B, D] = spdiags (A)
 -- Function File: B = spdiags (A, D)
 -- Function File: A = spdiags (V, D, A)
 -- Function File: A = spdiags (V, D, M, N)
     A generalization of the function 'diag'.

     Called with a single input argument, the nonzero diagonals D of A are extracted.

     With two arguments the diagonals to extract are given by the vector D.

     The other two forms of 'spdiags' modify the input matrix by replacing the diagonals.  They use the columns of V to replace the diagonals represented by the vector D.  If the sparse matrix A is defined then the diagonals of this matrix are replaced.  Otherwise a matrix of M by N is created with the diagonals given by the columns of V.

     Negative values of D represent diagonals below the main diagonal, and positive values of D diagonals above the main diagonal.

     For example:

          spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
             => 5 10  0  0
                1  6 11  0
                0  2  7 12
                0  0  3  8
                0  0  0  4

     See also: diag.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
A generalization of the function 'diag'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
speye


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 501
 -- Function File: S = speye (M, N)
 -- Function File: S = speye (M)
 -- Function File: S = speye (SZ)
     Return a sparse identity matrix of size MxN.

     The implementation is significantly more efficient than 'sparse (eye (M))' as the full matrix is not constructed.

     Called with a single argument a square matrix of size M-by-M is created.  If called with a single vector argument SZ, this argument is taken to be the size of the matrix to create.

     See also: sparse, spdiags, eye.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return a sparse identity matrix of size MxN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
spfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 287
 -- Function File: Y = spfun (F, S)
     Compute 'f(S)' for the nonzero values of S.

     This results in a sparse matrix with the same structure as S.  The function F can be passed as a string, a function handle, or an inline function.

     See also: arrayfun, cellfun, structfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute 'f(S)' for the nonzero values of S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
spones


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
 -- Function File: R = spones (S)
     Replace the nonzero entries of S with ones.

     This creates a sparse matrix with the same structure as S.

     See also: sparse, sprand, sprandn, sprandsym, spfun, spy.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Replace the nonzero entries of S with ones.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sprand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 748
 -- Function File: sprand (M, N, D)
 -- Function File: sprand (M, N, D, RC)
 -- Function File: sprand (S)
     Generate a sparse matrix with uniformly distributed random values.

     The size of the matrix is MxN with a density of values D.  D must be between 0 and 1.  Values will be uniformly distributed on the interval (0, 1).

     If called with a single matrix argument, a sparse matrix is generated with random values wherever the matrix S is nonzero.

     If called with a scalar fourth argument RC, a random sparse matrix with reciprocal condition number RC is generated.  If RC is a vector, then it specifies the first singular values of the generated matrix ('length (RC) <= min (M, N)').

     See also: sprandn, sprandsym, rand.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Generate a sparse matrix with uniformly distributed random values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sprandn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 763
 -- Function File: sprandn (M, N, D)
 -- Function File: sprandn (M, N, D, RC)
 -- Function File: sprandn (S)
     Generate a sparse matrix with normally distributed random values.

     The size of the matrix is MxN with a density of values D.  D must be between 0 and 1.  Values will be normally distributed with a mean of 0 and a variance of 1.

     If called with a single matrix argument, a sparse matrix is generated with random values wherever the matrix S is nonzero.

     If called with a scalar fourth argument RC, a random sparse matrix with reciprocal condition number RC is generated.  If RC is a vector, then it specifies the first singular values of the generated matrix ('length (RC) <= min (M, N)').

     See also: sprand, sprandsym, randn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Generate a sparse matrix with normally distributed random values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
sprandsym


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 510
 -- Function File: sprandsym (N, D)
 -- Function File: sprandsym (S)
     Generate a symmetric random sparse matrix.

     The size of the matrix will be NxN, with a density of values given by D.  D must be between 0 and 1 inclusive.  Values will be normally distributed with a mean of zero and a variance of 1.

     If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is nonzero in its lower triangular part.

     See also: sprand, sprandn, spones, sparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Generate a symmetric random sparse matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spstats


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 571
 -- Function File: [COUNT, MEAN, VAR] = spstats (S)
 -- Function File: [COUNT, MEAN, VAR] = spstats (S, J)
     Return the stats for the nonzero elements of the sparse matrix S.

     COUNT is the number of nonzeros in each column, MEAN is the mean of the nonzeros in each column, and VAR is the variance of the nonzeros in each column.

     Called with two input arguments, if S is the data and J is the bin number for the data, compute the stats for each bin.  In this case, bins can contain data values of zero, whereas with 'spstats (S)' the zeros may disappear.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the stats for the nonzero elements of the sparse matrix S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
spy


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 413
 -- Function File: spy (X)
 -- Function File: spy (..., MARKERSIZE)
 -- Function File: spy (..., LINE_SPEC)
     Plot the sparsity pattern of the sparse matrix X.

     If the argument MARKERSIZE is given as a scalar value, it is used to determine the point size in the plot.

     If the string LINE_SPEC is given it is passed to 'plot' and determines the appearance of the plot.

     See also: plot, gplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Plot the sparsity pattern of the sparse matrix X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
svds


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2206
 -- Function File: S = svds (A)
 -- Function File: S = svds (A, K)
 -- Function File: S = svds (A, K, SIGMA)
 -- Function File: S = svds (A, K, SIGMA, OPTS)
 -- Function File: [U, S, V] = svds (...)
 -- Function File: [U, S, V, FLAG] = svds (...)

     Find a few singular values of the matrix A.

     The singular values are calculated using

          [M, N] = size (A);
          S = eigs ([sparse(M, M), A;
                               A', sparse(N, N)])

     The eigenvalues returned by 'eigs' correspond to the singular values of A.  The number of singular values to calculate is given by K and defaults to 6.

     The argument SIGMA specifies which singular values to find.  When SIGMA is the string 'L', the default, the largest singular values of A are found.  Otherwise, SIGMA must be a real scalar and the singular values closest to SIGMA are found.  As a corollary, 'SIGMA = 0' finds the smallest singular values.  Note that for relatively small values of SIGMA, there is a chance that the requested number of singular values will not be found.  In that case SIGMA should be increased.

     OPTS is a structure defining options that 'svds' will pass to 'eigs'.  The possible fields of this structure are documented in 'eigs'.  By default, 'svds' sets the following three fields:

     'tol'
          The required convergence tolerance for the singular values.  The default value is 1e-10.  'eigs' is passed 'TOL / sqrt(2)'.

     'maxit'
          The maximum number of iterations.  The default is 300.

     'disp'
          The level of diagnostic printout (0|1|2).  If 'disp' is 0 then diagnostics are disabled.  The default value is 0.

     If more than one output is requested then 'svds' will return an approximation of the singular value decomposition of A

          A_approx = U*S*V'

     where A_approx is a matrix of size A but only rank K.

     FLAG returns 0 if the algorithm has succesfully converged, and 1 otherwise.  The test for convergence is

          norm (A*V - U*S, 1) <= TOL * norm (A, 1)

     'svds' is best for finding only a few singular values from a large sparse matrix.  Otherwise, 'svd (full (A))' will likely be more efficient.

See also: svd, eigs. 


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Find a few singular values of the matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
treelayout


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 396
 -- Function File: treelayout (TREE)
 -- Function File: treelayout (TREE, PERMUTATION)
     treelayout lays out a tree or a forest.

     The first argument TREE is a vector of predecessors.

     The parameter PERMUTATION is an optional postorder permutation.

     The complexity of the algorithm is O(n) in terms of time and memory requirements.

     See also: etreeplot, gplot, treeplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
treelayout lays out a tree or a forest.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
treeplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 400
 -- Function File: treeplot (TREE)
 -- Function File: treeplot (TREE, NODE_STYLE, EDGE_STYLE)
     Produce a graph of tree or forest.

     The first argument is vector of predecessors.

     The optional parameters NODE_STYLE and EDGE_STYLE define the output plot style.

     The complexity of the algorithm is O(n) in terms of is time and memory requirements.

     See also: etreeplot, gplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Produce a graph of tree or forest.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bessel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2031
 -- Loadable Function: [J, IERR] = besselj (ALPHA, X, OPT)
 -- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
 -- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
 -- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
 -- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
     Compute Bessel or Hankel functions of various kinds:

     'besselj'
          Bessel functions of the first kind.  If the argument OPT is supplied, the result is multiplied by 'exp (-abs (imag (x)))'.

     'bessely'
          Bessel functions of the second kind.  If the argument OPT is supplied, the result is multiplied by 'exp (-abs (imag (x)))'.

     'besseli'
          Modified Bessel functions of the first kind.  If the argument OPT is supplied, the result is multiplied by 'exp (-abs (real (x)))'.

     'besselk'
          Modified Bessel functions of the second kind.  If the argument OPT is supplied, the result is multiplied by 'exp (x)'.

     'besselh'
          Compute Hankel functions of the first (K = 1) or second (K = 2) kind.  If the argument OPT is supplied, the result is multiplied by 'exp (-I*X)' for K = 1 or 'exp (I*X)' for K = 2.

     If ALPHA is a scalar, the result is the same size as X.  If X is a scalar, the result is the same size as ALPHA.  If ALPHA is a row vector and X is a column vector, the result is a matrix with 'length (X)' rows and 'length (ALPHA)' columns.  Otherwise, ALPHA and X must conform and the result will be the same size.

     The value of ALPHA must be real.  The value of X may be complex.

     If requested, IERR contains the following status information and is the same size as the result.

       0. Normal return.

       1. Input error, return 'NaN'.

       2. Overflow, return 'Inf'.

       3. Loss of significance by argument reduction results in less than half of machine accuracy.

       4. Complete loss of significance by argument reduction, return 'NaN'.

       5. Error--no computation, algorithm termination condition not met, return 'NaN'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds: 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
beta


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 489
 -- Mapping Function: beta (A, B)
     Compute the Beta function for real inputs A and B.

     The Beta function definition is

          beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).

     The Beta function can grow quite large and it is often more useful to work with the logarithm of the output rather than the function directly.  *Note betaln: XREFbetaln, for computing the logarithm of the Beta function in an efficient manner.

     See also: betaln, betainc, betaincinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the Beta function for real inputs A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
betaln


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 467
 -- Mapping Function: betaln (A, B)
     Compute the natural logarithm of the Beta function for real inputs A and B.

     'betaln' is defined as

          betaln (a, b) = log (beta (a, b))

     and is calculated in a way to reduce the occurrence of underflow.

     The Beta function can grow quite large and it is often more useful to work with the logarithm of the output rather than the function directly.

     See also: beta, betainc, betaincinv, gammaln.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute the natural logarithm of the Beta function for real inputs A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ellipke


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1171
 -- Function File: K = ellipke (M)
 -- Function File: K = ellipke (M, TOL)
 -- Function File: [K, E] = ellipke (...)
     Compute complete elliptic integrals of the first K(M) and second E(M) kind.

     M must be a scalar or real array with -Inf <= M <= 1.

     The optional input TOL controls the stopping tolerance of the algorithm and defaults to 'eps (class (M))'.  The tolerance can be increased to compute a faster, less accurate approximation.

     When called with one output only elliptic integrals of the first kind are returned.

     Mathematical Note:

     Elliptic integrals of the first kind are defined as

                   1
                  /               dt
          K (m) = | ------------------------------
                  / sqrt ((1 - t^2)*(1 - m^2*t^2))
                 0

     Elliptic integrals of the second kind are defined as

                   1
                  /  sqrt (1 - m^2*t^2)
          E (m) = |  ------------------ dt
                  /  sqrt (1 - t^2)
                 0

     Reference: Milton Abramowitz and Irene A. Stegun, 'Handbook of Mathematical Functions', Chapter 17, Dover, 1965.

     See also: ellipj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute complete elliptic integrals of the first K(M) and second E(M) kind.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 640
 -- Function File: expint (X)
     Compute the exponential integral:

                     infinity
                    /
          E_1 (x) = | exp (-t)/t dt
                    /
                   x

     Note: For compatibility, this functions uses the MATLAB definition of the exponential integral.  Most other sources refer to this particular value as E_1 (x), and the exponential integral as

                      infinity
                     /
          Ei (x) = - | exp (-t)/t dt
                     /
                   -x

     The two definitions are related, for positive real values of X, by 'E_1 (-x) = -Ei (x) - i*pi'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Compute the exponential integral: 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
factor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 529
 -- Function File: PF = factor (Q)
 -- Function File: [PF, N] = factor (Q)
     Return the prime factorization of Q.

     The prime factorization is defined as 'prod (PF) == Q' where every element of PF is a prime number.  If 'Q == 1', return 1.

     With two output arguments, return the unique prime factors PF and their multiplicities.  That is, 'prod (PF .^ N) == Q'.

     Implementation Note: The input Q must be less than 'bitmax' (9.0072e+15) in order to factor correctly.

     See also: gcd, lcm, isprime, primes.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return the prime factorization of Q.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
factorial


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 527
 -- Function File: factorial (N)
     Return the factorial of N where N is a real non-negative integer.

     If N is a scalar, this is equivalent to 'prod (1:N)'.  For vector or matrix arguments, return the factorial of each element in the array.

     For non-integers see the generalized factorial function 'gamma'.  Note that the factorial function grows large quite quickly, and even with double precision values overflow will occur if N > 171.  For such cases consider 'gammaln'.

     See also: prod, gamma, gammaln.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the factorial of N where N is a real non-negative integer.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isprime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1426
 -- Function File: isprime (X)
     Return a logical array which is true where the elements of X are prime numbers and false where they are not.

     A prime number is conventionally defined as a positive integer greater than 1 (e.g., 2, 3, ...) which is divisible only by itself and 1.  Octave extends this definition to include both negative integers and complex values.  A negative integer is prime if its positive counterpart is prime.  This is equivalent to 'isprime (abs (x))'.

     If 'class (X)' is complex, then primality is tested in the domain of Gaussian integers (<http://en.wikipedia.org/wiki/Gaussian_integer>).  Some non-complex integers are prime in the ordinary sense, but not in the domain of Gaussian integers.  For example, 5 = (1+2i)*(1-2i) shows that 5 is not prime because it has a factor other than itself and 1.  Exercise caution when testing complex and real values together in the same matrix.

     Examples:

          isprime (1:6)
              => [0, 1, 1, 0, 1, 0]

          isprime ([i, 2, 3, 5])
              => [0, 0, 1, 0]

     Programming Note: 'isprime' is appropriate if the maximum value in X is not too large (< 1e15).  For larger values special purpose factorization code should be used.

     Compatibility Note: MATLAB does not extend the definition of prime numbers and will produce an error if given negative or complex inputs.

     See also: primes, factor, gcd, lcm.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return a logical array which is true where the elements of X are prime numbers and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
lcm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 263
 -- Mapping Function: lcm (X, Y)
 -- Mapping Function: lcm (X, Y, ...)
     Compute the least common multiple of X and Y, or of the list of all arguments.

     All elements must be numeric and of the same size or scalar.

     See also: factor, gcd, isprime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Compute the least common multiple of X and Y, or of the list of all arguments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
legendre


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2306
 -- Function File: L = legendre (N, X)
 -- Function File: L = legendre (N, X, NORMALIZATION)
     Compute the Legendre function of degree N and order M = 0 ... N.

     The value N must be a real non-negative integer.

     X is a vector with real-valued elements in the range [-1, 1].

     The optional argument NORMALIZATION may be one of "unnorm", "sch", or "norm".  The default if no normalization is given is "unnorm".

     When the optional argument NORMALIZATION is "unnorm", compute the Legendre function of degree N and order M and return all values for M = 0 ... N.  The return value has one dimension more than X.

     The Legendre Function of degree N and order M:

           m         m      2  m/2   d^m
          P(x) = (-1) * (1-x  )    * ----  P(x)
           n                         dx^m   n

     with Legendre polynomial of degree N:

                    1    d^n   2    n
          P(x) = ------ [----(x - 1) ]
           n     2^n n!  dx^n

     'legendre (3, [-1.0, -0.9, -0.8])' returns the matrix:

           x  |   -1.0   |   -0.9   |   -0.8
          ------------------------------------
          m=0 | -1.00000 | -0.47250 | -0.08000
          m=1 |  0.00000 | -1.99420 | -1.98000
          m=2 |  0.00000 | -2.56500 | -4.32000
          m=3 |  0.00000 | -1.24229 | -3.24000

     When the optional argument 'normalization' is "sch", compute the Schmidt semi-normalized associated Legendre function.  The Schmidt semi-normalized associated Legendre function is related to the unnormalized Legendre functions by the following:

     For Legendre functions of degree N and order 0:

            0      0
          SP(x) = P(x)
            n      n

     For Legendre functions of degree n and order m:

            m      m         m    2(n-m)! 0.5
          SP(x) = P(x) * (-1)  * [-------]
            n      n              (n+m)!

     When the optional argument NORMALIZATION is "norm", compute the fully normalized associated Legendre function.  The fully normalized associated Legendre function is related to the unnormalized Legendre functions by the following:

     For Legendre functions of degree N and order M

            m      m         m    (n+0.5)(n-m)! 0.5
          NP(x) = P(x) * (-1)  * [-------------]
            n      n                  (n+m)!

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the Legendre function of degree N and order M = 0 .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nchoosek


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1338
 -- Function File: C = nchoosek (N, K)
 -- Function File: C = nchoosek (SET, K)

     Compute the binomial coefficient of N or list all possible combinations of a SET of items.

     If N is a scalar then calculate the binomial coefficient of N and K which is defined as

           /   \
           | n |    n (n-1) (n-2) ... (n-k+1)       n!
           |   |  = ------------------------- =  ---------
           | k |               k!                k! (n-k)!
           \   /

     This is the number of combinations of N items taken in groups of size K.

     If the first argument is a vector, SET, then generate all combinations of the elements of SET, taken K at a time, with one row per combination.  The result C has K columns and 'nchoosek (length (SET), K)' rows.

     For example:

     How many ways can three items be grouped into pairs?

          nchoosek (3, 2)
             => 3

     What are the possible pairs?

          nchoosek (1:3, 2)
             =>  1   2
                 1   3
                 2   3

     Programming Note: When calculating the binomial coefficient 'nchoosek' works only for non-negative, integer arguments.  Use 'bincoeff' for non-integer and negative scalar arguments, or for computing many binomial coefficients at once with vector inputs for N or K.

     See also: bincoeff, perms.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Compute the binomial coefficient of N or list all possible combinations of a SET of items.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nthroot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 397
 -- Function File: nthroot (X, N)

     Compute the real (non-complex) N-th root of X.

     X must have all real entries and N must be a scalar.  If N is an even integer and X has negative entries then 'nthroot' aborts and issues an error.

     Example:

          nthroot (-1, 3)
          => -1
          (-1) ^ (1 / 3)
          => 0.50000 - 0.86603i

     See also: realsqrt, sqrt, cbrt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Compute the real (non-complex) N-th root of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
perms


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 518
 -- Function File: perms (V)
     Generate all permutations of V with one row per permutation.

     The result has size 'factorial (N) * N', where N is the length of V.

     Example

          perms ([1, 2, 3])
          =>
            1   2   3
            2   1   3
            1   3   2
            2   3   1
            3   1   2
            3   2   1

     Programming Note: The maximum length of V should be less than or equal to 10 to limit memory consumption.

     See also: permute, randperm, nchoosek.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Generate all permutations of V with one row per permutation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pow2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 223
 -- Function File: pow2 (X)
 -- Function File: pow2 (F, E)
     With one input argument, compute 2 .^ x for each element of X.

     With two input arguments, return f .* (2 .^ e).

     See also: log2, nextpow2, power.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
With one input argument, compute 2 .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
primes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 578
 -- Function File: primes (N)
     Return all primes up to N.

     The output data class (double, single, uint32, etc.)  is the same as the input class of N.  The algorithm used is the Sieve of Eratosthenes.

     Notes: If you need a specific number of primes you can use the fact that the distance from one prime to the next is, on average, proportional to the logarithm of the prime.  Integrating, one finds that there are about k primes less than k*log (5*k).

     See also 'list_primes' if you need a specific number N of primes.

     See also: list_primes, isprime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return all primes up to N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
reallog


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 235
 -- Function File: reallog (X)
     Return the real-valued natural logarithm of each element of X.

     If any element results in a complex return value 'reallog' aborts and issues an error.

     See also: log, realpow, realsqrt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return the real-valued natural logarithm of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
realpow


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 253
 -- Function File: realpow (X, Y)
     Compute the real-valued, element-by-element power operator.

     This is equivalent to 'X .^ Y', except that 'realpow' reports an error if any return value is complex.

     See also: power, reallog, realsqrt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute the real-valued, element-by-element power operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
realsqrt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 231
 -- Function File: realsqrt (X)
     Return the real-valued square root of each element of X.

     If any element results in a complex return value 'realsqrt' aborts and issues an error.

     See also: sqrt, realpow, reallog.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the real-valued square root of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
gallery


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10741
 -- Function File: gallery (NAME)
 -- Function File: gallery (NAME, ARGS)
     Create interesting matrices for testing.

 -- Function File: C = gallery ("cauchy", X)
 -- Function File: C = gallery ("cauchy", X, Y)
     Create a Cauchy matrix.

 -- Function File: C = gallery ("chebspec", N)
 -- Function File: C = gallery ("chebspec", N, K)
     Create a Chebyshev spectral differentiation matrix.

 -- Function File: C = gallery ("chebvand", P)
 -- Function File: C = gallery ("chebvand", M, P)
     Create a Vandermonde-like matrix for the Chebyshev polynomials.

 -- Function File: A = gallery ("chow", N)
 -- Function File: A = gallery ("chow", N, ALPHA)
 -- Function File: A = gallery ("chow", N, ALPHA, DELTA)
     Create a Chow matrix - a singular Toeplitz lower Hessenberg matrix.

 -- Function File: C = gallery ("circul", V)
     Create a circulant matrix.

 -- Function File: A = gallery ("clement", N)
 -- Function File: A = gallery ("clement", N, K)
     Create a tridiagonal matrix with zero diagonal entries.

 -- Function File: C = gallery ("compar", A)
 -- Function File: C = gallery ("compar", A, K)
     Create a comparison matrix.

 -- Function File: A = gallery ("condex", N)
 -- Function File: A = gallery ("condex", N, K)
 -- Function File: A = gallery ("condex", N, K, THETA)
     Create a 'counterexample' matrix to a condition estimator.

 -- Function File: A = gallery ("cycol", [M N])
 -- Function File: A = gallery ("cycol", N)
 -- Function File: A = gallery (..., K)
     Create a matrix whose columns repeat cyclically.

 -- Function File: [C, D, E] = gallery ("dorr", N)
 -- Function File: [C, D, E] = gallery ("dorr", N, THETA)
 -- Function File: A = gallery ("dorr", ...)
     Create a diagonally dominant, ill-conditioned, tridiagonal matrix.

 -- Function File: A = gallery ("dramadah", N)
 -- Function File: A = gallery ("dramadah", N, K)
     Create a (0, 1) matrix whose inverse has large integer entries.

 -- Function File: A = gallery ("fiedler", C)
     Create a symmetric Fiedler matrix.

 -- Function File: A = gallery ("forsythe", N)
 -- Function File: A = gallery ("forsythe", N, ALPHA)
 -- Function File: A = gallery ("forsythe", N, ALPHA, LAMBDA)
     Create a Forsythe matrix (a perturbed Jordan block).

 -- Function File: F = gallery ("frank", N)
 -- Function File: F = gallery ("frank", N, K)
     Create a Frank matrix (ill-conditioned eigenvalues).

 -- Function File: C = gallery ("gcdmat", N)
     Create a greatest common divisor matrix.

     C is an N-by-N matrix whose values correspond to the greatest common divisor of its coordinate values, i.e., C(i,j) correspond 'gcd (i, j)'.

 -- Function File: A = gallery ("gearmat", N)
 -- Function File: A = gallery ("gearmat", N, I)
 -- Function File: A = gallery ("gearmat", N, I, J)
     Create a Gear matrix.

 -- Function File: G = gallery ("grcar", N)
 -- Function File: G = gallery ("grcar", N, K)
     Create a Toeplitz matrix with sensitive eigenvalues.

 -- Function File: A = gallery ("hanowa", N)
 -- Function File: A = gallery ("hanowa", N, D)
     Create a matrix whose eigenvalues lie on a vertical line in the complex plane.

 -- Function File: V = gallery ("house", X)
 -- Function File: [V, BETA] = gallery ("house", X)
     Create a householder matrix.

 -- Function File: A = gallery ("integerdata", IMAX, [M N ...], J)
 -- Function File: A = gallery ("integerdata", IMAX, M, N, ..., J)
 -- Function File: A = gallery ("integerdata", [IMIN, IMAX], [M N ...], J)
 -- Function File: A = gallery ("integerdata", [IMIN, IMAX], M, N, ..., J)
 -- Function File: A = gallery ("integerdata", ..., "CLASS")
     Create a matrix with random integers in the range [1, IMAX].  If IMIN is given then the integers are in the range [IMIN, IMAX].

     The second input is a matrix of dimensions describing the size of the output.  The dimensions can also be input as comma-separated arguments.

     The input J is an integer index in the range [0, 2^32-1].  The values of the output matrix are always exactly the same (reproducibility) for a given size input and J index.

     The final optional argument determines the class of the resulting matrix.  Possible values for CLASS: "uint8", "uint16", "uint32", "int8", "int16", int32", "single", "double".  The default is "double".

 -- Function File: A = gallery ("invhess", X)
 -- Function File: A = gallery ("invhess", X, Y)
     Create the inverse of an upper Hessenberg matrix.

 -- Function File: A = gallery ("invol", N)
     Create an involutory matrix.

 -- Function File: A = gallery ("ipjfact", N)
 -- Function File: A = gallery ("ipjfact", N, K)
     Create a Hankel matrix with factorial elements.

 -- Function File: A = gallery ("jordbloc", N)
 -- Function File: A = gallery ("jordbloc", N, LAMBDA)
     Create a Jordan block.

 -- Function File: U = gallery ("kahan", N)
 -- Function File: U = gallery ("kahan", N, THETA)
 -- Function File: U = gallery ("kahan", N, THETA, PERT)
     Create a Kahan matrix (upper trapezoidal).

 -- Function File: A = gallery ("kms", N)
 -- Function File: A = gallery ("kms", N, RHO)
     Create a Kac-Murdock-Szego Toeplitz matrix.

 -- Function File: B = gallery ("krylov", A)
 -- Function File: B = gallery ("krylov", A, X)
 -- Function File: B = gallery ("krylov", A, X, J)
     Create a Krylov matrix.

 -- Function File: A = gallery ("lauchli", N)
 -- Function File: A = gallery ("lauchli", N, MU)
     Create a Lauchli matrix (rectangular).

 -- Function File: A = gallery ("lehmer", N)
     Create a Lehmer matrix (symmetric positive definite).

 -- Function File: T = gallery ("lesp", N)
     Create a tridiagonal matrix with real, sensitive eigenvalues.

 -- Function File: A = gallery ("lotkin", N)
     Create a Lotkin matrix.

 -- Function File: A = gallery ("minij", N)
     Create a symmetric positive definite matrix MIN(i,j).

 -- Function File: A = gallery ("moler", N)
 -- Function File: A = gallery ("moler", N, ALPHA)
     Create a Moler matrix (symmetric positive definite).

 -- Function File: [A, T] = gallery ("neumann", N)
     Create a singular matrix from the discrete Neumann problem (sparse).

 -- Function File: A = gallery ("normaldata", [M N ...], J)
 -- Function File: A = gallery ("normaldata", M, N, ..., J)
 -- Function File: A = gallery ("normaldata", ..., "CLASS")
     Create a matrix with random samples from the standard normal distribution (mean = 0, std = 1).

     The first input is a matrix of dimensions describing the size of the output.  The dimensions can also be input as comma-separated arguments.

     The input J is an integer index in the range [0, 2^32-1].  The values of the output matrix are always exactly the same (reproducibility) for a given size input and J index.

     The final optional argument determines the class of the resulting matrix.  Possible values for CLASS: "single", "double".  The default is "double".

 -- Function File: Q = gallery ("orthog", N)
 -- Function File: Q = gallery ("orthog", N, K)
     Create orthogonal and nearly orthogonal matrices.

 -- Function File: A = gallery ("parter", N)
     Create a Parter matrix (a Toeplitz matrix with singular values near pi).

 -- Function File: P = gallery ("pei", N)
 -- Function File: P = gallery ("pei", N, ALPHA)
     Create a Pei matrix.

 -- Function File: A = gallery ("Poisson", N)
     Create a block tridiagonal matrix from Poisson's equation (sparse).

 -- Function File: A = gallery ("prolate", N)
 -- Function File: A = gallery ("prolate", N, W)
     Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).

 -- Function File: H = gallery ("randhess", X)
     Create a random, orthogonal upper Hessenberg matrix.

 -- Function File: A = gallery ("rando", N)
 -- Function File: A = gallery ("rando", N, K)
     Create a random matrix with elements -1, 0 or 1.

 -- Function File: A = gallery ("randsvd", N)
 -- Function File: A = gallery ("randsvd", N, KAPPA)
 -- Function File: A = gallery ("randsvd", N, KAPPA, MODE)
 -- Function File: A = gallery ("randsvd", N, KAPPA, MODE, KL)
 -- Function File: A = gallery ("randsvd", N, KAPPA, MODE, KL, KU)
     Create a random matrix with pre-assigned singular values.

 -- Function File: A = gallery ("redheff", N)
     Create a zero and ones matrix of Redheffer associated with the Riemann hypothesis.

 -- Function File: A = gallery ("riemann", N)
     Create a matrix associated with the Riemann hypothesis.

 -- Function File: A = gallery ("ris", N)
     Create a symmetric Hankel matrix.

 -- Function File: A = gallery ("smoke", N)
 -- Function File: A = gallery ("smoke", N, K)
     Create a complex matrix, with a 'smoke ring' pseudospectrum.

 -- Function File: T = gallery ("toeppd", N)
 -- Function File: T = gallery ("toeppd", N, M)
 -- Function File: T = gallery ("toeppd", N, M, W)
 -- Function File: T = gallery ("toeppd", N, M, W, THETA)
     Create a symmetric positive definite Toeplitz matrix.

 -- Function File: P = gallery ("toeppen", N)
 -- Function File: P = gallery ("toeppen", N, A)
 -- Function File: P = gallery ("toeppen", N, A, B)
 -- Function File: P = gallery ("toeppen", N, A, B, C)
 -- Function File: P = gallery ("toeppen", N, A, B, C, D)
 -- Function File: P = gallery ("toeppen", N, A, B, C, D, E)
     Create a pentadiagonal Toeplitz matrix (sparse).

 -- Function File: A = gallery ("tridiag", X, Y, Z)
 -- Function File: A = gallery ("tridiag", N)
 -- Function File: A = gallery ("tridiag", N, C, D, E)
     Create a tridiagonal matrix (sparse).

 -- Function File: T = gallery ("triw", N)
 -- Function File: T = gallery ("triw", N, ALPHA)
 -- Function File: T = gallery ("triw", N, ALPHA, K)
     Create an upper triangular matrix discussed by Kahan, Golub, and Wilkinson.

 -- Function File: A = gallery ("uniformdata", [M N ...], J)
 -- Function File: A = gallery ("uniformdata", M, N, ..., J)
 -- Function File: A = gallery ("uniformdata", ..., "CLASS")
     Create a matrix with random samples from the standard uniform distribution (range [0,1]).

     The first input is a matrix of dimensions describing the size of the output.  The dimensions can also be input as comma-separated arguments.

     The input J is an integer index in the range [0, 2^32-1].  The values of the output matrix are always exactly the same (reproducibility) for a given size input and J index.

     The final optional argument determines the class of the resulting matrix.  Possible values for CLASS: "single", "double".  The default is "double".

 -- Function File: A = gallery ("wathen", NX, NY)
 -- Function File: A = gallery ("wathen", NX, NY, K)
     Create the Wathen matrix.

 -- Function File: [A, B] = gallery ("wilk", N)
     Create various specific matrices devised/discussed by Wilkinson.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Create interesting matrices for testing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
hadamard


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 660
 -- Function File: hadamard (N)
     Construct a Hadamard matrix (Hn) of size N-by-N.

     The size N must be of the form 2^k * p in which p is one of 1, 12, 20 or 28.  The returned matrix is normalized, meaning 'Hn(:,1) == 1' and 'Hn(1,:) == 1'.

     Some of the properties of Hadamard matrices are:

        * 'kron (Hm, Hn)' is a Hadamard matrix of size M-by-N.

        * 'Hn * Hn' = N * eye (N)'.

        * The rows of Hn are orthogonal.

        * 'det (A) <= abs (det (Hn))' for all A with 'abs (A(i, j)) <= 1'.

        * Multiplying any row or column by -1 and the matrix will remain a Hadamard matrix.

     See also: compan, hankel, toeplitz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Construct a Hadamard matrix (Hn) of size N-by-N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
hankel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 574
 -- Function File: hankel (C)
 -- Function File: hankel (C, R)
     Return the Hankel matrix constructed from the first column C, and (optionally) the last row R.

     If the last element of C is not the same as the first element of R, the last element of C is used.  If the second argument is omitted, it is assumed to be a vector of zeros with the same size as C.

     A Hankel matrix formed from an m-vector C, and an n-vector R, has the elements

          H(i,j) = c(i+j-1),  i+j-1 <= m;
          H(i,j) = r(i+j-m),  otherwise

     See also: hadamard, toeplitz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return the Hankel matrix constructed from the first column C, and (optionally) the last row R.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hilb


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 553
 -- Function File: hilb (N)
     Return the Hilbert matrix of order N.

     The i,j element of a Hilbert matrix is defined as

          H(i, j) = 1 / (i + j - 1)

     Hilbert matrices are close to being singular which make them difficult to invert with numerical routines.  Comparing the condition number of a random matrix 5x5 matrix with that of a Hilbert matrix of order 5 reveals just how difficult the problem is.

          cond (rand (5))
             => 14.392
          cond (hilb (5))
             => 4.7661e+05

     See also: invhilb.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the Hilbert matrix of order N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
invhilb


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 977
 -- Function File: invhilb (N)
     Return the inverse of the Hilbert matrix of order N.

     This can be computed exactly using


                     (i+j)         /n+i-1\  /n+j-1\   /i+j-2\ 2
          A(i,j) = -1      (i+j-1)(       )(       ) (       )
                                   \ n-j /  \ n-i /   \ i-2 /

                 = p(i) p(j) / (i+j-1)


     where

                   k  /k+n-1\   /n\
          p(k) = -1  (       ) (   )
                      \ k-1 /   \k/

     The validity of this formula can easily be checked by expanding the binomial coefficients in both formulas as factorials.  It can be derived more directly via the theory of Cauchy matrices.  See J. W. Demmel, 'Applied Numerical Linear Algebra', p.  92.

     Compare this with the numerical calculation of 'inverse (hilb (n))', which suffers from the ill-conditioning of the Hilbert matrix, and the finite precision of your computer's floating point arithmetic.

     See also: hilb.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the inverse of the Hilbert matrix of order N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
magic


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 288
 -- Function File: magic (N)

     Create an N-by-N magic square.

     A magic square is an arrangement of the integers '1:n^2' such that the row sums, column sums, and diagonal sums are all equal to the same value.

     Note: N must be greater than 2 for the magic square to exist.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Create an N-by-N magic square.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pascal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 651
 -- Function File: pascal (N)
 -- Function File: pascal (N, T)
     Return the Pascal matrix of order N if 'T = 0'.

     The default value of T is 0.

     When 'T = 1', return the pseudo-lower triangular Cholesky factor of the Pascal matrix (The sign of some columns may be negative).  This matrix is its own inverse, that is 'pascal (N, 1) ^ 2 == eye (N)'.

     If 'T = -1', return the true Cholesky factor with strictly positive values on the diagonal.

     If 'T = 2', return a transposed and permuted version of 'pascal (N, 1)', which is the cube root of the identity matrix.  That is, 'pascal (N, 2) ^ 3 == eye (N)'.

     See also: chol.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the Pascal matrix of order N if 'T = 0'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rosser


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
 -- Function File: rosser ()
     Return the Rosser matrix.

     This is a difficult test case used to evaluate eigenvalue algorithms.

     See also: wilkinson, eig.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Return the Rosser matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
toeplitz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 714
 -- Function File: toeplitz (C)
 -- Function File: toeplitz (C, R)
     Return the Toeplitz matrix constructed from the first column C, and (optionally) the first row R.

     If the first element of R is not the same as the first element of C, the first element of C is used.  If the second argument is omitted, the first row is taken to be the same as the first column.

     A square Toeplitz matrix has the form:

          c(0)  r(1)   r(2)  ...  r(n)
          c(1)  c(0)   r(1)  ... r(n-1)
          c(2)  c(1)   c(0)  ... r(n-2)
           .     .      .   .      .
           .     .      .     .    .
           .     .      .       .  .
          c(n) c(n-1) c(n-2) ...  c(0)

     See also: hankel.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return the Toeplitz matrix constructed from the first column C, and (optionally) the first row R.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
vander


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 562
 -- Function File: vander (C)
 -- Function File: vander (C, N)
     Return the Vandermonde matrix whose next to last column is C.

     If N is specified, it determines the number of columns; otherwise, N is taken to be equal to the length of C.

     A Vandermonde matrix has the form:

          c(1)^(n-1) ... c(1)^2  c(1)  1
          c(2)^(n-1) ... c(2)^2  c(2)  1
              .     .      .      .    .
              .       .    .      .    .
              .         .  .      .    .
          c(n)^(n-1) ... c(n)^2  c(n)  1

     See also: polyfit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return the Vandermonde matrix whose next to last column is C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
wilkinson


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
 -- Function File: wilkinson (N)
     Return the Wilkinson matrix of order N.

     Wilkinson matrices are symmetric and tridiagonal with pairs of nearly, but not exactly, equal eigenvalues.  They are useful in testing the behavior and performance of eigenvalue solvers.

     See also: rosser, eig.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Return the Wilkinson matrix of order N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
center


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 663
 -- Function File: center (X)
 -- Function File: center (X, DIM)
     Center data by subtracting its mean.

     If X is a vector, subtract its mean.

     If X is a matrix, do the above for each column.

     If the optional argument DIM is given, operate along this dimension.

     Programming Note: 'center' has obvious application for normalizing statistical data.  It is also useful for improving the precision of general numerical calculations.  Whenever there is a large value that is common to a batch of data, the mean can be subtracted off, the calculation performed, and then the mean added back to obtain the final answer.

     See also: zscore.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Center data by subtracting its mean.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cloglog


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
 -- Function File: cloglog (X)
     Return the complementary log-log function of X.

     The complementary log-log function is defined as

          cloglog (x) = - log (- log (X))

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the complementary log-log function of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
corr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 486
 -- Function File: corr (X)
 -- Function File: corr (X, Y)
     Compute matrix of correlation coefficients.

     If each row of X and Y is an observation and each column is a variable, then the (I, J)-th entry of 'corr (X, Y)' is the correlation between the I-th variable in X and the J-th variable in Y.

          corr (x,y) = cov (x,y) / (std (x) * std (y))

     If called with one argument, compute 'corr (X, X)', the correlation between the columns of X.

     See also: cov.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute matrix of correlation coefficients.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cov


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1164
 -- Function File: cov (X)
 -- Function File: cov (X, OPT)
 -- Function File: cov (X, Y)
 -- Function File: cov (X, Y, OPT)
     Compute the covariance matrix.

     If each row of X and Y is an observation, and each column is a variable, then the (I, J)-th entry of 'cov (X, Y)' is the covariance between the I-th variable in X and the J-th variable in Y.

          cov (x) = 1/N-1 * SUM_i (x(i) - mean(x)) * (y(i) - mean(y))

     If called with one argument, compute 'cov (X, X)', the covariance between the columns of X.

     The argument OPT determines the type of normalization to use.  Valid values are

     0:
          normalize with N-1, provides the best unbiased estimator of the covariance [default]

     1:
          normalize with N, this provides the second moment around the mean

     Compatibility Note:: Octave always computes the covariance matrix.  For two inputs, however, MATLAB will calculate 'cov (X(:), Y(:))' whenever the number of elements in X and Y are equal.  This will result in a scalar rather than a matrix output.  Code relying on this odd definition will need to be changed when running in Octave.

     See also: corr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Compute the covariance matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gls


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 657
 -- Function File: [BETA, V, R] = gls (Y, X, O)
     Generalized least squares model.

     Perform a generalized least squares estimation for the multivariate model y = x*b + e with mean (e) = 0 and cov (vec (e)) = (s^2) o, where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, e is a t by p matrix, and o is a t*p by t*p matrix.

     Each row of Y and X is an observation and each column a variable.  The return values BETA, V, and R are defined as follows.

     BETA
          The GLS estimator for b.

     V
          The GLS estimator for s^2.

     R
          The matrix of GLS residuals, r = y - x*beta.

     See also: ols.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Generalized least squares model.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
histc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 998
 -- Function File: N = histc (X, EDGES)
 -- Function File: N = histc (X, EDGES, DIM)
 -- Function File: [N, IDX] = histc (...)
     Compute histogram counts.

     When X is a vector, the function counts the number of elements of X that fall in the histogram bins defined by EDGES.  This must be a vector of monotonically increasing values that define the edges of the histogram bins.  'N(k)' contains the number of elements in X for which 'EDGES(k) <= X < EDGES(k+1)'.  The final element of N contains the number of elements of X exactly equal to the last element of EDGES.

     When X is an N-dimensional array, the computation is carried out along dimension DIM.  If not specified DIM defaults to the first non-singleton dimension.

     When a second output argument is requested an index matrix is also returned.  The IDX matrix has the same size as X.  Each element of IDX contains the index of the histogram bin in which the corresponding element of X was counted.

     See also: hist.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Compute histogram counts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
iqr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
 -- Function File: iqr (X)
 -- Function File: iqr (X, DIM)
     Return the interquartile range, i.e., the difference between the upper and lower quartile of the input data.

     If X is a matrix, do the above for first non-singleton dimension of X.

     If the optional argument DIM is given, operate along this dimension.

     As a measure of dispersion, the interquartile range is less affected by outliers than either 'range' or 'std'.

     See also: range, std.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the interquartile range, i.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
kendall


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 720
 -- Function File: kendall (X)
 -- Function File: kendall (X, Y)
     Compute Kendall's TAU.

     For two data vectors X, Y of common length N, Kendall's TAU is the correlation of the signs of all rank differences of X and Y; i.e., if both X and Y have distinct entries, then

                   1
          tau = -------   SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
                n (n-1)   i,j

     in which the Q(I) and R(I) are the ranks of X and Y, respectively.

     If X and Y are drawn from independent distributions, Kendall's TAU is asymptotically normal with mean 0 and variance '(2 * (2N+5)) / (9 * N * (N-1))'.

     'kendall (X)' is equivalent to 'kendall (X, X)'.

     See also: ranks, spearman.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Compute Kendall's TAU.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
kurtosis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1191
 -- Function File: kurtosis (X)
 -- Function File: kurtosis (X, FLAG)
 -- Function File: kurtosis (X, FLAG, DIM)
     Compute the sample kurtosis of the elements of X.

     The sample kurtosis is defined as

               mean ((X - mean (X)).^4)
          k1 = ------------------------
                      std (X).^4

     The optional argument FLAG controls which normalization is used.  If FLAG is equal to 1 (default value, used when FLAG is omitted or empty), return the sample kurtosis as defined above.  If FLAG is equal to 0, return the "bias-corrected" kurtosis coefficient instead:

                        N - 1
          k0 = 3 + -------------- * ((N + 1) * k1 - 3 * (N - 1))
                   (N - 2)(N - 3)

     The bias-corrected kurtosis coefficient is obtained by replacing the sample second and fourth central moments by their unbiased versions.  It is an unbiased estimate of the population kurtosis for normal populations.

     If X is a matrix, or more generally a multi-dimensional array, return the kurtosis along the first non-singleton dimension.  If the optional DIM argument is given, operate along this dimension.

     See also: var, skewness, moment.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the sample kurtosis of the elements of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
logit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 182
 -- Function File: logit (P)
     Compute the logit for each value of P

     The logit is defined as

          logit (P) = log (P / (1-P))

     See also: probit, logistic_cdf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Compute the logit for each value of P 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lscov


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1272
 -- Function File: X = lscov (A, B)
 -- Function File: X = lscov (A, B, V)
 -- Function File: X = lscov (A, B, V, ALG)
 -- Function File: [X, STDX, MSE, S] = lscov (...)

     Compute a generalized linear least squares fit.

     Estimate X under the model B = AX + W, where the noise W is assumed to follow a normal distribution with covariance matrix {\sigma^2} V.

     If the size of the coefficient matrix A is n-by-p, the size of the vector/array of constant terms B must be n-by-k.

     The optional input argument V may be a n-by-1 vector of positive weights (inverse variances), or a n-by-n symmetric positive semidefinite matrix representing the covariance of B.  If V is not supplied, the ordinary least squares solution is returned.

     The ALG input argument, a guidance on solution method to use, is currently ignored.

     Besides the least-squares estimate matrix X (p-by-k), the function also returns STDX (p-by-k), the error standard deviation of estimated X; MSE (k-by-1), the estimated data error covariance scale factors (\sigma^2); and S (p-by-p, or p-by-p-by-k if k > 1), the error covariance of X.

     Reference: Golub and Van Loan (1996), 'Matrix Computations (3rd Ed.)', Johns Hopkins, Section 5.6.3

     See also: ols, gls, lsqnonneg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Compute a generalized linear least squares fit.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
mahalanobis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 260
 -- Function File: mahalanobis (X, Y)
     Return the Mahalanobis' D-square distance between the multivariate samples X and Y.

     The data X and Y must have the same number of components (columns), but may have a different number of observations (rows).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return the Mahalanobis' D-square distance between the multivariate samples X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mean


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 810
 -- Function File: mean (X)
 -- Function File: mean (X, DIM)
 -- Function File: mean (X, OPT)
 -- Function File: mean (X, DIM, OPT)
     Compute the mean of the elements of the vector X.

     The mean is defined as

          mean (x) = SUM_i x(i) / N

     If X is a matrix, compute the mean for each column and return them in a row vector.

     If the optional argument DIM is given, operate along this dimension.

     The optional argument OPT selects the type of mean to compute.  The following options are recognized:

     "a"
          Compute the (ordinary) arithmetic mean.  [default]

     "g"
          Compute the geometric mean.

     "h"
          Compute the harmonic mean.

     Both DIM and OPT are optional.  If both are supplied, either may appear first.

     See also: median, mode.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the mean of the elements of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
meansq


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 407
 -- Function File: meansq (X)
 -- Function File: meansq (X, DIM)
     Compute the mean square of the elements of the vector X.

     The mean square is defined as

          meansq (x) = 1/N SUM_i x(i)^2

     For matrix arguments, return a row vector containing the mean square of each column.

     If the optional argument DIM is given, operate along this dimension.

     See also: var, std, moment.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Compute the mean square of the elements of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
median


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 533
 -- Function File: median (X)
 -- Function File: median (X, DIM)
     Compute the median value of the elements of the vector X.

     When the elements of X are sorted, the median is defined as

                        x(ceil(N/2))             N odd
          median (x) =
                       (x(N/2) + x((N/2)+1))/2   N even

     If X is a matrix, compute the median value for each column and return them in a row vector.

     If the optional DIM argument is given, operate along this dimension.

     See also: mean, mode.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Compute the median value of the elements of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mode


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 662
 -- Function File: mode (X)
 -- Function File: mode (X, DIM)
 -- Function File: [M, F, C] = mode (...)
     Compute the most frequently occurring value in a dataset (mode).

     'mode' determines the frequency of values along the first non-singleton dimension and returns the value with the highest frequency.  If two, or more, values have the same frequency 'mode' returns the smallest.

     If the optional argument DIM is given, operate along this dimension.

     The return variable F is the number of occurrences of the mode in the dataset.

     The cell array C contains all of the elements with the maximum frequency.

     See also: mean, median.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute the most frequently occurring value in a dataset (mode).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
moment


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1120
 -- Function File: moment (X, P)
 -- Function File: moment (X, P, TYPE)
 -- Function File: moment (X, P, DIM)
 -- Function File: moment (X, P, TYPE, DIM)
 -- Function File: moment (X, P, DIM, TYPE)
     Compute the P-th central moment of the vector X.

          1/N SUM_i (x(i) - mean(x))^p

     If X is a matrix, return the row vector containing the P-th central moment of each column.

     If the optional argument DIM is given, operate along this dimension.

     The optional string TYPE specifies the type of moment to be computed.  Valid options are:

     "c"
          Central Moment (default).

     "a"
     "ac"
          Absolute Central Moment.  The moment about the mean ignoring sign defined as

               1/N SUM_i (abs (x(i) - mean(x)))^p

     "r"
          Raw Moment.  The moment about zero defined as

               moment (x) = 1/N SUM_i x(i)^p

     "ar"
          Absolute Raw Moment.  The moment about zero ignoring sign defined as

               1/N SUM_i ( abs (x(i)) )^p

     If both TYPE and DIM are given they may appear in any order.

     See also: var, skewness, kurtosis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the P-th central moment of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ols


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 905
 -- Function File: [BETA, SIGMA, R] = ols (Y, X)
     Ordinary least squares estimation.

     OLS applies to the multivariate model y = x*b + e with mean (e) = 0 and cov (vec (e)) = kron (s, I). where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, and e is a t by p matrix.

     Each row of Y and X is an observation and each column a variable.

     The return values BETA, SIGMA, and R are defined as follows.

     BETA
          The OLS estimator for b.  BETA is calculated directly via 'inv (x'*x) * x' * y' if the matrix 'x'*x' is of full rank.  Otherwise, 'BETA = pinv (X) * Y' where 'pinv (X)' denotes the pseudoinverse of X.

     SIGMA
          The OLS estimator for the matrix S,

               SIGMA = (Y-X*BETA)'
                 * (Y-X*BETA)
                 / (T-rank(X))

     R
          The matrix of OLS residuals, 'R = Y - X*BETA'.

     See also: gls, pinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Ordinary least squares estimation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ppplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 837
 -- Function File: [P, Y] = ppplot (X, DIST, PARAMS)
     Perform a PP-plot (probability plot).

     If F is the CDF of the distribution DIST with parameters PARAMS and X a sample vector of length N, the PP-plot graphs ordinate Y(I) = F (I-th largest element of X) versus abscissa P(I) = (I - 0.5)/N.  If the sample comes from F, the pairs will approximately follow a straight line.

     The default for DIST is the standard normal distribution.

     The optional argument PARAMS contains a list of parameters of DIST.

     For example, for a probability plot of the uniform distribution on [2,4] and X, use

          ppplot (x, "uniform", 2, 4)

     DIST can be any string for which a function DIST_CDF that calculates the CDF of distribution DIST exists.

     If no output is requested then the data are plotted immediately.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Perform a PP-plot (probability plot).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
prctile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 747
 -- Function File: Q = prctile (X)
 -- Function File: Q = prctile (X, P)
 -- Function File: Q = prctile (X, P, DIM)
     For a sample X, compute the quantiles, Q, corresponding to the cumulative probability values, P, in percent.

     If X is a matrix, compute the percentiles for each column and return them in a matrix, such that the i-th row of Y contains the P(i)th percentiles of each column of X.

     If P is unspecified, return the quantiles for '[0 25 50 75 100]'.

     The optional argument DIM determines the dimension along which the percentiles are calculated.  If DIM is omitted it defaults to the first non-singleton dimension.

     Programming Note: All non-numeric values (NaNs) of X are ignored.

     See also: quantile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
For a sample X, compute the quantiles, Q, corresponding to the cumulative probability values, P, in percent.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
probit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
 -- Function File: probit (P)
     Return the probit (the quantile of the standard normal distribution) for each element of P.

     See also: logit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Return the probit (the quantile of the standard normal distribution) for each element of P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
qqplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1150
 -- Function File: [Q, S] = qqplot (X)
 -- Function File: [Q, S] = qqplot (X, Y)
 -- Function File: [Q, S] = qqplot (X, DIST)
 -- Function File: [Q, S] = qqplot (X, Y, PARAMS)
 -- Function File: qqplot (...)
     Perform a QQ-plot (quantile plot).

     If F is the CDF of the distribution DIST with parameters PARAMS and G its inverse, and X a sample vector of length N, the QQ-plot graphs ordinate S(I) = I-th largest element of x versus abscissa Q(If) = G((I - 0.5)/N).

     If the sample comes from F, except for a transformation of location and scale, the pairs will approximately follow a straight line.

     If the second argument is a vector Y the empirical CDF of Y is used as DIST.

     The default for DIST is the standard normal distribution.  The optional argument PARAMS contains a list of parameters of DIST.  For example, for a quantile plot of the uniform distribution on [2,4] and X, use

          qqplot (x, "unif", 2, 4)

     DIST can be any string for which a function DISTINV or DIST_INV exists that calculates the inverse CDF of distribution DIST.

     If no output arguments are given, the data are plotted directly.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Perform a QQ-plot (quantile plot).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
quantile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2809
 -- Function File: Q = quantile (X)
 -- Function File: Q = quantile (X, P)
 -- Function File: Q = quantile (X, P, DIM)
 -- Function File: Q = quantile (X, P, DIM, METHOD)
     For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P.  All non-numeric values (NaNs) of X are ignored.

     If X is a matrix, compute the quantiles for each column and return them in a matrix, such that the i-th row of Q contains the P(i)th quantiles of each column of X.

     If P is unspecified, return the quantiles for '[0.00 0.25 0.50 0.75 1.00]'.  The optional argument DIM determines the dimension along which the quantiles are calculated.  If DIM is omitted it defaults to the first non-singleton dimension.

     The methods available to calculate sample quantiles are the nine methods used by R (<http://www.r-project.org/>).  The default value is METHOD = 5.

     Discontinuous sample quantile methods 1, 2, and 3

       1. Method 1: Inverse of empirical distribution function.

       2. Method 2: Similar to method 1 but with averaging at discontinuities.

       3. Method 3: SAS definition: nearest even order statistic.

     Continuous sample quantile methods 4 through 9, where p(k) is the linear interpolation function respecting each methods' representative cdf.

       4. Method 4: p(k) = k / n.  That is, linear interpolation of the empirical cdf.

       5. Method 5: p(k) = (k - 0.5) / n.  That is a piecewise linear function where the knots are the values midway through the steps of the empirical cdf.

       6. Method 6: p(k) = k / (n + 1).

       7. Method 7: p(k) = (k - 1) / (n - 1).

       8. Method 8: p(k) = (k - 1/3) / (n + 1/3).  The resulting quantile estimates are approximately median-unbiased regardless of the distribution of X.

       9. Method 9: p(k) = (k - 3/8) / (n + 1/4).  The resulting quantile estimates are approximately unbiased for the expected order statistics if X is normally distributed.

     Hyndman and Fan (1996) recommend method 8.  Maxima, S, and R (versions prior to 2.0.0) use 7 as their default.  Minitab and SPSS use method 6.  MATLAB uses method 5.

     References:

        * Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.  Wadsworth & Brooks/Cole.

        * Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American Statistician, 50, 361-365.

        * R: A Language and Environment for Statistical Computing; <http://cran.r-project.org/doc/manuals/fullrefman.pdf>.

     Examples:

          x = randi (1000, [10, 1]);  # Create empirical data in range 1-1000
          q = quantile (x, [0, 1]);   # Return minimum, maximum of distribution
          q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution

     See also: prctile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
range


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 550
 -- Function File: range (X)
 -- Function File: range (X, DIM)
     Return the range, i.e., the difference between the maximum and the minimum of the input data.

     If X is a vector, the range is calculated over the elements of X.  If X is a matrix, the range is calculated over each column of X.

     If the optional argument DIM is given, operate along this dimension.

     The range is a quickly computed measure of the dispersion of a data set, but is less accurate than 'iqr' if there are outlying data points.

     See also: iqr, std.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Return the range, i.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ranks


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 233
 -- Function File: ranks (X, DIM)
     Return the ranks of X along the first non-singleton dimension adjusted for ties.

     If the optional argument DIM is given, operate along this dimension.

     See also: spearman, kendall.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return the ranks of X along the first non-singleton dimension adjusted for ties.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
run_count


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 315
 -- Function File: run_count (X, N)
 -- Function File: run_count (X, N, DIM)
     Count the upward runs along the first non-singleton dimension of X of length 1, 2, ..., N-1 and greater than or equal to N.

     If the optional argument DIM is given then operate along this dimension.

     See also: runlength.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Count the upward runs along the first non-singleton dimension of X of length 1, 2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
runlength


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 416
 -- Function File: count = runlength (X)
 -- Function File: [count, value] = runlength (X)
     Find the lengths of all sequences of common values.

     COUNT is a vector with the lengths of each repeated value.

     The optional output VALUE contains the value that was repeated in the sequence.

          runlength ([2, 2, 0, 4, 4, 4, 0, 1, 1, 1, 1])
          =>  [2, 1, 3, 1, 4]

     See also: run_count.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Find the lengths of all sequences of common values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
skewness


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1209
 -- Function File: skewness (X)
 -- Function File: skewness (X, FLAG)
 -- Function File: skewness (X, FLAG, DIM)
     Compute the sample skewness of the elements of X.

     The sample skewness is defined as

                         mean ((X - mean (X)).^3)
          skewness (X) = ------------------------.
                                std (X).^3

     The optional argument FLAG controls which normalization is used.  If FLAG is equal to 1 (default value, used when FLAG is omitted or empty), return the sample skewness as defined above.  If FLAG is equal to 0, return the adjusted skewness coefficient instead:

                            sqrt (N*(N-1))   mean ((X - mean (X)).^3)
          skewness (X, 0) = -------------- * ------------------------.
                                (N - 2)             std (X).^3

     The adjusted skewness coefficient is obtained by replacing the sample second and third central moments by their bias-corrected versions.

     If X is a matrix, or more generally a multi-dimensional array, return the skewness along the first non-singleton dimension.  If the optional DIM argument is given, operate along this dimension.

     See also: var, kurtosis, moment.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the sample skewness of the elements of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
spearman


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 473
 -- Function File: spearman (X)
 -- Function File: spearman (X, Y)
     Compute Spearman's rank correlation coefficient RHO.

     For two data vectors X and Y, Spearman's RHO is the correlation coefficient of the ranks of X and Y.

     If X and Y are drawn from independent distributions, RHO has zero mean and variance '1 / (n - 1)', and is asymptotically normally distributed.

     'spearman (X)' is equivalent to 'spearman (X, X)'.

     See also: ranks, kendall.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute Spearman's rank correlation coefficient RHO.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
statistics


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
 -- Function File: statistics (X)
 -- Function File: statistics (X, DIM)
     Return a vector with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness, and kurtosis of the elements of the vector X.

     If X is a matrix, calculate statistics over the first non-singleton dimension.

     If the optional argument DIM is given, operate along this dimension.

     See also: min, max, median, mean, std, skewness, kurtosis.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
Return a vector with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness, and kurtosis of the elements of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
std


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 852
 -- Function File: std (X)
 -- Function File: std (X, OPT)
 -- Function File: std (X, OPT, DIM)
     Compute the standard deviation of the elements of the vector X.

     The standard deviation is defined as

          std (x) = sqrt ( 1/(N-1) SUM_i (x(i) - mean(x))^2 )

     where N is the number of elements.

     If X is a matrix, compute the standard deviation for each column and return them in a row vector.

     The argument OPT determines the type of normalization to use.  Valid values are

     0:
          normalize with N-1, provides the square root of the best unbiased estimator of the variance [default]

     1:
          normalize with N, this provides the square root of the second moment around the mean

     If the optional argument DIM is given, operate along this dimension.

     See also: var, range, iqr, mean, median.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the standard deviation of the elements of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
table


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 269
 -- Function File: [T, L_X] = table (X)
 -- Function File: [T, L_X, L_Y] = table (X, Y)
     Create a contingency table T from data vectors.

     The L_X and L_Y vectors are the corresponding levels.

     Currently, only 1- and 2-dimensional tables are supported.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Create a contingency table T from data vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
var


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 816
 -- Function File: var (X)
 -- Function File: var (X, OPT)
 -- Function File: var (X, OPT, DIM)
     Compute the variance of the elements of the vector X.

     The variance is defined as

          var (x) = 1/(N-1) SUM_i (x(i) - mean(x))^2

     If X is a matrix, compute the variance for each column and return them in a row vector.

     The argument OPT determines the type of normalization to use.  Valid values are

     0:
          normalize with N-1, provides the best unbiased estimator of the variance [default]

     1:
          normalizes with N, this provides the second moment around the mean

     If N==1 the value of OPT is ignored and normalization by N is used.

     If the optional argument DIM is given, operate along this dimension.

     See also: cov, std, skewness, kurtosis, moment.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the variance of the elements of the vector X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zscore


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 780
 -- Function File: Z = zscore (X)
 -- Function File: Z = zscore (X, OPT)
 -- Function File: Z = zscore (X, OPT, DIM)
 -- Function File: [Z, MU, SIGMA] = zscore (...)
     Compute the Z score of X

     If X is a vector, subtract its mean and divide by its standard deviation.  If the standard deviation is zero, divide by 1 instead.

     The optional parameter OPT determines the normalization to use when computing the standard deviation and has the same definition as the corresponding parameter for 'std'.

     If X is a matrix, calculate along the first non-singleton dimension.  If the third optional argument DIM is given, operate along this dimension.

     The optional outputs MU and SIGMA contain the mean and standard deviation.

     See also: mean, std, center.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Compute the Z score of X 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betacdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 -- Function File: betacdf (X, A, B)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Beta distribution with parameters A and B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
For each element of X, compute the cumulative distribution function (CDF) at X of the Beta distribution with parameters A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betainv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 169
 -- Function File: betainv (X, A, B)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
For each element of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betapdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
 -- Function File: betapdf (X, A, B)
     For each element of X, compute the probability density function (PDF) at X of the Beta distribution with parameters A and B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For each element of X, compute the probability density function (PDF) at X of the Beta distribution with parameters A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betarnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 685
 -- Function File: betarnd (A, B)
 -- Function File: betarnd (A, B, R)
 -- Function File: betarnd (A, B, R, C, ...)
 -- Function File: betarnd (A, B, [SZ])
     Return a matrix of random samples from the Beta distribution with parameters A and B.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of A and B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return a matrix of random samples from the Beta distribution with parameters A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binocdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 247
 -- Function File: binocdf (X, N, P)
     For each element of X, compute the cumulative distribution function (CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 201
For each element of X, compute the cumulative distribution function (CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binoinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
 -- Function File: binoinv (X, N, P)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
For each element of X, compute the quantile (the inverse of the CDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binopdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
 -- Function File: binopdf (X, N, P)
     For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
binornd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 758
 -- Function File: binornd (N, P)
 -- Function File: binornd (N, P, R)
 -- Function File: binornd (N, P, R, C, ...)
 -- Function File: binornd (N, P, [SZ])
     Return a matrix of random samples from the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of N and P.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 158
Return a matrix of random samples from the binomial distribution with parameters N and P, where N is the number of trials and P is the probability of success.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
 -- Function File: cauchy_cdf (X)
 -- Function File: cauchy_cdf (X, LOCATION, SCALE)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.

     Default values are LOCATION = 0, SCALE = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 304
 -- Function File: cauchy_inv (X)
 -- Function File: cauchy_inv (X, LOCATION, SCALE)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.

     Default values are LOCATION = 0, SCALE = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_pdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
 -- Function File: cauchy_pdf (X)
 -- Function File: cauchy_pdf (X, LOCATION, SCALE)
     For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE > 0.

     Default values are LOCATION = 0, SCALE = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LOCATION and scale parameter SCALE > 0.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cauchy_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 765
 -- Function File: cauchy_rnd (LOCATION, SCALE)
 -- Function File: cauchy_rnd (LOCATION, SCALE, R)
 -- Function File: cauchy_rnd (LOCATION, SCALE, R, C, ...)
 -- Function File: cauchy_rnd (LOCATION, SCALE, [SZ])
     Return a matrix of random samples from the Cauchy distribution with parameters LOCATION and SCALE.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of LOCATION and SCALE.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return a matrix of random samples from the Cauchy distribution with parameters LOCATION and SCALE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 179
 -- Function File: chi2cdf (X, N)
     For each element of X, compute the cumulative distribution function (CDF) at X of the chi-square distribution with N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
For each element of X, compute the cumulative distribution function (CDF) at X of the chi-square distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 -- Function File: chi2inv (X, N)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the chi-square distribution with N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
For each element of X, compute the quantile (the inverse of the CDF) at X of the chi-square distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2pdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 175
 -- Function File: chi2pdf (X, N)
     For each element of X, compute the probability density function (PDF) at X of the chi-square distribution with N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
For each element of X, compute the probability density function (PDF) at X of the chi-square distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
chi2rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 668
 -- Function File: chi2rnd (N)
 -- Function File: chi2rnd (N, R)
 -- Function File: chi2rnd (N, R, C, ...)
 -- Function File: chi2rnd (N, [SZ])
     Return a matrix of random samples from the chi-square distribution with N degrees of freedom.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the size of N.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Return a matrix of random samples from the chi-square distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 219
 -- Function File: discrete_cdf (X, V, P)
     For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 168
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 207
 -- Function File: discrete_inv (X, V, P)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
For each element of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_pdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
 -- Function File: discrete_pdf (X, V, P)
     For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
discrete_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 738
 -- Function File: discrete_rnd (V, P)
 -- Function File: discrete_rnd (V, P, R)
 -- Function File: discrete_rnd (V, P, R, C, ...)
 -- Function File: discrete_rnd (V, P, [SZ])
     Return a matrix of random samples from the univariate distribution which assumes the values in V with probabilities P.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of V and P.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
Return a matrix of random samples from the univariate distribution which assumes the values in V with probabilities P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 202
 -- Function File: empirical_cdf (X, DATA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
 -- Function File: empirical_inv (X, DATA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_pdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
 -- Function File: empirical_pdf (X, DATA)
     For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
empirical_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 741
 -- Function File: empirical_rnd (DATA)
 -- Function File: empirical_rnd (DATA, R)
 -- Function File: empirical_rnd (DATA, R, C, ...)
 -- Function File: empirical_rnd (DATA, [SZ])
     Return a matrix of random samples from the empirical distribution obtained from the univariate sample DATA.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is a random ordering of the sample DATA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return a matrix of random samples from the empirical distribution obtained from the univariate sample DATA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 229
 -- Function File: expcdf (X, LAMBDA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.

     The arguments can be of common size or scalars.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
expinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
 -- Function File: expinv (X, LAMBDA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
exppdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
 -- Function File: exppdf (X, LAMBDA)
     For each element of X, compute the probability density function (PDF) at X of the exponential distribution with mean LAMBDA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For each element of X, compute the probability density function (PDF) at X of the exponential distribution with mean LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
exprnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 681
 -- Function File: exprnd (LAMBDA)
 -- Function File: exprnd (LAMBDA, R)
 -- Function File: exprnd (LAMBDA, R, C, ...)
 -- Function File: exprnd (LAMBDA, [SZ])
     Return a matrix of random samples from the exponential distribution with mean LAMBDA.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the size of LAMBDA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return a matrix of random samples from the exponential distribution with mean LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
 -- Function File: fcdf (X, M, N)
     For each element of X, compute the cumulative distribution function (CDF) at X of the F distribution with M and N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the F distribution with M and N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
finv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
 -- Function File: finv (X, M, N)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the F distribution with M and N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the F distribution with M and N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 172
 -- Function File: fpdf (X, M, N)
     For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
frnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 678
 -- Function File: frnd (M, N)
 -- Function File: frnd (M, N, R)
 -- Function File: frnd (M, N, R, C, ...)
 -- Function File: frnd (M, N, [SZ])
     Return a matrix of random samples from the F distribution with M and N degrees of freedom.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of M and N.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return a matrix of random samples from the F distribution with M and N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gamcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 185
 -- Function File: gamcdf (X, A, B)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with shape parameter A and scale B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with shape parameter A and scale B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gaminv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
 -- Function File: gaminv (X, A, B)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with shape parameter A and scale B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
For each element of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with shape parameter A and scale B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gampdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
 -- Function File: gampdf (X, A, B)
     For each element of X, return the probability density function (PDF) at X of the Gamma distribution with shape parameter A and scale B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with shape parameter A and scale B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gamrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 693
 -- Function File: gamrnd (A, B)
 -- Function File: gamrnd (A, B, R)
 -- Function File: gamrnd (A, B, R, C, ...)
 -- Function File: gamrnd (A, B, [SZ])
     Return a matrix of random samples from the Gamma distribution with shape parameter A and scale B.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of A and B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a matrix of random samples from the Gamma distribution with shape parameter A and scale B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geocdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
 -- Function File: geocdf (X, P)
     For each element of X, compute the cumulative distribution function (CDF) at X of the geometric distribution with parameter P.

     The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
For each element of X, compute the cumulative distribution function (CDF) at X of the geometric distribution with parameter P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geoinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 302
 -- Function File: geoinv (X, P)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the geometric distribution with parameter P.

     The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
For each element of X, compute the quantile (the inverse of the CDF) at X of the geometric distribution with parameter P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geopdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
 -- Function File: geopdf (X, P)
     For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.

     The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
geornd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 793
 -- Function File: geornd (P)
 -- Function File: geornd (P, R)
 -- Function File: geornd (P, R, C, ...)
 -- Function File: geornd (P, [SZ])
     Return a matrix of random samples from the geometric distribution with parameter P.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the size of P.

     The geometric distribution models the number of failures (X-1) of a Bernoulli trial with probability P before the first success (X).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Return a matrix of random samples from the geometric distribution with parameter P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygecdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 454
 -- Function File: hygecdf (X, T, M, N)
     Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N.

     This is the probability of obtaining not more than X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.

     The parameters T, M, and N must be positive integers with M and N not greater than T.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 119
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygeinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 458
 -- Function File: hygeinv (X, T, M, N)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the hypergeometric distribution with parameters T, M, and N.

     This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.

     The parameters T, M, and N must be positive integers with M and N not greater than T.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
For each element of X, compute the quantile (the inverse of the CDF) at X of the hypergeometric distribution with parameters T, M, and N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygepdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 436
 -- Function File: hygepdf (X, T, M, N)
     Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N.

     This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.

     The parameters T, M, and N must be positive integers with M and N not greater than T.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hygernd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 807
 -- Function File: hygernd (T, M, N)
 -- Function File: hygernd (T, M, N, R)
 -- Function File: hygernd (T, M, N, R, C, ...)
 -- Function File: hygernd (T, M, N, [SZ])
     Return a matrix of random samples from the hypergeometric distribution with parameters T, M, and N.

     The parameters T, M, and N must be positive integers with M and N not greater than T.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of T, M, and N.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Return a matrix of random samples from the hypergeometric distribution with parameters T, M, and N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
kolmogorov_smirnov_cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 425
 -- Function File: kolmogorov_smirnov_cdf (X, TOL)
     Return the cumulative distribution function (CDF) at X of the Kolmogorov-Smirnov distribution.

     This is defined as

                   Inf
          Q(x) =   SUM    (-1)^k exp (-2 k^2 x^2)
                 k = -Inf

     for X > 0.

     The optional parameter TOL specifies the precision up to which the series should be evaluated; the default is TOL = 'eps'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return the cumulative distribution function (CDF) at X of the Kolmogorov-Smirnov distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Function File: laplace_cdf (X)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
 -- Function File: laplace_inv (X)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_pdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
 -- Function File: laplace_pdf (X)
     For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
laplace_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 533
 -- Function File: laplace_rnd (R)
 -- Function File: laplace_rnd (R, C, ...)
 -- Function File: laplace_rnd ([SZ])
     Return a matrix of random samples from the Laplace distribution.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a matrix of random samples from the Laplace distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
 -- Function File: logistic_cdf (X)
     For each element of X, compute the cumulative distribution function (CDF) at X of the logistic distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
For each element of X, compute the cumulative distribution function (CDF) at X of the logistic distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
 -- Function File: logistic_inv (X)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
For each element of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_pdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
 -- Function File: logistic_pdf (X)
     For each element of X, compute the PDF at X of the logistic distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
For each element of X, compute the PDF at X of the logistic distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
logistic_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
 -- Function File: logistic_rnd (R)
 -- Function File: logistic_rnd (R, C, ...)
 -- Function File: logistic_rnd ([SZ])
     Return a matrix of random samples from the logistic distribution.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return a matrix of random samples from the logistic distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
logncdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
 -- Function File: logncdf (X)
 -- Function File: logncdf (X, MU, SIGMA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA.

     If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.

     Default values are MU = 0, SIGMA = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
logninv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 394
 -- Function File: logninv (X)
 -- Function File: logninv (X, MU, SIGMA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA.

     If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.

     Default values are MU = 0, SIGMA = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lognpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
 -- Function File: lognpdf (X)
 -- Function File: lognpdf (X, MU, SIGMA)
     For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA.

     If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.

     Default values are MU = 0, SIGMA = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lognrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 720
 -- Function File: lognrnd (MU, SIGMA)
 -- Function File: lognrnd (MU, SIGMA, R)
 -- Function File: lognrnd (MU, SIGMA, R, C, ...)
 -- Function File: lognrnd (MU, SIGMA, [SZ])
     Return a matrix of random samples from the lognormal distribution with parameters MU and SIGMA.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of MU and SIGMA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return a matrix of random samples from the lognormal distribution with parameters MU and SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbincdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 445
 -- Function File: nbincdf (X, N, P)
     For each element of X, compute the cumulative distribution function (CDF) at X of the negative binomial distribution with parameters N and P.

     When N is integer this is the Pascal distribution.  When N is extended to real numbers this is the Polya distribution.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
For each element of X, compute the cumulative distribution function (CDF) at X of the negative binomial distribution with parameters N and P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbininv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 440
 -- Function File: nbininv (X, N, P)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the negative binomial distribution with parameters N and P.

     When N is integer this is the Pascal distribution.  When N is extended to real numbers this is the Polya distribution.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
For each element of X, compute the quantile (the inverse of the CDF) at X of the negative binomial distribution with parameters N and P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbinpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 441
 -- Function File: nbinpdf (X, N, P)
     For each element of X, compute the probability density function (PDF) at X of the negative binomial distribution with parameters N and P.

     When N is integer this is the Pascal distribution.  When N is extended to real numbers this is the Polya distribution.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
For each element of X, compute the probability density function (PDF) at X of the negative binomial distribution with parameters N and P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nbinrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 698
 -- Function File: nbinrnd (N, P)
 -- Function File: nbinrnd (N, P, R)
 -- Function File: nbinrnd (N, P, R, C, ...)
 -- Function File: nbinrnd (N, P, [SZ])
     Return a matrix of random samples from the negative binomial distribution with parameters N and P.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of N and P.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return a matrix of random samples from the negative binomial distribution with parameters N and P.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 274
 -- Function File: normcdf (X)
 -- Function File: normcdf (X, MU, SIGMA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.

     Default values are MU = 0, SIGMA = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
norminv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 269
 -- Function File: norminv (X)
 -- Function File: norminv (X, MU, SIGMA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.

     Default values are MU = 0, SIGMA = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean MU and standard deviation SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
 -- Function File: normpdf (X)
 -- Function File: normpdf (X, MU, SIGMA)
     For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean MU and standard deviation SIGMA.

     Default values are MU = 0, SIGMA = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean MU and standard deviation SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
normrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 741
 -- Function File: normrnd (MU, SIGMA)
 -- Function File: normrnd (MU, SIGMA, R)
 -- Function File: normrnd (MU, SIGMA, R, C, ...)
 -- Function File: normrnd (MU, SIGMA, [SZ])
     Return a matrix of random samples from the normal distribution with parameters mean MU and standard deviation SIGMA.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of MU and SIGMA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Return a matrix of random samples from the normal distribution with parameters mean MU and standard deviation SIGMA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poisscdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
 -- Function File: poisscdf (X, LAMBDA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter LAMBDA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poissinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 173
 -- Function File: poissinv (X, LAMBDA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For each element of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poisspdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 -- Function File: poisspdf (X, LAMBDA)
     For each element of X, compute the probability density function (PDF) at X of the Poisson distribution with parameter LAMBDA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
For each element of X, compute the probability density function (PDF) at X of the Poisson distribution with parameter LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poissrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 690
 -- Function File: poissrnd (LAMBDA)
 -- Function File: poissrnd (LAMBDA, R)
 -- Function File: poissrnd (LAMBDA, R, C, ...)
 -- Function File: poissrnd (LAMBDA, [SZ])
     Return a matrix of random samples from the Poisson distribution with parameter LAMBDA.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the size of LAMBDA.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return a matrix of random samples from the Poisson distribution with parameter LAMBDA.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_cdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
 -- Function File: stdnormal_cdf (X)
     For each element of X, compute the cumulative distribution function (CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
For each element of X, compute the cumulative distribution function (CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
 -- Function File: stdnormal_inv (X)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
For each element of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_pdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 192
 -- Function File: stdnormal_pdf (X)
     For each element of X, compute the probability density function (PDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the standard normal distribution (mean = 0, standard deviation = 1).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
stdnormal_rnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 582
 -- Function File: stdnormal_rnd (R)
 -- Function File: stdnormal_rnd (R, C, ...)
 -- Function File: stdnormal_rnd ([SZ])
     Return a matrix of random samples from the standard normal distribution (mean = 0, standard deviation = 1).

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return a matrix of random samples from the standard normal distribution (mean = 0, standard deviation = 1).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
 -- Function File: tcdf (X, N)
     For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 276
 -- Function File: tinv (X, N)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with N degrees of freedom.

     This function is analogous to looking in a table for the t-value of a single-tailed distribution.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
For each element of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 173
 -- Function File: tpdf (X, N)
     For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
trnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 657
 -- Function File: trnd (N)
 -- Function File: trnd (N, R)
 -- Function File: trnd (N, R, C, ...)
 -- Function File: trnd (N, [SZ])
     Return a matrix of random samples from the t (Student) distribution with N degrees of freedom.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the size of N.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return a matrix of random samples from the t (Student) distribution with N degrees of freedom.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 762
 -- Function File: unidrnd (N)
 -- Function File: unidrnd (N, R)
 -- Function File: unidrnd (N, R, C, ...)
 -- Function File: unidrnd (N, [SZ])
     Return a matrix of random samples from the discrete uniform distribution which assumes the integer values 1-N with equal probability.

     N may be a scalar or a multi-dimensional array.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the size of N.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Return a matrix of random samples from the discrete uniform distribution which assumes the integer values 1-N with equal probability.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 217
 -- Function File: unidcdf (X, N)
     For each element of X, compute the cumulative distribution function (CDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
For each element of X, compute the cumulative distribution function (CDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 214
 -- Function File: unidinv (X, N)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the discrete uniform distribution which assumes the integer values 1-N with equal probability.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
For each element of X, compute the quantile (the inverse of the CDF) at X of the discrete uniform distribution which assumes the integer values 1-N with equal probability.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unidpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 369
 -- Function File: unidpdf (X, N)
     For each element of X, compute the probability density function (PDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.

     Warning: The underlying implementation uses the double class and will only be accurate for N <= 'bitmax' (2^{53} - 1 on IEEE-754 compatible systems).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
For each element of X, compute the probability density function (PDF) at X of a discrete uniform distribution which assumes the integer values 1-N with equal probability.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 674
 -- Function File: unifrnd (A, B)
 -- Function File: unifrnd (A, B, R)
 -- Function File: unifrnd (A, B, R, C, ...)
 -- Function File: unifrnd (A, B, [SZ])
     Return a matrix of random samples from the uniform distribution on [A, B].

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of A and B.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return a matrix of random samples from the uniform distribution on [A, B].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 246
 -- Function File: unifcdf (X)
 -- Function File: unifcdf (X, A, B)
     For each element of X, compute the cumulative distribution function (CDF) at X of the uniform distribution on the interval [A, B].

     Default values are A = 0, B = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
For each element of X, compute the cumulative distribution function (CDF) at X of the uniform distribution on the interval [A, B].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 241
 -- Function File: unifinv (X)
 -- Function File: unifinv (X, A, B)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on the interval [A, B].

     Default values are A = 0, B = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on the interval [A, B].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
unifpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 242
 -- Function File: unifpdf (X)
 -- Function File: unifpdf (X, A, B)
     For each element of X, compute the probability density function (PDF) at X of the uniform distribution on the interval [A, B].

     Default values are A = 0, B = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
For each element of X, compute the probability density function (PDF) at X of the uniform distribution on the interval [A, B].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblcdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 385
 -- Function File: wblcdf (X)
 -- Function File: wblcdf (X, SCALE)
 -- Function File: wblcdf (X, SCALE, SHAPE)
     Compute the cumulative distribution function (CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.

     This is defined as

          1 - exp (-(x/scale)^shape)

     for X >= 0.

     Default values are SCALE = 1, SHAPE = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 299
 -- Function File: wblinv (X)
 -- Function File: wblinv (X, SCALE)
 -- Function File: wblinv (X, SCALE, SHAPE)
     Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.

     Default values are SCALE = 1, SHAPE = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblpdf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 414
 -- Function File: wblpdf (X)
 -- Function File: wblpdf (X, SCALE)
 -- Function File: wblpdf (X, SCALE, SHAPE)
     Compute the probability density function (PDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.

     This is given by

          shape * scale^(-shape) * x^(shape-1) * exp (-(x/scale)^shape)

     for X >= 0.

     Default values are SCALE = 1, SHAPE = 1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
Compute the probability density function (PDF) at X of the Weibull distribution with scale parameter SCALE and shape parameter SHAPE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
wblrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 732
 -- Function File: wblrnd (SCALE, SHAPE)
 -- Function File: wblrnd (SCALE, SHAPE, R)
 -- Function File: wblrnd (SCALE, SHAPE, R, C, ...)
 -- Function File: wblrnd (SCALE, SHAPE, [SZ])
     Return a matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE.

     When called with a single size argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The size may also be specified with a vector of dimensions SZ.

     If no size arguments are given then the result matrix is the common size of SCALE and SHAPE.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Return a matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
wienrnd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 438
 -- Function File: wienrnd (T, D, N)
     Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].

     If D is omitted, D = 1 is used.  The first column of the return matrix contains time, the remaining columns contain the Wiener process.

     The optional parameter N defines the number of summands used for simulating the process over an interval of length 1.  If N is omitted, N = 1000 is used.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
logistic_regression


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1609
 -- Function File: [THETA, BETA, DEV, DL, D2L, P] = logistic_regression (Y, X, PRINT, THETA, BETA)
     Perform ordinal logistic regression.

     Suppose Y takes values in K ordered categories, and let 'gamma_i (X)' be the cumulative probability that Y falls in one of the first I categories given the covariate X.  Then

          [theta, beta] = logistic_regression (y, x)

     fits the model

          logit (gamma_i (x)) = theta_i - beta' * x,   i = 1 ... k-1

     The number of ordinal categories, K, is taken to be the number of distinct values of 'round (Y)'.  If K equals 2, Y is binary and the model is ordinary logistic regression.  The matrix X is assumed to have full column rank.

     Given Y only, 'theta = logistic_regression (y)' fits the model with baseline logit odds only.

     The full form is

          [theta, beta, dev, dl, d2l, gamma]
             = logistic_regression (y, x, print, theta, beta)

     in which all output arguments and all input arguments except Y are optional.

     Setting PRINT to 1 requests summary information about the fitted model to be displayed.  Setting PRINT to 2 requests information about convergence at each iteration.  Other values request no information to be displayed.  The input arguments THETA and BETA give initial estimates for THETA and BETA.

     The returned value DEV holds minus twice the log-likelihood.

     The returned values DL and D2L are the vector of first and the matrix of second derivatives of the log-likelihood with respect to THETA and BETA.

     P holds estimates for the conditional distribution of Y given X.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Perform ordinal logistic regression.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
anova


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 986
 -- Function File: [PVAL, F, DF_B, DF_W] = anova (Y, G)
     Perform a one-way analysis of variance (ANOVA).

     The goal is to test whether the population means of data taken from K different groups are all equal.

     Data may be given in a single vector Y with groups specified by a corresponding vector of group labels G (e.g., numbers from 1 to K).  This is the general form which does not impose any restriction on the number of data in each group or the group labels.

     If Y is a matrix and G is omitted, each column of Y is treated as a group.  This form is only appropriate for balanced ANOVA in which the numbers of samples from each group are all equal.

     Under the null of constant means, the statistic F follows an F distribution with DF_B and DF_W degrees of freedom.

     The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.

     If no output argument is given, the standard one-way ANOVA table is printed.

     See also: manova.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Perform a one-way analysis of variance (ANOVA).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
bartlett_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
 -- Function File: [PVAL, CHISQ, DF] = bartlett_test (X1, ...)
     Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, ..., XK, where K > 1.

     Under the null of equal variances, the test statistic CHISQ approximately follows a chi-square distribution with DF degrees of freedom.

     The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
chisquare_test_homogeneity


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 586
 -- Function File: [PVAL, CHISQ, DF] = chisquare_test_homogeneity (X, Y, C)
     Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.

     For large samples, the test statistic CHISQ approximately follows a chisquare distribution with DF = 'length (C)' degrees of freedom.

     The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
chisquare_test_independence


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
 -- Function File: [PVAL, CHISQ, DF] = chisquare_test_independence (X)
     Perform a chi-square test for independence based on the contingency table X.

     Under the null hypothesis of independence, CHISQ approximately has a chi-square distribution with DF degrees of freedom.

     The p-value (1 minus the CDF of this distribution at chisq) of the test is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Perform a chi-square test for independence based on the contingency table X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cor_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1327
 -- Function File: cor_test (X, Y, ALT, METHOD)
     Test whether two samples X and Y come from uncorrelated populations.

     The optional argument string ALT describes the alternative hypothesis, and can be "!=" or "<>" (nonzero), ">" (greater than 0), or "<" (less than 0).  The default is the two-sided case.

     The optional argument string METHOD specifies which correlation coefficient to use for testing.  If METHOD is "pearson" (default), the (usual) Pearson's produt moment correlation coefficient is used.  In this case, the data should come from a bivariate normal distribution.  Otherwise, the other two methods offer nonparametric alternatives.  If METHOD is "kendall", then Kendall's rank correlation tau is used.  If METHOD is "spearman", then Spearman's rank correlation rho is used.  Only the first character is necessary.

     The output is a structure with the following elements:

     PVAL
          The p-value of the test.

     STAT
          The value of the test statistic.

     DIST
          The distribution of the test statistic.

     PARAMS
          The parameters of the null distribution of the test statistic.

     ALTERNATIVE
          The alternative hypothesis.

     METHOD
          The method used for testing.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Test whether two samples X and Y come from uncorrelated populations.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
f_test_regression


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 491
 -- Function File: [PVAL, F, DF_NUM, DF_DEN] = f_test_regression (Y, X, RR, R)
     Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.

     Under the null, the test statistic F follows an F distribution with DF_NUM and DF_DEN degrees of freedom.

     The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.

     If not given explicitly, R = 0.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
hotelling_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 540
 -- Function File: [PVAL, TSQ] = hotelling_test (X, M)
     For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that 'mean (X) == M'.

     Hotelling's T^2 is returned in TSQ.  Under the null, (n-p) T^2 / (p(n-1)) has an F distribution with p and n-p degrees of freedom, where n and p are the numbers of samples and variables, respectively.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that 'mean (X) == M'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
hotelling_test_2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 656
 -- Function File: [PVAL, TSQ] = hotelling_test_2 (X, Y)
     For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis 'mean (X) == mean (Y)'.

     Hotelling's two-sample T^2 is returned in TSQ.  Under the null,

          (n_x+n_y-p-1) T^2 / (p(n_x+n_y-2))

     has an F distribution with p and n_x+n_y-p-1 degrees of freedom, where n_x and n_y are the sample sizes and p is the number of variables.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 203
For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis 'mean (X) == mean (Y)'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
kolmogorov_smirnov_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1281
 -- Function File: [PVAL, KS] = kolmogorov_smirnov_test (X, DIST, PARAMS, ALT)
     Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution DIST.

     if F and G are the CDFs corresponding to the sample and dist, respectively, then the null is that F == G.

     The optional argument PARAMS contains a list of parameters of DIST.  For example, to test whether a sample X comes from a uniform distribution on [2,4], use

          kolmogorov_smirnov_test (x, "unif", 2, 4)

     DIST can be any string for which a function DISTCDF that calculates the CDF of distribution DIST exists.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative F != G.  In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution.  If ALT is ">", the one-sided alternative F > G is considered.  Similarly for "<", the one-sided alternative F > G is considered.  In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution DIST.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
kolmogorov_smirnov_test_2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1102
 -- Function File: [PVAL, KS, D] = kolmogorov_smirnov_test_2 (X, Y, ALT)
     Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution.

     If F and G are the CDFs corresponding to the X and Y samples, respectively, then the null is that F == G.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative F != G.  In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution.  If ALT is ">", the one-sided alternative F > G is considered.  Similarly for "<", the one-sided alternative F < G is considered.  In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     The third returned value, D, is the test statistic, the maximum vertical distance between the two cumulative distribution functions.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
kruskal_wallis_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1083
 -- Function File: [PVAL, K, DF] = kruskal_wallis_test (X1, ...)
     Perform a Kruskal-Wallis one-factor analysis of variance.

     Suppose a variable is observed for K > 1 different groups, and let X1, ..., XK be the corresponding data vectors.

     Under the null hypothesis that the ranks in the pooled sample are not affected by the group memberships, the test statistic K is approximately chi-square with DF = K - 1 degrees of freedom.

     If the data contains ties (some value appears more than once) K is divided by

     1 - SUM_TIES / (N^3 - N)

     where SUM_TIES is the sum of T^2 - T over each group of ties where T is the number of ties in the group and N is the total number of values in the input data.  For more info on this adjustment see William H. Kruskal and W. Allen Wallis, 'Use of Ranks in One-Criterion Variance Analysis', Journal of the American Statistical Association, Vol.  47, No.  260 (Dec 1952).

     The p-value (1 minus the CDF of this distribution at K) is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Perform a Kruskal-Wallis one-factor analysis of variance.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
manova


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 641
 -- Function File: manova (X, G)
     Perform a one-way multivariate analysis of variance (MANOVA).

     The goal is to test whether the p-dimensional population means of data taken from K different groups are all equal.  All data are assumed drawn independently from p-dimensional normal distributions with the same covariance matrix.

     The data matrix is given by X.  As usual, rows are observations and columns are variables.  The vector G specifies the corresponding group labels (e.g., numbers from 1 to K).

     The LR test statistic (Wilks' Lambda) and approximate p-values are computed and displayed.

     See also: anova.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Perform a one-way multivariate analysis of variance (MANOVA).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
mcnemar_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 524
 -- Function File: [PVAL, CHISQ, DF] = mcnemar_test (X)
     For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.

     Under the null, CHISQ is approximately distributed as chisquare with DF degrees of freedom.

     The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
prop_test_2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 817
 -- Function File: [PVAL, Z] = prop_test_2 (X1, N1, X2, N2, ALT)
     If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same.

     Under the null, the test statistic Z approximately follows a standard normal distribution.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative P1 != P2.  If ALT is ">", the one-sided alternative P1 > P2 is used.  Similarly for "<", the one-sided alternative P1 < P2 is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
run_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 345
 -- Function File: [PVAL, CHISQ] = run_test (X)
     Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X.

     'run_test' can be used to decide whether X contains independent data.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
sign_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 902
 -- Function File: [PVAL, B, N] = sign_test (X, Y, ALT)
     For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2.

     Under the null, the test statistic B roughly follows a binomial distribution with parameters 'N = sum (X != Y)' and P = 1/2.

     With the optional argument 'alt', the alternative of interest can be selected.  If ALT is "!=" or "<>", the null hypothesis is tested against the two-sided alternative PROB (X < Y) != 1/2.  If ALT is ">", the one-sided alternative PROB (X > Y) > 1/2 ("x is stochastically greater than y") is considered.  Similarly for "<", the one-sided alternative PROB (X > Y) < 1/2 ("x is stochastically less than y") is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
t_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 810
 -- Function File: [PVAL, T, DF] = t_test (X, M, ALT)
     For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis 'mean (X) == M'.

     Under the null, the test statistic T follows a Student distribution with 'DF = length (X) - 1' degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != M'.  If ALT is ">", the one-sided alternative 'mean (X) > M' is considered.  Similarly for "<", the one-sided alternative 'mean (X) < M' is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis 'mean (X) == M'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
t_test_2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 836
 -- Function File: [PVAL, T, DF] = t_test_2 (X, Y, ALT)
     For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means.

     Under the null, the test statistic T follows a Student distribution with DF degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != mean (Y)'.  If ALT is ">", the one-sided alternative 'mean (X) > mean (Y)' is used.  Similarly for "<", the one-sided alternative 'mean (X) < mean (Y)' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
t_test_regression


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 812
 -- Function File: [PVAL, T, DF] = t_test_regression (Y, X, RR, R, ALT)
     Perform a t test for the null hypothesis 'RR * B = R' in a classical normal regression model 'Y = X * B + E'.

     Under the null, the test statistic T follows a T distribution with DF degrees of freedom.

     If R is omitted, a value of 0 is assumed.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'RR * B != R'.  If ALT is ">", the one-sided alternative 'RR * B > R' is used.  Similarly for "<", the one-sided alternative 'RR * B < R' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Perform a t test for the null hypothesis 'RR * B = R' in a classical normal regression model 'Y = X * B + E'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
u_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 844
 -- Function File: [PVAL, Z] = u_test (X, Y, ALT)
     For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y).

     Under the null, the test statistic Z approximately follows a standard normal distribution.  Note that this test is equivalent to the Wilcoxon rank-sum test.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative PROB (X > Y) != 1/2.  If ALT is ">", the one-sided alternative PROB (X > Y) > 1/2 is considered.  Similarly for "<", the one-sided alternative PROB (X > Y) < 1/2 is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
var_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 840
 -- Function File: [PVAL, F, DF_NUM, DF_DEN] = var_test (X, Y, ALT)
     For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances.

     Under the null, the test statistic F follows an F-distribution with DF_NUM and DF_DEN degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'var (X) != var (Y)'.  If ALT is ">", the one-sided alternative 'var (X) > var (Y)' is used.  Similarly for "<", the one-sided alternative 'var (X) > var (Y)' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
welch_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 850
 -- Function File: [PVAL, T, DF] = welch_test (X, Y, ALT)
     For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.

     Under the null, the test statistic T approximately follows a Student distribution with DF degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != M'.  If ALT is ">", the one-sided alternative mean(x) > M is considered.  Similarly for "<", the one-sided alternative mean(x) < M is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
wilcoxon_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 907
 -- Function File: [PVAL, Z] = wilcoxon_test (X, Y, ALT)
     For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2.

     Under the null, the test statistic Z approximately follows a standard normal distribution when N > 25.

     *Caution:* This function assumes a normal distribution for Z and thus is invalid for N <= 25.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative PROB (X > Y) != 1/2.  If alt is ">", the one-sided alternative PROB (X > Y) > 1/2 is considered.  Similarly for "<", the one-sided alternative PROB (X > Y) < 1/2 is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
z_test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
 -- Function File: [PVAL, Z] = z_test (X, M, V, ALT)
     Perform a Z-test of the null hypothesis 'mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V.

     Under the null, the test statistic Z follows a standard normal distribution.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != M'.  If ALT is ">", the one-sided alternative 'mean (X) > M' is considered.  Similarly for "<", the one-sided alternative 'mean (X) < M' is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed along with some information.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
Perform a Z-test of the null hypothesis 'mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
z_test_2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 839
 -- Function File: [PVAL, Z] = z_test_2 (X, Y, V_X, V_Y, ALT)
     For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means.

     Under the null, the test statistic Z follows a standard normal distribution.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is "!=" or "<>", the null is tested against the two-sided alternative 'mean (X) != mean (Y)'.  If alt is ">", the one-sided alternative 'mean (X) > mean (Y)' is used.  Similarly for "<", the one-sided alternative 'mean (X) < mean (Y)' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed along with some information.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
base2dec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 676
 -- Function File: base2dec (S, BASE)
     Convert S from a string of digits in base BASE to a decimal integer (base 10).

          base2dec ("11120", 3)
             => 123

     If S is a string matrix, return a column vector with one value per row of S.  If a row contains invalid symbols then the corresponding value will be NaN.

     If S is a cell array of strings, return a column vector with one value per cell element in S.

     If BASE is a string, the characters of BASE are used as the symbols for the digits of S.  Space (' ') may not be used as a symbol.

          base2dec ("yyyzx", "xyz")
             => 123

     See also: dec2base, bin2dec, hex2dec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Convert S from a string of digits in base BASE to a decimal integer (base 10).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bin2dec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 631
 -- Function File: bin2dec (S)
     Return the decimal number corresponding to the binary number represented by the string S.

     For example:

          bin2dec ("1110")
               => 14

     Spaces are ignored during conversion and may be used to make the binary number more readable.

          bin2dec ("1000 0001")
               => 129

     If S is a string matrix, return a column vector with one converted number per row of S; Invalid rows evaluate to NaN.

     If S is a cell array of strings, return a column vector with one converted number per cell element in S.

     See also: dec2bin, base2dec, hex2dec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the decimal number corresponding to the binary number represented by the string S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
blanks


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 383
 -- Function File: blanks (N)
     Return a string of N blanks.

     For example:

          blanks (10);
          whos ans
               =>
                Attr Name        Size                     Bytes  Class
                ==== ====        ====                     =====  =====
                     ans         1x10                        10  char

     See also: repmat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Return a string of N blanks.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cstrcat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 401
 -- Function File: cstrcat (S1, S2, ...)
     Return a string containing all the arguments concatenated horizontally with trailing white space preserved.

     For example:

          cstrcat ("ab   ", "cd")
                => "ab   cd"

          s = [ "ab"; "cde" ];
          cstrcat (s, s, s)
                => "ab ab ab "
                   "cdecdecde"

     See also: strcat, char, strvcat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return a string containing all the arguments concatenated horizontally with trailing white space preserved.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
deblank


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 432
 -- Function File: deblank (S)
     Remove trailing whitespace and nulls from S.

     If S is a matrix, DEBLANK trims each row to the length of longest string.  If S is a cell array of strings, operate recursively on each string element.

     Examples:

          deblank ("    abc  ")
               =>  "    abc"

          deblank ([" abc   "; "   def   "])
               =>  [" abc  " ; "   def"]

     See also: strtrim.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Remove trailing whitespace and nulls from S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dec2base


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 716
 -- Function File: dec2base (D, BASE)
 -- Function File: dec2base (D, BASE, LEN)
     Return a string of symbols in base BASE corresponding to the non-negative integer D.

          dec2base (123, 3)
             => "11120"

     If D is a matrix or cell array, return a string matrix with one row per element in D, padded with leading zeros to the width of the largest value.

     If BASE is a string then the characters of BASE are used as the symbols for the digits of D.  Space (' ') may not be used as a symbol.

          dec2base (123, "aei")
             => "eeeia"

     The optional third argument, LEN, specifies the minimum number of digits in the result.

     See also: base2dec, dec2bin, dec2hex.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return a string of symbols in base BASE corresponding to the non-negative integer D.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dec2bin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 503
 -- Function File: dec2bin (D, LEN)
     Return a binary number corresponding to the non-negative integer D, as a string of ones and zeros.

     For example:

          dec2bin (14)
               => "1110"

     If D is a matrix or cell array, return a string matrix with one row per element in D, padded with leading zeros to the width of the largest value.

     The optional second argument, LEN, specifies the minimum number of digits in the result.

     See also: bin2dec, dec2base, dec2hex.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return a binary number corresponding to the non-negative integer D, as a string of ones and zeros.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dec2hex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 480
 -- Function File: dec2hex (D, LEN)
     Return the hexadecimal string corresponding to the non-negative integer D.

     For example:

          dec2hex (2748)
               => "ABC"

     If D is a matrix or cell array, return a string matrix with one row per element in D, padded with leading zeros to the width of the largest value.

     The optional second argument, LEN, specifies the minimum number of digits in the result.

     See also: hex2dec, dec2base, dec2bin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return the hexadecimal string corresponding to the non-negative integer D.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findstr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 637
 -- Function File: findstr (S, T)
 -- Function File: findstr (S, T, OVERLAP)
     Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts.

     If the optional argument OVERLAP is true (default), the returned vector can include overlapping positions.  For example:

          findstr ("ababab", "a")
               => [1, 3, 5];
          findstr ("abababa", "aba", 0)
               => [1, 5]

     *Caution:* 'findstr' is scheduled for deprecation.  Use 'strfind' in all new code.

     See also: strfind, strmatch, strcmp, strncmp, strcmpi, strncmpi, find.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hex2dec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 524
 -- Function File: hex2dec (S)
     Return the integer corresponding to the hexadecimal number represented by the string S.

     For example:

          hex2dec ("12B")
                => 299
          hex2dec ("12b")
                => 299

     If S is a string matrix, return a column vector with one converted number per row of S; Invalid rows evaluate to NaN.

     If S is a cell array of strings, return a column vector with one converted number per cell element in S.

     See also: dec2hex, base2dec, bin2dec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Return the integer corresponding to the hexadecimal number represented by the string S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
index


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 477
 -- Function File: index (S, T)
 -- Function File: index (S, T, DIRECTION)
     Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found.

     S may also be a string array or cell array of strings.

     For example:

          index ("Teststring", "t")
              => 4

     If DIRECTION is "first", return the first element found.  If DIRECTION is "last", return the last element found.

     See also: find, rindex.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isletter


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 264
 -- Function File: isletter (S)
     Return a logical array which is true where the elements of S are letters and false where they are not.

     This is an alias for the 'isalpha' function.

     See also: isalpha, isdigit, ispunct, isspace, iscntrl, isalnum.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Return a logical array which is true where the elements of S are letters and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isstrprop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1427
 -- Function File: isstrprop (STR, PROP)
     Test character string properties.

     For example:

          isstrprop ("abc123", "alpha")
          => [1, 1, 1, 0, 0, 0]

     If STR is a cell array, 'isstrpop' is applied recursively to each element of the cell array.

     Numeric arrays are converted to character strings.

     The second argument PROP must be one of

     "alpha"
          True for characters that are alphabetic (letters).

     "alnum"
     "alphanum"
          True for characters that are alphabetic or digits.

     "lower"
          True for lowercase letters.

     "upper"
          True for uppercase letters.

     "digit"
          True for decimal digits (0-9).

     "xdigit"
          True for hexadecimal digits (a-fA-F0-9).

     "space"
     "wspace"
          True for whitespace characters (space, formfeed, newline, carriage return, tab, vertical tab).

     "punct"
          True for punctuation characters (printing characters except space or letter or digit).

     "cntrl"
          True for control characters.

     "graph"
     "graphic"
          True for printing characters except space.

     "print"
          True for printing characters including space.

     "ascii"
          True for characters that are in the range of ASCII encoding.

     See also: isalpha, isalnum, islower, isupper, isdigit, isxdigit, isspace, ispunct, iscntrl, isgraph, isprint, isascii.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Test character string properties.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
mat2str


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1198
 -- Function File: S = mat2str (X, N)
 -- Function File: S = mat2str (X, N, "class")
     Format real, complex, and logical matrices as strings.

     The returned string may be used to reconstruct the original matrix by using the 'eval' function.

     The precision of the values is given by N.  If N is a scalar then both real and imaginary parts of the matrix are printed to the same precision.  Otherwise 'N(1)' defines the precision of the real part and 'N(2)' defines the precision of the imaginary part.  The default for N is 15.

     If the argument "class" is given then the class of X is included in the string in such a way that 'eval' will result in the construction of a matrix of the same class.

          mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
               => "[-0.3333+0.14i;0.3333-0.14i]"

          mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
               => "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"

          mat2str (int16 ([1 -1]), "class")
               => "int16([1 -1])"

          mat2str (logical (eye (2)))
               => "[true false;false true]"

          isequal (x, eval (mat2str (x)))
               => 1

     See also: sprintf, num2str, int2str.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Format real, complex, and logical matrices as strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ostrsplit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 897
 -- Function File: [CSTR] = ostrsplit (S, SEP)
 -- Function File: [CSTR] = ostrsplit (S, SEP, STRIP_EMPTY)
     Split the string S using one or more separators SEP and return a cell array of strings.

     Consecutive separators and separators at boundaries result in empty strings, unless STRIP_EMPTY is true.  The default value of STRIP_EMPTY is false.

     2-D character arrays are split at separators and at the original column boundaries.

     Example:

          ostrsplit ("a,b,c", ",")
                =>
                    {
                      [1,1] = a
                      [1,2] = b
                      [1,3] = c
                    }

          ostrsplit (["a,b" ; "cde"], ",")
                =>
                    {
                      [1,1] = a
                      [1,2] = b
                      [1,3] = cde
                    }

     See also: strsplit, strtok.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Split the string S using one or more separators SEP and return a cell array of strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
regexptranslate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 788
 -- Function File: regexptranslate (OP, S)
     Translate a string for use in a regular expression.

     This may include either wildcard replacement or special character escaping.

     The behavior is controlled by OP which can take the following values

     "wildcard"
          The wildcard characters '.', '*', and '?' are replaced with wildcards that are appropriate for a regular expression.  For example:

               regexptranslate ("wildcard", "*.m")
                    => ".*\.m"

     "escape"
          The characters '$.?[]', that have special meaning for regular expressions are escaped so that they are treated literally.  For example:

               regexptranslate ("escape", "12.5")
                    => "12\.5"

     See also: regexp, regexpi, regexprep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Translate a string for use in a regular expression.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rindex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 419
 -- Function File: rindex (S, T)
     Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found.

     S may also be a string array or cell array of strings.

     For example:

          rindex ("Teststring", "t")
               => 6

     The 'rindex' function is equivalent to 'index' with DIRECTION set to "last".

     See also: find, index.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
str2num


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 774
 -- Function File: X = str2num (S)
 -- Function File: [X, STATE] = str2num (S)
     Convert the string (or character array) S to a number (or an array).

     Examples:

          str2num ("3.141596")
                => 3.141596

          str2num (["1, 2, 3"; "4, 5, 6"])
                => 1  2  3
                   4  5  6

     The optional second output, STATE, is logically true when the conversion is successful.  If the conversion fails the numeric output, X, is empty and STATE is false.

     *Caution:* As 'str2num' uses the 'eval' function to do the conversion, 'str2num' will execute any code contained in the string S.  Use 'str2double' for a safer and faster conversion.

     For cell array of strings use 'str2double'.

     See also: str2double, eval.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Convert the string (or character array) S to a number (or an array).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strcat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1215
 -- Function File: strcat (S1, S2, ...)
     Return a string containing all the arguments concatenated horizontally.

     If the arguments are cell strings, 'strcat' returns a cell string with the individual cells concatenated.  For numerical input, each element is converted to the corresponding ASCII character.  Trailing white space for any character string input is eliminated before the strings are concatenated.  Note that cell string values do *not* have whitespace trimmed.

     For example:

          strcat ("|", " leading space is preserved", "|")
              => | leading space is preserved|

          strcat ("|", "trailing space is eliminated ", "|")
              => |trailing space is eliminated|

          strcat ("homogeneous space |", "  ", "| is also eliminated")
              => homogeneous space || is also eliminated

          s = [ "ab"; "cde" ];
          strcat (s, s, s)
              =>
                  "ababab   "
                  "cdecdecde"

          s = { "ab"; "cd " };
          strcat (s, s, s)
              =>
                  {
                    [1,1] = ababab
                    [2,1] = cd cd cd
                  }

     See also: cstrcat, char, strvcat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Return a string containing all the arguments concatenated horizontally.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strchr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 459
 -- Function File: IDX = strchr (STR, CHARS)
 -- Function File: IDX = strchr (STR, CHARS, N)
 -- Function File: IDX = strchr (STR, CHARS, N, DIRECTION)
 -- Function File: [I, J] = strchr (...)
     Search for the string STR for occurrences of characters from the set CHARS.

     The return value(s), as well as the N and DIRECTION arguments behave identically as in 'find'.

     This will be faster than using regexp in most cases.

     See also: find.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Search for the string STR for occurrences of characters from the set CHARS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strjoin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 724
 -- Function File: STR = strjoin (CSTR)
 -- Function File: STR = strjoin (CSTR, DELIMITER)
     Join the elements of the cell string array, CSTR, into a single string.

     If no DELIMITER is specified, the elements of CSTR are separated by a space.

     If DELIMITER is specified as a string, the cell string array is joined using the string.  Escape sequences are supported.

     If DELIMITER is a cell string array whose length is one less than CSTR, then the elements of CSTR are joined by interleaving the cell string elements of DELIMITER.  Escape sequences are not supported.

          strjoin ({'Octave','Scilab','Lush','Yorick'}, '*')
                => 'Octave*Scilab*Lush*Yorick'

     See also: strsplit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Join the elements of the cell string array, CSTR, into a single string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strjust


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 551
 -- Function File: strjust (S)
 -- Function File: strjust (S, POS)
     Return the text, S, justified according to POS, which may be "left", "center", or "right".

     If POS is omitted it defaults to "right".

     Null characters are replaced by spaces.  All other character data are treated as non-white space.

     Example:

          strjust (["a"; "ab"; "abc"; "abcd"])
               =>
                  "   a"
                  "  ab"
                  " abc"
                  "abcd"

     See also: deblank, strrep, strtrim, untabify.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
Return the text, S, justified according to POS, which may be "left", "center", or "right".



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strmatch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 909
 -- Function File: strmatch (S, A)
 -- Function File: strmatch (S, A, "exact")
     Return indices of entries of A which begin with the string S.

     The second argument A must be a string, character matrix, or a cell array of strings.

     If the third argument "exact" is not given, then S only needs to match A up to the length of S.  Trailing spaces and nulls in S and A are ignored when matching.

     For example:

          strmatch ("apple", "apple juice")
               => 1

          strmatch ("apple", ["apple  "; "apple juice"; "an apple"])
               => [1; 2]

          strmatch ("apple", ["apple  "; "apple juice"; "an apple"], "exact")
               => [1]

     *Caution:* 'strmatch' is scheduled for deprecation.  Use 'strncmp' (normal case), or 'strcmp' ("exact" case), or 'regexp' in all new code.

     See also: strfind, findstr, strcmp, strncmp, strcmpi, strncmpi, find.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return indices of entries of A which begin with the string S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strsplit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3167
 -- Function File: [CSTR] = strsplit (STR)
 -- Function File: [CSTR] = strsplit (STR, DEL)
 -- Function File: [CSTR] = strsplit (..., NAME, VALUE)
 -- Function File: [CSTR, MATCHES] = strsplit (...)
     Split the string STR using the delimiters specified by DEL and return a cell string array of substrings.

     If a delimiter is not specified the string is split at whitespace '{" ", "\f", "\n", "\r", "\t", "\v"}'.  Otherwise, the delimiter, DEL must be a string or cell array of strings.  By default, consecutive delimiters in the input string S are collapsed into one resulting in a single split.

     Supported NAME/VALUE pair arguments are:

        * COLLAPSEDELIMITERS which may take the value of 'true' (default) or 'false'.

        * DELIMITERTYPE which may take the value of "simple" (default) or "regularexpression".  A simple delimiter matches the text exactly as written.  Otherwise, the syntax for regular expressions outlined in 'regexp' is used.

     The optional second output, MATCHES, returns the delimiters which were matched in the original string.

     Examples with simple delimiters:

          strsplit ("a b c")
                =>
                    {
                      [1,1] = a
                      [1,2] = b
                      [1,3] = c
                    }

          strsplit ("a,b,c", ",")
                =>
                    {
                      [1,1] = a
                      [1,2] = b
                      [1,3] = c
                    }

          strsplit ("a foo b,bar c", {" ", ",", "foo", "bar"})
                =>
                    {
                      [1,1] = a
                      [1,2] = b
                      [1,3] = c
                    }

          strsplit ("a,,b, c", {",", " "}, "collapsedelimiters", false)
                =>
                    {
                      [1,1] = a
                      [1,2] =
                      [1,3] = b
                      [1,4] =
                      [1,5] = c
                    }


     Examples with regularexpression delimiters:

          strsplit ("a foo b,bar c", ',|\s|foo|bar', "delimitertype", "regularexpression")
          =>
          {
                      [1,1] = a
                      [1,2] = b
                      [1,3] = c
          }

          strsplit ("a,,b, c", '[, ]', "collapsedelimiters", false, "delimitertype", "regularexpression")
          =>
          {
                      [1,1] = a
                      [1,2] =
                      [1,3] = b
                      [1,4] =
                      [1,5] = c
          }

          strsplit ("a,\t,b, c", {',', '\s'}, "delimitertype", "regularexpression")
          =>
          {
                      [1,1] = a
                      [1,2] = b
                      [1,3] = c
          }

          strsplit ("a,\t,b, c", {',', ' ', '\t'}, "collapsedelimiters", false)
          =>
          {
                      [1,1] = a
                      [1,2] =
                      [1,3] =
                      [1,4] = b
                      [1,5] =
                      [1,6] = c
          }

     See also: ostrsplit, strjoin, strtok, regexp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Split the string STR using the delimiters specified by DEL and return a cell string array of substrings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strtok


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
 -- Function File: [TOK, REM] = strtok (STR)
 -- Function File: [TOK, REM] = strtok (STR, DELIM)

     Find all characters in the string STR up to, but not including, the first character which is in the string DELIM.

     STR may also be a cell array of strings in which case the function executes on every individual string and returns a cell array of tokens and remainders.

     Leading delimiters are ignored.  If DELIM is not specified, whitespace is assumed.

     If REM is requested, it contains the remainder of the string, starting at the first delimiter.

     Examples:

          strtok ("this is the life")
               => "this"

          [tok, rem] = strtok ("14*27+31", "+-*/")
               =>
                  tok = 14
                  rem = *27+31

     See also: index, strsplit, strchr, isspace.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Find all characters in the string STR up to, but not including, the first character which is in the string DELIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strtrim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 432
 -- Function File: strtrim (S)
     Remove leading and trailing whitespace from S.

     If S is a matrix, STRTRIM trims each row to the length of longest string.  If S is a cell array of strings, operate recursively on each string element.

     For example:

          strtrim ("    abc  ")
               =>  "abc"

          strtrim ([" abc   "; "   def   "])
               =>  ["abc  "  ; "  def"]

     See also: deblank.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Remove leading and trailing whitespace from S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strtrunc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
 -- Function File: strtrunc (S, N)
     Truncate the character string S to length N.

     If S is a character matrix, then the number of columns is adjusted.

     If S is a cell array of strings, then the operation is performed on each cell element and the new cell array is returned.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Truncate the character string S to length N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
substr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 788
 -- Function File: substr (S, OFFSET)
 -- Function File: substr (S, OFFSET, LEN)
     Return the substring of S which starts at character number OFFSET and is LEN characters long.

     Position numbering for offsets begins with 1.  If OFFSET is negative, extraction starts that far from the end of the string.

     If LEN is omitted, the substring extends to the end of S.  A negative value for LEN extracts to within LEN characters of the end of the string

     Examples:

          substr ("This is a test string", 6, 9)
               => "is a test"
          substr ("This is a test string", -11)
               => "test string"
          substr ("This is a test string", -11, -7)
               => "test"

     This function is patterned after the equivalent function in Perl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Return the substring of S which starts at character number OFFSET and is LEN characters long.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
untabify


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 939
 -- Function File: untabify (T)
 -- Function File: untabify (T, TW)
 -- Function File: untabify (T, TW, DEBLANK)
     Replace TAB characters in T with spaces.

     The input, T, may be either a 2-D character array, or a cell array of character strings.  The output is the same class as the input.

     The tab width is specified by TW, and defaults to eight.

     If the optional argument DEBLANK is true, then the spaces will be removed from the end of the character data.

     The following example reads a file and writes an untabified version of the same file with trailing spaces stripped.

          fid = fopen ("tabbed_script.m");
          text = char (fread (fid, "uchar")');
          fclose (fid);
          fid = fopen ("untabified_script.m", "w");
          text = untabify (strsplit (text, "\n"), 8, true);
          fprintf (fid, "%s\n", text{:});
          fclose (fid);

     See also: strjust, strsplit, deblank.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Replace TAB characters in T with spaces.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
validatestring


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1425
 -- Function File: VALIDSTR = validatestring (STR, STRARRAY)
 -- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME)
 -- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME, VARNAME)
 -- Function File: VALIDSTR = validatestring (..., POSITION)
     Verify that STR is an element, or substring of an element, in STRARRAY.

     When STR is a character string to be tested, and STRARRAY is a cellstr of valid values, then VALIDSTR will be the validated form of STR where validation is defined as STR being a member or substring of VALIDSTR.  This is useful for both verifying and expanding short options, such as "r", to their longer forms, such as "red".  If STR is a substring of VALIDSTR, and there are multiple matches, the shortest match will be returned if all matches are substrings of each other.  Otherwise, an error will be raised because the expansion of STR is ambiguous.  All comparisons are case insensitive.

     The additional inputs FUNCNAME, VARNAME, and POSITION are optional and will make any generated validation error message more specific.

     Examples:

          validatestring ("r", {"red", "green", "blue"})
          => "red"

          validatestring ("b", {"red", "green", "blue", "black"})
          => error: validatestring: multiple unique matches were found for 'b':
             blue, black

     See also: strcmp, strcmpi, validateattributes, inputParser.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Verify that STR is an element, or substring of an element, in STRARRAY.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
assert


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1664
 -- Function File: assert (COND)
 -- Function File: assert (COND, ERRMSG)
 -- Function File: assert (COND, ERRMSG, ...)
 -- Function File: assert (COND, MSG_ID, ERRMSG, ...)
 -- Function File: assert (OBSERVED, EXPECTED)
 -- Function File: assert (OBSERVED, EXPECTED, TOL)

     Produce an error if the specified condition is not met.

     'assert' can be called in three different ways.

     'assert (COND)'
     'assert (COND, ERRMSG)'
     'assert (COND, ERRMSG, ...)'
     'assert (COND, MSG_ID, ERRMSG, ...)'
          Called with a single argument COND, 'assert' produces an error if COND is false (numeric zero).

          Any additional arguments are passed to the 'error' function for processing.

     'assert (OBSERVED, EXPECTED)'
          Produce an error if observed is not the same as expected.

          Note that OBSERVED and EXPECTED can be scalars, vectors, matrices, strings, cell arrays, or structures.

     'assert (OBSERVED, EXPECTED, TOL)'
          Produce an error if observed is not the same as expected but equality comparison for numeric data uses a tolerance TOL.

          If TOL is positive then it is an absolute tolerance which will produce an error if 'abs (OBSERVED - EXPECTED) > abs (TOL)'.

          If TOL is negative then it is a relative tolerance which will produce an error if 'abs (OBSERVED - EXPECTED) > abs (TOL * EXPECTED)'.

          If EXPECTED is zero TOL will always be interpreted as an absolute tolerance.

          If TOL is not scalar its dimensions must agree with those of OBSERVED and EXPECTED and tests are performed on an element-by-element basis.

     See also: fail, test, error, isequal.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Produce an error if the specified condition is not met.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
demo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2601
 -- Command: demo NAME
 -- Command: demo NAME N
 -- Function File: demo ("NAME")
 -- Function File: demo ("NAME", N)

     Run example code block N associated with the function NAME.

     If N is not specified, all examples are run.

     The preferred location for example code blocks is embedded within the script m-file immediately following the code that it exercises.  Alternatively, the examples may be stored in a file with the same name but no extension located on Octave's load path.  To separate examples from regular script code all lines are prefixed by '%!'.  Each example must also be introduced by the keyword "demo" flush left to the prefix with no intervening spaces.  The remainder of the example can contain arbitrary Octave code.  For example:

          %!demo
          %! t = 0:0.01:2*pi;
          %! x = sin (t);
          %! plot (t, x);
          %! title ("one cycle of a sine wave");
          %! #-------------------------------------------------
          %! # the figure window shows one cycle of a sine wave

     Note that the code is displayed before it is executed so that a simple comment at the end suffices for labeling what is being shown.  For plots, labeling can also be done with 'title' or 'text'.  It is generally *not* necessary to use 'disp' or 'printf' within the demo.

     Demos are run in a stand-alone function environment with no access to external variables.  This means that every demo must have separate initialization code.  Alternatively, all demos can be combined into a single large demo with the code

          %! input ("Press <enter> to continue: ", "s");

     between the sections, but this usage is discouraged.  Other techniques to avoid multiple initialization blocks include using multiple plots with a new 'figure' command between each plot, or using 'subplot' to put multiple plots in the same window.

     Finally, because 'demo' evaluates within a function context it is not possible to define new functions within the code.  Anonymous functions make a good substitute in most instances.  If function blocks *must* be used then the code 'eval (example ("function", n))' will allow Octave to see them.  This has its own problems, however, as 'eval' only evaluates one line or statement at a time.  In this case the function declaration must be wrapped with "if 1 <demo stuff> endif" where "if" is on the same line as "demo".  For example:

          %!demo if 1
          %!  function y = f(x)
          %!    y = x;
          %!  endfunction
          %!  f(3)
          %! endif

     See also: rundemos, example, test.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Run example code block N associated with the function NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
example


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
 -- Command: example NAME
 -- Command: example NAME N
 -- Function File: example ("NAME")
 -- Function File: example ("NAME", N)
 -- Function File: [S, IDX] = example (...)

     Display the code for example N associated with the function NAME, but do not run it.

     If N is not specified, all examples are displayed.

     When called with output arguments, the examples are returned in the form of a string S, with IDX indicating the ending position of the various examples.

     See 'demo' for a complete explanation.

     See also: demo, test.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Display the code for example N associated with the function NAME, but do not run it.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fail


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1113
 -- Function File: fail (CODE)
 -- Function File: fail (CODE, PATTERN)
 -- Function File: fail (CODE, "warning")
 -- Function File: fail (CODE, "warning", PATTERN)

     Return true if CODE fails with an error message matching PATTERN, otherwise produce an error.

     CODE must be in the form of a string that is passed to the Octave interpreter via the 'evalin' function, i.e., a (quoted) string constant or a string variable.

     Note that if CODE runs successfully, rather than failing, the error printed is:

                    expected error <.> but got none

     If called with two arguments, the return value will be true only if CODE fails with an error message containing PATTERN (case sensitive).  If the code fails with a different error than the one specified in PATTERN then the message produced is:

                    expected <PATTERN>
                    but got <text of actual error>

     The angle brackets are not part of the output.

     When called with the "warning" option 'fail' will produce an error if executing the code produces no warning.

     See also: assert, error.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Return true if CODE fails with an error message matching PATTERN, otherwise produce an error.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
rundemos


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 411
 -- Function File: rundemos ()
 -- Function File: rundemos (DIRECTORY)
     Execute built-in demos for all m-files in the specified DIRECTORY.

     Demo blocks in any C++ source files ('*.cc') will also be executed for use with dynamically linked oct-file functions.

     If no directory is specified, operate on all directories in Octave's search path for functions.

     See also: demo, runtests, path.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Execute built-in demos for all m-files in the specified DIRECTORY.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
runtests


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 411
 -- Function File: runtests ()
 -- Function File: runtests (DIRECTORY)
     Execute built-in tests for all m-files in the specified DIRECTORY.

     Test blocks in any C++ source files ('*.cc') will also be executed for use with dynamically linked oct-file functions.

     If no directory is specified, operate on all directories in Octave's search path for functions.

     See also: rundemos, test, path.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Execute built-in tests for all m-files in the specified DIRECTORY.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
speed


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4552
 -- Function File: speed (F, INIT, MAX_N, F2, TOL)
 -- Function File: [ORDER, N, T_F, T_F2] = speed (...)

     Determine the execution time of an expression (F) for various input values (N).

     The N are log-spaced from 1 to MAX_N.  For each N, an initialization expression (INIT) is computed to create any data needed for the test.  If a second expression (F2) is given then the execution times of the two expressions are compared.  When called without output arguments the results are printed to stdout and displayed graphically.

     'F'
          The code expression to evaluate.

     'MAX_N'
          The maximum test length to run.  The default value is 100.  Alternatively, use '[min_n, max_n]' or specify the N exactly with '[n1, n2, ..., nk]'.

     'INIT'
          Initialization expression for function argument values.  Use K for the test number and N for the size of the test.  This should compute values for all variables used by F.  Note that INIT will be evaluated first for k = 0, so things which are constant throughout the test series can be computed once.  The default value is 'X = randn (N, 1)'.

     'F2'
          An alternative expression to evaluate, so that the speed of two expressions can be directly compared.  The default is '[]'.

     'TOL'
          Tolerance used to compare the results of expression F and expression F2.  If TOL is positive, the tolerance is an absolute one.  If TOL is negative, the tolerance is a relative one.  The default is 'eps'.  If TOL is 'Inf', then no comparison will be made.

     'ORDER'
          The time complexity of the expression O(a*n^p).  This is a structure with fields 'a' and 'p'.

     'N'
          The values N for which the expression was calculated *AND* the execution time was greater than zero.

     'T_F'
          The nonzero execution times recorded for the expression F in seconds.

     'T_F2'
          The nonzero execution times recorded for the expression F2 in seconds.  If required, the mean time ratio is simply 'mean (T_f ./ T_f2)'.

     The slope of the execution time graph shows the approximate power of the asymptotic running time O(n^p).  This power is plotted for the region over which it is approximated (the latter half of the graph).  The estimated power is not very accurate, but should be sufficient to determine the general order of an algorithm.  It should indicate if, for example, the implementation is unexpectedly O(n^2) rather than O(n) because it extends a vector each time through the loop rather than pre-allocating storage.  In the current version of Octave, the following is not the expected O(n).

          speed ("for i = 1:n, y{i} = x(i); endfor", "", [1000, 10000])

     But it is if you preallocate the cell array 'y':

          speed ("for i = 1:n, y{i} = x(i); endfor", ...
                 "x = rand (n, 1); y = cell (size (x));", [1000, 10000])

     An attempt is made to approximate the cost of individual operations, but it is wildly inaccurate.  You can improve the stability somewhat by doing more work for each 'n'.  For example:

          speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])

     When comparing two different expressions (F, F2), the slope of the line on the speedup ratio graph should be larger than 1 if the new expression is faster.  Better algorithms have a shallow slope.  Generally, vectorizing an algorithm will not change the slope of the execution time graph, but will shift it relative to the original.  For example:

          speed ("sum (x)", "", [10000, 100000], ...
                 "v = 0; for i = 1:length (x), v += x(i); endfor")

     The following is a more complex example.  If there was an original version of 'xcorr' using for loops and a second version using an FFT, then one could compare the run speed for various lags as follows, or for a fixed lag with varying vector lengths as follows:

          speed ("xcorr (x, n)", "x = rand (128, 1);", 100,
                 "xcorr_orig (x, n)", -100*eps)
          speed ("xcorr (x, 15)", "x = rand (20+n, 1);", 100,
                 "xcorr_orig (x, n)", -100*eps)

     Assuming one of the two versions is in xcorr_orig, this would compare their speed and their output values.  Note that the FFT version is not exact, so one must specify an acceptable tolerance on the comparison '100*eps'.  In this case, the comparison should be computed relatively, as 'abs ((X - Y) ./ Y)' rather than absolutely as 'abs (X - Y)'.

     Type 'example ("speed")' to see some real examples or 'demo ("speed")' to run them.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Determine the execution time of an expression (F) for various input values (N).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
test


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3696
 -- Command: test NAME
 -- Command: test NAME quiet|normal|verbose
 -- Function File: test ("NAME", "quiet|normal|verbose", FID)
 -- Function File: test ("NAME", "quiet|normal|verbose", FNAME)
 -- Function File: SUCCESS = test (...)
 -- Function File: [N, NMAX, NXFAIL, NSKIP] = test (...)
 -- Function File: [CODE, IDX] = test ("NAME", "grabdemo")
 -- Function File: test ([], "explain", FID)
 -- Function File: test ([], "explain", FNAME)

     Perform built-in self-tests from the first file in the loadpath matching NAME.

     'test' can be called in either command or functional form.  The exact operation of test is determined by a combination of mode (interactive or batch), reporting level ("quiet", "normal", "verbose"), and whether a logfile or summary output variable is used.

     The default mode when 'test' is called from the command line is interactive.  In this mode, tests will be run until the first error is encountered, or all tests complete successfully.  In batch mode, all tests are run regardless of any failures, and the results are collected for reporting.  Tests which require user interaction, i.e., demo blocks, are never run in batch mode.

     Batch mode is enabled by either 1) specifying a logfile using the third argument FNAME or FID, or 2) requesting an output argument such as SUCCESS, N, etc.

     The optional second argument determines the amount of output to generate and which types of tests to run.  The default value is "normal".  Requesting an output argument will suppress printing the final summary message and any intermediate warnings, unless verbose reporting is enabled.

     "quiet"
          Print a summary message when all tests pass, or print an error with the results of the first bad test when a failure occurs.  Don't run tests which require user interaction.

     "normal"
          Display warning messages about skipped tests or failing xtests during test execution.  Print a summary message when all tests pass, or print an error with the results of the first bad test when a failure occurs.  Don't run tests which require user interaction.

     "verbose"
          Display tests before execution.  Print all warning messages.  In interactive mode, run all tests including those which require user interaction.

     The optional third input argument specifies a logfile where results of the tests should be written.  The logfile may be a character string (FNAME) or an open file descriptor ID (FID).  To enable batch processing, but still print the results to the screen, use 'stdout' for FID.

     When called with just a single output argument SUCCESS, 'test' returns true if all of the tests were successful.  If called with more than one output argument then the number of successful tests (N), the total number of tests in the file (NMAX), the number of xtest failures (NXFAIL), and the number of skipped tests (NSKIP are returned.

     Example

          test sind
          =>
          PASSES 5 out of 5 tests

          [n, nmax] = test ("sind")
          =>
          n =  5
          nmax =  5

     Additional Calling Syntaxes

     If the second argument is the string "grabdemo", the contents of any built-in demo blocks are extracted but not executed.  The text for all code blocks is concatenated and returned as CODE with IDX being a vector of positions of the ends of each demo block.  For an easier way to extract demo blocks from files, *Note example: XREFexample.

     If the second argument is "explain" then NAME is ignored and an explanation of the line markers used in 'test' output reports is written to the file specified by FNAME or FID.

     See also: assert, fail, demo, example, error.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Perform built-in self-tests from the first file in the loadpath matching NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
addtodate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 247
 -- Function File: D = addtodate (D, Q, F)
     Add Q amount of time (with units F) to the serial datenum, D.

     F must be one of "year", "month", "day", "hour", "minute", "second", or "millisecond".

     See also: datenum, datevec, etime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Add Q amount of time (with units F) to the serial datenum, D.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
asctime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 332
 -- Function File: asctime (TM_STRUCT)
     Convert a time structure to a string using the following format: "ddd mmm mm HH:MM:SS yyyy".

     For example:

          asctime (localtime (time ()))
               => "Mon Feb 17 01:15:06 1997"

     This is equivalent to 'ctime (time ())'.

     See also: ctime, localtime, time.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Convert a time structure to a string using the following format: "ddd mmm mm HH:MM:SS yyyy".



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
calendar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 558
 -- Function File: C = calendar ()
 -- Function File: C = calendar (D)
 -- Function File: C = calendar (Y, M)
 -- Function File: calendar (...)
     Return the current monthly calendar in a 6x7 matrix.

     If D is specified, return the calendar for the month containing the date D, which must be a serial date number or a date string.

     If Y and M are specified, return the calendar for year Y and month M.

     If no output arguments are specified, print the calendar on the screen instead of returning a matrix.

     See also: datenum, datestr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the current monthly calendar in a 6x7 matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
clock


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 527
 -- Function File: clock ()
     Return the current local date and time as a date vector.

     The date vector contains the following fields: current year, month (1-12), day (1-31), hour (0-23), minute (0-59), and second (0-61).  The seconds field has a fractional part after the decimal point for extended accuracy.

     For example:

          fix (clock ())
               => [ 1993, 8, 20, 4, 56, 1 ]

     'clock' is more accurate on systems that have the 'gettimeofday' function.

     See also: now, date, datevec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the current local date and time as a date vector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ctime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
 -- Function File: ctime (T)
     Convert a value returned from 'time' (or any other non-negative integer), to the local time and return a string of the same form as 'asctime'.

     The function 'ctime (time)' is equivalent to 'asctime (localtime (time))'.  For example:

          ctime (time ())
             => "Mon Feb 17 01:15:06 1997"

     See also: asctime, time, localtime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
Convert a value returned from 'time' (or any other non-negative integer), to the local time and return a string of the same form as 'asctime'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
date


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 221
 -- Function File: date ()
     Return the current date as a character string in the form DD-MMM-YYYY.

     For example:

          date ()
            => "20-Aug-1993"

     See also: now, clock, datestr, localtime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Return the current date as a character string in the form DD-MMM-YYYY.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
datenum


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2453
 -- Function File: DAYS = datenum (DATEVEC)
 -- Function File: DAYS = datenum (YEAR, MONTH, DAY)
 -- Function File: DAYS = datenum (YEAR, MONTH, DAY, HOUR)
 -- Function File: DAYS = datenum (YEAR, MONTH, DAY, HOUR, MINUTE)
 -- Function File: DAYS = datenum (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND)
 -- Function File: DAYS = datenum ("datestr")
 -- Function File: DAYS = datenum ("datestr", F)
 -- Function File: DAYS = datenum ("datestr", P)
 -- Function File: [DAYS, SECS] = datenum (...)
     Return the date/time input as a serial day number, with Jan 1, 0000 defined as day 1.

     The integer part, 'floor (DAYS)' counts the number of complete days in the date input.

     The fractional part, 'rem (DAYS, 1)' corresponds to the time on the given day.

     The input may be a date vector (see 'datevec'), datestr (see 'datestr'), or directly specified as input.

     When processing input datestrings, F is the format string used to interpret date strings (see 'datestr').  If no format F is specified, then a relatively slow search is performed through various formats.  It is always preferable to specify the format string F if it is known.  Formats which do not specify a particular time component will have the value set to zero.  Formats which do not specify a date will default to January 1st of the current year.

     P is the year at the start of the century to which two-digit years will be referenced.  If not specified, it defaults to the current year minus 50.

     The optional output SECS holds the time on the specified day with greater precision than DAYS.

     Notes:

        * Years can be negative and/or fractional.

        * Months below 1 are considered to be January.

        * Days of the month start at 1.

        * Days beyond the end of the month go into subsequent months.

        * Days before the beginning of the month go to the previous month.

        * Days can be fractional.

     *Caution:* this function does not attempt to handle Julian calendars so dates before October 15, 1582 are wrong by as much as eleven days.  Also, be aware that only Roman Catholic countries adopted the calendar in 1582.  It took until 1924 for it to be adopted everywhere.  See the Wikipedia entry on the Gregorian calendar for more details.

     *Warning:* leap seconds are ignored.  A table of leap seconds is available on the Wikipedia entry for leap seconds.

     See also: datestr, datevec, now, clock, date.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return the date/time input as a serial day number, with Jan 1, 0000 defined as day 1.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
datestr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37213
 -- Function File: STR = datestr (DATE)
 -- Function File: STR = datestr (DATE, F)
 -- Function File: STR = datestr (DATE, F, P)
     Format the given date/time according to the format 'f' and return the result in STR.

     DATE is a serial date number (see 'datenum') or a date vector (see 'datevec').  The value of DATE may also be a string or cell array of strings.

     F can be an integer which corresponds to one of the codes in the table below, or a date format string.

     P is the year at the start of the century in which two-digit years are to be interpreted in.  If not specified, it defaults to the current year minus 50.

     For example, the date 730736.65149 (2000-09-07 15:38:09.0934) would be formatted as follows:

     Code                                                                                                   Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Example
     ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
     0                                                                                                      dd-mmm-yyyy HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                          07-Sep-2000 15:38:09
     1                                                                                                      dd-mmm-yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                   07-Sep-2000
     2                                                                                                      mm/dd/yy                                                                                                                                                                                                                                                                                                                                                                                                                                                                      09/07/00
     3                                                                                                      mmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Sep
     4                                                                                                      m                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S
     5                                                                                                      mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                            09
     6                                                                                                      mm/dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                         09/07
     7                                                                                                      dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                            07
     8                                                                                                      ddd                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Thu
     9                                                                                                      d                                                                                                                                                                                                                                                                                                                                                                                                                                                                             T
     10                                                                                                     yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2000
     11                                                                                                     yy                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00
     12                                                                                                     mmmyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Sep00
     13                                                                                                     HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                      15:38:09
     14                                                                                                     HH:MM:SS PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                   03:38:09 PM
     15                                                                                                     HH:MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                         15:38
     16                                                                                                     HH:MM PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                      03:38 PM
     17                                                                                                     QQ-YY                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Q3-00
     18                                                                                                     QQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Q3
     19                                                                                                     dd/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                         07/09
     20                                                                                                     dd/mm/yy                                                                                                                                                                                                                                                                                                                                                                                                                                                                      07/09/00
     21                                                                                                     mmm.dd,yyyy HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                          Sep.07,2000 15:38:08
     22                                                                                                     mmm.dd,yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Sep.07,2000
     23                                                                                                     mm/dd/yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                    09/07/2000
     24                                                                                                     dd/mm/yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                    07/09/2000
     25                                                                                                     yy/mm/dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00/09/07
     26                                                                                                     yyyy/mm/dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2000/09/07
     27                                                                                                     QQ-YYYY                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Q3-2000
     28                                                                                                     mmmyyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Sep2000
     29                                                                                                     yyyy-mm-dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2000-09-07
     30                                                                                                     yyyymmddTHHMMSS                                                                                                                                                                                                                                                                                                                                                                                                                                                               20000907T153808
     31                                                                                                     yyyy-mm-dd HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                           2000-09-07 15:38:08

     If F is a format string, the following symbols are recognized:

     Symbol                                                                                                 Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Example
     -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
     yyyy                                                                                                   Full year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2005
     yy                                                                                                     Two-digit year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                05
     mmmm                                                                                                   Full month name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               December
     mmm                                                                                                    Abbreviated month name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Dec
     mm                                                                                                     Numeric month number (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      01, 08, 12
     m                                                                                                      First letter of month name (capitalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D
     dddd                                                                                                   Full weekday name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Sunday
     ddd                                                                                                    Abbreviated weekday name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Sun
     dd                                                                                                     Numeric day of month (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      11
     d                                                                                                      First letter of weekday name (capitalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    S
     HH                                                                                                     Hour of day, padded with zeros if PM is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   09:00
                                                                                                            and not padded with zeros otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           9:00 AM
     MM                                                                                                     Minute of hour (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            10:05
     SS                                                                                                     Second of minute (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          10:05:03
     FFF                                                                                                    Milliseconds of second (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10:05:03.012
     AM                                                                                                     Use 12-hour time format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       11:30 AM
     PM                                                                                                     Use 12-hour time format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       11:30 PM

     If F is not specified or is '-1', then use 0, 1 or 16, depending on whether the date portion or the time portion of DATE is empty.

     If P is nor specified, it defaults to the current year minus 50.

     If a matrix or cell array of dates is given, a column vector of date strings is returned.

     See also: datenum, datevec, date, now, clock.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Format the given date/time according to the format 'f' and return the result in STR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
datevec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1102
 -- Function File: V = datevec (DATE)
 -- Function File: V = datevec (DATE, F)
 -- Function File: V = datevec (DATE, P)
 -- Function File: V = datevec (DATE, F, P)
 -- Function File: [Y, M, D, H, MI, S] = datevec (...)
     Convert a serial date number (see 'datenum') or date string (see 'datestr') into a date vector.

     A date vector is a row vector with six members, representing the year, month, day, hour, minute, and seconds respectively.

     F is the format string used to interpret date strings (see 'datestr').  If DATE is a string, but no format is specified, then a relatively slow search is performed through various formats.  It is always preferable to specify the format string F if it is known.  Formats which do not specify a particular time component will have the value set to zero.  Formats which do not specify a date will default to January 1st of the current year.

     P is the year at the start of the century to which two-digit years will be referenced.  If not specified, it defaults to the current year minus 50.

     See also: datenum, datestr, clock, now, date.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Convert a serial date number (see 'datenum') or date string (see 'datestr') into a date vector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
eomday


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 163
 -- Function File: E = eomday (Y, M)
     Return the last day of the month M for the year Y.

     See also: weekday, datenum, datevec, is_leap_year, calendar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return the last day of the month M for the year Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
etime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 417
 -- Function File: etime (T2, T1)
     Return the difference in seconds between two time values returned from 'clock' (T2 - T1).

     For example:

          t0 = clock ();
          # many computations later...
          elapsed_time = etime (clock (), t0);

     will set the variable 'elapsed_time' to the number of seconds since the variable 't0' was set.

     See also: tic, toc, clock, cputime, addtodate.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Return the difference in seconds between two time values returned from 'clock' (T2 - T1).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
is_leap_year


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 318
 -- Function File: is_leap_year ()
 -- Function File: is_leap_year (YEAR)
     Return true if YEAR is a leap year and false otherwise.

     If no year is specified, 'is_leap_year' uses the current year.

     For example:

          is_leap_year (2000)
             => 1

     See also: weekday, eomday, calendar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return true if YEAR is a leap year and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
now


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 330
 -- Function File: t = now ()
     Return the current local date/time as a serial day number (see 'datenum').

     The integral part, 'floor (now)' corresponds to the number of days between today and Jan 1, 0000.

     The fractional part, 'rem (now, 1)' corresponds to the current time.

     See also: clock, date, datenum.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return the current local date/time as a serial day number (see 'datenum').



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
weekday


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2619
 -- Function File: [N, S] = weekday (D)
 -- Function File: [N, S] = weekday (D, FORMAT)
     Return the day of the week as a number in N and as a string in S.

     The days of the week are numbered 1-7 with the first day being Sunday.

     D is a serial date number or a date string.

     If the string FORMAT is not present or is equal to "short" then S will contain the abbreviated name of the weekday.  If FORMAT is "long" then S will contain the full name.

     Table of return values based on FORMAT:

     N                                                             "short"                                                                                                                               "long"
     -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
     1                                                             Sun                                                                                                                                   Sunday
     2                                                             Mon                                                                                                                                   Monday
     3                                                             Tue                                                                                                                                   Tuesday
     4                                                             Wed                                                                                                                                   Wednesday
     5                                                             Thu                                                                                                                                   Thursday
     6                                                             Fri                                                                                                                                   Friday
     7                                                             Sat                                                                                                                                   Saturday

     See also: eomday, is_leap_year, calendar, datenum, datevec.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the day of the week as a number in N and as a string in S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
gnuplot_binary


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 465
 -- Loadable Function: [PROG, ARGS] = gnuplot_binary ()
 -- Loadable Function: [OLD_PROG, OLD_ARGS] = gnuplot_binary (NEW_PROG, ARG1, ...)
     Query or set the name of the program invoked by the plot command when the graphics toolkit is set to "gnuplot".

     Additional arguments to pass to the external plotting program may also be given.  The default value is "gnuplot" with no additional arguments.  *Note Installation::.

     See also: graphics_toolkit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the name of the program invoked by the plot command when the graphics toolkit is set to "gnuplot".



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
isguirunning


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
 -- Built-in Function: isguirunning ()
     Return true if Octave is running in GUI mode and false otherwise.

     See also: have_window_system.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return true if Octave is running in GUI mode and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
argv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 508
 -- Built-in Function: argv ()
     Return the command line arguments passed to Octave.

     For example, if you invoked Octave using the command

          octave --no-line-editing --silent

     'argv' would return a cell array of strings with the elements '--no-line-editing' and '--silent'.

     If you write an executable Octave script, 'argv' will return the list of arguments passed to the script.  *Note Executable Octave Programs::, for an example of how to create an executable Octave script.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return the command line arguments passed to Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
program_invocation_name


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 414
 -- Built-in Function: program_invocation_name ()
     Return the name that was typed at the shell prompt to run Octave.

     If executing a script from the command line (e.g., 'octave foo.m') or using an executable Octave script, the program name is set to the name of the script.  *Note Executable Octave Programs::, for an example of how to create an executable Octave script.

     See also: program_name.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the name that was typed at the shell prompt to run Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
program_name


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
 -- Built-in Function: program_name ()
     Return the last component of the value returned by 'program_invocation_name'.

     See also: program_invocation_name.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return the last component of the value returned by 'program_invocation_name'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
sparse_auto_mutate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 793
 -- Built-in Function: VAL = sparse_auto_mutate ()
 -- Built-in Function: OLD_VAL = sparse_auto_mutate (NEW_VAL)
 -- Built-in Function: sparse_auto_mutate (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to full matrices to save memory.

     For example:

          s = speye (3);
          sparse_auto_mutate (false);
          s(:, 1) = 1;
          typeinfo (s)
          => sparse matrix
          sparse_auto_mutate (true);
          s(1, :) = 1;
          typeinfo (s)
          => matrix

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to full matrices to save memory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
logical


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 404
 -- Built-in Function: logical (X)
     Convert the numeric object X to logical type.

     Any nonzero values will be converted to true (1) while zero values will be converted to false (0).  The non-numeric value NaN cannot be converted and will produce an error.

     Compatibility Note: Octave accepts complex values as input, whereas MATLAB issues an error.

     See also: double, single, char.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Convert the numeric object X to logical type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
iscell


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
 -- Built-in Function: iscell (X)
     Return true if X is a cell array object.

     See also: ismatrix, isstruct, iscellstr, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return true if X is a cell array object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cell


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 465
 -- Built-in Function: cell (N)
 -- Built-in Function: cell (M, N)
 -- Built-in Function: cell (M, N, K, ...)
 -- Built-in Function: cell ([M N ...])
     Create a new cell array object.

     If invoked with a single scalar integer argument, return a square NxN cell array.  If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with the given dimensions.

     See also: cellstr, mat2cell, num2cell, struct2cell.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Create a new cell array object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
iscellstr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
 -- Built-in Function: iscellstr (CELL)
     Return true if every element of the cell array CELL is a character string.

     See also: ischar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return true if every element of the cell array CELL is a character string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cellstr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 344
 -- Built-in Function: CSTR = cellstr (STRMAT)
     Create a new cell array object from the elements of the string array STRMAT.

     Each row of STRMAT becomes an element of CSTR.  Any trailing spaces in a row are deleted before conversion.

     To convert back from a cellstr to a character array use 'char'.

     See also: cell, char.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Create a new cell array object from the elements of the string array STRMAT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
struct2cell


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 820
 -- Built-in Function: C = struct2cell (S)
     Create a new cell array from the objects stored in the struct object.

     If F is the number of fields in the structure, the resulting cell array will have a dimension vector corresponding to '[F size(S)]'.  For example:

          s = struct ("name", {"Peter", "Hannah", "Robert"},
                     "age", {23, 16, 3});
          c = struct2cell (s)
             => c = {2x1x3 Cell Array}
          c(1,1,:)(:)
             =>
                {
                  [1,1] = Peter
                  [2,1] = Hannah
                  [3,1] = Robert
                }
          c(2,1,:)(:)
             =>
                {
                  [1,1] = 23
                  [2,1] = 16
                  [3,1] = 3
                }

     See also: cell2struct, fieldnames.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Create a new cell array from the objects stored in the struct object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
class


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 355
 -- Function File: CLASSNAME = class (OBJ)
 -- Function File: class (S, ID)
 -- Function File: class (S, ID, P, ...)
     Return the class of the object OBJ, or create a class with fields from structure S and name (string) ID.

     Additional arguments name a list of parent classes from which the new class is derived.

     See also: typeinfo, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
Return the class of the object OBJ, or create a class with fields from structure S and name (string) ID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
isa


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 632
 -- Function File: isa (OBJ, CLASSNAME)
     Return true if OBJ is an object from the class CLASSNAME.

     CLASSNAME may also be one of the following class categories:

     "float"
          Floating point value comprising classes "double" and "single".

     "integer"
          Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.

     "numeric"
          Numeric value comprising either a floating point or integer value.

     If CLASSNAME is a cell array of string, a logical array of the same size is returned, containing true for each class to which OBJ belongs to.

     See also: class, typeinfo.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return true if OBJ is an object from the class CLASSNAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isobject


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
 -- Built-in Function: isobject (X)
     Return true if X is a class object.

     See also: class, typeinfo, isa, ismethod, isprop.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return true if X is a class object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ismethod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 -- Built-in Function: ismethod (OBJ, METHOD)
     Return true if OBJ is a class object and the string METHOD is a method of this class.

     See also: isprop, isobject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Return true if OBJ is a class object and the string METHOD is a method of this class.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
superiorto


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
 -- Built-in Function: superiorto (CLASS_NAME, ...)
     When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME.

     More that one such class can be specified in a single call.  This function may only be called from a class constructor.

     See also: inferiorto.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
inferiorto


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
 -- Built-in Function: inferiorto (CLASS_NAME, ...)
     When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME.

     More that one such class can be specified in a single call.  This function may only be called from a class constructor.

     See also: superiorto.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
metaclass


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
 -- Built-in Function: metaclass (obj)
     Returns the meta.class object corresponding to the class of OBJ.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
Returns the meta.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
functions


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1126
 -- Built-in Function: S = functions (FCN_HANDLE)
     Return a structure containing information about the function handle FCN_HANDLE.

     The structure S always contains these three fields:

     function
          The function name.  For an anonymous function (no name) this will be the actual function definition.

     type
          Type of the function.

          anonymous
               The function is anonymous.

          private
               The function is private.

          overloaded
               The function overloads an existing function.

          simple
               The function is a built-in or m-file function.

          subfunction
               The function is a subfunction within an m-file.

     file
          The m-file that will be called to perform the function.  This field is empty for anonymous and built-in functions.

     In addition, some function types may return more information in additional fields.

     *Warning:* 'functions' is provided for debugging purposes only.  It's behavior may change in the future and programs should not depend on a particular output.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return a structure containing information about the function handle FCN_HANDLE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
func2str


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 188
 -- Built-in Function: func2str (FCN_HANDLE)
     Return a string containing the name of the function referenced by the function handle FCN_HANDLE.

     See also: str2func, functions.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a string containing the name of the function referenced by the function handle FCN_HANDLE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
str2func


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 305
 -- Built-in Function: str2func (FCN_NAME)
 -- Built-in Function: str2func (FCN_NAME, "global")
     Return a function handle constructed from the string FCN_NAME.

     If the optional "global" argument is passed, locally visible functions are ignored in the lookup.

     See also: func2str, inline.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return a function handle constructed from the string FCN_NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
is_function_handle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
 -- Built-in Function: is_function_handle (X)
     Return true if X is a function handle.

     See also: isa, typeinfo, class, functions.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return true if X is a function handle.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
inline


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1206
 -- Built-in Function: inline (STR)
 -- Built-in Function: inline (STR, ARG1, ...)
 -- Built-in Function: inline (STR, N)
     Create an inline function from the character string STR.

     If called with a single argument, the arguments of the generated function are extracted from the function itself.  The generated function arguments will then be in alphabetical order.  It should be noted that i and j are ignored as arguments due to the ambiguity between their use as a variable or their use as an built-in constant.  All arguments followed by a parenthesis are considered to be functions.  If no arguments are found, a function taking a single argument named 'x' will be created.

     If the second and subsequent arguments are character strings, they are the names of the arguments of the function.

     If the second argument is an integer N, the arguments are "x", "P1", ..., "PN".

     Programming Note: The use of 'inline' is discouraged and it may be removed from a future version of Octave.  The preferred way to create functions from strings is through the use of anonymous functions (*note Anonymous Functions::) or 'str2func'.

     See also: argnames, formula, vectorize, str2func.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Create an inline function from the character string STR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
formula


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 223
 -- Built-in Function: formula (FUN)
     Return a character string representing the inline function FUN.

     Note that 'char (FUN)' is equivalent to 'formula (FUN)'.

     See also: char, argnames, inline, vectorize.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a character string representing the inline function FUN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
argnames


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
 -- Built-in Function: argnames (FUN)
     Return a cell array of character strings containing the names of the arguments of the inline function FUN.

     See also: inline, formula, vectorize.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
Return a cell array of character strings containing the names of the arguments of the inline function FUN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
vectorize


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 501
 -- Built-in Function: vectorize (FUN)
     Create a vectorized version of the inline function FUN by replacing all occurrences of '*', '/', etc., with '.*', './', etc.

     This may be useful, for example, when using inline functions with numerical integration or optimization where a vector-valued function is expected.

          fcn = vectorize (inline ("x^2 - 1"))
             => fcn = f(x) = x.^2 - 1
          quadv (fcn, 0, 3)
             => 6

     See also: inline, formula, argnames.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Create a vectorized version of the inline function FUN by replacing all occurrences of '*', '/', etc.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
single


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
 -- Built-in Function: single (X)
     Convert X to single precision type.

     See also: double.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Convert X to single precision type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javaObject


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 528
 -- Built-in Function: JOBJ = javaObject (CLASSNAME)
 -- Built-in Function: JOBJ = javaObject (CLASSNAME, ARG1, ...)
     Create a Java object of class CLASSSNAME, by calling the class constructor with the arguments ARG1, ...

     The first example below creates an uninitialized object, while the second example supplies an initial argument to the constructor.

          x = javaObject ("java.lang.StringBuffer")
          x = javaObject ("java.lang.StringBuffer", "Initial string")

     See also: javaMethod, javaArray.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Create a Java object of class CLASSSNAME, by calling the class constructor with the arguments ARG1, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
javaMethod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 696
 -- Built-in Function: RET = javaMethod (METHODNAME, OBJ)
 -- Built-in Function: RET = javaMethod (METHODNAME, OBJ, ARG1, ...)
     Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, ....

     For static methods, OBJ can be a string representing the fully qualified name of the corresponding class.

     When OBJ is a regular Java object, structure-like indexing can be used as a shortcut syntax.  For instance, the two following statements are equivalent

            ret = javaMethod ("method1", x, 1.0, "a string")
            ret = x.method1 (1.0, "a string")

     'javaMethod' returns the result of the method invocation.

     See also: methods, javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Invoke the method METHODNAME on the Java object OBJ with the arguments ARG1, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
java2mat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
 -- Built-in Function: java2mat (JAVAOBJ)
     Undocumented internal function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Undocumented internal function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
java_matrix_autoconversion


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 628
 -- Built-in Function: VAL = java_matrix_autoconversion ()
 -- Built-in Function: OLD_VAL = java_matrix_autoconversion (NEW_VAL)
 -- Built-in Function: java_matrix_autoconversion (NEW_VAL, "local")
     Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices.

     The default value is false.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: java_unsigned_autoconversion, debug_java.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Query or set the internal variable that controls whether Java arrays are automatically converted to Octave matrices.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
java_unsigned_autoconversion


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 760
 -- Built-in Function: VAL = java_unsigned_autoconversion ()
 -- Built-in Function: OLD_VAL = java_unsigned_autoconversion (NEW_VAL)
 -- Built-in Function: java_unsigned_autoconversion (NEW_VAL, "local")
     Query or set the internal variable that controls how integer classes are converted when 'java_matrix_autoconversion' is enabled.

     When enabled, Java arrays of class Byte or Integer are converted to matrices of class uint8 or uint32 respectively.  The default value is true.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: java_matrix_autoconversion, debug_java.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
Query or set the internal variable that controls how integer classes are converted when 'java_matrix_autoconversion' is enabled.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
debug_java


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 608
 -- Built-in Function: VAL = debug_java ()
 -- Built-in Function: OLD_VAL = debug_java (NEW_VAL)
 -- Built-in Function: debug_java (NEW_VAL, "local")
     Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: java_matrix_autoconversion, java_unsigned_autoconversion.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 162
Query or set the internal variable that determines whether extra debugging information regarding the initialization of the JVM and any Java exceptions is printed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isjava


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
 -- Built-in Function: isjava (X)
     Return true if X is a Java object.

     See also: class, typeinfo, isa, javaObject.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return true if X is a Java object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isnull


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 544
 -- Built-in Function: isnull (X)
     Return true if X is a special null matrix, string, or single quoted string.

     Indexed assignment with such a value on the right-hand side should delete array elements.  This function should be used when overloading indexed assignment for user-defined classes instead of 'isempty', to distinguish the cases:

     'A(I) = []'
          This should delete elements if 'I' is nonempty.

     'X = []; A(I) = X'
          This should give an error if 'I' is nonempty.

     See also: isempty, isindex.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return true if X is a special null matrix, string, or single quoted string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
onCleanup


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 495
 -- Built-in Function: OBJ = onCleanup (FUNCTION)
     Create a special object that executes a given function upon destruction.

     If the object is copied to multiple variables (or cell or struct array elements) or returned from a function, FUNCTION will be executed after clearing the last copy of the object.  Note that if multiple local onCleanup variables are created, the order in which they are called is unspecified.  For similar functionality *Note The unwind_protect Statement::.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Create a special object that executes a given function upon destruction.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
allow_noninteger_range_as_index


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 710
 -- Built-in Function: VAL = allow_noninteger_range_as_index ()
 -- Built-in Function: OLD_VAL = allow_noninteger_range_as_index (NEW_VAL)
 -- Built-in Function: allow_noninteger_range_as_index (NEW_VAL, "local")
     Query or set the internal variable that controls whether non-integer ranges are allowed as indices.

     This might be useful for MATLAB compatibility; however, it is still not entirely compatible because MATLAB treats the range expression differently in different contexts.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Query or set the internal variable that controls whether non-integer ranges are allowed as indices.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
double


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
 -- Built-in Function: double (X)
     Convert X to double precision type.

     See also: single.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Convert X to double precision type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
struct


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1899
 -- Built-in Function: S = struct ()
 -- Built-in Function: S = struct (FIELD1, VALUE1, FIELD2, VALUE2, ...)
 -- Built-in Function: S = struct (OBJ)

     Create a scalar or array structure and initialize its values.

     The FIELD1, FIELD2, ... variables are strings specifying the names of the fields and the VALUE1, VALUE2, ... variables can be of any type.

     If the values are cell arrays, create a structure array and initialize its values.  The dimensions of each cell array of values must match.  Singleton cells and non-cell values are repeated so that they fill the entire array.  If the cells are empty, create an empty structure array with the specified field names.

     If the argument is an object, return the underlying struct.

     Observe that the syntax is optimized for struct *arrays*.  Consider the following examples:

          struct ("foo", 1)
            => scalar structure containing the fields:
              foo =  1

          struct ("foo", {})
            => 0x0 struct array containing the fields:
              foo

          struct ("foo", { {} })
            => scalar structure containing the fields:
              foo = {}(0x0)

          struct ("foo", {1, 2, 3})
            => 1x3 struct array containing the fields:
              foo


     The first case is an ordinary scalar struct--one field, one value.  The second produces an empty struct array with one field and no values, since being passed an empty cell array of struct array values.  When the value is a cell array containing a single entry, this becomes a scalar struct with that single entry as the value of the field.  That single entry happens to be an empty cell array.

     Finally, if the value is a non-scalar cell array, then 'struct' produces a struct *array*.

     See also: cell2struct, fieldnames, getfield, setfield, rmfield, isfield, orderfields, isstruct, structfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Create a scalar or array structure and initialize its values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isstruct


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
 -- Built-in Function: isstruct (X)
     Return true if X is a structure or a structure array.

     See also: ismatrix, iscell, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if X is a structure or a structure array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isfield


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 289
 -- Built-in Function: isfield (X, "NAME")
 -- Built-in Function: isfield (X, NAME)
     Return true if the X is a structure and it includes an element named NAME.

     If NAME is a cell array of strings then a logical array of equal dimension is returned.

     See also: fieldnames.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return true if the X is a structure and it includes an element named NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
numfields


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
 -- Built-in Function: numfields (S)
     Return the number of fields of the structure S.

     See also: fieldnames.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the number of fields of the structure S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
cell2struct


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 665
 -- Built-in Function: cell2struct (CELL, FIELDS)
 -- Built-in Function: cell2struct (CELL, FIELDS, DIM)
     Convert CELL to a structure.

     The number of fields in FIELDS must match the number of elements in CELL along dimension DIM, that is 'numel (FIELDS) == size (CELL, DIM)'.  If DIM is omitted, a value of 1 is assumed.

          A = cell2struct ({"Peter", "Hannah", "Robert";
                             185, 170, 168},
                           {"Name","Height"}, 1);
          A(1)
             =>
                {
                  Name   = Peter
                  Height = 185
                }


     See also: struct2cell, cell2mat, struct.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Convert CELL to a structure.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rmfield


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
 -- Built-in Function: SOUT = rmfield (S, "F")
 -- Built-in Function: SOUT = rmfield (S, F)
     Return a _copy_ of the structure (array) S with the field F removed.

     If F is a cell array of strings or a character array, remove each of the named fields.

     See also: orderfields, fieldnames, isfield.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return a _copy_ of the structure (array) S with the field F removed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
struct_levels_to_print


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 545
 -- Built-in Function: VAL = struct_levels_to_print ()
 -- Built-in Function: OLD_VAL = struct_levels_to_print (NEW_VAL)
 -- Built-in Function: struct_levels_to_print (NEW_VAL, "local")
     Query or set the internal variable that specifies the number of structure levels to display.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: print_struct_array_contents.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Query or set the internal variable that specifies the number of structure levels to display.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
print_struct_array_contents


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 807
 -- Built-in Function: VAL = print_struct_array_contents ()
 -- Built-in Function: OLD_VAL = print_struct_array_contents (NEW_VAL)
 -- Built-in Function: print_struct_array_contents (NEW_VAL, "local")
     Query or set the internal variable that specifies whether to print struct array contents.

     If true, values of struct array elements are printed.  This variable does not affect scalar structures whose elements are always printed.  In both cases, however, printing will be limited to the number of levels specified by STRUCT_LEVELS_TO_PRINT.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: struct_levels_to_print.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Query or set the internal variable that specifies whether to print struct array contents.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
typeinfo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 272
 -- Built-in Function: typeinfo ()
 -- Built-in Function: typeinfo (EXPR)

     Return the type of the expression EXPR, as a string.

     If EXPR is omitted, return a cell array of strings containing all the currently installed data types.

     See also: class, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the type of the expression EXPR, as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nargin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
 -- Built-in Function: nargin ()
 -- Built-in Function: nargin (FCN)
     Report the number of input arguments to a function.

     Called from within a function, return the number of arguments passed to the function.  At the top level, return the number of command line arguments passed to Octave.

     If called with the optional argument FCN--a function name or handle-- return the declared number of arguments that the function can accept.

     If the last argument to FCN is VARARGIN the returned value is negative.  For example, the function 'union' for sets is declared as

          function [y, ia, ib] = union (a, b, varargin)

          and

          nargin ("union")
          => -3

     Programming Note: 'nargin' does not work on built-in functions.

     See also: nargout, narginchk, varargin, inputname.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Report the number of input arguments to a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nargout


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1162
 -- Built-in Function: nargout ()
 -- Built-in Function: nargout (FCN)
     Report the number of output arguments from a function.

     Called from within a function, return the number of values the caller expects to receive.  At the top level, 'nargout' with no argument is undefined and will produce an error.

     If called with the optional argument FCN--a function name or handle--return the number of declared output values that the function can produce.

     If the final output argument is VARARGOUT the returned value is negative.

     For example,

          f ()

     will cause 'nargout' to return 0 inside the function 'f' and

          [s, t] = f ()

     will cause 'nargout' to return 2 inside the function 'f'.

     In the second usage,

          nargout (@histc) % or nargout ("histc")

     will return 2, because 'histc' has two outputs, whereas

          nargout (@imread)

     will return -2, because 'imread' has two outputs and the second is VARARGOUT.

     Programming Note.  'nargout' does not work for built-in functions and returns -1 for all anonymous functions.

     See also: nargin, varargout, isargout, nthargout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Report the number of output arguments from a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
optimize_subsasgn_calls


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 609
 -- Built-in Function: VAL = optimize_subsasgn_calls ()
 -- Built-in Function: OLD_VAL = optimize_subsasgn_calls (NEW_VAL)
 -- Built-in Function: optimize_subsasgn_calls (NEW_VAL, "local")
     Query or set the internal flag for subsasgn method call optimizations.

     If true, Octave will attempt to eliminate the redundant copying when calling the subsasgn method of a user-defined class.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Query or set the internal flag for subsasgn method call optimizations.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isargout


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 696
 -- Built-in Function: isargout (K)
     Within a function, return a logical value indicating whether the argument K will be assigned to a variable on output.

     If the result is false, the argument has been ignored during the function call through the use of the tilde (~) special output argument.  Functions can use 'isargout' to avoid performing unnecessary calculations for outputs which are unwanted.

     If K is outside the range '1:max (nargout)', the function returns false.  K can also be an array, in which case the function works element-by-element and a logical array is returned.  At the top level, 'isargout' returns an error.

     See also: nargout, varargout, nthargout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Within a function, return a logical value indicating whether the argument K will be assigned to a variable on output.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sizeof


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
 -- Built-in Function: sizeof (VAL)
     Return the size of VAL in bytes.

     See also: whos.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return the size of VAL in bytes.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
subsref


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 930
 -- Built-in Function: subsref (VAL, IDX)
     Perform the subscripted element selection operation according to the subscript specified by IDX.

     The subscript IDX is expected to be a structure array with fields 'type' and 'subs'.  Valid values for 'type' are '"()"', '"{}"', and '"."'.  The 'subs' field may be either '":"' or a cell array of index values.

     The following example shows how to extract the first two columns of a matrix

          val = magic (3)
              => val = [ 8   1   6
                         3   5   7
                         4   9   2 ]
          idx.type = "()";
          idx.subs = {":", 1:2};
          subsref (val, idx)
               => [ 8   1
                    3   5
                    4   9 ]

     Note that this is the same as writing 'val(:,1:2)'.

     If IDX is an empty structure array with fields 'type' and 'subs', return VAL.

     See also: subsasgn, substruct.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Perform the subscripted element selection operation according to the subscript specified by IDX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
subsasgn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 857
 -- Built-in Function: subsasgn (VAL, IDX, RHS)
     Perform the subscripted assignment operation according to the subscript specified by IDX.

     The subscript IDX is expected to be a structure array with fields 'type' and 'subs'.  Valid values for 'type' are '"()"', '"{}"', and '"."'.  The 'subs' field may be either '":"' or a cell array of index values.

     The following example shows how to set the two first columns of a 3-by-3 matrix to zero.

          val = magic (3);
          idx.type = "()";
          idx.subs = {":", 1:2};
          subsasgn (val, idx, 0)
               =>  [ 0   0   6
                     0   0   7
                     0   0   2 ]

     Note that this is the same as writing 'val(:,1:2) = 0'.

     If IDX is an empty structure array with fields 'type' and 'subs', return RHS.

     See also: subsref, substruct.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
Perform the subscripted assignment operation according to the subscript specified by IDX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
is_sq_string


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
 -- Built-in Function: is_sq_string (X)
     Return true if X is a single-quoted character string.

     See also: is_dq_string, ischar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if X is a single-quoted character string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
is_dq_string


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 140
 -- Built-in Function: is_dq_string (X)
     Return true if X is a double-quoted character string.

     See also: is_sq_string, ischar.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if X is a double-quoted character string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
disable_permutation_matrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 719
 -- Built-in Function: VAL = disable_permutation_matrix ()
 -- Built-in Function: OLD_VAL = disable_permutation_matrix (NEW_VAL)
 -- Built-in Function: disable_permutation_matrix (NEW_VAL, "local")
     Query or set the internal variable that controls whether permutation matrices are stored in a special space-efficient format.

     The default value is true.  If this option is disabled Octave will store permutation matrices as full matrices.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: disable_range, disable_diagonal_matrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Query or set the internal variable that controls whether permutation matrices are stored in a special space-efficient format.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
disable_diagonal_matrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 707
 -- Built-in Function: VAL = disable_diagonal_matrix ()
 -- Built-in Function: OLD_VAL = disable_diagonal_matrix (NEW_VAL)
 -- Built-in Function: disable_diagonal_matrix (NEW_VAL, "local")
     Query or set the internal variable that controls whether diagonal matrices are stored in a special space-efficient format.

     The default value is true.  If this option is disabled Octave will store diagonal matrices as full matrices.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: disable_range, disable_permutation_matrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
Query or set the internal variable that controls whether diagonal matrices are stored in a special space-efficient format.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
disable_range


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 665
 -- Built-in Function: VAL = disable_range ()
 -- Built-in Function: OLD_VAL = disable_range (NEW_VAL)
 -- Built-in Function: disable_range (NEW_VAL, "local")
     Query or set the internal variable that controls whether ranges are stored in a special space-efficient format.

     The default value is true.  If this option is disabled Octave will store ranges as full matrices.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: disable_diagonal_matrix, disable_permutation_matrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that controls whether ranges are stored in a special space-efficient format.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
int16


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
 -- Built-in Function: int16 (X)
     Convert X to 16-bit integer type.

     See also: int8, uint8, uint16, int32, uint32, int64, uint64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Convert X to 16-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
int32


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
 -- Built-in Function: int32 (X)
     Convert X to 32-bit integer type.

     See also: int8, uint8, int16, uint16, uint32, int64, uint64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Convert X to 32-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
int64


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
 -- Built-in Function: int64 (X)
     Convert X to 64-bit integer type.

     See also: int8, uint8, int16, uint16, int32, uint32, uint64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Convert X to 64-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
int8


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
 -- Built-in Function: int8 (X)
     Convert X to 8-bit integer type.

     See also: uint8, int16, uint16, int32, uint32, int64, uint64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Convert X to 8-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uint16


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Built-in Function: uint16 (X)
     Convert X to unsigned 16-bit integer type.

     See also: int8, uint8, int16, int32, uint32, int64, uint64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Convert X to unsigned 16-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uint32


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Built-in Function: uint32 (X)
     Convert X to unsigned 32-bit integer type.

     See also: int8, uint8, int16, uint16, int32, int64, uint64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Convert X to unsigned 32-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uint64


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Built-in Function: uint64 (X)
     Convert X to unsigned 64-bit integer type.

     See also: int8, uint8, int16, uint16, int32, uint32, int64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Convert X to unsigned 64-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
uint8


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
 -- Built-in Function: uint8 (X)
     Convert X to unsigned 8-bit integer type.

     See also: int8, int16, uint16, int32, uint32, int64, uint64.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Convert X to unsigned 8-bit integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
end


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
 -- Built-in Function: end
     The magic index "end" refers to the last valid entry in an indexing operation.

     Example:

          X = [ 1 2 3
                4 5 6 ];
          X(1,end)
              => 3
          X(end,1)
              => 4
          X(end,end)
              => 6
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
The magic index "end" refers to the last valid entry in an indexing operation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
do_braindead_shortcircuit_evaluation


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 901
 -- Built-in Function: VAL = do_braindead_shortcircuit_evaluation ()
 -- Built-in Function: OLD_VAL = do_braindead_shortcircuit_evaluation (NEW_VAL)
 -- Built-in Function: do_braindead_shortcircuit_evaluation (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will do short-circuit evaluation of '|' and '&' operators inside the conditions of if or while statements.

     This feature is only provided for compatibility with MATLAB and should not be used unless you are porting old code that relies on this feature.

     To obtain short-circuit behavior for logical expressions in new programs, you should always use the '&&' and '||' operators.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
Query or set the internal variable that controls whether Octave will do short-circuit evaluation of '|' and '&' operators inside the conditions of if or while statements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
max_recursion_depth


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 589
 -- Built-in Function: VAL = max_recursion_depth ()
 -- Built-in Function: OLD_VAL = max_recursion_depth (NEW_VAL)
 -- Built-in Function: max_recursion_depth (NEW_VAL, "local")
     Query or set the internal limit on the number of times a function may be called recursively.

     If the limit is exceeded, an error message is printed and control returns to the top level.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Query or set the internal limit on the number of times a function may be called recursively.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
silent_functions


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 659
 -- Built-in Function: VAL = silent_functions ()
 -- Built-in Function: OLD_VAL = silent_functions (NEW_VAL)
 -- Built-in Function: silent_functions (NEW_VAL, "local")
     Query or set the internal variable that controls whether internal output from a function is suppressed.

     If this option is disabled, Octave will display the results produced by evaluating expressions within a function body that are not terminated with a semicolon.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Query or set the internal variable that controls whether internal output from a function is suppressed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
string_fill_char


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 750
 -- Built-in Function: VAL = string_fill_char ()
 -- Built-in Function: OLD_VAL = string_fill_char (NEW_VAL)
 -- Built-in Function: string_fill_char (NEW_VAL, "local")
     Query or set the internal variable used to pad all rows of a character matrix to the same length.

     The value must be a single character and the default is " " (a single space).  For example:

          string_fill_char ("X");
          [ "these"; "are"; "strings" ]
                =>  "theseXX"
                    "areXXXX"
                    "strings"

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Query or set the internal variable used to pad all rows of a character matrix to the same length.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
iskeyword


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 213
 -- Built-in Function: iskeyword ()
 -- Built-in Function: iskeyword (NAME)
     Return true if NAME is an Octave keyword.

     If NAME is omitted, return a list of keywords.

     See also: isvarname, exist.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Return true if NAME is an Octave keyword.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
balance


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1510
 -- Built-in Function: AA = balance (A)
 -- Built-in Function: AA = balance (A, OPT)
 -- Built-in Function: [DD, AA] = balance (A, OPT)
 -- Built-in Function: [D, P, AA] = balance (A, OPT)
 -- Built-in Function: [CC, DD, AA, BB] = balance (A, B, OPT)

     Balance the matrix A to reduce numerical errors in future calculations.

     Compute 'AA = DD \ A * DD' in which AA is a matrix whose row and column norms are roughly equal in magnitude, and 'DD = P * D', in which P is a permutation matrix and D is a diagonal matrix of powers of two.  This allows the equilibration to be computed without round-off.  Results of eigenvalue calculation are typically improved by balancing first.

     If two output values are requested, 'balance' returns the diagonal D and the permutation P separately as vectors.  In this case, 'DD = eye(n)(:,P) * diag (D)', where n is the matrix size.

     If four output values are requested, compute 'AA = CC*A*DD' and 'BB = CC*B*DD', in which AA and BB have nonzero elements of approximately the same magnitude and CC and DD are permuted diagonal matrices as in DD for the algebraic eigenvalue problem.

     The eigenvalue balancing option OPT may be one of:

     "noperm", "S"
          Scale only; do not permute.

     "noscal", "P"
          Permute only; do not scale.

     Algebraic eigenvalue balancing uses standard LAPACK routines.

     Generalized eigenvalue problem balancing uses Ward's algorithm (SIAM Journal on Scientific and Statistical Computing, 1981).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Balance the matrix A to reduce numerical errors in future calculations.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besselj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2038
 -- Built-in Function: [J, IERR] = besselj (ALPHA, X, OPT)
 -- Built-in Function: [Y, IERR] = bessely (ALPHA, X, OPT)
 -- Built-in Function: [I, IERR] = besseli (ALPHA, X, OPT)
 -- Built-in Function: [K, IERR] = besselk (ALPHA, X, OPT)
 -- Built-in Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
     Compute Bessel or Hankel functions of various kinds:

     'besselj'
          Bessel functions of the first kind.  If the argument OPT is 1 or true, the result is multiplied by 'exp (-abs (imag (X)))'.

     'bessely'
          Bessel functions of the second kind.  If the argument OPT is 1 or true, the result is multiplied by 'exp (-abs (imag (X)))'.

     'besseli'

          Modified Bessel functions of the first kind.  If the argument OPT is 1 or true, the result is multiplied by 'exp (-abs (real (X)))'.

     'besselk'

          Modified Bessel functions of the second kind.  If the argument OPT is 1 or true, the result is multiplied by 'exp (X)'.

     'besselh'
          Compute Hankel functions of the first (K = 1) or second (K = 2) kind.  If the argument OPT is 1 or true, the result is multiplied by 'exp (-I*X)' for K = 1 or 'exp (I*X)' for K = 2.

     If ALPHA is a scalar, the result is the same size as X.  If X is a scalar, the result is the same size as ALPHA.  If ALPHA is a row vector and X is a column vector, the result is a matrix with 'length (X)' rows and 'length (ALPHA)' columns.  Otherwise, ALPHA and X must conform and the result will be the same size.

     The value of ALPHA must be real.  The value of X may be complex.

     If requested, IERR contains the following status information and is the same size as the result.

       0. Normal return.

       1. Input error, return 'NaN'.

       2. Overflow, return 'Inf'.

       3. Loss of significance by argument reduction results in less than half of machine accuracy.

       4. Complete loss of significance by argument reduction, return 'NaN'.

       5. Error--no computation, algorithm termination condition not met, return 'NaN'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds: 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bessely


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 -- Built-in Function: [Y, IERR] = bessely (ALPHA, X, OPT)
     See besselj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besseli


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 -- Built-in Function: [I, IERR] = besseli (ALPHA, X, OPT)
     See besselj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besselk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 -- Built-in Function: [K, IERR] = besselk (ALPHA, X, OPT)
     See besselj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
besselh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
 -- Built-in Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
     See besselj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
See besselj.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
airy


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1082
 -- Built-in Function: [A, IERR] = airy (K, Z, OPT)
     Compute Airy functions of the first and second kind, and their derivatives.

           K   Function   Scale factor (if "opt" is supplied)
          ---  --------   ---------------------------------------
           0   Ai (Z)     exp ((2/3) * Z * sqrt (Z))
           1   dAi(Z)/dZ  exp ((2/3) * Z * sqrt (Z))
           2   Bi (Z)     exp (-abs (real ((2/3) * Z * sqrt (Z))))
           3   dBi(Z)/dZ  exp (-abs (real ((2/3) * Z * sqrt (Z))))

     The function call 'airy (Z)' is equivalent to 'airy (0, Z)'.

     The result is the same size as Z.

     If requested, IERR contains the following status information and is the same size as the result.

       0. Normal return.

       1. Input error, return 'NaN'.

       2. Overflow, return 'Inf'.

       3. Loss of significance by argument reduction results in less than half of machine accuracy.

       4. Complete loss of significance by argument reduction, return 'NaN'.

       5. Error--no computation, algorithm termination condition not met, return 'NaN'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute Airy functions of the first and second kind, and their derivatives.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
betainc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 587
 -- Mapping Function: betainc (X, A, B)
     Compute the regularized incomplete Beta function.

     The regularized incomplete Beta function is defined by

                                             x
                                    1       /
          betainc (x, a, b) = -----------   | t^(a-1) (1-t)^(b-1) dt.
                              beta (a, b)   /
                                         t=0

     If X has more than one component, both A and B must be scalars.  If X is a scalar, A and B must be of compatible dimensions.

     See also: betaincinv, beta, betaln.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the regularized incomplete Beta function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
betaincinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
 -- Mapping Function: betaincinv (Y, A, B)
     Compute the inverse of the incomplete Beta function.

     The inverse is the value X such that

          Y == betainc (X, A, B)

     See also: betainc, beta, betaln.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the inverse of the incomplete Beta function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
 -- Built-in Function: bitand (X, Y)
     Return the bitwise AND of non-negative integers.

     X, Y must be in the range [0,bitmax]

     See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the bitwise AND of non-negative integers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
bitor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
 -- Built-in Function: bitor (X, Y)
     Return the bitwise OR of non-negative integers.

     X, Y must be in the range [0,bitmax]

     See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the bitwise OR of non-negative integers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitxor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
 -- Built-in Function: bitxor (X, Y)
     Return the bitwise XOR of non-negative integers.

     X, Y must be in the range [0,bitmax]

     See also: bitand, bitor, bitset, bitget, bitcmp, bitshift, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the bitwise XOR of non-negative integers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bitshift


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 574
 -- Built-in Function: bitshift (A, K)
 -- Built-in Function: bitshift (A, K, N)
     Return a K bit shift of N-digit unsigned integers in A.

     A positive K leads to a left shift; A negative value to a right shift.

     If N is omitted it defaults to log2(bitmax)+1.  N must be in the range [1,log2(bitmax)+1] usually [1,33].

          bitshift (eye (3), 1)
          =>
          2 0 0
          0 2 0
          0 0 2

          bitshift (10, [-2, -1, 0, 1, 2])
          => 2   5  10  20  40

     See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return a K bit shift of N-digit unsigned integers in A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bitmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 423
 -- Built-in Function: bitmax ()
 -- Built-in Function: bitmax ("double")
 -- Built-in Function: bitmax ("single")
     Return the largest integer that can be represented within a floating point value.

     The default class is "double", but "single" is a valid option.  On IEEE-754 compatible systems, 'bitmax' is 2^{53} - 1 for "double" and 2^{24} -1 for "single".

     See also: flintmax, intmax, realmax, realmin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 81
Return the largest integer that can be represented within a floating point value.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
flintmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
 -- Built-in Function: flintmax ()
 -- Built-in Function: flintmax ("double")
 -- Built-in Function: flintmax ("single")
     Return the largest integer that can be represented consecutively in a floating point value.

     The default class is "double", but "single" is a valid option.  On IEEE-754 compatible systems, 'flintmax' is 2^53 for "double" and 2^24 for "single".

     See also: bitmax, intmax, realmax, realmin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Return the largest integer that can be represented consecutively in a floating point value.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
intmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 612
 -- Built-in Function: intmax (TYPE)
     Return the largest integer that can be represented in an integer type.

     The variable TYPE can be

     'int8'
          signed 8-bit integer.

     'int16'
          signed 16-bit integer.

     'int32'
          signed 32-bit integer.

     'int64'
          signed 64-bit integer.

     'uint8'
          unsigned 8-bit integer.

     'uint16'
          unsigned 16-bit integer.

     'uint32'
          unsigned 32-bit integer.

     'uint64'
          unsigned 64-bit integer.

     The default for TYPE is 'int32'.

     See also: intmin, flintmax, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Return the largest integer that can be represented in an integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
intmin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 613
 -- Built-in Function: intmin (TYPE)
     Return the smallest integer that can be represented in an integer type.

     The variable TYPE can be

     'int8'
          signed 8-bit integer.

     'int16'
          signed 16-bit integer.

     'int32'
          signed 32-bit integer.

     'int64'
          signed 64-bit integer.

     'uint8'
          unsigned 8-bit integer.

     'uint16'
          unsigned 16-bit integer.

     'uint32'
          unsigned 32-bit integer.

     'uint64'
          unsigned 64-bit integer.

     The default for TYPE is 'int32'.

     See also: intmax, flintmax, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Return the smallest integer that can be represented in an integer type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sizemax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 362
 -- Built-in Function: sizemax ()
     Return the largest value allowed for the size of an array.

     If Octave is compiled with 64-bit indexing, the result is of class int64, otherwise it is of class int32.  The maximum array size is slightly smaller than the maximum value allowable for the relevant class as reported by 'intmax'.

     See also: intmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the largest value allowed for the size of an array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bsxfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 713
 -- Built-in Function: bsxfun (F, A, B)
     The binary singleton expansion function performs broadcasting, that is, it applies a binary function F element-by-element to two array arguments A and B, and expands as necessary singleton dimensions in either input argument.

     F is a function handle, inline function, or string containing the name of the function to evaluate.  The function F must be capable of accepting two column-vector arguments of equal length, or one column vector argument and a scalar.

     The dimensions of A and B must be equal or singleton.  The singleton dimensions of the arrays will be expanded to the same dimensionality as the other array.

     See also: arrayfun, cellfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 225
The binary singleton expansion function performs broadcasting, that is, it applies a binary function F element-by-element to two array arguments A and B, and expands as necessary singleton dimensions in either input argument.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cellfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4007
 -- Built-in Function: cellfun (NAME, C)
 -- Built-in Function: cellfun ("size", C, K)
 -- Built-in Function: cellfun ("isclass", C, CLASS)
 -- Built-in Function: cellfun (FUNC, C)
 -- Built-in Function: cellfun (FUNC, C, D)
 -- Built-in Function: [A, ...] = cellfun (...)
 -- Built-in Function: cellfun (..., "ErrorHandler", ERRFUNC)
 -- Built-in Function: cellfun (..., "UniformOutput", VAL)

     Evaluate the function named NAME on the elements of the cell array C.

     Elements in C are passed on to the named function individually.  The function NAME can be one of the functions

     'isempty'
          Return 1 for empty elements.

     'islogical'
          Return 1 for logical elements.

     'isnumeric'
          Return 1 for numeric elements.

     'isreal'
          Return 1 for real elements.

     'length'
          Return a vector of the lengths of cell elements.

     'ndims'
          Return the number of dimensions of each element.

     'numel'
     'prodofsize'
          Return the number of elements contained within each cell element.  The number is the product of the dimensions of the object at each cell element.

     'size'
          Return the size along the K-th dimension.

     'isclass'
          Return 1 for elements of CLASS.

     Additionally, 'cellfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string).  The function can take one or more arguments, with the inputs arguments given by C, D, etc.  Equally the function can return one or more output arguments.  For example:

          cellfun ("atan2", {1, 0}, {0, 1})
               => [ 1.57080   0.00000 ]

     The number of output arguments of 'cellfun' matches the number of output arguments of the function.  The outputs of the function will be collected into the output arguments of 'cellfun' like this:

          function [a, b] = twoouts (x)
            a = x;
            b = x*x;
          endfunction
          [aa, bb] = cellfun (@twoouts, {1, 2, 3})
               =>
                  aa =
                     1 2 3
                  bb =
                     1 4 9

     Note that per default the output argument(s) are arrays of the same size as the input arguments.  Input arguments that are singleton (1x1) cells will be automatically expanded to the size of the other arguments.

     If the parameter "UniformOutput" is set to true (the default), then the function must return scalars which will be concatenated into the return array(s).  If "UniformOutput" is false, the outputs are concatenated into a cell array (or cell arrays).  For example:

          cellfun ("tolower", {"Foo", "Bar", "FooBar"},
                   "UniformOutput", false)
          => {"foo", "bar", "foobar"}

     Given the parameter "ErrorHandler", then ERRFUNC defines a function to call in case FUNC generates an error.  The form of the function is

          function [...] = errfunc (S, ...)

     where there is an additional input argument to ERRFUNC relative to FUNC, given by S.  This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error.  For example:

          function y = foo (s, x), y = NaN; endfunction
          cellfun ("factorial", {-1,2}, "ErrorHandler", @foo)
          => [NaN 2]

     Use 'cellfun' intelligently.  The 'cellfun' function is a useful tool for avoiding loops.  It is often used with anonymous function handles; however, calling an anonymous function involves an overhead quite comparable to the overhead of an m-file function.  Passing a handle to a built-in function is faster, because the interpreter is not involved in the internal loop.  For example:

          a = {...}
          v = cellfun (@(x) det (x), a); # compute determinants
          v = cellfun (@det, a); # faster

     See also: arrayfun, structfun, spfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Evaluate the function named NAME on the elements of the cell array C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
arrayfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3349
 -- Function File: arrayfun (FUNC, A)
 -- Function File: X = arrayfun (FUNC, A)
 -- Function File: X = arrayfun (FUNC, A, B, ...)
 -- Function File: [X, Y, ...] = arrayfun (FUNC, A, ...)
 -- Function File: arrayfun (..., "UniformOutput", VAL)
 -- Function File: arrayfun (..., "ErrorHandler", ERRFUNC)

     Execute a function on each element of an array.

     This is useful for functions that do not accept array arguments.  If the function does accept array arguments it is better to call the function directly.

     The first input argument FUNC can be a string, a function handle, an inline function, or an anonymous function.  The input argument A can be a logic array, a numeric array, a string array, a structure array, or a cell array.  By a call of the function 'arrayfun' all elements of A are passed on to the named function FUNC individually.

     The named function can also take more than two input arguments, with the input arguments given as third input argument B, fourth input argument C, ... If given more than one array input argument then all input arguments must have the same sizes, for example:

          arrayfun (@atan2, [1, 0], [0, 1])
               => [ 1.5708   0.0000 ]

     If the parameter VAL after a further string input argument "UniformOutput" is set 'true' (the default), then the named function FUNC must return a single element which then will be concatenated into the return value and is of type matrix.  Otherwise, if that parameter is set to 'false', then the outputs are concatenated in a cell array.  For example:

          arrayfun (@(x,y) x:y, "abc", "def", "UniformOutput", false)
          =>
             {
               [1,1] = abcd
               [1,2] = bcde
               [1,3] = cdef
             }

     If more than one output arguments are given then the named function must return the number of return values that also are expected, for example:

          [A, B, C] = arrayfun (@find, [10; 0], "UniformOutput", false)
          =>
          A =
          {
             [1,1] =  1
             [2,1] = [](0x0)
          }
          B =
          {
             [1,1] =  1
             [2,1] = [](0x0)
          }
          C =
          {
             [1,1] =  10
             [2,1] = [](0x0)
          }

     If the parameter ERRFUNC after a further string input argument "ErrorHandler" is another string, a function handle, an inline function, or an anonymous function, then ERRFUNC defines a function to call in the case that FUNC generates an error.  The definition of the function must be of the form

          function [...] = errfunc (S, ...)

     where there is an additional input argument to ERRFUNC relative to FUNC, given by S.  This is a structure with the elements "identifier", "message", and "index" giving, respectively, the error identifier, the error message, and the index of the array elements that caused the error.  The size of the output argument of ERRFUNC must have the same size as the output argument of FUNC, otherwise a real error is thrown.  For example:

          function y = ferr (s, x), y = "MyString"; endfunction
          arrayfun (@str2num, [1234],
                    "UniformOutput", false, "ErrorHandler", @ferr)
          =>
             {
               [1,1] = MyString
             }

     See also: spfun, cellfun, structfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Execute a function on each element of an array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
num2cell


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 732
 -- Built-in Function: C = num2cell (A)
 -- Built-in Function: C = num2cell (A, DIM)
     Convert the numeric matrix A to a cell array.

     If DIM is defined, the value C is of dimension 1 in this dimension and the elements of A are placed into C in slices.  For example:

          num2cell ([1,2;3,4])
             =>
                {
                  [1,1] =  1
                  [2,1] =  3
                  [1,2] =  2
                  [2,2] =  4
                }
          num2cell ([1,2;3,4],1)
             =>
                {
                  [1,1] =
                     1
                     3
                  [1,2] =
                     2
                     4
                }

     See also: mat2cell.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Convert the numeric matrix A to a cell array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
mat2cell


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 984
 -- Built-in Function: C = mat2cell (A, M, N)
 -- Built-in Function: C = mat2cell (A, D1, D2, ...)
 -- Built-in Function: C = mat2cell (A, R)
     Convert the matrix A to a cell array.

     If A is 2-D, then it is required that 'sum (M) == size (A, 1)' and 'sum (N) == size (A, 2)'.  Similarly, if A is multi-dimensional and the number of dimensional arguments is equal to the dimensions of A, then it is required that 'sum (DI) == size (A, i)'.

     Given a single dimensional argument R, the other dimensional arguments are assumed to equal 'size (A,I)'.

     An example of the use of mat2cell is

          mat2cell (reshape (1:16,4,4), [3,1], [3,1])
          =>
          {
             [1,1] =

                1   5   9
                2   6  10
                3   7  11

             [2,1] =

                4   8  12

             [1,2] =

               13
               14
               15

             [2,2] = 16
          }

     See also: num2cell, cell2mat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert the matrix A to a cell array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cellslices


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 619
 -- Built-in Function: SL = cellslices (X, LB, UB, DIM)
     Given an array X, this function produces a cell array of slices from the array determined by the index vectors LB, UB, for lower and upper bounds, respectively.

     In other words, it is equivalent to the following code:

          n = length (lb);
          sl = cell (1, n);
          for i = 1:length (lb)
            sl{i} = x(:,...,lb(i):ub(i),...,:);
          endfor

     The position of the index is determined by DIM.  If not specified, slicing is done along the first non-singleton dimension.

     See also: cell2mat, cellindexmat, cellfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
Given an array X, this function produces a cell array of slices from the array determined by the index vectors LB, UB, for lower and upper bounds, respectively.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
cellindexmat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 325
 -- Built-in Function: Y = cellindexmat (X, VARARGIN)
     Perform indexing of matrices in a cell array.

     Given a cell array of matrices X, this function computes

          Y = cell (size (X));
          for i = 1:numel (X)
            Y{i} = X{i}(varargin{:});
          endfor

     See also: cellslices, cellfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Perform indexing of matrices in a cell array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
colloc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 276
 -- Built-in Function: [R, AMAT, BMAT, Q] = colloc (N, "left", "right")
     Compute derivative and integral weight matrices for orthogonal collocation.

     Reference: J. Villadsen, M. L. Michelsen, 'Solution of Differential Equation Models by Polynomial Approximation'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Compute derivative and integral weight matrices for orthogonal collocation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
conv2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 881
 -- Built-in Function: conv2 (A, B)
 -- Built-in Function: conv2 (V1, V2, M)
 -- Built-in Function: conv2 (..., SHAPE)
     Return the 2-D convolution of A and B.

     The size of the result is determined by the optional SHAPE argument which takes the following values

     SHAPE = "full"
          Return the full convolution.  (default)

     SHAPE = "same"
          Return the central part of the convolution with the same size as A.  The central part of the convolution begins at the indices 'floor ([size(B)/2] + 1)'.

     SHAPE = "valid"
          Return only the parts which do not include zero-padded edges.  The size of the result is 'max (size (A) - size (B) + 1, 0)'.

     When the third argument is a matrix, return the convolution of the matrix M by the vector V1 in the column direction and by the vector V2 in the row direction.

     See also: conv, convn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return the 2-D convolution of A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
convn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 679
 -- Built-in Function: C = convn (A, B)
 -- Built-in Function: C = convn (A, B, SHAPE)
     Return the n-D convolution of A and B.

     The size of the result is determined by the optional SHAPE argument which takes the following values

     SHAPE = "full"
          Return the full convolution.  (default)

     SHAPE = "same"
          Return central part of the convolution with the same size as A.  The central part of the convolution begins at the indices 'floor ([size(B)/2] + 1)'.

     SHAPE = "valid"
          Return only the parts which do not include zero-padded edges.  The size of the result is 'max (size (A) - size (B) + 1, 0)'.

     See also: conv2, conv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return the n-D convolution of A and B.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
daspk_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5813
 -- Built-in Function: daspk_options ()
 -- Built-in Function: val = daspk_options (OPT)
 -- Built-in Function: daspk_options (OPT, VAL)
     Query or set options for the function 'daspk'.

     When called with no arguments, the names of all available options and their current values are displayed.

     Given one argument, return the value of the option OPT.

     When called with two arguments, 'daspk_options' sets the option OPT to value VAL.

     Options include

     '"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.

     '"relative tolerance"'
          Relative tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.

          The local error test applied at each integration step is

                 abs (local error in x(i))
                      <= rtol(i) * abs (Y(i)) + atol(i)

     '"compute consistent initial condition"'
          Denoting the differential variables in the state vector by 'Y_d' and the algebraic variables by 'Y_a', 'ddaspk' can solve one of two initialization problems:

            1. Given Y_d, calculate Y_a and Y'_d

            2. Given Y', calculate Y.

          In either case, initial values for the given components are input, and initial guesses for the unknown components must also be provided as input.  Set this option to 1 to solve the first problem, or 2 to solve the second (the default is 0, so you must provide a set of initial conditions that are consistent).

          If this option is set to a nonzero value, you must also set the "algebraic variables" option to declare which variables in the problem are algebraic.

     '"use initial condition heuristics"'
          Set to a nonzero value to use the initial condition heuristics options described below.

     '"initial condition heuristics"'
          A vector of the following parameters that can be used to control the initial condition calculation.

          'MXNIT'
               Maximum number of Newton iterations (default is 5).

          'MXNJ'
               Maximum number of Jacobian evaluations (default is 6).

          'MXNH'
               Maximum number of values of the artificial stepsize parameter to be tried if the "compute consistent initial condition" option has been set to 1 (default is 5).

               Note that the maximum total number of Newton iterations allowed is 'MXNIT*MXNJ*MXNH' if the "compute consistent initial condition" option has been set to 1 and 'MXNIT*MXNJ' if it is set to 2.

          'LSOFF'
               Set to a nonzero value to disable the linesearch algorithm (default is 0).

          'STPTOL'
               Minimum scaled step in linesearch algorithm (default is eps^(2/3)).

          'EPINIT'
               Swing factor in the Newton iteration convergence test.  The test is applied to the residual vector, premultiplied by the approximate Jacobian.  For convergence, the weighted RMS norm of this vector (scaled by the error weights) must be less than 'EPINIT*EPCON', where 'EPCON' = 0.33 is the analogous test constant used in the time steps.  The default is 'EPINIT' = 0.01.

     '"print initial condition info"'
          Set this option to a nonzero value to display detailed information about the initial condition calculation (default is 0).

     '"exclude algebraic variables from error test"'
          Set to a nonzero value to exclude algebraic variables from the error test.  You must also set the "algebraic variables" option to declare which variables in the problem are algebraic (default is 0).

     '"algebraic variables"'
          A vector of the same length as the state vector.  A nonzero element indicates that the corresponding element of the state vector is an algebraic variable (i.e., its derivative does not appear explicitly in the equation set).

          This option is required by the "compute consistent initial condition" and "exclude algebraic variables from error test" options.

     '"enforce inequality constraints"'
          Set to one of the following values to enforce the inequality constraints specified by the "inequality constraint types" option (default is 0).

            1. To have constraint checking only in the initial condition calculation.

            2. To enforce constraint checking during the integration.

            3. To enforce both options 1 and 2.

     '"inequality constraint types"'
          A vector of the same length as the state specifying the type of inequality constraint.  Each element of the vector corresponds to an element of the state and should be assigned one of the following codes

          -2
               Less than zero.

          -1
               Less than or equal to zero.

          0
               Not constrained.

          1
               Greater than or equal to zero.

          2
               Greater than zero.

          This option only has an effect if the "enforce inequality constraints" option is nonzero.

     '"initial step size"'
          Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step.  If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize (default is computed automatically).

     '"maximum order"'
          Restrict the maximum order of the solution method.  This option must be between 1 and 5, inclusive (default is 5).

     '"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions (default is not specified).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'daspk'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
daspk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2449
 -- Built-in Function: [X, XDOT, ISTATE, MSG] = daspk (FCN, X_0, XDOT_0, T, T_CRIT)
     Solve the set of differential-algebraic equations

          0 = f (x, xdot, t)

     with

          x(t_0) = x_0, xdot(t_0) = xdot_0

     The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T.  The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations.  It must have the form

          RES = f (X, XDOT, T)

     in which X, XDOT, and RES are vectors, and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian

                df       df
          jac = -- + c ------
                dx     d xdot

     The modified Jacobian function must have the form


          JAC = j (X, XDOT, T, C)


     The second and third arguments to 'daspk' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.

     The set of initial states and derivatives are not strictly required to be consistent.  If they are not consistent, you must use the 'daspk_options' function to provide additional information so that 'daspk' can compute a consistent starting point.

     The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASPK).

     If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.

     You can use the function 'daspk_options' to set optional parameters for 'daspk'.

     See also: dassl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
dasrt_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1748
 -- Built-in Function: dasrt_options ()
 -- Built-in Function: val = dasrt_options (OPT)
 -- Built-in Function: dasrt_options (OPT, VAL)
     Query or set options for the function 'dasrt'.

     When called with no arguments, the names of all available options and their current values are displayed.

     Given one argument, return the value of the option OPT.

     When called with two arguments, 'dasrt_options' sets the option OPT to value VAL.

     Options include

     '"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.

     '"relative tolerance"'
          Relative tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.

          The local error test applied at each integration step is

                 abs (local error in x(i)) <= ...
                     rtol(i) * abs (Y(i)) + atol(i)

     '"initial step size"'
          Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step.  If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.

     '"maximum order"'
          Restrict the maximum order of the solution method.  This option must be between 1 and 5, inclusive.

     '"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions.

     '"step limit"'
          Maximum number of integration steps to attempt on a single call to the underlying Fortran code.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'dasrt'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dasrt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4148
 -- Built-in Function: [X, XDOT, T_OUT, ISTAT, MSG] = dasrt (FCN, [], X_0, XDOT_0, T)
 -- Built-in Function: ... = dasrt (FCN, G, X_0, XDOT_0, T)
 -- Built-in Function: ... = dasrt (FCN, [], X_0, XDOT_0, T, T_CRIT)
 -- Built-in Function: ... = dasrt (FCN, G, X_0, XDOT_0, T, T_CRIT)
     Solve the set of differential-algebraic equations

          0 = f (x, xdot, t)

     with

          x(t_0) = x_0, xdot(t_0) = xdot_0

     with functional stopping criteria (root solving).

     The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T_OUT.  The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.

     The vector T provides an upper limit on the length of the integration.  If the stopping condition is met, the vector T_OUT will be shorter than T, and the final element of T_OUT will be the point at which the stopping condition was met, and may not correspond to any element of the vector T.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations.  It must have the form

          RES = f (X, XDOT, T)

     in which X, XDOT, and RES are vectors, and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian

                df       df
          jac = -- + c ------
                dx     d xdot

     The modified Jacobian function must have the form


          JAC = j (X, XDOT, T, C)


     The optional second argument names a function that defines the constraint functions whose roots are desired during the integration.  This function must have the form

          G_OUT = g (X, T)

     and return a vector of the constraint function values.  If the value of any of the constraint functions changes sign, DASRT will attempt to stop the integration at the point of the sign change.

     If the name of the constraint function is omitted, 'dasrt' solves the same problem as 'daspk' or 'dassl'.

     Note that because of numerical errors in the constraint functions due to round-off and integration error, DASRT may return false roots, or return the same root at two or more nearly equal values of T.  If such false roots are suspected, the user should consider smaller error tolerances or higher precision in the evaluation of the constraint functions.

     If a root of some constraint function defines the end of the problem, the input to DASRT should nevertheless allow integration to a point slightly past that root, so that DASRT can locate the root by interpolation.

     The third and fourth arguments to 'dasrt' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.

     The set of initial states and derivatives are not strictly required to be consistent.  In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.

     The sixth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).

     If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.

     You can use the function 'dasrt_options' to set optional parameters for 'dasrt'.

     See also: dasrt_options, daspk, dasrt, lsode.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
dassl_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2356
 -- Built-in Function: dassl_options ()
 -- Built-in Function: val = dassl_options (OPT)
 -- Built-in Function: dassl_options (OPT, VAL)
     Query or set options for the function 'dassl'.

     When called with no arguments, the names of all available options and their current values are displayed.

     Given one argument, return the value of the option OPT.

     When called with two arguments, 'dassl_options' sets the option OPT to value VAL.

     Options include

     '"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.

     '"relative tolerance"'
          Relative tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.

          The local error test applied at each integration step is

                 abs (local error in x(i))
                      <= rtol(i) * abs (Y(i)) + atol(i)

     '"compute consistent initial condition"'
          If nonzero, 'dassl' will attempt to compute a consistent set of initial conditions.  This is generally not reliable, so it is best to provide a consistent set and leave this option set to zero.

     '"enforce nonnegativity constraints"'
          If you know that the solutions to your equations will always be non-negative, it may help to set this parameter to a nonzero value.  However, it is probably best to try leaving this option set to zero first, and only setting it to a nonzero value if that doesn't work very well.

     '"initial step size"'
          Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step.  If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.

     '"maximum order"'
          Restrict the maximum order of the solution method.  This option must be between 1 and 5, inclusive.

     '"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions (default is not specified).

     '"step limit"'
          Maximum number of integration steps to attempt on a single call to the underlying Fortran code.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'dassl'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dassl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2483
 -- Built-in Function: [X, XDOT, ISTATE, MSG] = dassl (FCN, X_0, XDOT_0, T, T_CRIT)
     Solve the set of differential-algebraic equations

          0 = f (x, xdot, t)

     with

          x(t_0) = x_0, xdot(t_0) = xdot_0

     The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T.  The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations.  It must have the form

          RES = f (X, XDOT, T)

     in which X, XDOT, and RES are vectors, and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian

                df       df
          jac = -- + c ------
                dx     d xdot

     The modified Jacobian function must have the form


          JAC = j (X, XDOT, T, C)


     The second and third arguments to 'dassl' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.

     The set of initial states and derivatives are not strictly required to be consistent.  In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.

     The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).

     If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.

     You can use the function 'dassl_options' to set optional parameters for 'dassl'.

     See also: daspk, dasrt, lsode.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
all


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 517
 -- Built-in Function: all (X)
 -- Built-in Function: all (X, DIM)
     For a vector argument, return true (logical 1) if all elements of the vector are nonzero.

     For a matrix argument, return a row vector of logical ones and zeros with each element indicating whether all of the elements of the corresponding column of the matrix are nonzero.  For example:

          all ([2, 3; 1, 0])
              => [ 1, 0 ]

     If the optional argument DIM is supplied, work along dimension DIM.

     See also: any.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
For a vector argument, return true (logical 1) if all elements of the vector are nonzero.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
any


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 584
 -- Built-in Function: any (X)
 -- Built-in Function: any (X, DIM)
     For a vector argument, return true (logical 1) if any element of the vector is nonzero.

     For a matrix argument, return a row vector of logical ones and zeros with each element indicating whether any of the elements of the corresponding column of the matrix are nonzero.  For example:

          any (eye (2, 4))
           => [ 1, 1, 0, 0 ]

     If the optional argument DIM is supplied, work along dimension DIM.  For example:

          any (eye (2, 4), 2)
           => [ 1; 1 ]

     See also: all.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
For a vector argument, return true (logical 1) if any element of the vector is nonzero.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
atan2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 193
 -- Mapping Function: atan2 (Y, X)
     Compute atan (Y / X) for corresponding elements of Y and X.

     Y and X must match in size and orientation.

     See also: tan, tand, tanh, atanh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Compute atan (Y / X) for corresponding elements of Y and X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
hypot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 510
 -- Built-in Function: hypot (X, Y)
 -- Built-in Function: hypot (X, Y, Z, ...)
     Compute the element-by-element square root of the sum of the squares of X and Y.

     This is equivalent to 'sqrt (X.^2 + Y.^2)', but is calculated in a manner that avoids overflows for large values of X or Y.

     'hypot' can also be called with more than 2 arguments; in this case, the arguments are accumulated from left to right:

          hypot (hypot (X, Y), Z)
          hypot (hypot (hypot (X, Y), Z), W), etc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the element-by-element square root of the sum of the squares of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
log2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 329
 -- Mapping Function: log2 (X)
 -- Mapping Function: [F, E] = log2 (X)
     Compute the base-2 logarithm of each element of X.

     If called with two output arguments, split X into binary mantissa and exponent so that '1/2 <= abs(f) < 1' and E is an integer.  If 'x = 0', 'f = e = 0'.

     See also: pow2, log, log10, exp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the base-2 logarithm of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
rem


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 319
 -- Mapping Function: rem (X, Y)
     Return the remainder of the division 'X / Y'.

     The remainder is computed using the expression

          x - y .* fix (x ./ y)

     An error message is printed if the dimensions of the arguments do not agree, or if either of the arguments is complex.

     See also: mod.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the remainder of the division 'X / Y'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
mod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 499
 -- Mapping Function: mod (X, Y)
     Compute the modulo of X and Y.

     Conceptually this is given by

          x - y .* floor (x ./ y)

     and is written such that the correct modulus is returned for integer types.  This function handles negative values correctly.  That is, 'mod (-1, 3)' is 2, not -1, as 'rem (-1, 3)' returns.  'mod (X, 0)' returns X.

     An error results if the dimensions of the arguments do not agree, or if either of the arguments is complex.

     See also: rem.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Compute the modulo of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cumprod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 240
 -- Built-in Function: cumprod (X)
 -- Built-in Function: cumprod (X, DIM)
     Cumulative product of elements along dimension DIM.

     If DIM is omitted, it defaults to the first non-singleton dimension.

     See also: prod, cumsum.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Cumulative product of elements along dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cumsum


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 466
 -- Built-in Function: cumsum (X)
 -- Built-in Function: cumsum (X, DIM)
 -- Built-in Function: cumsum (..., "native")
 -- Built-in Function: cumsum (..., "double")
 -- Built-in Function: cumsum (..., "extra")
     Cumulative sum of elements along dimension DIM.

     If DIM is omitted, it defaults to the first non-singleton dimension.

     See 'sum' for an explanation of the optional parameters "native", "double", and "extra".

     See also: sum, cumprod.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Cumulative sum of elements along dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
diag


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 898
 -- Built-in Function: M = diag (V)
 -- Built-in Function: M = diag (V, K)
 -- Built-in Function: M = diag (V, M, N)
 -- Built-in Function: V = diag (M)
 -- Built-in Function: V = diag (M, K)
     Return a diagonal matrix with vector V on diagonal K.

     The second argument is optional.  If it is positive, the vector is placed on the K-th superdiagonal.  If it is negative, it is placed on the -K-th subdiagonal.  The default value of K is 0, and the vector is placed on the main diagonal.  For example:

          diag ([1, 2, 3], 1)
             =>  0  1  0  0
                 0  0  2  0
                 0  0  0  3
                 0  0  0  0

     The 3-input form returns a diagonal matrix with vector V on the main diagonal and the resulting matrix being of size M rows x N columns.

     Given a matrix argument, instead of a vector, 'diag' extracts the K-th diagonal of the matrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return a diagonal matrix with vector V on diagonal K.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
prod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
 -- Built-in Function: prod (X)
 -- Built-in Function: prod (X, DIM)
 -- Built-in Function: prod (..., "native")
 -- Built-in Function: prod (..., "double")
     Product of elements along dimension DIM.

     If DIM is omitted, it defaults to the first non-singleton dimension.

     The optional "type" input determines the class of the variable used for calculations.  If the argument "native" is given, then the operation is performed in the same type as the original argument, rather than the default double type.

     For example:

          prod ([true, true])
             => 1
          prod ([true, true], "native")
             => true

     On the contrary, if "double" is given, the operation is performed in double precision even for single precision inputs.

     See also: cumprod, sum.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Product of elements along dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
horzcat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 355
 -- Built-in Function: horzcat (ARRAY1, ARRAY2, ..., ARRAYN)
     Return the horizontal concatenation of N-D array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 2.

     Arrays may also be concatenated horizontally using the syntax for creating new matrices.  For example:

          HCAT = [ ARRAY1, ARRAY2, ... ]

     See also: cat, vertcat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return the horizontal concatenation of N-D array objects, ARRAY1, ARRAY2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vertcat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 351
 -- Built-in Function: vertcat (ARRAY1, ARRAY2, ..., ARRAYN)
     Return the vertical concatenation of N-D array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 1.

     Arrays may also be concatenated vertically using the syntax for creating new matrices.  For example:

          VCAT = [ ARRAY1; ARRAY2; ... ]

     See also: cat, horzcat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Return the vertical concatenation of N-D array objects, ARRAY1, ARRAY2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 780
 -- Built-in Function: cat (DIM, ARRAY1, ARRAY2, ..., ARRAYN)
     Return the concatenation of N-D array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension DIM.

          A = ones (2, 2);
          B = zeros (2, 2);
          cat (2, A, B)
            => 1 1 0 0
               1 1 0 0

     Alternatively, we can concatenate A and B along the second dimension in the following way:

          [A, B]

     DIM can be larger than the dimensions of the N-D array objects and the result will thus have DIM dimensions as the following example shows:

          cat (4, ones (2, 2), zeros (2, 2))
            => ans(:,:,1,1) =

                 1 1
                 1 1

               ans(:,:,1,2) =

                 0 0
                 0 0

     See also: horzcat, vertcat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return the concatenation of N-D array objects, ARRAY1, ARRAY2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
permute


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 696
 -- Built-in Function: permute (A, PERM)
     Return the generalized transpose for an N-D array object A.

     The permutation vector PERM must contain the elements '1:ndims (A)' (in any order, but each element must appear only once).

     The Nth dimension of A gets remapped to dimension 'PERM(N)'.  For example:

          X = zeros ([2, 3, 5, 7]);
          size (X)
             =>  2   3   5   7

          size (permute (X, [2, 1, 3, 4]))
             =>  3   2   5   7

          size (permute (X, [1, 3, 4, 2]))
             =>  2   5   7   3

          ## The identity permutation
          size (permute (X, [1, 2, 3, 4]))
             =>  2   3   5   7

     See also: ipermute.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Return the generalized transpose for an N-D array object A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ipermute


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 218
 -- Built-in Function: ipermute (A, IPERM)
     The inverse of the 'permute' function.

     The expression

          ipermute (permute (A, perm), perm)

     returns the original array A.

     See also: permute.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
The inverse of the 'permute' function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
length


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 350
 -- Built-in Function: length (A)
     Return the length of the object A.

     The length is 0 for empty objects, 1 for scalars, and the number of elements for vectors.  For matrix objects, the length is the number of rows or columns, whichever is greater (this odd definition is used for compatibility with MATLAB).

     See also: numel, size.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the length of the object A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ndims


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 280
 -- Built-in Function: ndims (A)
     Return the number of dimensions of A.

     For any array, the result will always be greater than or equal to 2.  Trailing singleton dimensions are not counted.

          ndims (ones (4, 1, 2, 1))
              => 3

     See also: size.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the number of dimensions of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
numel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 655
 -- Built-in Function: numel (A)
 -- Built-in Function: numel (A, IDX1, IDX2, ...)
     Return the number of elements in the object A.

     Optionally, if indices IDX1, IDX2, ... are supplied, return the number of elements that would result from the indexing

          A(IDX1, IDX2, ...)

     Note that the indices do not have to be numerical.  For example,

          A = 1;
          B = ones (2, 3);
          numel (A, B)

     will return 6, as this is the number of ways to index with B.

     This method is also called when an object appears as lvalue with cs-list indexing, i.e., 'object{...}' or 'object(...).field'.

     See also: size.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Return the number of elements in the object A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
size


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 797
 -- Built-in Function: size (A)
 -- Built-in Function: size (A, DIM)
     Return the number of rows and columns of A.

     With one input argument and one output argument, the result is returned in a row vector.  If there are multiple output arguments, the number of rows is assigned to the first, and the number of columns to the second, etc.  For example:

          size ([1, 2; 3, 4; 5, 6])
             => [ 3, 2 ]

          [nr, nc] = size ([1, 2; 3, 4; 5, 6])
              => nr = 3
              => nc = 2

     If given a second argument, 'size' will return the size of the corresponding dimension.  For example,

          size ([1, 2; 3, 4; 5, 6], 2)
              => 2

     returns the number of columns in the given matrix.

     See also: numel, ndims, length, rows, columns.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return the number of rows and columns of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
size_equal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 262
 -- Built-in Function: size_equal (A, B, ...)
     Return true if the dimensions of all arguments agree.

     Trailing singleton dimensions are ignored.  When called with a single or no argument 'size_equal' returns true.

     See also: size, numel, ndims.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return true if the dimensions of all arguments agree.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
nnz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
 -- Built-in Function: N = nnz (A)
     Return the number of nonzero elements in A.

     See also: nzmax, nonzeros, find.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return the number of nonzero elements in A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
nzmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 363
 -- Built-in Function: N = nzmax (SM)
     Return the amount of storage allocated to the sparse matrix SM.

     Note that Octave tends to crop unused memory at the first opportunity for sparse objects.  Thus, in general the value of 'nzmax' will be the same as 'nnz' except for some cases of user-created sparse objects.

     See also: nnz, spalloc, sparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the amount of storage allocated to the sparse matrix SM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rows


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
 -- Built-in Function: rows (A)
     Return the number of rows of A.

     See also: columns, size, length, numel, isscalar, isvector, ismatrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Return the number of rows of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
columns


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Built-in Function: columns (A)
     Return the number of columns of A.

     See also: rows, size, length, numel, isscalar, isvector, ismatrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the number of columns of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sum


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1058
 -- Built-in Function: sum (X)
 -- Built-in Function: sum (X, DIM)
 -- Built-in Function: sum (..., "native")
 -- Built-in Function: sum (..., "double")
 -- Built-in Function: sum (..., "extra")
     Sum of elements along dimension DIM.

     If DIM is omitted, it defaults to the first non-singleton dimension.

     The optional "type" input determines the class of the variable used for calculations.  If the argument "native" is given, then the operation is performed in the same type as the original argument, rather than the default double type.

     For example:

          sum ([true, true])
             => 2
          sum ([true, true], "native")
             => true

     On the contrary, if "double" is given, the sum is performed in double precision even for single precision inputs.

     For double precision inputs, the "extra" option will use a more accurate algorithm than straightforward summation.  For single precision inputs, "extra" is the same as "double".  Otherwise, "extra" has no effect.

     See also: cumsum, sumsq, prod.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Sum of elements along dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sumsq


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
 -- Built-in Function: sumsq (X)
 -- Built-in Function: sumsq (X, DIM)
     Sum of squares of elements along dimension DIM.

     If DIM is omitted, it defaults to the first non-singleton dimension.

     This function is conceptually equivalent to computing

          sum (x .* conj (x), dim)

     but it uses less memory and avoids calling 'conj' if X is real.

     See also: sum, prod.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Sum of squares of elements along dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
islogical


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
 -- Built-in Function: islogical (X)
 -- Built-in Function: isbool (X)
     Return true if X is a logical object.

     See also: isfloat, isinteger, ischar, isnumeric, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return true if X is a logical object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isinteger


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
 -- Built-in Function: isinteger (X)
     Return true if X is an integer object (int8, uint8, int16, etc.).

     Note that 'isinteger (14)' is false because numeric constants in Octave are double precision floating point values.

     See also: isfloat, ischar, islogical, isnumeric, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return true if X is an integer object (int8, uint8, int16, etc.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
iscomplex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
 -- Built-in Function: iscomplex (X)
     Return true if X is a complex-valued numeric object.

     See also: isreal, isnumeric, islogical, ischar, isfloat, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return true if X is a complex-valued numeric object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isfloat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
 -- Built-in Function: isfloat (X)
     Return true if X is a floating-point numeric object.

     Objects of class double or single are floating-point objects.

     See also: isinteger, ischar, islogical, isnumeric, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return true if X is a floating-point numeric object.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
complex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 469
 -- Built-in Function: complex (X)
 -- Built-in Function: complex (RE, IM)
     Return a complex value from real arguments.

     With 1 real argument X, return the complex result 'X + 0i'.

     With 2 real arguments, return the complex result 'RE + IM'.  'complex' can often be more convenient than expressions such as 'a + i*b'.  For example:

          complex ([1, 2], [3, 4])
            => [ 1 + 3i   2 + 4i ]

     See also: real, imag, iscomplex, abs, arg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return a complex value from real arguments.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isreal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
 -- Built-in Function: isreal (X)
     Return true if X is a non-complex matrix or scalar.

     For compatibility with MATLAB, this includes logical and character matrices.

     See also: iscomplex, isnumeric, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return true if X is a non-complex matrix or scalar.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isempty


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
 -- Built-in Function: isempty (A)
     Return true if A is an empty matrix (any one of its dimensions is zero).

     See also: isnull, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return true if A is an empty matrix (any one of its dimensions is zero).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isnumeric


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 291
 -- Built-in Function: isnumeric (X)
     Return true if X is a numeric object, i.e., an integer, real, or complex array.

     Logical and character arrays are not considered to be numeric.

     See also: isinteger, isfloat, isreal, iscomplex, islogical, ischar, iscell, isstruct, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return true if X is a numeric object, i.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isscalar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
 -- Built-in Function: isscalar (X)
     Return true if X is a scalar.

     See also: isvector, ismatrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Return true if X is a scalar.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isvector


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 268
 -- Function File: isvector (X)
     Return true if X is a vector.

     A vector is a 2-D array where one of the dimensions is equal to 1.  As a consequence a 1x1 array, or scalar, is also a vector.

     See also: isscalar, ismatrix, size, rows, columns, length.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Return true if X is a vector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isrow


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Function File: isrow (X)
     Return true if X is a row vector 1xN with non-negative N.

     See also: iscolumn, isscalar, isvector, ismatrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return true if X is a row vector 1xN with non-negative N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
iscolumn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 154
 -- Function File: iscolumn (X)
     Return true if X is a column vector Nx1 with non-negative N.

     See also: isrow, isscalar, isvector, ismatrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return true if X is a column vector Nx1 with non-negative N.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ismatrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
 -- Built-in Function: ismatrix (A)
     Return true if A is a 2-D array.

     See also: isscalar, isvector, iscell, isstruct, issparse, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return true if A is a 2-D array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
issquare


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
 -- Function File: issquare (X)
     Return true if X is a square matrix.

     See also: isscalar, isvector, ismatrix, size.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return true if X is a square matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ones


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 788
 -- Built-in Function: ones (N)
 -- Built-in Function: ones (M, N)
 -- Built-in Function: ones (M, N, K, ...)
 -- Built-in Function: ones ([M N ...])
 -- Built-in Function: ones (..., CLASS)
     Return a matrix or N-dimensional array whose elements are all 1.

     If invoked with a single scalar integer argument N, return a square NxN matrix.

     If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with the given dimensions.

     To create a constant matrix whose values are all the same use an expression such as

          val_matrix = val * ones (m, n)

     The optional argument CLASS specifies the class of the return array and defaults to double.  For example:

          val = ones (m,n, "uint8")

     See also: zeros.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 1.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
zeros


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 659
 -- Built-in Function: zeros (N)
 -- Built-in Function: zeros (M, N)
 -- Built-in Function: zeros (M, N, K, ...)
 -- Built-in Function: zeros ([M N ...])
 -- Built-in Function: zeros (..., CLASS)
     Return a matrix or N-dimensional array whose elements are all 0.

     If invoked with a single scalar integer argument, return a square NxN matrix.

     If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with the given dimensions.

     The optional argument CLASS specifies the class of the return array and defaults to double.  For example:

          val = zeros (m,n, "uint8")

     See also: ones.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 0.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
Inf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1040
 -- Built-in Function: Inf
 -- Built-in Function: Inf (N)
 -- Built-in Function: Inf (N, M)
 -- Built-in Function: Inf (N, M, K, ...)
 -- Built-in Function: Inf (..., CLASS)
     Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.

     Infinity is produced when results are too large to be represented using the IEEE floating point format for numbers.  Two common examples which produce infinity are division by zero and overflow.

          [ 1/0 e^800 ]
          => Inf   Inf

     When called with no arguments, return a scalar with the value 'Inf'.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: isinf, NaN.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
NaN


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1232
 -- Built-in Function: NaN
 -- Built-in Function: NaN (N)
 -- Built-in Function: NaN (N, M)
 -- Built-in Function: NaN (N, M, K, ...)
 -- Built-in Function: NaN (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number).

     NaN is the result of operations which do not produce a well defined numerical result.  Common operations which produce a NaN are arithmetic with infinity (Inf - Inf), zero divided by zero (0/0), and any operation involving another NaN value (5 + NaN).

     Note that NaN always compares not equal to NaN (NaN != NaN). This behavior is specified by the IEEE standard for floating point arithmetic.  To find NaN values, use the 'isnan' function.

     When called with no arguments, return a scalar with the value 'NaN'.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: isnan, Inf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
e


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 829
 -- Built-in Function: e
 -- Built-in Function: e (N)
 -- Built-in Function: e (N, M)
 -- Built-in Function: e (N, M, K, ...)
 -- Built-in Function: e (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms.

     The constant 'e' satisfies the equation 'log' (e) = 1.

     When called with no arguments, return a scalar with the value e.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: log, exp, pi, I.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
eps


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1094
 -- Built-in Function: eps
 -- Built-in Function: eps (X)
 -- Built-in Function: eps (N, M)
 -- Built-in Function: eps (N, M, K, ...)
 -- Built-in Function: eps (..., CLASS)
     Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision.

     More precisely, 'eps' is the relative spacing between any two adjacent numbers in the machine's floating point system.  This number is obviously system dependent.  On machines that support IEEE floating point arithmetic, 'eps' is approximately 2.2204e-16 for double precision and 1.1921e-07 for single precision.

     When called with no arguments, return a scalar with the value 'eps (1.0)'.

     Given a single argument X, return the distance between X and the next largest value.

     When called with more than one argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: realmax, realmin, intmax, bitmax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
pi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 852
 -- Built-in Function: pi
 -- Built-in Function: pi (N)
 -- Built-in Function: pi (N, M)
 -- Built-in Function: pi (N, M, K, ...)
 -- Built-in Function: pi (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter.

     Internally, 'pi' is computed as '4.0 * atan (1.0)'.

     When called with no arguments, return a scalar with the value of pi.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: e, I.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
realmax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1054
 -- Built-in Function: realmax
 -- Built-in Function: realmax (N)
 -- Built-in Function: realmax (N, M)
 -- Built-in Function: realmax (N, M, K, ...)
 -- Built-in Function: realmax (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the largest floating point number that is representable.

     The actual value is system dependent.  On machines that support IEEE floating point arithmetic, 'realmax' is approximately 1.7977e+308 for double precision and 3.4028e+38 for single precision.

     When called with no arguments, return a scalar with the value 'realmax ("double")'.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: realmin, intmax, bitmax, eps.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 136
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the largest floating point number that is representable.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
realmin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1058
 -- Built-in Function: realmin
 -- Built-in Function: realmin (N)
 -- Built-in Function: realmin (N, M)
 -- Built-in Function: realmin (N, M, K, ...)
 -- Built-in Function: realmin (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable.

     The actual value is system dependent.  On machines that support IEEE floating point arithmetic, 'realmin' is approximately 2.2251e-308 for double precision and 1.1755e-38 for single precision.

     When called with no arguments, return a scalar with the value 'realmin ("double")'.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: realmax, intmin, eps.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
I


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 930
 -- Built-in Function: I
 -- Built-in Function: I (N)
 -- Built-in Function: I (N, M)
 -- Built-in Function: I (N, M, K, ...)
 -- Built-in Function: I (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as 'sqrt (-1)'.

     I, and its equivalents i, j, and J, are functions so any of the names may be reused for other purposes (such as i for a counter variable).

     When called with no arguments, return a scalar with the value i.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: e, pi, log, exp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as 'sqrt (-1)'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
NA


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 895
 -- Built-in Function: NA
 -- Built-in Function: NA (N)
 -- Built-in Function: NA (N, M)
 -- Built-in Function: NA (N, M, K, ...)
 -- Built-in Function: NA (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.

     Note that NA always compares not equal to NA (NA != NA). To find NA values, use the 'isna' function.

     When called with no arguments, return a scalar with the value 'NA'.

     When called with a single argument, return a square matrix with the dimension specified.

     When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.

     The optional argument CLASS specifies the return type and may be either "double" or "single".

     See also: isna.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
false


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 448
 -- Built-in Function: false (X)
 -- Built-in Function: false (N, M)
 -- Built-in Function: false (N, M, K, ...)
     Return a matrix or N-dimensional array whose elements are all logical 0.

     If invoked with a single scalar integer argument, return a square matrix of the specified size.

     If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with given dimensions.

     See also: true.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 0.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
true


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
 -- Built-in Function: true (X)
 -- Built-in Function: true (N, M)
 -- Built-in Function: true (N, M, K, ...)
     Return a matrix or N-dimensional array whose elements are all logical 1.

     If invoked with a single scalar integer argument, return a square matrix of the specified size.

     If invoked with two or more scalar integer arguments, or a vector of integer values, return an array with given dimensions.

     See also: false.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 1.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
eye


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1116
 -- Built-in Function: eye (N)
 -- Built-in Function: eye (M, N)
 -- Built-in Function: eye ([M N])
 -- Built-in Function: eye (..., CLASS)
     Return an identity matrix.

     If invoked with a single scalar argument N, return a square NxN identity matrix.

     If supplied two scalar arguments (M, N), 'eye' takes them to be the number of rows and columns.  If given a vector with two elements, 'eye' uses the values of the elements as the number of rows and columns, respectively.  For example:

          eye (3)
           =>  1  0  0
               0  1  0
               0  0  1

     The following expressions all produce the same result:

          eye (2)
          ==
          eye (2, 2)
          ==
          eye (size ([1, 2; 3, 4]))

     The optional argument CLASS, allows 'eye' to return an array of the specified type, like

          val = zeros (n,m, "uint8")

     Calling 'eye' with no arguments is equivalent to calling it with an argument of 1.  Any negative dimensions are treated as zero.  These odd definitions are for compatibility with MATLAB.

     See also: speye, ones, zeros.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return an identity matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
linspace


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 751
 -- Built-in Function: linspace (BASE, LIMIT)
 -- Built-in Function: linspace (BASE, LIMIT, N)
     Return a row vector with N linearly spaced elements between BASE and LIMIT.

     If the number of elements is greater than one, then the endpoints BASE and LIMIT are always included in the range.  If BASE is greater than LIMIT, the elements are stored in decreasing order.  If the number of points is not specified, a value of 100 is used.

     The 'linspace' function always returns a row vector if both BASE and LIMIT are scalars.  If one, or both, of them are column vectors, 'linspace' returns a matrix.

     For compatibility with MATLAB, return the second argument (LIMIT) if fewer than two values are requested.

     See also: logspace.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return a row vector with N linearly spaced elements between BASE and LIMIT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
resize


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1190
 -- Built-in Function: resize (X, M)
 -- Built-in Function: resize (X, M, N, ...)
 -- Built-in Function: resize (X, [M N ...])
     Resize X cutting off elements as necessary.

     In the result, element with certain indices is equal to the corresponding element of X if the indices are within the bounds of X; otherwise, the element is set to zero.

     In other words, the statement

          y = resize (x, dv)

     is equivalent to the following code:

          y = zeros (dv, class (x));
          sz = min (dv, size (x));
          for i = 1:length (sz)
            idx{i} = 1:sz(i);
          endfor
          y(idx{:}) = x(idx{:});

     but is performed more efficiently.

     If only M is supplied, and it is a scalar, the dimension of the result is M-by-M.  If M, N, ... are all scalars, then the dimensions of the result are M-by-N-by-....  If given a vector as input, then the dimensions of the result are given by the elements of that vector.

     An object can be resized to more dimensions than it has; in such case the missing dimensions are assumed to be 1.  Resizing an object to fewer dimensions is not possible.

     See also: reshape, postpad, prepad, cat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Resize X cutting off elements as necessary.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
reshape


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 980
 -- Built-in Function: reshape (A, M, N, ...)
 -- Built-in Function: reshape (A, [M N ...])
 -- Built-in Function: reshape (A, ..., [], ...)
 -- Built-in Function: reshape (A, SIZE)
     Return a matrix with the specified dimensions (M, N, ...) whose elements are taken from the matrix A.

     The elements of the matrix are accessed in column-major order (like Fortran arrays are stored).

     The following code demonstrates reshaping a 1x4 row vector into a 2x2 square matrix.

          reshape ([1, 2, 3, 4], 2, 2)
                =>  1  3
                    2  4

     Note that the total number of elements in the original matrix ('prod (size (A))') must match the total number of elements in the new matrix ('prod ([M N ...])').

     A single dimension of the return matrix may be left unspecified and Octave will determine its size automatically.  An empty matrix ([]) is used to flag the unspecified dimension.

     See also: resize, vec, postpad, cat, squeeze.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return a matrix with the specified dimensions (M, N, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
vec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 408
 -- Built-in Function: V = vec (X)
 -- Built-in Function: V = vec (X, DIM)
     Return the vector obtained by stacking the columns of the matrix X one above the other.

     Without DIM this is equivalent to 'X(:)'.

     If DIM is supplied, the dimensions of V are set to DIM with all elements along the last dimension.  This is equivalent to 'shiftdim (X(:), 1-DIM)'.

     See also: vech, resize, cat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Return the vector obtained by stacking the columns of the matrix X one above the other.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
squeeze


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
 -- Built-in Function: squeeze (X)
     Remove singleton dimensions from X and return the result.

     Note that for compatibility with MATLAB, all objects have a minimum of two dimensions and row vectors are left unchanged.

     See also: reshape.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Remove singleton dimensions from X and return the result.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
full


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 169
 -- Built-in Function: FM = full (SM)
     Return a full storage matrix from a sparse, diagonal, or permutation matrix, or a range.

     See also: sparse, issparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Return a full storage matrix from a sparse, diagonal, or permutation matrix, or a range.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
norm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1332
 -- Built-in Function: norm (A)
 -- Built-in Function: norm (A, P)
 -- Built-in Function: norm (A, P, OPT)
     Compute the p-norm of the matrix A.

     If the second argument is missing, 'p = 2' is assumed.

     If A is a matrix (or sparse matrix):

     P = '1'
          1-norm, the largest column sum of the absolute values of A.

     P = '2'
          Largest singular value of A.

     P = 'Inf' or "inf"
          Infinity norm, the largest row sum of the absolute values of A.

     P = "fro"
          Frobenius norm of A, 'sqrt (sum (diag (A' * A)))'.

     other P, 'P > 1'
          maximum 'norm (A*x, p)' such that 'norm (x, p) == 1'

     If A is a vector or a scalar:

     P = 'Inf' or "inf"
          'max (abs (A))'.

     P = '-Inf'
          'min (abs (A))'.

     P = "fro"
          Frobenius norm of A, 'sqrt (sumsq (abs (A)))'.

     P = 0
          Hamming norm - the number of nonzero elements.

     other P, 'P > 1'
          p-norm of A, '(sum (abs (A) .^ P)) ^ (1/P)'.

     other P 'P < 1'
          the p-pseudonorm defined as above.

     If OPT is the value "rows", treat each row as a vector and compute its norm.  The result is returned as a column vector.  Similarly, if OPT is "columns" or "cols" then compute the norms of each column and return a row vector.

     See also: cond, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Compute the p-norm of the matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
not


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
 -- Built-in Function: Z = not (X)
     Return the logical NOT of X.

     This function is equivalent to the operator syntax '! x'.

     See also: and, or, xor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Return the logical NOT of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
uplus


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
 -- Built-in Function: uplus (X)
     This function and + x are equivalent.

     See also: uminus, plus, minus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
This function and + x are equivalent.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
uminus


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
 -- Built-in Function: uminus (X)
     This function and - x are equivalent.

     See also: uplus, minus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
This function and - x are equivalent.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
transpose


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
 -- Built-in Function: transpose (X)
     Return the transpose of X.

     This function and x.'  are equivalent.

     See also: ctranspose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return the transpose of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
ctranspose


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
 -- Built-in Function: ctranspose (X)
     Return the complex conjugate transpose of X.

     This function and x' are equivalent.

     See also: transpose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the complex conjugate transpose of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
plus


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 328
 -- Built-in Function: plus (X, Y)
 -- Built-in Function: plus (X1, X2, ...)
     This function and x + y are equivalent.

     If more arguments are given, the summation is applied cumulatively from left to right:

          (...((x1 + x2) + x3) + ...)

     At least one argument is required.

     See also: minus, uplus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function and x + y are equivalent.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
minus


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
 -- Built-in Function: minus (X, Y)
     This function and x - y are equivalent.

     See also: plus, uminus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function and x - y are equivalent.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mtimes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 433
 -- Built-in Function: mtimes (X, Y)
 -- Built-in Function: mtimes (X1, X2, ...)
     Return the matrix multiplication product of inputs.

     This function and x * y are equivalent.  If more arguments are given, the multiplication is applied cumulatively from left to right:

          (...((x1 * x2) * x3) * ...)

     At least one argument is required.

     See also: times, plus, minus, rdivide, mrdivide, mldivide, mpower.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return the matrix multiplication product of inputs.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
mrdivide


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
 -- Built-in Function: mrdivide (X, Y)
     Return the matrix right division of X and Y.

     This function and x / y are equivalent.

     See also: mldivide, rdivide, plus, minus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the matrix right division of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mpower


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
 -- Built-in Function: mpower (X, Y)
     Return the matrix power operation of X raised to the Y power.

     This function and x ^ y are equivalent.

     See also: power, mtimes, plus, minus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return the matrix power operation of X raised to the Y power.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
mldivide


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
 -- Built-in Function: mldivide (X, Y)
     Return the matrix left division of X and Y.

     This function and x \ y are equivalent.

     See also: mrdivide, ldivide, rdivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return the matrix left division of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
lt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Built-in Function: lt (X, Y)
     This function is equivalent to 'x < y'.

     See also: le, eq, ge, gt, ne.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function is equivalent to 'x < y'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
le


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
 -- Built-in Function: le (X, Y)
     This function is equivalent to 'x <= y'.

     See also: eq, ge, gt, ne, lt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
This function is equivalent to 'x <= y'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
eq


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
 -- Built-in Function: eq (X, Y)
     Return true if the two inputs are equal.

     This function is equivalent to 'x == y'.

     See also: ne, isequal, le, ge, gt, ne, lt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return true if the two inputs are equal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
ge


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
 -- Built-in Function: ge (X, Y)
     This function is equivalent to 'x >= y'.

     See also: le, eq, gt, ne, lt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
This function is equivalent to 'x >= y'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
gt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Built-in Function: gt (X, Y)
     This function is equivalent to 'x > y'.

     See also: le, eq, ge, ne, lt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
This function is equivalent to 'x > y'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
ne


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 -- Built-in Function: ne (X, Y)
     Return true if the two inputs are not equal.

     This function is equivalent to 'x != y'.

     See also: eq, isequal, le, ge, lt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return true if the two inputs are not equal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
times


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 407
 -- Built-in Function: times (X, Y)
 -- Built-in Function: times (X1, X2, ...)
     Return the element-by-element multiplication product of inputs.

     This function and x .* y are equivalent.  If more arguments are given, the multiplication is applied cumulatively from left to right:

          (...((x1 .* x2) .* x3) .* ...)

     At least one argument is required.

     See also: mtimes, rdivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the element-by-element multiplication product of inputs.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rdivide


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
 -- Built-in Function: rdivide (X, Y)
     Return the element-by-element right division of X and Y.

     This function and x ./ y are equivalent.

     See also: ldivide, mrdivide, times, plus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the element-by-element right division of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
power


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 405
 -- Built-in Function: power (X, Y)
     Return the element-by-element operation of X raised to the Y power.

     This function and x .^ y are equivalent.

     If several complex results are possible, returns the one with smallest non-negative argument (angle).  Use 'realpow', 'realsqrt', 'cbrt', or 'nthroot' if a real result is preferred.

     See also: mpower, realpow, realsqrt, cbrt, nthroot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Return the element-by-element operation of X raised to the Y power.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ldivide


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 197
 -- Built-in Function: ldivide (X, Y)
     Return the element-by-element left division of X and Y.

     This function and x .\ y are equivalent.

     See also: rdivide, mldivide, times, plus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return the element-by-element left division of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
and


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 401
 -- Built-in Function: Z = and (X, Y)
 -- Built-in Function: Z = and (X1, X2, ...)
     Return the logical AND of X and Y.

     This function is equivalent to the operator syntax 'x & y'.  If more than two arguments are given, the logical AND is applied cumulatively from left to right:

          (...((x1 & x2) & x3) & ...)

     At least one argument is required.

     See also: or, not, xor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the logical AND of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
or


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 398
 -- Built-in Function: Z = or (X, Y)
 -- Built-in Function: Z = or (X1, X2, ...)
     Return the logical OR of X and Y.

     This function is equivalent to the operator syntax 'x | y'.  If more than two arguments are given, the logical OR is applied cumulatively from left to right:

          (...((x1 | x2) | x3) | ...)

     At least one argument is required.

     See also: and, not, xor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Return the logical OR of X and Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
colon


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 315
 -- Built-in Function: R = colon (BASE, LIMIT)
 -- Built-in Function: R = colon (BASE, INCREMENT, LIMIT)
     Return the result of the colon expression corresponding to BASE, LIMIT, and optionally, INCREMENT.

     This function is equivalent to the operator syntax 'base : limit' or 'base : increment : limit'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Return the result of the colon expression corresponding to BASE, LIMIT, and optionally, INCREMENT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
tic


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1163
 -- Built-in Function: tic ()
 -- Built-in Function: ID = tic ()
 -- Built-in Function: toc ()
 -- Built-in Function: toc (ID)
 -- Built-in Function: VAL = toc (...)
     Set or check a wall-clock timer.

     Calling 'tic' without an output argument sets the internal timer state.  Subsequent calls to 'toc' return the number of seconds since the timer was set.  For example,

          tic ();
          # many computations later...
          elapsed_time = toc ();

     will set the variable 'elapsed_time' to the number of seconds since the most recent call to the function 'tic'.

     If called with one output argument, 'tic' returns a scalar of type 'uint64' that may be later passed to 'toc'.

          id = tic; sleep (5); toc (id)
                => 5.0010

     Calling 'tic' and 'toc' this way allows nested timing calls.

     If you are more interested in the CPU time that your process used, you should use the 'cputime' function instead.  The 'tic' and 'toc' functions report the actual wall clock time that elapsed between the calls.  This may include time spent processing other jobs or doing nothing at all.

     See also: toc, cputime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Set or check a wall-clock timer.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
toc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
 -- Built-in Function: toc ()
 -- Built-in Function: toc (ID)
 -- Built-in Function: VAL = toc (...)

     See also: tic, cputime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
See also: tic, cputime.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cputime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 694
 -- Built-in Function: [TOTAL, USER, SYSTEM] = cputime ();
     Return the CPU time used by your Octave session.

     The first output is the total time spent executing your process and is equal to the sum of second and third outputs, which are the number of CPU seconds spent executing in user mode and the number of CPU seconds spent executing in system mode, respectively.

     If your system does not have a way to report CPU time usage, 'cputime' returns 0 for each of its output values.

     Note that because Octave used some CPU time to start, it is reasonable to check to see if 'cputime' works by checking to see if the total CPU time used is nonzero.

     See also: tic, toc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the CPU time used by your Octave session.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sort


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1822
 -- Built-in Function: [S, I] = sort (X)
 -- Built-in Function: [S, I] = sort (X, DIM)
 -- Built-in Function: [S, I] = sort (X, MODE)
 -- Built-in Function: [S, I] = sort (X, DIM, MODE)
     Return a copy of X with the elements arranged in increasing order.

     For matrices, 'sort' orders the elements within columns

     For example:

          sort ([1, 2; 2, 3; 3, 1])
             =>  1  1
                 2  2
                 3  3

     If the optional argument DIM is given, then the matrix is sorted along the dimension defined by DIM.  The optional argument 'mode' defines the order in which the values will be sorted.  Valid values of 'mode' are "ascend" or "descend".

     The 'sort' function may also be used to produce a matrix containing the original row indices of the elements in the sorted matrix.  For example:

          [s, i] = sort ([1, 2; 2, 3; 3, 1])
            => s = 1  1
                   2  2
                   3  3
            => i = 1  3
                   2  1
                   3  2

     For equal elements, the indices are such that equal elements are listed in the order in which they appeared in the original list.

     Sorting of complex entries is done first by magnitude ('abs (Z)') and for any ties by phase angle ('angle (z)').  For example:

          sort ([1+i; 1; 1-i])
              => 1 + 0i
                 1 - 1i
                 1 + 1i

     NaN values are treated as being greater than any other value and are sorted to the end of the list.

     The 'sort' function may also be used to sort strings and cell arrays of strings, in which case ASCII dictionary order (uppercase 'A' precedes lowercase 'a') of the strings is used.

     The algorithm used in 'sort' is optimized for the sorting of partially ordered lists.

     See also: sortrows, issorted.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Return a copy of X with the elements arranged in increasing order.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
issorted


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 573
 -- Built-in Function: issorted (A)
 -- Built-in Function: issorted (A, MODE)
 -- Built-in Function: issorted (A, "rows", MODE)
     Return true if the array is sorted according to MODE, which may be either "ascending", "descending", or "either".

     By default, MODE is "ascending".  NaNs are treated in the same manner as 'sort'.

     If the optional argument "rows" is supplied, check whether the array is sorted by rows as output by the function 'sortrows' (with no options).

     This function does not support sparse matrices.

     See also: sort, sortrows.

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Return true if the array is sorted according to MODE, which may be either "ascending", "descending", or "either".



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
nth_element


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 870
 -- Built-in Function: nth_element (X, N)
 -- Built-in Function: nth_element (X, N, DIM)
     Select the n-th smallest element of a vector, using the ordering defined by 'sort'.

     The result is equivalent to 'sort(X)(N)'.

     N can also be a contiguous range, either ascending 'l:u' or descending 'u:-1:l', in which case a range of elements is returned.

     If X is an array, 'nth_element' operates along the dimension defined by DIM, or the first non-singleton dimension if DIM is not given.

     Programming Note: nth_element encapsulates the C++ standard library algorithms nth_element and partial_sort.  On average, the complexity of the operation is O(M*log(K)), where 'M = size (X, DIM)' and 'K = length (N)'.  This function is intended for cases where the ratio K/M is small; otherwise, it may be better to use 'sort'.

     See also: sort, min, max.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Select the n-th smallest element of a vector, using the ordering defined by 'sort'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
merge


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 817
 -- Built-in Function: merge (MASK, TVAL, FVAL)
 -- Built-in Function: ifelse (MASK, TVAL, FVAL)
     Merge elements of TRUE_VAL and FALSE_VAL, depending on the value of MASK.

     If MASK is a logical scalar, the other two arguments can be arbitrary values.  Otherwise, MASK must be a logical array, and TVAL, FVAL should be arrays of matching class, or cell arrays.  In the scalar mask case, TVAL is returned if MASK is true, otherwise FVAL is returned.

     In the array mask case, both TVAL and FVAL must be either scalars or arrays with dimensions equal to MASK.  The result is constructed as follows:

          result(mask) = tval(mask);
          result(! mask) = fval(! mask);

     MASK can also be arbitrary numeric type, in which case it is first converted to logical.

     See also: logical, diff.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Merge elements of TRUE_VAL and FALSE_VAL, depending on the value of MASK.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
diff


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 945
 -- Built-in Function: diff (X)
 -- Built-in Function: diff (X, K)
 -- Built-in Function: diff (X, K, DIM)
     If X is a vector of length n, 'diff (X)' is the vector of first differences X(2) - X(1), ..., X(n) - X(n-1).

     If X is a matrix, 'diff (X)' is the matrix of column differences along the first non-singleton dimension.

     The second argument is optional.  If supplied, 'diff (X, K)', where K is a non-negative integer, returns the K-th differences.  It is possible that K is larger than the first non-singleton dimension of the matrix.  In this case, 'diff' continues to take the differences along the next non-singleton dimension.

     The dimension along which to take the difference can be explicitly stated with the optional variable DIM.  In this case the K-th order differences are calculated along this dimension.  In the case where K exceeds 'size (X, DIM)' an empty matrix is returned.

     See also: sort, merge.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
If X is a vector of length n, 'diff (X)' is the vector of first differences X(2) - X(1), .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
repelems


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 705
 -- Built-in Function: repelems (X, R)
     Construct a vector of repeated elements from X.

     R is a 2xN integer matrix specifying which elements to repeat and how often to repeat each element.  Entries in the first row, R(1,j), select an element to repeat.  The corresponding entry in the second row, R(2,j), specifies the repeat count.  If X is a matrix then the columns of X are imagined to be stacked on top of each other for purposes of the selection index.  A row vector is always returned.

     Conceptually the result is calculated as follows:

          y = [];
          for i = 1:columns (R)
            y = [y, X(R(1,i)*ones(1, R(2,i)))];
          endfor

     See also: repmat, cat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Construct a vector of repeated elements from X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
base64_encode


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 151
 -- Built-in Function: S = base64_encode (X)
     Encode a double matrix or array X into the base64 format string S.

     See also: base64_decode.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Encode a double matrix or array X into the base64 format string S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
base64_decode


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
 -- Built-in Function: X = base64_decode (S)
 -- Built-in Function: X = base64_decode (S, DIMS)
     Decode the double matrix or array X from the base64 encoded string S.

     The optional input parameter DIMS should be a vector containing the dimensions of the decoded array.

     See also: base64_encode.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Decode the double matrix or array X from the base64 encoded string S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbstop


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1260
 -- Command: dbstop FUNC
 -- Command: dbstop FUNC LINE
 -- Command: dbstop FUNC LINE1 LINE2 ...
 -- Command: dbstop LINE ...
 -- Built-in Function: RLINE = dbstop ("FUNC")
 -- Built-in Function: RLINE = dbstop ("FUNC", LINE)
 -- Built-in Function: RLINE = dbstop ("FUNC", LINE1, LINE2, ...)
 -- Built-in Function: dbstop ("FUNC", [LINE1, ...])
 -- Built-in Function: dbstop (LINE, ...)
     Set a breakpoint at line number LINE in function FUNC.

     Arguments are

     FUNC
          Function name as a string variable.  When already in debug mode this argument can be omitted and the current function will be used.

     LINE
          Line number where the breakpoint should be set.  Multiple lines may be given as separate arguments or as a vector.

     When called with a single argument FUNC, the breakpoint is set at the first executable line in the named function.

     The optional output RLINE is the real line number where the breakpoint was set.  This can differ from the specified line if the line is not executable.  For example, if a breakpoint attempted on a blank line then Octave will set the real breakpoint at the next executable line.

     See also: dbclear, dbstatus, dbstep, debug_on_error, debug_on_warning, debug_on_interrupt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Set a breakpoint at line number LINE in function FUNC.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dbclear


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1108
 -- Command: dbclear FUNC
 -- Command: dbclear FUNC LINE
 -- Command: dbclear FUNC LINE1 LINE2 ...
 -- Command: dbclear LINE ...
 -- Command: dbclear all
 -- Built-in Function: dbclear ("FUNC")
 -- Built-in Function: dbclear ("FUNC", LINE)
 -- Built-in Function: dbclear ("FUNC", LINE1, LINE2, ...)
 -- Built-in Function: dbclear ("FUNC", [LINE1, ...])
 -- Built-in Function: dbclear (LINE, ...)
 -- Built-in Function: dbclear ("all")
     Delete a breakpoint at line number LINE in the function FUNC.

     Arguments are

     FUNC
          Function name as a string variable.  When already in debug mode this argument can be omitted and the current function will be used.

     LINE
          Line number from which to remove a breakpoint.  Multiple lines may be given as separate arguments or as a vector.

     When called without a line number specification all breakpoints in the named function are cleared.

     If the requested line is not a breakpoint no action is performed.

     The special keyword "all" will clear all breakpoints from all files.

     See also: dbstop, dbstatus, dbwhere.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Delete a breakpoint at line number LINE in the function FUNC.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dbstatus


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
 -- Built-in Function: dbstatus ()
 -- Built-in Function: BRK_LIST = dbstatus ()
 -- Built-in Function: BRK_LIST = dbstatus ("FUNC")
     Report the location of active breakpoints.

     When called with no input or output arguments, print the list of all functions with breakpoints and the line numbers where those breakpoints are set.

     If a function name FUNC is specified then only report breakpoints for the named function.

     The optional return argument BRK_LIST is a struct array with the following fields.

     name
          The name of the function with a breakpoint.

     file
          The name of the m-file where the function code is located.

     line
          A line number, or vector of line numbers, with a breakpoint.

     Note: When 'dbstatus' is called from the debug prompt within a function, the list of breakpoints is automatically trimmed to the breakpoints in the current function.

     See also: dbclear, dbwhere.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Report the location of active breakpoints.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dbwhere


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 164
 -- Command: dbwhere
     In debugging mode, report the current file and line number where execution is stopped.

     See also: dbstatus, dbcont, dbstep, dbup.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
In debugging mode, report the current file and line number where execution is stopped.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbtype


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 706
 -- Command: dbtype
 -- Command: dbtype LINENO
 -- Command: dbtype STARTL:ENDL
 -- Command: dbtype STARTL:END
 -- Command: dbtype FUNC
 -- Command: dbtype FUNC LINENO
 -- Command: dbtype FUNC STARTL:ENDL
 -- Command: dbtype FUNC STARTL:END
     Display a script file with line numbers.

     When called with no arguments in debugging mode, display the script file currently being debugged.

     An optional range specification can be used to list only a portion of the file.  The special keyword "end" is a valid line number specification for the last line of the file.

     When called with the name of a function, list that script file with line numbers.

     See also: dbwhere, dbstatus, dbstop.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Display a script file with line numbers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dblist


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 247
 -- Command: dblist
 -- Command: dblist N
     In debugging mode, list N lines of the function being debugged centered around the current line to be executed.

     If unspecified N defaults to 10 (+/- 5 lines)

     See also: dbwhere, dbtype.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
In debugging mode, list N lines of the function being debugged centered around the current line to be executed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dbstack


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1065
 -- Command: dbstack
 -- Command: dbstack N
 -- Command: dbstack -COMPLETENAMES
 -- Built-in Function: [STACK, IDX] = dbstack (...)
     Display or return current debugging function stack information.

     With optional argument N, omit the N innermost stack frames.

     Although accepted, the argument -COMPLETENAMES is silently ignored.  Octave always returns absolute file names.

     The arguments N and -COMPLETENAMES can be both specified in any order.

     The optional return argument STACK is a struct array with the following fields:

     file
          The name of the m-file where the function code is located.

     name
          The name of the function with a breakpoint.

     line
          The line number of an active breakpoint.

     column
          The column number of the line where the breakpoint begins.

     scope
          Undocumented.

     context
          Undocumented.

     The return argument IDX specifies which element of the STACK struct array is currently active.

     See also: dbup, dbdown, dbwhere, dbstatus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Display or return current debugging function stack information.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dbup


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
 -- Command: dbup
 -- Command: dbup N
     In debugging mode, move up the execution stack N frames.

     If N is omitted, move up one frame.

     See also: dbstack, dbdown.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
In debugging mode, move up the execution stack N frames.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbdown


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
 -- Command: dbdown
 -- Command: dbdown N
     In debugging mode, move down the execution stack N frames.

     If N is omitted, move down one frame.

     See also: dbstack, dbup.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
In debugging mode, move down the execution stack N frames.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbstep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 614
 -- Command: dbstep
 -- Command: dbstep N
 -- Command: dbstep in
 -- Command: dbstep out
 -- Command: dbnext ...
     In debugging mode, execute the next N lines of code.

     If N is omitted, execute the next single line of code.  If the next line of code is itself defined in terms of an m-file remain in the existing function.

     Using 'dbstep in' will cause execution of the next line to step into any m-files defined on the next line.

     Using 'dbstep out' will cause execution to continue until the current function returns.

     'dbnext' is an alias for 'dbstep'.

     See also: dbcont, dbquit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
In debugging mode, execute the next N lines of code.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbcont


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
 -- Command: dbcont
     Leave command-line debugging mode and continue code execution normally.

     See also: dbstep, dbquit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Leave command-line debugging mode and continue code execution normally.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dbquit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 156
 -- Command: dbquit
     Quit debugging mode immediately without further code execution and return to the Octave prompt.

     See also: dbcont, dbstep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Quit debugging mode immediately without further code execution and return to the Octave prompt.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
isdebugmode


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
 -- Built-in Function: isdebugmode ()
     Return true if in debugging mode, otherwise false.

     See also: dbwhere, dbstack, dbstatus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if in debugging mode, otherwise false.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
EDITOR


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 644
 -- Built-in Function: VAL = EDITOR ()
 -- Built-in Function: OLD_VAL = EDITOR (NEW_VAL)
 -- Built-in Function: EDITOR (NEW_VAL, "local")
     Query or set the internal variable that specifies the default text editor.

     The default value is taken from the environment variable 'EDITOR' when Octave starts.  If the environment variable is not initialized, 'EDITOR' will be set to "emacs".

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: edit, edit_history.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Query or set the internal variable that specifies the default text editor.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
EXEC_PATH


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 727
 -- Built-in Function: VAL = EXEC_PATH ()
 -- Built-in Function: OLD_VAL = EXEC_PATH (NEW_VAL)
 -- Built-in Function: EXEC_PATH (NEW_VAL, "local")
     Query or set the internal variable that specifies a colon separated list of directories to append to the shell PATH when executing external programs.

     The initial value of is taken from the environment variable 'OCTAVE_EXEC_PATH', but that value can be overridden by the command line argument '--exec-path PATH'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: IMAGE_PATH, OCTAVE_HOME.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
Query or set the internal variable that specifies a colon separated list of directories to append to the shell PATH when executing external programs.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
IMAGE_PATH


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 535
 -- Built-in Function: VAL = IMAGE_PATH ()
 -- Built-in Function: OLD_VAL = IMAGE_PATH (NEW_VAL)
 -- Built-in Function: IMAGE_PATH (NEW_VAL, "local")
     Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: EXEC_PATH, OCTAVE_HOME.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
OCTAVE_HOME


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
 -- Built-in Function: OCTAVE_HOME ()
     Return the name of the top-level Octave installation directory.

     See also: EXEC_PATH, IMAGE_PATH.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return the name of the top-level Octave installation directory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
OCTAVE_VERSION


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
 -- Built-in Function: OCTAVE_VERSION ()
     Return the version number of Octave as a string.

     See also: ver, version.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the version number of Octave as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
det


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 507
 -- Built-in Function: det (A)
 -- Built-in Function: [D, RCOND] = det (A)
     Compute the determinant of A.

     Return an estimate of the reciprocal condition number if requested.

     Programming Notes: Routines from LAPACK are used for full matrices and code from UMFPACK is used for sparse matrices.

     The determinant should not be used to check a matrix for singularity.  For that, use any of the condition number functions: 'cond', 'condest', 'rcond'.

     See also: cond, condest, rcond.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Compute the determinant of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
cd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 736
 -- Command: cd DIR
 -- Command: cd
 -- Built-in Function: OLD_DIR = cd (DIR)
 -- Command: chdir ...
     Change the current working directory to DIR.

     If DIR is omitted, the current directory is changed to the user's home directory ("~").

     For example,

          cd ~/octave

     changes the current working directory to '~/octave'.  If the directory does not exist, an error message is printed and the working directory is not changed.

     'chdir' is an alias for 'cd' and can be used in all of the same calling formats.

     Compatibility Note: When called with no arguments, MATLAB prints the present working directory rather than changing to the user's home directory.

     See also: pwd, mkdir, rmdir, dir, ls.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Change the current working directory to DIR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pwd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
 -- Built-in Function: pwd ()
 -- Built-in Function: DIR = pwd ()
     Return the current working directory.

     See also: cd, dir, ls, mkdir, rmdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Return the current working directory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
readdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 416
 -- Built-in Function: FILES = readdir (DIR)
 -- Built-in Function: [FILES, ERR, MSG] = readdir (DIR)
     Return the names of files in the directory DIR as a cell array of strings.

     If an error occurs, return an empty cell array in FILES.  If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: ls, dir, glob, what.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return the names of files in the directory DIR as a cell array of strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
mkdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 594
 -- Built-in Function: mkdir DIR
 -- Built-in Function: mkdir (PARENT, DIR)
 -- Built-in Function: [STATUS, MSG, MSGID] = mkdir (...)
     Create a directory named DIR in the directory PARENT.

     If no PARENT directory is specified the present working directory is used.

     If successful, STATUS is 1, and MSG, MSGID are empty character strings ("").  Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.

     When creating a directory permissions will be set to '0777 - UMASK'.

     See also: rmdir, pwd, cd, umask.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Create a directory named DIR in the directory PARENT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rmdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 541
 -- Built-in Function: rmdir DIR
 -- Built-in Function: rmdir (DIR, "s")
 -- Built-in Function: [STATUS, MSG, MSGID] = rmdir (...)
     Remove the directory named DIR.

     If the optional second parameter is supplied with value "s", recursively remove all subdirectories as well.

     If successful, STATUS is 1, and MSG, MSGID are empty character strings ("").  Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.

     See also: mkdir, confirm_recursive_rmdir, pwd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Remove the directory named DIR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
link


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
 -- Built-in Function: link OLD NEW
 -- Built-in Function: [ERR, MSG] = link (OLD, NEW)
     Create a new link (also known as a hard link) to an existing file.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: symlink, unlink, readlink, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Create a new link (also known as a hard link) to an existing file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
symlink


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 343
 -- Built-in Function: symlink OLD NEW
 -- Built-in Function: [ERR, MSG] = symlink (OLD, NEW)
     Create a symbolic link NEW which contains the string OLD.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: link, unlink, readlink, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Create a symbolic link NEW which contains the string OLD.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
readlink


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 406
 -- Built-in Function: readlink SYMLINK
 -- Built-in Function: [RESULT, ERR, MSG] = readlink (SYMLINK)
     Read the value of the symbolic link SYMLINK.

     If successful, RESULT contains the contents of the symbolic link SYMLINK, ERR is 0, and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: lstat, symlink, link, unlink, delete.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Read the value of the symbolic link SYMLINK.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rename


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 317
 -- Built-in Function: rename OLD NEW
 -- Built-in Function: [ERR, MSG] = rename (OLD, NEW)
     Change the name of file OLD to NEW.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: movefile, copyfile, ls, dir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Change the name of file OLD to NEW.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
glob


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1182
 -- Built-in Function: glob (PATTERN)
     Given an array of pattern strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match.

     The pattern strings are interpreted as filename globbing patterns (as they are used by Unix shells).

     Within a pattern

     '*'
          matches any string, including the null string,

     '?'
          matches any single character, and

     '[...]'
          matches any of the enclosed characters.

     Tilde expansion is performed on each of the patterns before looking for matching file names.  For example:

          ls
             =>
                file1  file2  file3  myfile1 myfile1b
          glob ("*file1")
             =>
                {
                  [1,1] = file1
                  [2,1] = myfile1
                }
          glob ("myfile?")
             =>
                {
                  [1,1] = myfile1
                }
          glob ("file[12]")
             =>
                {
                  [1,1] = file1
                  [2,1] = file2
                }

     See also: ls, dir, readdir, what.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 182
Given an array of pattern strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
filesep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 434
 -- Built-in Function: filesep ()
 -- Built-in Function: filesep ("all")
     Return the system-dependent character used to separate directory names.

     If "all" is given, the function returns all valid file separators in the form of a string.  The list of file separators is system-dependent.  It is '/' (forward slash) under UNIX or Mac OS X, '/' and '\' (forward and backward slashes) under Windows.

     See also: pathsep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Return the system-dependent character used to separate directory names.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
pathsep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
 -- Built-in Function: VAL = pathsep ()
 -- Built-in Function: OLD_VAL = pathsep (NEW_VAL)
     Query or set the character used to separate directories in a path.

     See also: filesep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Query or set the character used to separate directories in a path.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
confirm_recursive_rmdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 569
 -- Built-in Function: VAL = confirm_recursive_rmdir ()
 -- Built-in Function: OLD_VAL = confirm_recursive_rmdir (NEW_VAL)
 -- Built-in Function: confirm_recursive_rmdir (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: rmdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dlmread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1298
 -- Built-in Function: DATA = dlmread (FILE)
 -- Built-in Function: DATA = dlmread (FILE, SEP)
 -- Built-in Function: DATA = dlmread (FILE, SEP, R0, C0)
 -- Built-in Function: DATA = dlmread (FILE, SEP, RANGE)
 -- Built-in Function: DATA = dlmread (..., "emptyvalue", EMPTYVAL)
     Read the matrix DATA from a text file which uses the delimiter SEP between data values.

     If SEP is not defined the separator between fields is determined from the file itself.

     Given two scalar arguments R0 and C0, these define the starting row and column of the data to be read.  These values are indexed from zero, such that the first row corresponds to an index of zero.

     The RANGE parameter may be a 4-element vector containing the upper left and lower right corner '[R0,C0,R1,C1]' where the lowest index value is zero.  Alternatively, a spreadsheet style range such as "A2..Q15" or "T1:AA5" can be used.  The lowest alphabetical index 'A' refers to the first column.  The lowest row index is 1.

     FILE should be a file name or file id given by 'fopen'.  In the latter case, the file is read until end of file is reached.

     The "emptyvalue" option may be used to specify the value used to fill empty fields.  The default is zero.

     See also: csvread, textscan, textread, dlmwrite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Read the matrix DATA from a text file which uses the delimiter SEP between data values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
dot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 495
 -- Built-in Function: dot (X, Y, DIM)
     Compute the dot product of two vectors.

     If X and Y are matrices, calculate the dot products along the first non-singleton dimension.

     If the optional argument DIM is given, calculate the dot products along this dimension.

     This is equivalent to 'sum (conj (X) .* Y, DIM)', but avoids forming a temporary array and is faster.  When X and Y are column vectors, the result is equivalent to 'X' * Y'.

     See also: cross, divergence.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Compute the dot product of two vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
blkmm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 406
 -- Built-in Function: blkmm (A, B)
     Compute products of matrix blocks.

     The blocks are given as 2-dimensional subarrays of the arrays A, B.  The size of A must have the form '[m,k,...]' and size of B must be '[k,n,...]'.  The result is then of size '[m,n,...]' and is computed as follows:

          for i = 1:prod (size (A)(3:end))
            C(:,:,i) = A(:,:,i) * B(:,:,i)
          endfor
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Compute products of matrix blocks.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
eig


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
 -- Built-in Function: LAMBDA = eig (A)
 -- Built-in Function: LAMBDA = eig (A, B)
 -- Built-in Function: [V, LAMBDA] = eig (A)
 -- Built-in Function: [V, LAMBDA] = eig (A, B)
     Compute the eigenvalues (and optionally the eigenvectors) of a matrix or a pair of matrices

     The algorithm used depends on whether there are one or two input matrices, if they are real or complex, and if they are symmetric (Hermitian if complex) or non-symmetric.

     The eigenvalues returned by 'eig' are not ordered.

     See also: eigs, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Compute the eigenvalues (and optionally the eigenvectors) of a matrix or a pair of matrices 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ellipj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
 -- Built-in Function: [SN, CN, DN, ERR] = ellipj (U, M)
 -- Built-in Function: [SN, CN, DN, ERR] = ellipj (U, M, TOL)
     Compute the Jacobi elliptic functions SN, CN, and DN of complex argument U and real parameter M.

     If M is a scalar, the results are the same size as U.  If U is a scalar, the results are the same size as M.  If U is a column vector and M is a row vector, the results are matrices with 'length (U)' rows and 'length (M)' columns.  Otherwise, U and M must conform in size and the results will be the same size as the inputs.

     The value of U may be complex.  The value of M must be 0 <= M <= 1.

     The optional input TOL is currently ignored (MATLAB uses this to allow faster, less accurate approximation).

     If requested, ERR contains the following status information and is the same size as the result.

       0. Normal return.

       1. Error--no computation, algorithm termination condition not met, return 'NaN'.

     Reference: Milton Abramowitz and Irene A Stegun, 'Handbook of Mathematical Functions', Chapter 16 (Sections 16.4, 16.13, and 16.15), Dover, 1965.

     See also: ellipke.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Compute the Jacobi elliptic functions SN, CN, and DN of complex argument U and real parameter M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rethrow


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 367
 -- Built-in Function: rethrow (ERR)
     Reissue a previous error as defined by ERR.

     ERR is a structure that must contain at least the "message" and "identifier" fields.  ERR can also contain a field "stack" that gives information on the assumed location of the error.  Typically ERR is returned from 'lasterror'.

     See also: lasterror, lasterr, error.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Reissue a previous error as defined by ERR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
error


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2695
 -- Built-in Function: error (TEMPLATE, ...)
 -- Built-in Function: error (ID, TEMPLATE, ...)
     Display an error message and stop m-file execution.

     Format the optional arguments under the control of the template string TEMPLATE using the same rules as the 'printf' family of functions (*note Formatted Output::) and print the resulting message on the 'stderr' stream.  The message is prefixed by the character string 'error: '.

     Calling 'error' also sets Octave's internal error state such that control will return to the top level without evaluating any further commands.  This is useful for aborting from functions or scripts.

     If the error message does not end with a newline character, Octave will print a traceback of all the function calls leading to the error.  For example, given the following function definitions:

          function f () g (); end
          function g () h (); end
          function h () nargin == 1 || error ("nargin != 1"); end

     calling the function 'f' will result in a list of messages that can help you to quickly locate the exact location of the error:

          f ()
          error: nargin != 1
          error: called from:
          error:   error at line -1, column -1
          error:   h at line 1, column 27
          error:   g at line 1, column 15
          error:   f at line 1, column 15

     If the error message ends in a newline character, Octave will print the message but will not display any traceback messages as it returns control to the top level.  For example, modifying the error message in the previous example to end in a newline causes Octave to only print a single message:

          function h () nargin == 1 || error ("nargin != 1\n"); end
          f ()
          error: nargin != 1

     A null string ("") input to 'error' will be ignored and the code will continue running as if the statement were a NOP.  This is for compatibility with MATLAB.  It also makes it possible to write code such as

          err_msg = "";
          if (CONDITION 1)
            err_msg = "CONDITION 1 found";
          elseif (CONDITION2)
            err_msg = "CONDITION 2 found";
          ...
          endif
          error (err_msg);

     which will only stop execution if an error has been found.

     Implementation Note: For compatibility with MATLAB, escape sequences in TEMPLATE (e.g., "\n" => newline) are processed regardless of whether TEMPLATE has been defined with single quotes, as long as there are two or more input arguments.  To disable escape sequence expansion use a second backslash before the sequence (e.g., "\\n") or use the 'regexptranslate' function.

     See also: warning, lasterror.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Display an error message and stop m-file execution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
warning


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2733
 -- Built-in Function: warning (TEMPLATE, ...)
 -- Built-in Function: warning (ID, TEMPLATE, ...)
 -- Built-in Function: warning ("on", ID)
 -- Built-in Function: warning ("off", ID)
 -- Built-in Function: warning ("query", ID)
 -- Built-in Function: warning ("error", ID)
 -- Built-in Function: warning (STATE, "backtrace")
 -- Built-in Function: warning (STATE, ID, "local")
     Display a warning message or control the behavior of Octave's warning system.

     Format the optional arguments under the control of the template string TEMPLATE using the same rules as the 'printf' family of functions (*note Formatted Output::) and print the resulting message on the 'stderr' stream.  The message is prefixed by the character string 'warning: '.  You should use this function when you want to notify the user of an unusual condition, but only when it makes sense for your program to go on.

     The optional message identifier allows users to enable or disable warnings tagged by ID.  A message identifier is of the form "NAMESPACE:WARNING-NAME". Octave's own warnings use the "Octave" namespace (*note XREFwarning_ids::).  The special identifier "all" may be used to set the state of all warnings.

     If the first argument is "on" or "off", set the state of a particular warning using the identifier ID.  If the first argument is "query", query the state of this warning instead.  If the identifier is omitted, a value of "all" is assumed.  If you set the state of a warning to "error", the warning named by ID is handled as if it were an error instead.  So, for example, the following handles all warnings as errors:

          warning ("error");

     If the state is "on" or "off" and the third argument is "backtrace", then a stack trace is printed along with the warning message when warnings occur inside function calls.  This option is enabled by default.

     If the state is "on", "off", or "error" and the third argument is "local", then the warning state will be set temporarily, until the end of the current function.  Changes to warning states that are set locally affect the current function and all functions called from the current scope.  The previous warning state is restored on return from the current function.  The "local" option is ignored if used in the top-level workspace.

     Implementation Note: For compatibility with MATLAB, escape sequences in TEMPLATE (e.g., "\n" => newline) are processed regardless of whether TEMPLATE has been defined with single quotes, as long as there are two or more input arguments.  To disable escape sequence expansion use a second backslash before the sequence (e.g., "\\n") or use the 'regexptranslate' function.

     See also: warning_ids, lastwarn, error.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Display a warning message or control the behavior of Octave's warning system.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
lasterror


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1374
 -- Built-in Function: LASTERR = lasterror ()
 -- Built-in Function: lasterror (ERR)
 -- Built-in Function: lasterror ("reset")
     Query or set the last error message structure.

     When called without arguments, return a structure containing the last error message and other information related to this error.  The elements of the structure are:

     'message'
          The text of the last error message

     'identifier'
          The message identifier of this error message

     'stack'
          A structure containing information on where the message occurred.  This may be an empty structure if the information cannot be obtained.  The fields of the structure are:

          'file'
               The name of the file where the error occurred

          'name'
               The name of function in which the error occurred

          'line'
               The line number at which the error occurred

          'column'
               An optional field with the column number at which the error occurred

     The last error structure may be set by passing a scalar structure, ERR, as input.  Any fields of ERR that match those above are set while any unspecified fields are initialized with default values.

     If 'lasterror' is called with the argument "reset", all fields are set to their default values.

     See also: lasterr, error, lastwarn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set the last error message structure.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lasterr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 440
 -- Built-in Function: [MSG, MSGID] = lasterr ()
 -- Built-in Function: lasterr (MSG)
 -- Built-in Function: lasterr (MSG, MSGID)
     Query or set the last error message.

     When called without input arguments, return the last error message and message identifier.

     With one argument, set the last error message to MSG.

     With two arguments, also set the last message identifier.

     See also: lasterror, error, lastwarn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Query or set the last error message.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
lastwarn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 450
 -- Built-in Function: [MSG, MSGID] = lastwarn ()
 -- Built-in Function: lastwarn (MSG)
 -- Built-in Function: lastwarn (MSG, MSGID)
     Query or set the last warning message.

     When called without input arguments, return the last warning message and message identifier.

     With one argument, set the last warning message to MSG.

     With two arguments, also set the last message identifier.

     See also: warning, lasterror, lasterr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Query or set the last warning message.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
beep_on_error


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 513
 -- Built-in Function: VAL = beep_on_error ()
 -- Built-in Function: OLD_VAL = beep_on_error (NEW_VAL)
 -- Built-in Function: beep_on_error (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
debug_on_error


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 681
 -- Built-in Function: VAL = debug_on_error ()
 -- Built-in Function: OLD_VAL = debug_on_error (NEW_VAL)
 -- Built-in Function: debug_on_error (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered.

     This will also inhibit printing of the normal traceback message (you will only see the top-level error message).

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: debug_on_warning, debug_on_interrupt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
debug_on_warning


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 567
 -- Built-in Function: VAL = debug_on_warning ()
 -- Built-in Function: OLD_VAL = debug_on_warning (NEW_VAL)
 -- Built-in Function: debug_on_warning (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: debug_on_error, debug_on_interrupt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
fft


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 919
 -- Built-in Function: fft (X)
 -- Built-in Function: fft (X, N)
 -- Built-in Function: fft (X, N, DIM)
     Compute the discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.

     The FFT is calculated along the first non-singleton dimension of the array.  Thus if X is a matrix, 'fft (X)' computes the FFT for each column of X.

     If called with two arguments, N is expected to be an integer specifying the number of elements of X to use, or an empty matrix to specify that its value should be ignored.  If N is larger than the dimension along which the FFT is calculated, then X is resized and padded with zeros.  Otherwise, if N is smaller than the dimension along which the FFT is calculated, then X is truncated.

     If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the FFT is performed

     See also: ifft, fft2, fftn, fftw.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Compute the discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ifft


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 971
 -- Built-in Function: ifft (X)
 -- Built-in Function: ifft (X, N)
 -- Built-in Function: ifft (X, N, DIM)
     Compute the inverse discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.

     The inverse FFT is calculated along the first non-singleton dimension of the array.  Thus if X is a matrix, 'fft (X)' computes the inverse FFT for each column of X.

     If called with two arguments, N is expected to be an integer specifying the number of elements of X to use, or an empty matrix to specify that its value should be ignored.  If N is larger than the dimension along which the inverse FFT is calculated, then X is resized and padded with zeros.  Otherwise, if N is smaller than the dimension along which the inverse FFT is calculated, then X is truncated.

     If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the inverse FFT is performed

     See also: fft, ifft2, ifftn, fftw.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Compute the inverse discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fft2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 515
 -- Built-in Function: fft2 (A)
 -- Built-in Function: fft2 (A, M, N)
     Compute the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.

     The optional arguments M and N may be used specify the number of rows and columns of A to use.  If either of these is larger than the size of A, A is resized and padded with zeros.

     If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately.

     See also: ifft2, fft, fftn, fftw.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Compute the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ifft2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 525
 -- Built-in Function: ifft2 (A)
 -- Built-in Function: ifft2 (A, M, N)
     Compute the inverse two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.

     The optional arguments M and N may be used specify the number of rows and columns of A to use.  If either of these is larger than the size of A, A is resized and padded with zeros.

     If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately

     See also: fft2, ifft, ifftn, fftw.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Compute the inverse two-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fftn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 581
 -- Built-in Function: fftn (A)
 -- Built-in Function: fftn (A, SIZE)
     Compute the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.

     The optional vector argument SIZE may be used specify the dimensions of the array to be used.  If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the FFT.  Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros.

     See also: ifftn, fft, fft2, fftw.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Compute the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ifftn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 600
 -- Built-in Function: ifftn (A)
 -- Built-in Function: ifftn (A, SIZE)
     Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.

     The optional vector argument SIZE may be used specify the dimensions of the array to be used.  If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the inverse FFT.  Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros.

     See also: fftn, ifft, ifft2, fftw.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fclose


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 583
 -- Built-in Function: fclose (FID)
 -- Built-in Function: fclose ("all")
 -- Built-in Function: STATUS = fclose ("all")
     Close the file specified by the file descriptor FID.

     If successful, 'fclose' returns 0, otherwise, it returns -1.  The second form of the 'fclose' call closes all open files except 'stdout', 'stderr', and 'stdin'.

     Programming Note: When using "all" the file descriptors associated with gnuplot will also be closed.  This will prevent further plotting with gnuplot until Octave is closed and restarted.

     See also: fopen, fflush, freport.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Close the file specified by the file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fclear


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 149
 -- Built-in Function: fclear (FID)
     Clear the stream state for the file specified by the file descriptor FID.

     See also: ferror, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Clear the stream state for the file specified by the file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fflush


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 437
 -- Built-in Function: fflush (FID)
     Flush output to file descriptor FID.

     'fflush' returns 0 on success and an OS dependent error value (-1 on Unix) on error.

     Programming Note: Flushing is useful for ensuring that all pending output makes it to the screen before some other event occurs.  For example, it is always a good idea to flush the standard output stream before calling 'input'.

     See also: fopen, fclose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Flush output to file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fgetl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 540
 -- Built-in Function: STR = fgetl (FID)
 -- Built-in Function: STR = fgetl (FID, LEN)
     Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.

     The characters read, excluding the possible trailing newline, are returned as a string.

     If LEN is omitted, 'fgetl' reads until the next newline character.

     If there are no more characters to read, 'fgetl' returns -1.

     To read a line and return the terminating newline see 'fgets'.

     See also: fgets, fscanf, fread, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fgets


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 548
 -- Built-in Function: STR = fgets (FID)
 -- Built-in Function: STR = fgets (FID, LEN)
     Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.

     The characters read, including the possible trailing newline, are returned as a string.

     If LEN is omitted, 'fgets' reads until the next newline character.

     If there are no more characters to read, 'fgets' returns -1.

     To read a line and discard the terminating newline see 'fgetl'.

     See also: fputs, fgetl, fscanf, fread, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fskipl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 688
 -- Built-in Function: NLINES = fskipl (FID)
 -- Built-in Function: NLINES = fskipl (FID, COUNT)
 -- Built-in Function: NLINES = fskipl (FID, Inf)
     Read and skip COUNT lines from the file specified by the file descriptor FID.

     'fskipl' discards characters until an end-of-line is encountered exactly COUNT-times, or until the end-of-file marker is found.

     If COUNT is omitted, it defaults to 1.  COUNT may also be 'Inf', in which case lines are skipped until the end of the file.  This form is suitable for counting the number of lines in a file.

     Returns the number of lines skipped (end-of-line sequences encountered).

     See also: fgetl, fgets, fscanf, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Read and skip COUNT lines from the file specified by the file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fopen


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3409
 -- Built-in Function: FID = fopen (NAME)
 -- Built-in Function: FID = fopen (NAME, MODE)
 -- Built-in Function: FID = fopen (NAME, MODE, ARCH)
 -- Built-in Function: [FID, MSG] = fopen (...)
 -- Built-in Function: FID_LIST = fopen ("all")
 -- Built-in Function: [FILE, MODE, ARCH] = fopen (FID)
     Open a file for low-level I/O or query open files and file descriptors.

     The first form of the 'fopen' function opens the named file with the specified mode (read-write, read-only, etc.)  and architecture interpretation (IEEE big endian, IEEE little endian, etc.), and returns an integer value that may be used to refer to the file later.  If an error occurs, FID is set to -1 and MSG contains the corresponding system error message.  The MODE is a one or two character string that specifies whether the file is to be opened for reading, writing, or both.

     The second form of the 'fopen' function returns a vector of file ids corresponding to all the currently open files, excluding the 'stdin', 'stdout', and 'stderr' streams.

     The third form of the 'fopen' function returns information about the open file given its file id.

     For example,

          myfile = fopen ("splat.dat", "r", "ieee-le");

     opens the file 'splat.dat' for reading.  If necessary, binary numeric values will be read assuming they are stored in IEEE format with the least significant bit first, and then converted to the native representation.

     Opening a file that is already open simply opens it again and returns a separate file id.  It is not an error to open a file several times, though writing to the same file through several different file ids may produce unexpected results.

     The possible values 'mode' may have are

     'r' (default)
          Open a file for reading.

     'w'
          Open a file for writing.  The previous contents are discarded.

     'a'
          Open or create a file for writing at the end of the file.

     'r+'
          Open an existing file for reading and writing.

     'w+'
          Open a file for reading or writing.  The previous contents are discarded.

     'a+'
          Open or create a file for reading or writing at the end of the file.

     Append a "t" to the mode string to open the file in text mode or a "b" to open in binary mode.  On Windows and Macintosh systems, text mode reading and writing automatically converts linefeeds to the appropriate line end character for the system (carriage-return linefeed on Windows, carriage-return on Macintosh).  The default when no mode is specified is binary mode.

     Additionally, you may append a "z" to the mode string to open a gzipped file for reading or writing.  For this to be successful, you must also open the file in binary mode.

     The parameter ARCH is a string specifying the default data format for the file.  Valid values for ARCH are:

     'native (default)'
          The format of the current machine.

     'ieee-be'
          IEEE big endian format.

     'ieee-le'
          IEEE little endian format.

     however, conversions are currently only supported for 'native' 'ieee-be', and 'ieee-le' formats.

     When opening a new file that does not yet exist, permissions will be set to '0666 - UMASK'.

     See also: fclose, fgets, fgetl, fscanf, fread, fputs, fdisp, fprintf, fwrite, fskipl, fseek, frewind, ftell, feof, ferror, fclear, fflush, freport, umask.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Open a file for low-level I/O or query open files and file descriptors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
freport


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 537
 -- Built-in Function: freport ()
     Print a list of which files have been opened, and whether they are open for reading, writing, or both.

     For example:

          freport ()

               -|  number  mode  arch       name
               -|  ------  ----  ----       ----
               -|     0     r    ieee-le    stdin
               -|     1     w    ieee-le    stdout
               -|     2     w    ieee-le    stderr
               -|     3     r    ieee-le    myfile

     See also: fopen, fclose, is_valid_file_id.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Print a list of which files have been opened, and whether they are open for reading, writing, or both.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
frewind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
 -- Built-in Function: frewind (FID)
 -- Built-in Function: STATUS = frewind (FID)
     Move the file pointer to the beginning of the file specified by file descriptor FID.

     'frewind' returns 0 for success, and -1 if an error is encountered.  It is equivalent to 'fseek (FID, 0, SEEK_SET)'.

     See also: fseek, ftell, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Move the file pointer to the beginning of the file specified by file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fseek


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 691
 -- Built-in Function: fseek (FID, OFFSET)
 -- Built-in Function: fseek (FID, OFFSET, ORIGIN)
 -- Built-in Function: STATUS = fseek (...)
     Set the file pointer to the location OFFSET within the file FID.

     The pointer is positioned OFFSET characters from the ORIGIN, which may be one of the predefined variables 'SEEK_CUR' (current position), 'SEEK_SET' (beginning), or 'SEEK_END' (end of file) or strings "cof", "bof" or "eof".  If ORIGIN is omitted, 'SEEK_SET' is assumed.  OFFSET may be positive, negative, or zero but not all combinations of ORIGIN and OFFSET can be realized.

     'fseek' returns 0 on success and -1 on error.

     See also: fskipl, frewind, ftell, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Set the file pointer to the location OFFSET within the file FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ftell


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 227
 -- Built-in Function: POS = ftell (FID)
     Return the position of the file pointer as the number of characters from the beginning of the file specified by file descriptor FID.

     See also: fseek, frewind, feof, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Return the position of the file pointer as the number of characters from the beginning of the file specified by file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fprintf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 730
 -- Built-in Function: fprintf (FID, TEMPLATE, ...)
 -- Built-in Function: fprintf (TEMPLATE, ...)
 -- Built-in Function: NUMBYTES = fprintf (...)
     This function is equivalent to 'printf', except that the output is written to the file descriptor FID instead of 'stdout'.

     If FID is omitted, the output is written to 'stdout' making the function exactly equivalent to 'printf'.

     The optional output returns the number of bytes written to the file.

     Implementation Note: For compatibility with MATLAB, escape sequences in the template string (e.g., "\n" => newline) are expanded even when the template string is defined with single quotes.

     See also: fputs, fdisp, fwrite, fscanf, printf, sprintf, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
This function is equivalent to 'printf', except that the output is written to the file descriptor FID instead of 'stdout'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
printf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 563
 -- Built-in Function: printf (TEMPLATE, ...)
     Print optional arguments under the control of the template string TEMPLATE to the stream 'stdout' and return the number of characters printed.

     See the Formatted Output section of the GNU Octave manual for a complete description of the syntax of the template string.

     Implementation Note: For compatibility with MATLAB, escape sequences in the template string (e.g., "\n" => newline) are expanded even when the template string is defined with single quotes.

     See also: fprintf, sprintf, scanf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
Print optional arguments under the control of the template string TEMPLATE to the stream 'stdout' and return the number of characters printed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fputs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 446
 -- Built-in Function: fputs (FID, STRING)
 -- Built-in Function: STATUS = fputs (FID, STRING)
     Write the string STRING to the file with file descriptor FID.

     The string is written to the file with no additional formatting.  Use 'fdisp' instead to automatically append a newline character appropriate for the local machine.

     Return a non-negative number on success or EOF on error.

     See also: fdisp, fprintf, fwrite, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Write the string STRING to the file with file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
puts


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 394
 -- Built-in Function: puts (STRING)
 -- Built-in Function: STATUS = puts (STRING)
     Write a string to the standard output with no formatting.

     The string is written verbatim to the standard output.  Use 'disp' to automatically append a newline character appropriate for the local machine.

     Return a non-negative number on success and EOF on error.

     See also: fputs, disp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Write a string to the standard output with no formatting.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sprintf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 574
 -- Built-in Function: sprintf (TEMPLATE, ...)
     This is like 'printf', except that the output is returned as a string.

     Unlike the C library function, which requires you to provide a suitably sized string as an argument, Octave's 'sprintf' function returns the string, automatically sized to hold all of the items converted.

     Implementation Note: For compatibility with MATLAB, escape sequences in the template string (e.g., "\n" => newline) are expanded even when the template string is defined with single quotes.

     See also: printf, fprintf, sscanf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
This is like 'printf', except that the output is returned as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fscanf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1634
 -- Built-in Function: [VAL, COUNT, ERRMSG] = fscanf (FID, TEMPLATE, SIZE)
 -- Built-in Function: [V1, V2, ..., COUNT, ERRMSG] = fscanf (FID, TEMPLATE, "C")
     In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.

     The optional argument SIZE specifies the amount of data to read and may be one of

     'Inf'
          Read as much as possible, returning a column vector.

     'NR'
          Read up to NR elements, returning a column vector.

     '[NR, Inf]'
          Read as much as possible, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

     '[NR, NC]'
          Read up to 'NR * NC' elements, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

     If SIZE is omitted, a value of 'Inf' is assumed.

     A string is returned if TEMPLATE specifies only character conversions.

     The number of items successfully read is returned in COUNT.

     If an error occurs, ERRMSG contains a system-dependent error message.

     In the second form, read from FID according to TEMPLATE, with each conversion specifier in TEMPLATE corresponding to a single scalar return value.  This form is more "C-like", and also compatible with previous versions of Octave.  The number of successful conversions is returned in COUNT

     See the Formatted Input section of the GNU Octave manual for a complete description of the syntax of the template string.

     See also: fgets, fgetl, fread, scanf, sscanf, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sscanf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 514
 -- Built-in Function: [VAL, COUNT, ERRMSG, POS] = sscanf (STRING, TEMPLATE, SIZE)
 -- Built-in Function: [V1, V2, ..., COUNT, ERRMSG] = sscanf (STRING, TEMPLATE, "C")
     This is like 'fscanf', except that the characters are taken from the string STRING instead of from a stream.

     Reaching the end of the string is treated as an end-of-file condition.  In addition to the values returned by 'fscanf', the index of the next character to be read is returned in POS.

     See also: fscanf, scanf, sprintf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
This is like 'fscanf', except that the characters are taken from the string STRING instead of from a stream.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
scanf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 327
 -- Built-in Function: [VAL, COUNT, ERRMSG] = scanf (TEMPLATE, SIZE)
 -- Built-in Function: [V1, V2, ..., COUNT, ERRMSG]] = scanf (TEMPLATE, "C")
     This is equivalent to calling 'fscanf' with FID = 'stdin'.

     It is currently not useful to call 'scanf' in interactive programs.

     See also: fscanf, sscanf, printf.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
This is equivalent to calling 'fscanf' with FID = 'stdin'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4274
 -- Built-in Function: VAL = fread (FID)
 -- Built-in Function: VAL = fread (FID, SIZE)
 -- Built-in Function: VAL = fread (FID, SIZE, PRECISION)
 -- Built-in Function: VAL = fread (FID, SIZE, PRECISION, SKIP)
 -- Built-in Function: VAL = fread (FID, SIZE, PRECISION, SKIP, ARCH)
 -- Built-in Function: [VAL, COUNT] = fread (...)
     Read binary data from the file specified by the file descriptor FID.

     The optional argument SIZE specifies the amount of data to read and may be one of

     'Inf'
          Read as much as possible, returning a column vector.

     'NR'
          Read up to NR elements, returning a column vector.

     '[NR, Inf]'
          Read as much as possible, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

     '[NR, NC]'
          Read up to 'NR * NC' elements, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

     If SIZE is omitted, a value of 'Inf' is assumed.

     The optional argument PRECISION is a string specifying the type of data to read and may be one of

     "schar"
     "signed char"
          Signed character.

     "uchar"
     "unsigned char"
          Unsigned character.

     "int8"
     "integer*1"

          8-bit signed integer.

     "int16"
     "integer*2"
          16-bit signed integer.

     "int32"
     "integer*4"
          32-bit signed integer.

     "int64"
     "integer*8"
          64-bit signed integer.

     "uint8"
          8-bit unsigned integer.

     "uint16"
          16-bit unsigned integer.

     "uint32"
          32-bit unsigned integer.

     "uint64"
          64-bit unsigned integer.

     "single"
     "float32"
     "real*4"
          32-bit floating point number.

     "double"
     "float64"
     "real*8"
          64-bit floating point number.

     "char"
     "char*1"
          Single character.

     "short"
          Short integer (size is platform dependent).

     "int"
          Integer (size is platform dependent).

     "long"
          Long integer (size is platform dependent).

     "ushort"
     "unsigned short"
          Unsigned short integer (size is platform dependent).

     "uint"
     "unsigned int"
          Unsigned integer (size is platform dependent).

     "ulong"
     "unsigned long"
          Unsigned long integer (size is platform dependent).

     "float"
          Single precision floating point number (size is platform dependent).

     The default precision is "uchar".

     The PRECISION argument may also specify an optional repeat count.  For example, '32*single' causes 'fread' to read a block of 32 single precision floating point numbers.  Reading in blocks is useful in combination with the SKIP argument.

     The PRECISION argument may also specify a type conversion.  For example, 'int16=>int32' causes 'fread' to read 16-bit integer values and return an array of 32-bit integer values.  By default, 'fread' returns a double precision array.  The special form '*TYPE' is shorthand for 'TYPE=>TYPE'.

     The conversion and repeat counts may be combined.  For example, the specification '32*single=>single' causes 'fread' to read blocks of single precision floating point values and return an array of single precision values instead of the default array of double precision values.

     The optional argument SKIP specifies the number of bytes to skip after each element (or block of elements) is read.  If it is not specified, a value of 0 is assumed.  If the final block read is not complete, the final skip is omitted.  For example,

          fread (f, 10, "3*single=>single", 8)

     will omit the final 8-byte skip because the last read will not be a complete block of 3 values.

     The optional argument ARCH is a string specifying the data format for the file.  Valid values are

     "native"
          The format of the current machine.

     "ieee-be"
          IEEE big endian.

     "ieee-le"
          IEEE little endian.

     The output argument VAL contains the data read from the file.  The optional return value COUNT contains the number of elements read.

     See also: fwrite, fgets, fgetl, fscanf, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Read binary data from the file specified by the file descriptor FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fwrite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 826
 -- Built-in Function: fwrite (FID, DATA)
 -- Built-in Function: fwrite (FID, DATA, PRECISION)
 -- Built-in Function: fwrite (FID, DATA, PRECISION, SKIP)
 -- Built-in Function: fwrite (FID, DATA, PRECISION, SKIP, ARCH)
 -- Built-in Function: COUNT = fwrite (...)
     Write data in binary form to the file specified by the file descriptor FID, returning the number of values COUNT successfully written to the file.

     The argument DATA is a matrix of values that are to be written to the file.  The values are extracted in column-major order.

     The remaining arguments PRECISION, SKIP, and ARCH are optional, and are interpreted as described for 'fread'.

     The behavior of 'fwrite' is undefined if the values in DATA are too large to fit in the specified precision.

     See also: fread, fputs, fprintf, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
Write data in binary form to the file specified by the file descriptor FID, returning the number of values COUNT successfully written to the file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
feof


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 393
 -- Built-in Function: STATUS = feof (FID)
     Return 1 if an end-of-file condition has been encountered for the file specified by file descriptor FID and 0 otherwise.

     Note that 'feof' will only return 1 if the end of the file has already been encountered, not if the next read operation will result in an end-of-file condition.

     See also: fread, frewind, fseek, fclear, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
Return 1 if an end-of-file condition has been encountered for the file specified by file descriptor FID and 0 otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ferror


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 763
 -- Built-in Function: MSG = ferror (FID)
 -- Built-in Function: [MSG, ERR] = ferror (FID)
 -- Built-in Function: [DOTS] = ferror (FID, "clear")
     Query the error status of the stream specified by file descriptor FID

     If an error condition exists then return a string MSG describing the error.  Otherwise, return an empty string "".

     The second input "clear" is optional.  If supplied, the error state on the stream will be cleared.

     The optional second output is a numeric indication of the error status.  ERR is 1 if an error condition has been encountered and 0 otherwise.

     Note that 'ferror' indicates if an error has already occurred, not whether the next operation will result in an error condition.

     See also: fclear, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Query the error status of the stream specified by file descriptor FID 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
popen


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 887
 -- Built-in Function: FID = popen (COMMAND, MODE)
     Start a process and create a pipe.

     The name of the command to run is given by COMMAND.  The argument MODE may be

     '"r"'
          The pipe will be connected to the standard output of the process, and open for reading.

     '"w"'
          The pipe will be connected to the standard input of the process, and open for writing.

     The file identifier corresponding to the input or output stream of the process is returned in FID.

     For example:

          fid = popen ("ls -ltr / | tail -3", "r");
          while (ischar (s = fgets (fid)))
            fputs (stdout, s);
          endwhile

             -| drwxr-xr-x  33 root  root  3072 Feb 15 13:28 etc
             -| drwxr-xr-x   3 root  root  1024 Feb 15 13:28 lib
             -| drwxrwxrwt  15 root  root  2048 Feb 17 14:53 tmp

     See also: popen2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Start a process and create a pipe.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pclose


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
 -- Built-in Function: pclose (FID)
     Close a file identifier that was opened by 'popen'.

     The function 'fclose' may also be used for the same purpose.

     See also: fclose, popen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Close a file identifier that was opened by 'popen'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
tempname


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 733
 -- Built-in Function: FNAME = tempname ()
 -- Built-in Function: FNAME = tempname (DIR)
 -- Built-in Function: FNAME = tempname (DIR, PREFIX)
     Return a unique temporary file name as a string.

     If PREFIX is omitted, a value of "oct-" is used.

     If DIR is also omitted, the default directory for temporary files ('P_tmpdir') is used.  If DIR is provided, it must exist, otherwise the default directory for temporary files is used.

     Programming Note: Because the named file is not opened by 'tempname', it is possible, though relatively unlikely, that it will not be available by the time your program attempts to open it.  If this is a concern, see 'tmpfile'.

     See also: mkstemp, tempdir, P_tmpdir, tmpfile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return a unique temporary file name as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tmpfile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 464
 -- Built-in Function: [FID, MSG] = tmpfile ()
     Return the file ID corresponding to a new temporary file with a unique name.

     The file is opened in binary read/write ("w+b") mode and will be deleted automatically when it is closed or when Octave exits.

     If successful, FID is a valid file ID and MSG is an empty string.  Otherwise, FID is -1 and MSG contains a system-dependent error message.

     See also: tempname, mkstemp, tempdir, P_tmpdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Return the file ID corresponding to a new temporary file with a unique name.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
mkstemp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 999
 -- Built-in Function: [FID, NAME, MSG] = mkstemp ("TEMPLATE")
 -- Built-in Function: [FID, NAME, MSG] = mkstemp ("TEMPLATE", DELETE)
     Return the file descriptor FID corresponding to a new temporary file with a unique name created from TEMPLATE.

     The last six characters of TEMPLATE must be "XXXXXX" and these are replaced with a string that makes the filename unique.  The file is then created with mode read/write and permissions that are system dependent (on GNU/Linux systems, the permissions will be 0600 for versions of glibc 2.0.7 and later).  The file is opened in binary mode and with the 'O_EXCL' flag.

     If the optional argument DELETE is supplied and is true, the file will be deleted automatically when Octave exits.

     If successful, FID is a valid file ID, NAME is the name of the file, and MSG is an empty string.  Otherwise, FID is -1, NAME is empty, and MSG contains a system-dependent error message.

     See also: tempname, tempdir, P_tmpdir, tmpfile, fopen.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Return the file descriptor FID corresponding to a new temporary file with a unique name created from TEMPLATE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
umask


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
 -- Built-in Function: umask (MASK)
     Set the permission mask for file creation.

     The parameter MASK is an integer, interpreted as an octal number.

     If successful, returns the previous value of the mask (as an integer to be interpreted as an octal number); otherwise an error message is printed.

     The permission mask is a UNIX concept used when creating new objects on a file system such as files, directories, or named FIFOs.  The object to be created has base permissions in an octal number MODE which are modified according to the octal value of MASK.  The final permissions for the new object are 'MODE - MASK'.

     See also: fopen, mkdir, mkfifo.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Set the permission mask for file creation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
P_tmpdir


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 402
 -- Built-in Function: P_tmpdir ()
     Return the name of the host system's *default* directory for temporary files.

     Programming Note: The value returned by 'P_tmpdir' is always the default location.  This value may not agree with that returned from 'tempdir' if the user has overridden the default with the 'TMPDIR' environment variable.

     See also: tempdir, tempname, mkstemp, tmpfile.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Return the name of the host system's *default* directory for temporary files.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
SEEK_SET


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
 -- Built-in Function: SEEK_SET ()
 -- Built-in Function: SEEK_CUR ()
 -- Built-in Function: SEEK_END ()
     Return the numerical value to pass to 'fseek' to perform one of the following actions:

     'SEEK_SET'
          Position file relative to the beginning.

     'SEEK_CUR'
          Position file relative to the current position.

     'SEEK_END'
          Position file relative to the end.

     See also: fseek.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Return the numerical value to pass to 'fseek' to perform one of the following actions: 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
SEEK_CUR


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 188
 -- Built-in Function: SEEK_CUR ()
     Return the numerical value to pass to 'fseek' to position the file pointer relative to the current position.

     See also: SEEK_SET, SEEK_END.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return the numerical value to pass to 'fseek' to position the file pointer relative to the current position.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
SEEK_END


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 187
 -- Built-in Function: SEEK_END ()
     Return the numerical value to pass to 'fseek' to position the file pointer relative to the end of the file.

     See also: SEEK_SET, SEEK_CUR.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Return the numerical value to pass to 'fseek' to position the file pointer relative to the end of the file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
stdin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 244
 -- Built-in Function: stdin ()
     Return the numeric value corresponding to the standard input stream.

     When Octave is used interactively, stdin is filtered through the command line editing functions.

     See also: stdout, stderr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard input stream.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
stdout


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 224
 -- Built-in Function: stdout ()
     Return the numeric value corresponding to the standard output stream.

     Data written to the standard output is normally filtered through the pager.

     See also: stdin, stderr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return the numeric value corresponding to the standard output stream.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
stderr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 267
 -- Built-in Function: stderr ()
     Return the numeric value corresponding to the standard error stream.

     Even if paging is turned on, the standard error is not sent to the pager.  It is useful for error messages and prompts.

     See also: stdin, stdout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard error stream.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
filter


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1623
 -- Built-in Function: Y = filter (B, A, X)
 -- Built-in Function: [Y, SF] = filter (B, A, X, SI)
 -- Built-in Function: [Y, SF] = filter (B, A, X, [], DIM)
 -- Built-in Function: [Y, SF] = filter (B, A, X, SI, DIM)
     Apply a 1-D digital filter to the data X.

     'filter' returns the solution to the following linear, time-invariant difference equation:

           N                   M
          SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k)    for 1<=n<=length(x)
          k=0                 k=0

     where N=length(a)-1 and M=length(b)-1.  The result is calculated over the first non-singleton dimension of X or over DIM if supplied.

     An equivalent form of the equation is:

                    N                   M
          y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k)  for 1<=n<=length(x)
                   k=1                 k=0

     where c = a/a(1) and d = b/a(1).

     If the fourth argument SI is provided, it is taken as the initial state of the system and the final state is returned as SF.  The state vector is a column vector whose length is equal to the length of the longest coefficient vector minus one.  If SI is not supplied, the initial state vector is set to all zeros.

     In terms of the Z Transform, Y is the result of passing the discrete-time signal X through a system characterized by the following rational system function:

                    M
                   SUM d(k+1) z^(-k)
                   k=0
          H(z) = ---------------------
                      N
                 1 + SUM c(k+1) z^(-k)
                     k=1

     See also: filter2, fftfilt, freqz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Apply a 1-D digital filter to the data X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
find


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1687
 -- Built-in Function: IDX = find (X)
 -- Built-in Function: IDX = find (X, N)
 -- Built-in Function: IDX = find (X, N, DIRECTION)
 -- Built-in Function: [i, j] = find (...)
 -- Built-in Function: [i, j, v] = find (...)
     Return a vector of indices of nonzero elements of a matrix, as a row if X is a row vector or as a column otherwise.

     To obtain a single index for each matrix element, Octave pretends that the columns of a matrix form one long vector (like Fortran arrays are stored).  For example:

          find (eye (2))
            => [ 1; 4 ]

     If two inputs are given, N indicates the maximum number of elements to find from the beginning of the matrix or vector.

     If three inputs are given, DIRECTION should be one of "first" or "last", requesting only the first or last N indices, respectively.  However, the indices are always returned in ascending order.

     If two outputs are requested, 'find' returns the row and column indices of nonzero elements of a matrix.  For example:

          [i, j] = find (2 * eye (2))
              => i = [ 1; 2 ]
              => j = [ 1; 2 ]

     If three outputs are requested, 'find' also returns a vector containing the nonzero values.  For example:

          [i, j, v] = find (3 * eye (2))
                 => i = [ 1; 2 ]
                 => j = [ 1; 2 ]
                 => v = [ 3; 3 ]

     Note that this function is particularly useful for sparse matrices, as it extracts the nonzero elements as vectors, which can then be used to create the original matrix.  For example:

          sz = size (a);
          [i, j, v] = find (a);
          b = sparse (i, j, v, sz(1), sz(2));

     See also: nonzeros.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Return a vector of indices of nonzero elements of a matrix, as a row if X is a row vector or as a column otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gammainc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1090
 -- Mapping Function: gammainc (X, A)
 -- Mapping Function: gammainc (X, A, "lower")
 -- Mapping Function: gammainc (X, A, "upper")
     Compute the normalized incomplete gamma function.

     This is defined as

                                          x
                                 1       /
          gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
                            gamma (a)    /
                                      t=0

     with the limiting value of 1 as X approaches infinity.  The standard notation is P(a,x), e.g., Abramowitz and Stegun (6.5.1).

     If A is scalar, then 'gammainc (X, A)' is returned for each element of X and vice versa.

     If neither X nor A is scalar, the sizes of X and A must agree, and 'gammainc' is applied element-by-element.

     By default the incomplete gamma function integrated from 0 to X is computed.  If "upper" is given then the complementary function integrated from X to infinity is calculated.  It should be noted that

          gammainc (X, A) == 1 - gammainc (X, A, "upper")

     See also: gamma, gammaln.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the normalized incomplete gamma function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
gcd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 828
 -- Built-in Function: G = gcd (A1, A2, ...)
 -- Built-in Function: [G, V1, ...] = gcd (A1, A2, ...)
     Compute the greatest common divisor of A1, A2, ....

     If more than one argument is given then all arguments must be the same size or scalar.  In this case the greatest common divisor is calculated for each element individually.  All elements must be ordinary or Gaussian (complex) integers.  Note that for Gaussian integers, the gcd is only unique up to a phase factor (multiplication by 1, -1, i, or -i), so an arbitrary greatest common divisor among the four possible is returned.

     Optional return arguments V1, ..., contain integer vectors such that,

          G = V1 .* A1 + V2 .* A2 + ...

     Example code:

          gcd ([15, 9], [20, 18])
             =>  5  9

     See also: lcm, factor, isprime.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the greatest common divisor of A1, A2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getgrent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 225
 -- Built-in Function: GRP_STRUCT = getgrent ()
     Return an entry from the group database, opening it if necessary.

     Once the end of data has been reached, 'getgrent' returns 0.

     See also: setgrent, endgrent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return an entry from the group database, opening it if necessary.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getgrgid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 232
 -- Built-in Function: GRP_STRUCT = getgrgid (GID).
     Return the first entry from the group database with the group ID GID.

     If the group ID does not exist in the database, 'getgrgid' returns 0.

     See also: getgrnam.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return the first entry from the group database with the group ID GID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getgrnam


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 237
 -- Built-in Function: GRP_STRUCT = getgrnam (NAME)
     Return the first entry from the group database with the group name NAME.

     If the group name does not exist in the database, 'getgrnam' returns 0.

     See also: getgrgid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return the first entry from the group database with the group name NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setgrent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
 -- Built-in Function: setgrent ()
     Return the internal pointer to the beginning of the group database.

     See also: getgrent, endgrent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Return the internal pointer to the beginning of the group database.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
endgrent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Built-in Function: endgrent ()
     Close the group database.

     See also: getgrent, setgrent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Close the group database.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getpwent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 254
 -- Built-in Function: PW_STRUCT = getpwent ()
     Return a structure containing an entry from the password database, opening it if necessary.

     Once the end of the data has been reached, 'getpwent' returns 0.

     See also: setpwent, endpwent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
Return a structure containing an entry from the password database, opening it if necessary.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getpwuid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 255
 -- Built-in Function: PW_STRUCT = getpwuid (UID).
     Return a structure containing the first entry from the password database with the user ID UID.

     If the user ID does not exist in the database, 'getpwuid' returns 0.

     See also: getpwnam.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return a structure containing the first entry from the password database with the user ID UID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
getpwnam


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 261
 -- Built-in Function: PW_STRUCT = getpwnam (NAME)
     Return a structure containing the first entry from the password database with the user name NAME.

     If the user name does not exist in the database, 'getpwname' returns 0.

     See also: getpwuid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Return a structure containing the first entry from the password database with the user name NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
setpwent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
 -- Built-in Function: setpwent ()
     Return the internal pointer to the beginning of the password database.

     See also: getpwent, endpwent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Return the internal pointer to the beginning of the password database.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
endpwent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
 -- Built-in Function: endpwent ()
     Close the password database.

     See also: getpwent, setpwent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Close the password database.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
getrusage


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1362
 -- Built-in Function: getrusage ()
     Return a structure containing a number of statistics about the current Octave process.

     Not all fields are available on all systems.  If it is not possible to get CPU time statistics, the CPU time slots are set to zero.  Other missing data are replaced by NaN.  The list of possible fields is:

     'idrss'
          Unshared data size.

     'inblock'
          Number of block input operations.

     'isrss'
          Unshared stack size.

     'ixrss'
          Shared memory size.

     'majflt'
          Number of major page faults.

     'maxrss'
          Maximum data size.

     'minflt'
          Number of minor page faults.

     'msgrcv'
          Number of messages received.

     'msgsnd'
          Number of messages sent.

     'nivcsw'
          Number of involuntary context switches.

     'nsignals'
          Number of signals received.

     'nswap'
          Number of swaps.

     'nvcsw'
          Number of voluntary context switches.

     'oublock'
          Number of block output operations.

     'stime'
          A structure containing the system CPU time used.  The structure has the elements 'sec' (seconds) 'usec' (microseconds).

     'utime'
          A structure containing the user CPU time used.  The structure has the elements 'sec' (seconds) 'usec' (microseconds).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return a structure containing a number of statistics about the current Octave process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
givens


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 536
 -- Built-in Function: G = givens (X, Y)
 -- Built-in Function: [C, S] = givens (X, Y)
     Compute the Givens rotation matrix G.

     The Givens matrix is a 2 by 2 orthogonal matrix

     'G = [C S; -S' C]'

     such that

     'G [X; Y] = [*; 0]'

     with X and Y scalars.

     If two output arguments are requested, return the factors C and S rather than the Givens rotation matrix.

     For example:

          givens (1, 1)
             =>   0.70711   0.70711
                 -0.70711   0.70711

     See also: planerot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute the Givens rotation matrix G.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ishandle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
 -- Built-in Function: ishandle (H)
     Return true if H is a graphics handle and false otherwise.

     H may also be a matrix of handles in which case a logical array is returned that is true where the elements of H are graphics handles and false where they are not.

     See also: isaxes, isfigure.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
reset


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 428
 -- Built-in Function: reset (H)
     Reset the properties of the graphic object H to their default values.

     For figures, the properties "position", "units", "windowstyle", and "paperunits" are not affected.  For axes, the properties "position" and "units" are not affected.

     The input H may also be a vector of graphic handles in which case each individual object will be reset.

     See also: cla, clf, newplot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Reset the properties of the graphic object H to their default values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
set


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2297
 -- Built-in Function: set (H, PROPERTY, VALUE, ...)
 -- Built-in Function: set (H, PROPERTIES, VALUES)
 -- Built-in Function: set (H, PV)
 -- Built-in Function: VALUE_LIST = set (H, PROPERTY)
 -- Built-in Function: ALL_VALUE_LIST = set (H)
     Set named property values for the graphics handle (or vector of graphics handles) H.

     There are three ways to give the property names and values:

        * as a comma separated list of PROPERTY, VALUE pairs

          Here, each PROPERTY is a string containing the property name, each VALUE is a value of the appropriate type for the property.

        * as a cell array of strings PROPERTIES containing property names and a cell array VALUES containing property values.

          In this case, the number of columns of VALUES must match the number of elements in PROPERTIES.  The first column of VALUES contains values for the first entry in PROPERTIES, etc.  The number of rows of VALUES must be 1 or match the number of elements of H.  In the first case, each handle in H will be assigned the same values.  In the latter case, the first handle in H will be assigned the values from the first row of VALUES and so on.

        * as a structure array PV

          Here, the field names of PV represent the property names, and the field values give the property values.  In contrast to the previous case, all elements of PV will be set in all handles in H independent of the dimensions of PV.

     'set' is also used to query the list of values a named property will take.  'CLIST = set (H, "property")' will return the list of possible values for "property" in the cell list CLIST.  If no output variable is used then the list is formatted and printed to the screen.

     If no property is specified ('SLIST = set (H)') then a structure SLIST is returned where the fieldnames are the properties of the object H and the fields are the list of possible values for each property.  If no output variable is used then the list is formatted and printed to the screen.

     For example,

          hf = figure ();
          set (hf, "paperorientation")
          =>  paperorientation:  [ landscape | {portrait} | rotated ]

     shows the paperorientation property can take three values with the default being "portrait".

     See also: get.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Set named property values for the graphics handle (or vector of graphics handles) H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
get


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
 -- Built-in Function: VAL = get (H)
 -- Built-in Function: VAL = get (H, P)
     Return the value of the named property P from the graphics handle H.

     If P is omitted, return the complete property list for H.

     If H is a vector, return a cell array including the property values or lists respectively.

     See also: set.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return the value of the named property P from the graphics handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
available_graphics_toolkits


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
 -- Built-in Function: available_graphics_toolkits ()
     Return a cell array of registered graphics toolkits.

     See also: graphics_toolkit, register_graphics_toolkit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return a cell array of registered graphics toolkits.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
register_graphics_toolkit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 159
 -- Built-in Function: register_graphics_toolkit (TOOLKIT)
     List TOOLKIT as an available graphics toolkit.

     See also: available_graphics_toolkits.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
List TOOLKIT as an available graphics toolkit.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
loaded_graphics_toolkits


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
 -- Built-in Function: loaded_graphics_toolkits ()
     Return a cell array of the currently loaded graphics toolkits.

     See also: available_graphics_toolkits.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return a cell array of the currently loaded graphics toolkits.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
drawnow


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 492
 -- Built-in Function: drawnow ()
 -- Built-in Function: drawnow ("expose")
 -- Built-in Function: drawnow (TERM, FILE, MONO, DEBUG_FILE)
     Update figure windows and their children.

     The event queue is flushed and any callbacks generated are executed.

     With the optional argument "expose", only graphic objects are updated and no other events or callbacks are processed.

     The third calling form of 'drawnow' is for debugging and is undocumented.

     See also: refresh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Update figure windows and their children.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
addlistener


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1134
 -- Built-in Function: addlistener (H, PROP, FCN)
     Register FCN as listener for the property PROP of the graphics object H.

     Property listeners are executed (in order of registration) when the property is set.  The new value is already available when the listeners are executed.

     PROP must be a string naming a valid property in H.

     FCN can be a function handle, a string or a cell array whose first element is a function handle.  If FCN is a function handle, the corresponding function should accept at least 2 arguments, that will be set to the object handle and the empty matrix respectively.  If FCN is a string, it must be any valid octave expression.  If FCN is a cell array, the first element must be a function handle with the same signature as described above.  The next elements of the cell array are passed as additional arguments to the function.

     Example:

          function my_listener (h, dummy, p1)
            fprintf ("my_listener called with p1=%s\n", p1);
          endfunction

          addlistener (gcf, "position", {@my_listener, "my string"})

     See also: addproperty, hggroup.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Register FCN as listener for the property PROP of the graphics object H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
dellistener


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 635
 -- Built-in Function: dellistener (H, PROP, FCN)
     Remove the registration of FCN as a listener for the property PROP of the graphics object H.

     The function FCN must be the same variable (not just the same value), as was passed to the original call to 'addlistener'.

     If FCN is not defined then all listener functions of PROP are removed.

     Example:

          function my_listener (h, dummy, p1)
            fprintf ("my_listener called with p1=%s\n", p1);
          endfunction

          c = {@my_listener, "my string"};
          addlistener (gcf, "position", c);
          dellistener (gcf, "position", c);

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Remove the registration of FCN as a listener for the property PROP of the graphics object H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
addproperty


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2448
 -- Built-in Function: addproperty (NAME, H, TYPE)
 -- Built-in Function: addproperty (NAME, H, TYPE, ARG, ...)
     Create a new property named NAME in graphics object H.

     TYPE determines the type of the property to create.  ARGS usually contains the default value of the property, but additional arguments might be given, depending on the type of the property.

     The supported property types are:

     'string'
          A string property.  ARG contains the default string value.

     'any'
          An un-typed property.  This kind of property can hold any octave value.  ARGS contains the default value.

     'radio'
          A string property with a limited set of accepted values.  The first argument must be a string with all accepted values separated by a vertical bar ('|').  The default value can be marked by enclosing it with a '{' '}' pair.  The default value may also be given as an optional second string argument.

     'boolean'
          A boolean property.  This property type is equivalent to a radio property with "on|off" as accepted values.  ARG contains the default property value.

     'double'
          A scalar double property.  ARG contains the default value.

     'handle'
          A handle property.  This kind of property holds the handle of a graphics object.  ARG contains the default handle value.  When no default value is given, the property is initialized to the empty matrix.

     'data'
          A data (matrix) property.  ARG contains the default data value.  When no default value is given, the data is initialized to the empty matrix.

     'color'
          A color property.  ARG contains the default color value.  When no default color is given, the property is set to black.  An optional second string argument may be given to specify an additional set of accepted string values (like a radio property).

     TYPE may also be the concatenation of a core object type and a valid property name for that object type.  The property created then has the same characteristics as the referenced property (type, possible values, hidden state...).  This allows one to clone an existing property into the graphics object H.

     Examples:

          addproperty ("my_property", gcf, "string", "a string value");
          addproperty ("my_radio", gcf, "radio", "val_1|val_2|{val_3}");
          addproperty ("my_style", gcf, "linelinestyle", "--");

     See also: addlistener, hggroup.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Create a new property named NAME in graphics object H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
waitfor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1833
 -- Built-in Function: waitfor (H)
 -- Built-in Function: waitfor (H, PROP)
 -- Built-in Function: waitfor (H, PROP, VALUE)
 -- Built-in Function: waitfor (..., "timeout", TIMEOUT)
     Suspend the execution of the current program until a condition is satisfied on the graphics handle H.

     While the program is suspended graphics events are still processed normally, allowing callbacks to modify the state of graphics objects.  This function is reentrant and can be called from a callback, while another 'waitfor' call is pending at the top-level.

     In the first form, program execution is suspended until the graphics object H is destroyed.  If the graphics handle is invalid, the function returns immediately.

     In the second form, execution is suspended until the graphics object is destroyed or the property named PROP is modified.  If the graphics handle is invalid or the property does not exist, the function returns immediately.

     In the third form, execution is suspended until the graphics object is destroyed or the property named PROP is set to VALUE.  The function 'isequal' is used to compare property values.  If the graphics handle is invalid, the property does not exist or the property is already set to VALUE, the function returns immediately.

     An optional timeout can be specified using the property 'timeout'.  This timeout value is the number of seconds to wait for the condition to be true.  TIMEOUT must be at least 1.  If a smaller value is specified, a warning is issued and a value of 1 is used instead.  If the timeout value is not an integer, it is truncated towards 0.

     To define a condition on a property named 'timeout', use the string '\timeout' instead.

     In all cases, typing CTRL-C stops program execution immediately.

     See also: waitforbuttonpress, isequal.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Suspend the execution of the current program until a condition is satisfied on the graphics handle H.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
built_in_docstrings_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 834
 -- Built-in Function: VAL = built_in_docstrings_file ()
 -- Built-in Function: OLD_VAL = built_in_docstrings_file (NEW_VAL)
 -- Built-in Function: built_in_docstrings_file (NEW_VAL, "local")
     Query or set the internal variable that specifies the name of the file containing docstrings for built-in Octave functions.

     The default value is 'OCTAVE-HOME/share/octave/VERSION/etc/built-in-docstrings', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number.  The default value may be overridden by the environment variable 'OCTAVE_BUILT_IN_DOCSTRINGS_FILE', or the command line argument '--built-in-docstrings-file FNAME'.

     Note: This variable is only used when Octave is initializing itself.  Modifying it during a running session of Octave will have no effect.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Query or set the internal variable that specifies the name of the file containing docstrings for built-in Octave functions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
get_help_text


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
 -- Built-in Function: [TEXT, FORMAT] = get_help_text (NAME)
     Return the raw help text of function NAME.

     The raw help text is returned in TEXT and the format in FORMAT The format is a string which is one of "texinfo", "html", or "plain text".

     See also: get_help_text_from_file.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return the raw help text of function NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
get_help_text_from_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 301
 -- Built-in Function: [TEXT, FORMAT] = get_help_text_from_file (FNAME)
     Return the raw help text from the file FNAME.

     The raw help text is returned in TEXT and the format in FORMAT The format is a string which is one of "texinfo", "html", or "plain text".

     See also: get_help_text.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the raw help text from the file FNAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
doc_cache_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1007
 -- Built-in Function: VAL = doc_cache_file ()
 -- Built-in Function: OLD_VAL = doc_cache_file (NEW_VAL)
 -- Built-in Function: doc_cache_file (NEW_VAL, "local")
     Query or set the internal variable that specifies the name of the Octave documentation cache file.

     A cache file significantly improves the performance of the 'lookfor' command.  The default value is 'OCTAVE-HOME/share/octave/VERSION/etc/doc-cache', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number.  The default value may be overridden by the environment variable 'OCTAVE_DOC_CACHE_FILE', or the command line argument '--doc-cache-file FNAME'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: doc_cache_create, lookfor, info_program, doc, help, makeinfo_program.

     See also: lookfor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Query or set the internal variable that specifies the name of the Octave documentation cache file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
texi_macros_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 941
 -- Built-in Function: VAL = texi_macros_file ()
 -- Built-in Function: OLD_VAL = texi_macros_file (NEW_VAL)
 -- Built-in Function: texi_macros_file (NEW_VAL, "local")
     Query or set the internal variable that specifies the name of the file containing Texinfo macros that are prepended to documentation strings before they are passed to makeinfo.

     The default value is 'OCTAVE-HOME/share/octave/VERSION/etc/macros.texi', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number.  The default value may be overridden by the environment variable 'OCTAVE_TEXI_MACROS_FILE', or the command line argument '--texi-macros-file FNAME'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: makeinfo_program.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
Query or set the internal variable that specifies the name of the file containing Texinfo macros that are prepended to documentation strings before they are passed to makeinfo.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
info_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 776
 -- Built-in Function: VAL = info_file ()
 -- Built-in Function: OLD_VAL = info_file (NEW_VAL)
 -- Built-in Function: info_file (NEW_VAL, "local")
     Query or set the internal variable that specifies the name of the Octave info file.

     The default value is 'OCTAVE-HOME/info/octave.info', in which OCTAVE-HOME is the root directory of the Octave installation.  The default value may be overridden by the environment variable 'OCTAVE_INFO_FILE', or the command line argument '--info-file FNAME'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: info_program, doc, help, makeinfo_program.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Query or set the internal variable that specifies the name of the Octave info file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
info_program


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 912
 -- Built-in Function: VAL = info_program ()
 -- Built-in Function: OLD_VAL = info_program (NEW_VAL)
 -- Built-in Function: info_program (NEW_VAL, "local")
     Query or set the internal variable that specifies the name of the info program to run.

     The default value is 'OCTAVE-HOME/libexec/octave/VERSION/exec/ARCH/info' in which OCTAVE-HOME is the root directory of the Octave installation, VERSION is the Octave version number, and ARCH is the system type (for example, 'i686-pc-linux-gnu').  The default value may be overridden by the environment variable 'OCTAVE_INFO_PROGRAM', or the command line argument '--info-program NAME'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: info_file, doc, help, makeinfo_program.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Query or set the internal variable that specifies the name of the info program to run.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
makeinfo_program


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 645
 -- Built-in Function: VAL = makeinfo_program ()
 -- Built-in Function: OLD_VAL = makeinfo_program (NEW_VAL)
 -- Built-in Function: makeinfo_program (NEW_VAL, "local")
     Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands.

     The default value is 'makeinfo'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: texi_macros_file, info_file, info_program, doc, help.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
suppress_verbose_help_message


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 620
 -- Built-in Function: VAL = suppress_verbose_help_message ()
 -- Built-in Function: OLD_VAL = suppress_verbose_help_message (NEW_VAL)
 -- Built-in Function: suppress_verbose_help_message (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the 'help' command and usage messages for built-in commands.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the 'help' command and usage messages for built-in commands.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hess


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 606
 -- Built-in Function: H = hess (A)
 -- Built-in Function: [P, H] = hess (A)
     Compute the Hessenberg decomposition of the matrix A.

     The Hessenberg decomposition is 'P * H * P' = A' where P is a square unitary matrix ('P' * P = I', using complex-conjugate transposition) and H is upper Hessenberg ('H(i, j) = 0 forall i >= j+1)'.

     The Hessenberg decomposition is usually used as the first step in an eigenvalue computation, but has other applications as well (see Golub, Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979).

     See also: eig, chol, lu, qr, qz, schur, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the Hessenberg decomposition of the matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hex2num


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 818
 -- Built-in Function: N = hex2num (S)
 -- Built-in Function: N = hex2num (S, CLASS)
     Typecast the 16 character hexadecimal character string to an IEEE 754 double precision number.

     If fewer than 16 characters are given the strings are right padded with '0' characters.

     Given a string matrix, 'hex2num' treats each row as a separate number.

          hex2num (["4005bf0a8b145769"; "4024000000000000"])
             => [2.7183; 10.000]

     The optional argument CLASS can be passed as the string "single" to specify that the given string should be interpreted as a single precision number.  In this case, S should be an 8 character hexadecimal string.  For example:

          hex2num (["402df854"; "41200000"], "single")
             => [2.7183; 10.000]

     See also: num2hex, hex2dec, dec2hex.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Typecast the 16 character hexadecimal character string to an IEEE 754 double precision number.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
num2hex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 670
 -- Built-in Function: S = num2hex (N)
     Typecast a double or single precision number or vector to a 8 or 16 character hexadecimal string of the IEEE 754 representation of the number.

     For example:

          num2hex ([-1, 1, e, Inf])
          => "bff0000000000000
              3ff0000000000000
              4005bf0a8b145769
              7ff0000000000000"

     If the argument N is a single precision number or vector, the returned string has a length of 8.  For example:

          num2hex (single ([-1, 1, e, Inf]))
          => "bf800000
              3f800000
              402df854
              7f800000"

     See also: hex2num, hex2dec, dec2hex.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
Typecast a double or single precision number or vector to a 8 or 16 character hexadecimal string of the IEEE 754 representation of the number.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
input


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1093
 -- Built-in Function: ANS = input (PROMPT)
 -- Built-in Function: ANS = input (PROMPT, "s")
     Print PROMPT and wait for user input.

     For example,

          input ("Pick a number, any number! ")

     prints the prompt

          Pick a number, any number!

     and waits for the user to enter a value.  The string entered by the user is evaluated as an expression, so it may be a literal constant, a variable name, or any other valid Octave code.

     The number of return arguments, their size, and their class depend on the expression entered.

     If you are only interested in getting a literal string value, you can call 'input' with the character string "s" as the second argument.  This tells Octave to return the string entered by the user directly, without evaluating it first.

     Because there may be output waiting to be displayed by the pager, it is a good idea to always call 'fflush (stdout)' before calling 'input'.  This will ensure that all pending output is written to the screen before your prompt.

     See also: yes_or_no, kbhit, pause, menu, listdlg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Print PROMPT and wait for user input.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
yes_or_no


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 455
 -- Built-in Function: ANS = yes_or_no ("PROMPT")
     Ask the user a yes-or-no question.

     Return logical true if the answer is yes or false if the answer is no.

     Takes one argument, PROMPT, which is the string to display when asking the question.  PROMPT should end in a space; 'yes-or-no' adds the string '(yes or no) ' to it.  The user must confirm the answer with <RET> and can edit it until it has been confirmed.

     See also: input.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Ask the user a yes-or-no question.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
keyboard


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 676
 -- Built-in Function: keyboard ()
 -- Built-in Function: keyboard ("PROMPT")
     Stop m-file execution and enter debug mode.

     When the 'keyboard' function is executed, Octave prints a prompt and waits for user input.  The input strings are then evaluated and the results are printed.  This makes it possible to examine the values of variables within a function, and to assign new values if necessary.  To leave the prompt and return to normal execution type 'return' or 'dbcont'.  The 'keyboard' function does not return an exit status.

     If 'keyboard' is invoked without arguments, a default prompt of 'debug> ' is used.

     See also: dbstop, dbcont, dbquit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Stop m-file execution and enter debug mode.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
echo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 654
 -- Command: echo
 -- Command: echo on
 -- Command: echo off
 -- Command: echo on all
 -- Command: echo off all
     Control whether commands are displayed as they are executed.

     Valid options are:

     'on'
          Enable echoing of commands as they are executed in script files.

     'off'
          Disable echoing of commands as they are executed in script files.

     'on all'
          Enable echoing of commands as they are executed in script files and functions.

     'off all'
          Disable echoing of commands as they are executed in script files and functions.

     With no arguments, 'echo' toggles the current echo state.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Control whether commands are displayed as they are executed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
completion_matches


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
 -- Built-in Function: completion_matches (HINT)
     Generate possible completions given HINT.

     This function is provided for the benefit of programs like Emacs which might be controlling Octave and handling user input.  The current command number is not incremented when this function is called.  This is a feature, not a bug.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Generate possible completions given HINT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
readline_read_init_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 303
 -- Built-in Function: readline_read_init_file (FILE)
     Read the readline library initialization file FILE.

     If FILE is omitted, read the default initialization file (normally '~/.inputrc').

     *Note (readline)Readline Init File::, for details.

     See also: readline_re_read_init_file.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Read the readline library initialization file FILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
readline_re_read_init_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 228
 -- Built-in Function: readline_re_read_init_file ()
     Re-read the last readline library initialization file that was read.

     *Note (readline)Readline Init File::, for details.

     See also: readline_read_init_file.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Re-read the last readline library initialization file that was read.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
add_input_event_hook


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 539
 -- Built-in Function: ID = add_input_event_hook (FCN)
 -- Built-in Function: ID = add_input_event_hook (FCN, DATA)
     Add the named function or function handle FCN to the list of functions to call periodically when Octave is waiting for input.

     The function should have the form

          FCN (DATA)

     If DATA is omitted, Octave calls the function without any arguments.

     The returned identifier may be used to remove the function handle from the list of input hook functions.

     See also: remove_input_event_hook.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Add the named function or function handle FCN to the list of functions to call periodically when Octave is waiting for input.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
remove_input_event_hook


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
 -- Built-in Function: remove_input_event_hook (NAME)
 -- Built-in Function: remove_input_event_hook (FCN_ID)
     Remove the named function or function handle with the given identifier from the list of functions to call periodically when Octave is waiting for input.

     See also: add_input_event_hook.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Remove the named function or function handle with the given identifier from the list of functions to call periodically when Octave is waiting for input.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
PS1


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1147
 -- Built-in Function: VAL = PS1 ()
 -- Built-in Function: OLD_VAL = PS1 (NEW_VAL)
 -- Built-in Function: PS1 (NEW_VAL, "local")
     Query or set the primary prompt string.

     When executing interactively, Octave displays the primary prompt when it is ready to read a command.

     The default value of the primary prompt string is "octave:\#> ".  To change it, use a command like

          PS1 ("\\u@\\H> ")

     which will result in the prompt 'boris@kremvax> ' for the user 'boris' logged in on the host 'kremvax.kgb.su'.  Note that two backslashes are required to enter a backslash into a double-quoted character string.  *Note Strings::.

     You can also use ANSI escape sequences if your terminal supports them.  This can be useful for coloring the prompt.  For example,

          PS1 ("\\[\\033[01;31m\\]\\s:\\#> \\[\\033[0m\\]")

     will give the default Octave prompt a red coloring.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: PS2, PS4.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Query or set the primary prompt string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
PS2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 737
 -- Built-in Function: VAL = PS2 ()
 -- Built-in Function: OLD_VAL = PS2 (NEW_VAL)
 -- Built-in Function: PS2 (NEW_VAL, "local")
     Query or set the secondary prompt string.

     The secondary prompt is printed when Octave is expecting additional input to complete a command.  For example, if you are typing a 'for' loop that spans several lines, Octave will print the secondary prompt at the beginning of each line after the first.  The default value of the secondary prompt string is "> ".

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: PS1, PS4.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Query or set the secondary prompt string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
PS4


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 612
 -- Built-in Function: VAL = PS4 ()
 -- Built-in Function: OLD_VAL = PS4 (NEW_VAL)
 -- Built-in Function: PS4 (NEW_VAL, "local")
     Query or set the character string used to prefix output produced when echoing commands is enabled.

     The default value is "+ ".  *Note Diary and Echo Commands::, for a description of echoing commands.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: echo, echo_executing_commands, PS1, PS2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Query or set the character string used to prefix output produced when echoing commands is enabled.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
completion_append_char


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 566
 -- Built-in Function: VAL = completion_append_char ()
 -- Built-in Function: OLD_VAL = completion_append_char (NEW_VAL)
 -- Built-in Function: completion_append_char (NEW_VAL, "local")
     Query or set the internal character variable that is appended to successful command-line completion attempts.

     The default value is " " (a single space).

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Query or set the internal character variable that is appended to successful command-line completion attempts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
echo_executing_commands


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 928
 -- Built-in Function: VAL = echo_executing_commands ()
 -- Built-in Function: OLD_VAL = echo_executing_commands (NEW_VAL)
 -- Built-in Function: echo_executing_commands (NEW_VAL, "local")
     Query or set the internal variable that controls the echo state.

     It may be the sum of the following values:

     1
          Echo commands read from script files.

     2
          Echo commands from functions.

     4
          Echo commands read from command line.

     More than one state can be active at once.  For example, a value of 3 is equivalent to the command 'echo on all'.

     The value of 'echo_executing_commands' may be set by the 'echo' command or the command line option '--echo-commands'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Query or set the internal variable that controls the echo state.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
filemarker


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1033
 -- Built-in Function: VAL = filemarker ()
 -- Built-in Function: OLD_VAL = filemarker (NEW_VAL)
 -- Built-in Function: filemarker (NEW_VAL, "local")
     Query or set the character used to separate the filename from the subfunction names contained within the file.

     By default this is the character '>'.  This can be used in a generic manner to interact with subfunctions.  For example,

          help (["myfunc", filemarker, "mysubfunc"])

     returns the help string associated with the subfunction 'mysubfunc' located in the file 'myfunc.m'.

     'filemarker' is also useful during debugging for placing breakpoints within subfunctions or nested functions.  For example,

          dbstop (["myfunc", filemarker, "mysubfunc"])

     will set a breakpoint at the first line of the subfunction 'mysubfunc'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Query or set the character used to separate the filename from the subfunction names contained within the file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 725
 -- Built-in Function: X = inv (A)
 -- Built-in Function: [X, RCOND] = inv (A)
     Compute the inverse of the square matrix A.

     Return an estimate of the reciprocal condition number if requested, otherwise warn of an ill-conditioned matrix if the reciprocal condition number is small.

     In general it is best to avoid calculating the inverse of a matrix directly.  For example, it is both faster and more accurate to solve systems of equations (A*x = b) with 'Y = A \ b', rather than 'Y = inv (A) * b'.

     If called with a sparse matrix, then in general X will be a full matrix requiring significantly more storage.  Avoid forming the inverse of a sparse matrix if possible.

     See also: ldivide, rdivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute the inverse of the square matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
inverse


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
 -- Built-in Function: X = inverse (A)
 -- Built-in Function: [X, RCOND] = inverse (A)
     Compute the inverse of the square matrix A.

     This is an alias for 'inv'.

     See also: inv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Compute the inverse of the square matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
kron


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 564
 -- Built-in Function: kron (A, B)
 -- Built-in Function: kron (A1, A2, ...)
     Form the Kronecker product of two or more matrices.

     This is defined block by block as

          x = [ a(i,j)*b ]

     For example:

          kron (1:4, ones (3, 1))
               =>  1  2  3  4
                   1  2  3  4
                   1  2  3  4

     If there are more than two input arguments A1, A2, ..., AN the Kronecker product is computed as

          kron (kron (A1, A2), ..., AN)

     Since the Kronecker product is associative, this is well-defined.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Form the Kronecker product of two or more matrices.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
genpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 267
 -- Built-in Function: genpath (DIR)
 -- Built-in Function: genpath (DIR, SKIP, ...)
     Return a path constructed from DIR and all its subdirectories.

     If additional string parameters are given, the resulting path will exclude directories with those names.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return a path constructed from DIR and all its subdirectories.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rehash


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
 -- Built-in Function: rehash ()
     Reinitialize Octave's load path directory cache.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Reinitialize Octave's load path directory cache.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
command_line_path


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
 -- Built-in Function: command_line_path (...)
     Return the command line path variable.

     See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return the command line path variable.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
restoredefaultpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 187
 -- Built-in Function: restoredefaultpath (...)
     Restore Octave's path to its initial state at startup.

     See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Restore Octave's path to its initial state at startup.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
path


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 551
 -- Built-in Function: path (...)
     Modify or display Octave's load path.

     If NARGIN and NARGOUT are zero, display the elements of Octave's load path in an easy to read format.

     If NARGIN is zero and nargout is greater than zero, return the current load path.

     If NARGIN is greater than zero, concatenate the arguments, separating them with 'pathsep'.  Set the internal search path to the result and return it.

     No checks are made for duplicate elements.

     See also: addpath, rmpath, genpath, pathdef, savepath, pathsep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Modify or display Octave's load path.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
addpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 618
 -- Built-in Function: addpath (DIR1, ...)
 -- Built-in Function: addpath (DIR1, ..., OPTION)
     Add named directories to the function search path.

     If OPTION is "-begin" or 0 (the default), prepend the directory name to the current path.  If OPTION is "-end" or 1, append the directory name to the current path.  Directories added to the path must exist.

     In addition to accepting individual directory arguments, lists of directory names separated by 'pathsep' are also accepted.  For example:

          addpath ("dir1:/dir2:~/dir3")

     See also: path, rmpath, genpath, pathdef, savepath, pathsep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Add named directories to the function search path.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rmpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 358
 -- Built-in Function: rmpath (DIR1, ...)
     Remove DIR1, ... from the current function search path.

     In addition to accepting individual directory arguments, lists of directory names separated by 'pathsep' are also accepted.  For example:

          rmpath ("dir1:/dir2:~/dir3")

     See also: path, addpath, genpath, pathdef, savepath, pathsep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
Remove DIR1, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
load


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3607
 -- Command: load file
 -- Command: load options file
 -- Command: load options file v1 v2 ...
 -- Command: S = load ("options", "file", "v1", "v2", ...)
 -- Command: load file options
 -- Command: load file options v1 v2 ...
 -- Command: S = load ("file", "options", "v1", "v2", ...)
     Load the named variables V1, V2, ..., from the file FILE.

     If no variables are specified then all variables found in the file will be loaded.  As with 'save', the list of variables to extract can be full names or use a pattern syntax.  The format of the file is automatically detected but may be overridden by supplying the appropriate option.

     If load is invoked using the functional form

          load ("-option1", ..., "file", "v1", ...)

     then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.

     If a variable that is not marked as global is loaded from a file when a global symbol with the same name already exists, it is loaded in the global symbol table.  Also, if a variable is marked as global in a file and a local symbol exists, the local symbol is moved to the global symbol table and given the value from the file.

     If invoked with a single output argument, Octave returns data instead of inserting variables in the symbol table.  If the data file contains only numbers (TAB- or space-delimited columns), a matrix of values is returned.  Otherwise, 'load' returns a structure with members corresponding to the names of the variables in the file.

     The 'load' command can read data stored in Octave's text and binary formats, and MATLAB's binary format.  If compiled with zlib support, it can also load gzip-compressed files.  It will automatically detect the type of file and do conversion from different floating point formats (currently only IEEE big and little endian, though other formats may be added in the future).

     Valid options for 'load' are listed in the following table.

     '-force'
          This option is accepted for backward compatibility but is ignored.  Octave now overwrites variables currently in memory with those of the same name found in the file.

     '-ascii'
          Force Octave to assume the file contains columns of numbers in text format without any header or other information.  Data in the file will be loaded as a single numeric matrix with the name of the variable derived from the name of the file.

     '-binary'
          Force Octave to assume the file is in Octave's binary format.

     '-hdf5'
          Force Octave to assume the file is in HDF5 format.  (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.)  Note that Octave can read HDF5 files not created by itself, but may skip some datasets in formats that it cannot support.  This format is only available if Octave was built with a link to the HDF5 libraries.

     '-import'
          This option is accepted for backward compatibility but is ignored.  Octave can now support multi-dimensional HDF data and automatically modifies variable names if they are invalid Octave identifiers.

     '-mat'
     '-mat-binary'
     '-6'
     '-v6'
     '-7'
     '-v7'
          Force Octave to assume the file is in MATLAB's version 6 or 7 binary format.

     '-mat4-binary'
     '-4'
     '-v4'
     '-V4'
          Force Octave to assume the file is in the binary format written by MATLAB version 4.

     '-text'
          Force Octave to assume the file is in Octave's text format.

     See also: save, dlmwrite, csvwrite, fwrite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Load the named variables V1, V2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
save


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4067
 -- Command: save file
 -- Command: save options file
 -- Command: save options file V1 V2 ...
 -- Command: save options file -struct STRUCT F1 F2 ...
 -- Command: save '"-"' V1 V2 ...
 -- Built-in Function: S = save ('"-"' V1 V2 ...)
     Save the named variables V1, V2, ..., in the file FILE.

     The special filename '-' may be used to return the content of the variables as a string.  If no variable names are listed, Octave saves all the variables in the current scope.  Otherwise, full variable names or pattern syntax can be used to specify the variables to save.  If the '-struct' modifier is used, fields F1 F2 ... of the scalar structure STRUCT are saved as if they were variables with corresponding names.  Valid options for the 'save' command are listed in the following table.  Options that modify the output format override the format specified by 'save_default_options'.

     If save is invoked using the functional form

          save ("-option1", ..., "file", "v1", ...)

     then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.

     If called with a filename of "-", write the output to stdout if nargout is 0, otherwise return the output in a character string.

     '-append'
          Append to the destination instead of overwriting.

     '-ascii'
          Save a single matrix in a text file without header or any other information.

     '-binary'
          Save the data in Octave's binary data format.

     '-float-binary'
          Save the data in Octave's binary data format but only using single precision.  Only use this format if you know that all the values to be saved can be represented in single precision.

     '-hdf5'
          Save the data in HDF5 format.  (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.)  This format is only available if Octave was built with a link to the HDF5 libraries.

     '-float-hdf5'
          Save the data in HDF5 format but only using single precision.  Only use this format if you know that all the values to be saved can be represented in single precision.

     '-V7'
     '-v7'
     '-7'
     '-mat7-binary'
          Save the data in MATLAB's v7 binary data format.

     '-V6'
     '-v6'
     '-6'
     '-mat'
     '-mat-binary'
          Save the data in MATLAB's v6 binary data format.

     '-V4'
     '-v4'
     '-4'
     '-mat4-binary'
          Save the data in the binary format written by MATLAB version 4.

     '-text'
          Save the data in Octave's text data format.  (default).

     '-zip'
     '-z'
          Use the gzip algorithm to compress the file.  This works equally on files that are compressed with gzip outside of octave, and gzip can equally be used to convert the files for backward compatibility.  This option is only available if Octave was built with a link to the zlib libraries.

     The list of variables to save may use wildcard patterns containing the following special characters:

     '?'
          Match any single character.

     '*'
          Match zero or more characters.

     '[ LIST ]'
          Match the list of characters specified by LIST.  If the first character is '!' or '^', match all characters except those specified by LIST.  For example, the pattern '[a-zA-Z]' will match all lower and uppercase alphabetic characters.

          Wildcards may also be used in the field name specifications when using the '-struct' modifier (but not in the struct name itself).

     Except when using the MATLAB binary data file format or the '-ascii' format, saving global variables also saves the global status of the variable.  If the variable is restored at a later time using 'load', it will be restored as a global variable.

     The command

          save -binary data a b*

     saves the variable 'a' and all variables beginning with 'b' to the file 'data' in Octave's binary format.

     See also: load, save_default_options, save_header_format_string, dlmread, csvread, fread.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Save the named variables V1, V2, .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
crash_dumps_octave_core


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 695
 -- Built-in Function: VAL = crash_dumps_octave_core ()
 -- Built-in Function: OLD_VAL = crash_dumps_octave_core (NEW_VAL)
 -- Built-in Function: crash_dumps_octave_core (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it crashes or receives a hangup, terminate or similar signal.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: octave_core_file_limit, octave_core_file_name, octave_core_file_options.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 195
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it crashes or receives a hangup, terminate or similar signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
save_default_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 633
 -- Built-in Function: VAL = save_default_options ()
 -- Built-in Function: OLD_VAL = save_default_options (NEW_VAL)
 -- Built-in Function: save_default_options (NEW_VAL, "local")
     Query or set the internal variable that specifies the default options for the 'save' command, and defines the default format.

     Typical values include "-ascii", "-text -zip".  The default value is '-text'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: save.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Query or set the internal variable that specifies the default options for the 'save' command, and defines the default format.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
octave_core_file_limit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1019
 -- Built-in Function: VAL = octave_core_file_limit ()
 -- Built-in Function: OLD_VAL = octave_core_file_limit (NEW_VAL)
 -- Built-in Function: octave_core_file_limit (NEW_VAL, "local")
     Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME).

     If OCTAVE_CORE_FILE_OPTIONS flags specify a binary format, then OCTAVE_CORE_FILE_LIMIT will be approximately the maximum size of the file.  If a text file format is used, then the file could be much larger than the limit.  The default value is -1 (unlimited)

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 256
Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
octave_core_file_name


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 679
 -- Built-in Function: VAL = octave_core_file_name ()
 -- Built-in Function: OLD_VAL = octave_core_file_name (NEW_VAL)
 -- Built-in Function: octave_core_file_name (NEW_VAL, "local")
     Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts.

     The default value is "octave-workspace"

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 138
Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
octave_core_file_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 778
 -- Built-in Function: VAL = octave_core_file_options ()
 -- Built-in Function: OLD_VAL = octave_core_file_options (NEW_VAL)
 -- Built-in Function: octave_core_file_options (NEW_VAL, "local")
     Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts.

     The value of 'octave_core_file_options' should follow the same format as the options for the 'save' function.  The default value is Octave's binary format.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_limit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
save_header_format_string


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
 -- Built-in Function: VAL = save_header_format_string ()
 -- Built-in Function: OLD_VAL = save_header_format_string (NEW_VAL)
 -- Built-in Function: save_header_format_string (NEW_VAL, "local")
     Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave.

     The format string is passed to 'strftime' and should begin with the character '#' and contain no newline characters.  If the value of 'save_header_format_string' is the empty string, the header comment is omitted from text-format data files.  The default value is

          "# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: strftime, save.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lookup


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1575
 -- Built-in Function: IDX = lookup (TABLE, Y)
 -- Built-in Function: IDX = lookup (TABLE, Y, OPT)
     Lookup values in a sorted table.

     This function is usually used as a prelude to interpolation.

     If table is increasing and 'idx = lookup (table, y)', then 'table(idx(i)) <= y(i) < table(idx(i+1))' for all 'y(i)' within the table.  If 'y(i) < table(1)' then 'idx(i)' is 0.  If 'y(i) >= table(end)' or 'isnan (y(i))' then 'idx(i)' is 'n'.

     If the table is decreasing, then the tests are reversed.  For non-strictly monotonic tables, empty intervals are always skipped.  The result is undefined if TABLE is not monotonic, or if TABLE contains a NaN.

     The complexity of the lookup is O(M*log(N)) where N is the size of TABLE and M is the size of Y.  In the special case when Y is also sorted, the complexity is O(min(M*log(N),M+N)).

     TABLE and Y can also be cell arrays of strings (or Y can be a single string).  In this case, string lookup is performed using lexicographical comparison.

     If OPTS is specified, it must be a string with letters indicating additional options.

     'm'
          'table(idx(i)) == val(i)' if 'val(i)' occurs in table; otherwise, 'idx(i)' is zero.

     'b'
          'idx(i)' is a logical 1 or 0, indicating whether 'val(i)' is contained in table or not.

     'l'
          For numeric lookups the leftmost subinterval shall be extended to infinity (i.e., all indices at least 1)

     'r'
          For numeric lookups the rightmost subinterval shall be extended to infinity (i.e., all indices at most n-1).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Lookup values in a sorted table.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
save_precision


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 495
 -- Built-in Function: VAL = save_precision ()
 -- Built-in Function: OLD_VAL = save_precision (NEW_VAL)
 -- Built-in Function: save_precision (NEW_VAL, "local")
     Query or set the internal variable that specifies the number of digits to keep when saving data in text format.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that specifies the number of digits to keep when saving data in text format.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
lsode_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2056
 -- Built-in Function: lsode_options ()
 -- Built-in Function: val = lsode_options (OPT)
 -- Built-in Function: lsode_options (OPT, VAL)
     Query or set options for the function 'lsode'.

     When called with no arguments, the names of all available options and their current values are displayed.

     Given one argument, return the value of the option OPT.

     When called with two arguments, 'lsode_options' sets the option OPT to value VAL.

     Options include

     '"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector.

     '"relative tolerance"'
          Relative tolerance parameter.  Unlike the absolute tolerance, this parameter may only be a scalar.

          The local error test applied at each integration step is

                 abs (local error in x(i)) <= ...
                     rtol * abs (y(i)) + atol(i)

     '"integration method"'
          A string specifying the method of integration to use to solve the ODE system.  Valid values are

          "adams"
          "non-stiff"
               No Jacobian used (even if it is available).

          "bdf"
          "stiff"
               Use stiff backward differentiation formula (BDF) method.  If a function to compute the Jacobian is not supplied, 'lsode' will compute a finite difference approximation of the Jacobian matrix.

     '"initial step size"'
          The step size to be attempted on the first step (default is determined automatically).

     '"maximum order"'
          Restrict the maximum order of the solution method.  If using the Adams method, this option must be between 1 and 12.  Otherwise, it must be between 1 and 5, inclusive.

     '"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions (default is not specified).

     '"minimum step size"'
          The minimum absolute step size allowed (default is 0).

     '"step limit"'
          Maximum number of steps allowed (default is 100000).
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Query or set options for the function 'lsode'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lsode


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2725
 -- Built-in Function: [X, ISTATE, MSG] = lsode (FCN, X_0, T)
 -- Built-in Function: [X, ISTATE, MSG] = lsode (FCN, X_0, T, T_CRIT)
     Ordinary Differential Equation (ODE) solver.

     The set of differential equations to solve is

          dx
          -- = f (x, t)
          dt

     with

          x(t_0) = x_0

     The solution is returned in the matrix X, with each row corresponding to an element of the vector T.  The first element of T should be t_0 and should correspond to the initial state of the system X_0, so that the first row of the output is X_0.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of right hand sides for the set of equations.  The function must have the form

          XDOT = f (X, T)

     in which XDOT and X are vectors and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the Jacobian of f.  The Jacobian function must have the form

          JAC = j (X, T)

     in which JAC is the matrix of partial derivatives

                       | df_1  df_1       df_1 |
                       | ----  ----  ...  ---- |
                       | dx_1  dx_2       dx_N |
                       |                       |
                       | df_2  df_2       df_2 |
                       | ----  ----  ...  ---- |
                df_i   | dx_1  dx_2       dx_N |
          jac = ---- = |                       |
                dx_j   |  .    .     .    .    |
                       |  .    .      .   .    |
                       |  .    .       .  .    |
                       |                       |
                       | df_N  df_N       df_N |
                       | ----  ----  ...  ---- |
                       | dx_1  dx_2       dx_N |

     The second and third arguments specify the initial state of the system, x_0, and the initial value of the independent variable t_0.

     The fourth argument is optional, and may be used to specify a set of times that the ODE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be 2 (consistent with the Fortran version of LSODE).

     If the computation is not successful, ISTATE will be something other than 2 and MSG will contain additional information.

     You can use the function 'lsode_options' to set optional parameters for 'lsode'.

     See also: daspk, dassl, dasrt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Ordinary Differential Equation (ODE) solver.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
lu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2495
 -- Built-in Function: [L, U] = lu (A)
 -- Built-in Function: [L, U, P] = lu (A)
 -- Built-in Function: [L, U, P, Q] = lu (S)
 -- Built-in Function: [L, U, P, Q, R] = lu (S)
 -- Built-in Function: [...] = lu (S, THRES)
 -- Built-in Function: Y = lu (...)
 -- Built-in Function: [...] = lu (..., "vector")
     Compute the LU decomposition of A.

     If A is full subroutines from LAPACK are used and if A is sparse then UMFPACK is used.

     The result is returned in a permuted form, according to the optional return value P.  For example, given the matrix 'a = [1, 2; 3, 4]',

          [l, u, p] = lu (A)

     returns

          l =

            1.00000  0.00000
            0.33333  1.00000

          u =

            3.00000  4.00000
            0.00000  0.66667

          p =

            0  1
            1  0

     The matrix is not required to be square.

     When called with two or three output arguments and a spare input matrix, 'lu' does not attempt to perform sparsity preserving column permutations.  Called with a fourth output argument, the sparsity preserving column transformation Q is returned, such that 'P * A * Q = L * U'.

     Called with a fifth output argument and a sparse input matrix, 'lu' attempts to use a scaling factor R on the input matrix such that 'P * (R \ A) * Q = L * U'.  This typically leads to a sparser and more stable factorization.

     An additional input argument THRES, that defines the pivoting threshold can be given.  THRES can be a scalar, in which case it defines the UMFPACK pivoting tolerance for both symmetric and unsymmetric cases.  If THRES is a 2-element vector, then the first element defines the pivoting tolerance for the unsymmetric UMFPACK pivoting strategy and the second for the symmetric strategy.  By default, the values defined by 'spparms' are used ([0.1, 0.001]).

     Given the string argument "vector", 'lu' returns the values of P and Q as vector values, such that for full matrix, 'A (P,:) = L * U', and 'R(P,:) * A (:, Q) = L * U'.

     With two output arguments, returns the permuted forms of the upper and lower triangular matrices, such that 'A = L * U'.  With one output argument Y, then the matrix returned by the LAPACK routines is returned.  If the input matrix is sparse then the matrix L is embedded into U to give a return value similar to the full case.  For both full and sparse matrices, 'lu' loses the permutation information.

     See also: luupdate, ilu, chol, hess, qr, qz, schur, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Compute the LU decomposition of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
luupdate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1181
 -- Built-in Function: [L, U] = luupdate (L, U, X, Y)
 -- Built-in Function: [L, U, P] = luupdate (L, U, P, X, Y)
     Given an LU factorization of a real or complex matrix A = L*U, L lower unit trapezoidal and U upper trapezoidal, return the LU factorization of A + X*Y.', where X and Y are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).

     Optionally, row-pivoted updating can be used by supplying a row permutation (pivoting) matrix P; in that case, an updated permutation matrix is returned.  Note that if L, U, P is a pivoted LU factorization as obtained by 'lu':

          [L, U, P] = lu (A);

     then a factorization of A+X*Y.'  can be obtained either as

          [L1, U1] = lu (L, U, P*X, Y)

     or

          [L1, U1, P1] = lu (L, U, P, X, Y)

     The first form uses the unpivoted algorithm, which is faster, but less stable.  The second form uses a slower pivoted algorithm, which is more stable.

     The matrix case is done as a sequence of rank-1 updates; thus, for large enough k, it will be both faster and more accurate to recompute the factorization from scratch.

     See also: lu, cholupdate, qrupdate.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Given an LU factorization of a real or complex matrix A = L*U, L lower unit trapezoidal and U upper trapezoidal, return the LU factorization of A + X*Y.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
abs


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 210
 -- Mapping Function: abs (Z)
     Compute the magnitude of Z.

     The magnitude is defined as |Z| = 'sqrt (x^2 + y^2)'.

     For example:

          abs (3 + 4i)
               => 5

     See also: arg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the magnitude of Z.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
acos


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 128
 -- Mapping Function: acos (X)
     Compute the inverse cosine in radians for each element of X.

     See also: cos, acosd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse cosine in radians for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acosh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
 -- Mapping Function: acosh (X)
     Compute the inverse hyperbolic cosine for each element of X.

     See also: cosh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute the inverse hyperbolic cosine for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
angle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 -- Mapping Function: angle (Z)
     See 'arg'.

     See also: arg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
See 'arg'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
arg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 262
 -- Mapping Function: arg (Z)
 -- Mapping Function: angle (Z)
     Compute the argument, i.e., angle of Z.

     This is defined as, THETA = 'atan2 (Y, X)', in radians.

     For example:

          arg (3 + 4i)
               => 0.92730

     See also: abs.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Compute the argument, i.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
asin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
 -- Mapping Function: asin (X)
     Compute the inverse sine in radians for each element of X.

     See also: sin, asind.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the inverse sine in radians for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
asinh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
 -- Mapping Function: asinh (X)
     Compute the inverse hyperbolic sine for each element of X.

     See also: sinh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the inverse hyperbolic sine for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
atan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
 -- Mapping Function: atan (X)
     Compute the inverse tangent in radians for each element of X.

     See also: tan, atand.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse tangent in radians for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
atanh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
 -- Mapping Function: atanh (X)
     Compute the inverse hyperbolic tangent for each element of X.

     See also: tanh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute the inverse hyperbolic tangent for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cbrt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
 -- Mapping Function: cbrt (X)
     Compute the real cube root of each element of X.

     Unlike 'X^(1/3)', the result will be negative if X is negative.

     See also: nthroot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the real cube root of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ceil


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 309
 -- Mapping Function: ceil (X)
     Return the smallest integer not less than X.

     This is equivalent to rounding towards positive infinity.

     If X is complex, return 'ceil (real (X)) + ceil (imag (X)) * I'.

          ceil ([-2.7, 2.7])
              => -2    3

     See also: floor, round, fix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the smallest integer not less than X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
conj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
 -- Mapping Function: conj (Z)
     Return the complex conjugate of Z.

     The complex conjugate is defined as 'conj (Z)' = X - IY.

     See also: real, imag.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the complex conjugate of Z.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cos


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
 -- Mapping Function: cos (X)
     Compute the cosine for each element of X in radians.

     See also: acos, cosd, cosh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the cosine for each element of X in radians.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
cosh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
 -- Mapping Function: cosh (X)
     Compute the hyperbolic cosine for each element of X.

     See also: acosh, sinh, tanh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Compute the hyperbolic cosine for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
erf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
 -- Mapping Function: erf (Z)
     Compute the error function.

     The error function is defined as

                                  z
                        2        /
          erf (z) = --------- *  | e^(-t^2) dt
                    sqrt (pi)    /
                              t=0

     See also: erfc, erfcx, erfi, dawson, erfinv, erfcinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the error function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
erfinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 212
 -- Mapping Function: erfinv (X)
     Compute the inverse error function.

     The inverse error function is defined such that

          erf (Y) == X

     See also: erf, erfc, erfcx, erfi, dawson, erfcinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Compute the inverse error function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
erfcinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 241
 -- Mapping Function: erfcinv (X)
     Compute the inverse complementary error function.

     The inverse complementary error function is defined such that

          erfc (Y) == X

     See also: erfc, erf, erfcx, erfi, dawson, erfinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the inverse complementary error function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
erfc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
 -- Mapping Function: erfc (Z)
     Compute the complementary error function.

     The complementary error function is defined as '1 - erf (Z)'.

     See also: erfcinv, erfcx, erfi, dawson, erf, erfinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Compute the complementary error function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
erfcx


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 239
 -- Mapping Function: erfcx (Z)
     Compute the scaled complementary error function.

     The scaled complementary error function is defined as

          exp (z^2) * erfc (z)

     See also: erfc, erf, erfi, dawson, erfinv, erfcinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Compute the scaled complementary error function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
erfi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 211
 -- Mapping Function: erfi (Z)
     Compute the imaginary error function.

     The imaginary error function is defined as

          -i * erf (i*z)

     See also: erfc, erf, erfcx, dawson, erfinv, erfcinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute the imaginary error function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dawson


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
 -- Mapping Function: dawson (Z)
     Compute the Dawson (scaled imaginary error) function.

     The Dawson function is defined as

          (sqrt (pi) / 2) * exp (-z^2) * erfi (z)

     See also: erfc, erf, erfcx, erfi, erfinv, erfcinv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the Dawson (scaled imaginary error) function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
exp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
 -- Mapping Function: exp (X)
     Compute 'e^x' for each element of X.

     To compute the matrix exponential, see *note Linear Algebra::.

     See also: log.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Compute 'e^x' for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
expm1


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
 -- Mapping Function: expm1 (X)
     Compute 'exp (X) - 1' accurately in the neighborhood of zero.

     See also: exp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute 'exp (X) - 1' accurately in the neighborhood of zero.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isfinite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 281
 -- Mapping Function: isfinite (X)
     Return a logical array which is true where the elements of X are finite values and false where they are not.

     For example:

          isfinite ([13, Inf, NA, NaN])
               => [ 1, 0, 0, 0 ]

     See also: isinf, isnan, isna.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return a logical array which is true where the elements of X are finite values and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
fix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
 -- Mapping Function: fix (X)
     Truncate fractional portion of X and return the integer portion.

     This is equivalent to rounding towards zero.  If X is complex, return 'fix (real (X)) + fix (imag (X)) * I'.

          fix ([-2.7, 2.7])
             => -2    2

     See also: ceil, floor, round.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Truncate fractional portion of X and return the integer portion.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
floor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 310
 -- Mapping Function: floor (X)
     Return the largest integer not greater than X.

     This is equivalent to rounding towards negative infinity.  If X is complex, return 'floor (real (X)) + floor (imag (X)) * I'.

          floor ([-2.7, 2.7])
               => -3    2

     See also: ceil, round, fix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Return the largest integer not greater than X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
gamma


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 597
 -- Mapping Function: gamma (Z)
     Compute the Gamma function.

     The Gamma function is defined as

                       infinity
                      /
          gamma (z) = | t^(z-1) exp (-t) dt.
                      /
                   t=0

     Programming Note: The gamma function can grow quite large even for small input values.  In many cases it may be preferable to use the natural logarithm of the gamma function ('gammaln') in calculations to minimize loss of precision.  The final result is then 'exp (RESULT_USING_GAMMALN).'

     See also: gammainc, gammaln, factorial.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Compute the Gamma function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
imag


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
 -- Mapping Function: imag (Z)
     Return the imaginary part of Z as a real number.

     See also: real, conj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the imaginary part of Z as a real number.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isalnum


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 275
 -- Mapping Function: isalnum (S)
     Return a logical array which is true where the elements of S are letters or digits and false where they are not.

     This is equivalent to ('isalpha (S) | isdigit (S)').

     See also: isalpha, isdigit, ispunct, isspace, iscntrl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return a logical array which is true where the elements of S are letters or digits and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isalpha


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 283
 -- Mapping Function: isalpha (S)
     Return a logical array which is true where the elements of S are letters and false where they are not.

     This is equivalent to ('islower (S) | isupper (S)').

     See also: isdigit, ispunct, isspace, iscntrl, isalnum, islower, isupper.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Return a logical array which is true where the elements of S are letters and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isascii


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
 -- Mapping Function: isascii (S)
     Return a logical array which is true where the elements of S are ASCII characters (in the range 0 to 127 decimal) and false where they are not.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Return a logical array which is true where the elements of S are ASCII characters (in the range 0 to 127 decimal) and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
iscntrl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
 -- Mapping Function: iscntrl (S)
     Return a logical array which is true where the elements of S are control characters and false where they are not.

     See also: ispunct, isspace, isalpha, isdigit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
Return a logical array which is true where the elements of S are control characters and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isdigit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 230
 -- Mapping Function: isdigit (S)
     Return a logical array which is true where the elements of S are decimal digits (0-9) and false where they are not.

     See also: isxdigit, isalpha, isletter, ispunct, isspace, iscntrl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 115
Return a logical array which is true where the elements of S are decimal digits (0-9) and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isinf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 274
 -- Mapping Function: isinf (X)
     Return a logical array which is true where the elements of X are infinite and false where they are not.

     For example:

          isinf ([13, Inf, NA, NaN])
                => [ 0, 1, 0, 0 ]

     See also: isfinite, isnan, isna.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Return a logical array which is true where the elements of X are infinite and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isgraph


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 213
 -- Mapping Function: isgraph (S)
     Return a logical array which is true where the elements of S are printable characters (but not the space character) and false where they are not.

     See also: isprint.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
Return a logical array which is true where the elements of S are printable characters (but not the space character) and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
islower


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
 -- Mapping Function: islower (S)
     Return a logical array which is true where the elements of S are lowercase letters and false where they are not.

     See also: isupper, isalpha, isletter, isalnum.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return a logical array which is true where the elements of S are lowercase letters and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
isna


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 283
 -- Mapping Function: isna (X)
     Return a logical array which is true where the elements of X are NA (missing) values and false where they are not.

     For example:

          isna ([13, Inf, NA, NaN])
               => [ 0, 0, 1, 0 ]

     See also: isnan, isinf, isfinite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Return a logical array which is true where the elements of X are NA (missing) values and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
isnan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 319
 -- Mapping Function: isnan (X)
     Return a logical array which is true where the elements of X are NaN values and false where they are not.

     NA values are also considered NaN values.  For example:

          isnan ([13, Inf, NA, NaN])
                => [ 0, 0, 1, 1 ]

     See also: isna, isinf, isfinite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Return a logical array which is true where the elements of X are NaN values and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isprint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
 -- Mapping Function: isprint (S)
     Return a logical array which is true where the elements of S are printable characters (including the space character) and false where they are not.

     See also: isgraph.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
Return a logical array which is true where the elements of S are printable characters (including the space character) and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ispunct


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 212
 -- Mapping Function: ispunct (S)
     Return a logical array which is true where the elements of S are punctuation characters and false where they are not.

     See also: isalpha, isdigit, isspace, iscntrl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Return a logical array which is true where the elements of S are punctuation characters and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isspace


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 278
 -- Mapping Function: isspace (S)
     Return a logical array which is true where the elements of S are whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab) and false where they are not.

     See also: iscntrl, ispunct, isalpha, isdigit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
Return a logical array which is true where the elements of S are whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab) and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isupper


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 208
 -- Mapping Function: isupper (S)
     Return a logical array which is true where the elements of S are uppercase letters and false where they are not.

     See also: islower, isalpha, isletter, isalnum.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return a logical array which is true where the elements of S are uppercase letters and false where they are not.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isxdigit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 170
 -- Mapping Function: isxdigit (S)
     Return a logical array which is true where the elements of S are hexadecimal digits (0-9 and a-fA-F).

     See also: isdigit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Return a logical array which is true where the elements of S are hexadecimal digits (0-9 and a-fA-F).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lgamma


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
 -- Mapping Function: gammaln (X)
 -- Mapping Function: lgamma (X)
     Return the natural logarithm of the gamma function of X.

     See also: gamma, gammainc.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return the natural logarithm of the gamma function of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
log


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
 -- Mapping Function: log (X)
     Compute the natural logarithm, 'ln (X)', for each element of X.

     To compute the matrix logarithm, see *note Linear Algebra::.

     See also: exp, log1p, log2, log10, logspace.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Compute the natural logarithm, 'ln (X)', for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
log10


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 134
 -- Mapping Function: log10 (X)
     Compute the base-10 logarithm of each element of X.

     See also: log, log2, logspace, exp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Compute the base-10 logarithm of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
log1p


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
 -- Mapping Function: log1p (X)
     Compute 'log (1 + X)' accurately in the neighborhood of zero.

     See also: log, exp, expm1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Compute 'log (1 + X)' accurately in the neighborhood of zero.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
real


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
 -- Mapping Function: real (Z)
     Return the real part of Z.

     See also: imag, conj.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return the real part of Z.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
round


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 320
 -- Mapping Function: round (X)
     Return the integer nearest to X.

     If X is complex, return 'round (real (X)) + round (imag (X)) * I'.  If there are two nearest integers, return the one further away from zero.

          round ([-2.7, 2.7])
               => -3    3

     See also: ceil, floor, fix, roundb.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return the integer nearest to X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
roundb


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 249
 -- Mapping Function: roundb (X)
     Return the integer nearest to X.  If there are two nearest integers, return the even one (banker's rounding).

     If X is complex, return 'roundb (real (X)) + roundb (imag (X)) * I'.

     See also: round.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Return the integer nearest to X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sign


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 471
 -- Mapping Function: sign (X)
     Compute the "signum" function.

     This is defined as

                     -1, x < 0;
          sign (x) =  0, x = 0;
                      1, x > 0.

     For complex arguments, 'sign' returns 'x ./ abs (X)'.

     Note that 'sign (-0.0)' is 0.  Although IEEE 754 floating point allows zero to be signed, 0.0 and -0.0 compare equal.  If you must test whether zero is signed, use the 'signbit' function.

     See also: signbit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Compute the "signum" function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
signbit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 526
 -- Mapping Function: signbit (X)
     Return logical true if the value of X has its sign bit set and false otherwise.

     This behavior is consistent with the other logical functions.  See *note Logical Values::.  The behavior differs from the C language function which returns nonzero if the sign bit is set.

     This is not the same as 'x < 0.0', because IEEE 754 floating point allows zero to be signed.  The comparison '-0.0 < 0.0' is false, but 'signbit (-0.0)' will return a nonzero value.

     See also: sign.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return logical true if the value of X has its sign bit set and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
 -- Mapping Function: sin (X)
     Compute the sine for each element of X in radians.

     See also: asin, sind, sinh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the sine for each element of X in radians.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sinh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
 -- Mapping Function: sinh (X)
     Compute the hyperbolic sine for each element of X.

     See also: asinh, cosh, tanh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Compute the hyperbolic sine for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
sqrt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
 -- Mapping Function: sqrt (X)
     Compute the square root of each element of X.

     If X is negative, a complex result is returned.

     To compute the matrix square root, see *note Linear Algebra::.

     See also: realsqrt, nthroot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Compute the square root of each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
tan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
 -- Mapping Function: tan (Z)
     Compute the tangent for each element of X in radians.

     See also: atan, tand, tanh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Compute the tangent for each element of X in radians.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tanh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
 -- Mapping Function: tanh (X)
     Compute hyperbolic tangent for each element of X.

     See also: atanh, sinh, cosh.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute hyperbolic tangent for each element of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
toascii


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 200
 -- Mapping Function: toascii (S)
     Return ASCII representation of S in a matrix.

     For example:

          toascii ("ASCII")
               => [ 65, 83, 67, 73, 73 ]


     See also: char.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return ASCII representation of S in a matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tolower


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 359
 -- Mapping Function: tolower (S)
 -- Mapping Function: lower (S)
     Return a copy of the string or cell string S, with each uppercase character replaced by the corresponding lowercase one; non-alphabetic characters are left unchanged.

     For example:

          tolower ("MiXeD cAsE 123")
                => "mixed case 123"

     See also: toupper.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
Return a copy of the string or cell string S, with each uppercase character replaced by the corresponding lowercase one; non-alphabetic characters are left unchanged.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
toupper


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 359
 -- Mapping Function: toupper (S)
 -- Mapping Function: upper (S)
     Return a copy of the string or cell string S, with each lowercase character replaced by the corresponding uppercase one; non-alphabetic characters are left unchanged.

     For example:

          toupper ("MiXeD cAsE 123")
                => "MIXED CASE 123"

     See also: tolower.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 166
Return a copy of the string or cell string S, with each lowercase character replaced by the corresponding uppercase one; non-alphabetic characters are left unchanged.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
matrix_type


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3158
 -- Built-in Function: TYPE = matrix_type (A)
 -- Built-in Function: TYPE = matrix_type (A, "nocompute")
 -- Built-in Function: A = matrix_type (A, TYPE)
 -- Built-in Function: A = matrix_type (A, "upper", PERM)
 -- Built-in Function: A = matrix_type (A, "lower", PERM)
 -- Built-in Function: A = matrix_type (A, "banded", NL, NU)
     Identify the matrix type or mark a matrix as a particular type.

     This allows more rapid solutions of linear equations involving A to be performed.

     Called with a single argument, 'matrix_type' returns the type of the matrix and caches it for future use.

     Called with more than one argument, 'matrix_type' allows the type of the matrix to be defined.

     If the option "nocompute" is given, the function will not attempt to guess the type if it is still unknown.  This is useful for debugging purposes.

     The possible matrix types depend on whether the matrix is full or sparse, and can be one of the following

     "unknown"
          Remove any previously cached matrix type, and mark type as unknown.

     "full"
          Mark the matrix as full.

     "positive definite"
          Probable full positive definite matrix.

     "diagonal"
          Diagonal matrix.  (Sparse matrices only)

     "permuted diagonal"
          Permuted Diagonal matrix.  The permutation does not need to be specifically indicated, as the structure of the matrix explicitly gives this.  (Sparse matrices only)

     "upper"
          Upper triangular.  If the optional third argument PERM is given, the matrix is assumed to be a permuted upper triangular with the permutations defined by the vector PERM.

     "lower"
          Lower triangular.  If the optional third argument PERM is given, the matrix is assumed to be a permuted lower triangular with the permutations defined by the vector PERM.

     "banded"
     "banded positive definite"
          Banded matrix with the band size of NL below the diagonal and NU above it.  If NL and NU are 1, then the matrix is tridiagonal and treated with specialized code.  In addition the matrix can be marked as probably a positive definite.  (Sparse matrices only)

     "singular"
          The matrix is assumed to be singular and will be treated with a minimum norm solution.

     Note that the matrix type will be discovered automatically on the first attempt to solve a linear equation involving A.  Therefore 'matrix_type' is only useful to give Octave hints of the matrix type.  Incorrectly defining the matrix type will result in incorrect results from solutions of linear equations; it is entirely *the responsibility of the user* to correctly identify the matrix type.

     Also, the test for positive definiteness is a low-cost test for a Hermitian matrix with a real positive diagonal.  This does not guarantee that the matrix is positive definite, but only that it is a probable candidate.  When such a matrix is factorized, a Cholesky factorization is first attempted, and if that fails the matrix is then treated with an LU factorization.  Once the matrix has been factorized, 'matrix_type' will return the correct classification of the matrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Identify the matrix type or mark a matrix as a particular type.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
min


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1538
 -- Built-in Function: min (X)
 -- Built-in Function: min (X, [], DIM)
 -- Built-in Function: [W, IW] = min (X)
 -- Built-in Function: min (X, Y)
     Find minimum values in the array X.

     For a vector argument, return the minimum value.  For a matrix argument, return a row vector with the minimum value of each column.  For a multi-dimensional array, 'min' operates along the first non-singleton dimension.

     If the optional third argument DIM is present then operate along this dimension.  In this case the second argument is ignored and should be set to the empty matrix.

     For two matrices (or a matrix and a scalar), return the pairwise minimum.

     Thus,

          min (min (X))

     returns the smallest element of the 2-D matrix X, and

          min (2:5, pi)
              =>  2.0000  3.0000  3.1416  3.1416

     compares each element of the range '2:5' with 'pi', and returns a row vector of the minimum values.

     For complex arguments, the magnitude of the elements are used for comparison.  If the magnitudes are identical, then the results are ordered by phase angle in the range (-pi, pi].  Hence,

          min ([-1 i 1 -i])
              => -i

     because all entries have magnitude 1, but -i has the smallest phase angle with value -pi/2.

     If called with one input and two output arguments, 'min' also returns the first index of the minimum value(s).  Thus,

          [x, ix] = min ([1, 3, 0, 2, 0])
              =>  x = 0
                  ix = 3

     See also: max, cummin, cummax.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Find minimum values in the array X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
max


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1533
 -- Built-in Function: max (X)
 -- Built-in Function: max (X, [], DIM)
 -- Built-in Function: [W, IW] = max (X)
 -- Built-in Function: max (X, Y)
     Find maximum values in the array X.

     For a vector argument, return the maximum value.  For a matrix argument, return a row vector with the maximum value of each column.  For a multi-dimensional array, 'max' operates along the first non-singleton dimension.

     If the optional third argument DIM is present then operate along this dimension.  In this case the second argument is ignored and should be set to the empty matrix.

     For two matrices (or a matrix and a scalar), return the pairwise maximum.

     Thus,

          max (max (X))

     returns the largest element of the 2-D matrix X, and

          max (2:5, pi)
              =>  3.1416  3.1416  4.0000  5.0000

     compares each element of the range '2:5' with 'pi', and returns a row vector of the maximum values.

     For complex arguments, the magnitude of the elements are used for comparison.  If the magnitudes are identical, then the results are ordered by phase angle in the range (-pi, pi].  Hence,

          max ([-1 i 1 -i])
              => -1

     because all entries have magnitude 1, but -1 has the largest phase angle with value pi.

     If called with one input and two output arguments, 'max' also returns the first index of the maximum value(s).  Thus,

          [x, ix] = max ([1, 3, 5, 2, 5])
              =>  x = 5
                  ix = 3

     See also: min, cummax, cummin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Find maximum values in the array X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cummin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 577
 -- Built-in Function: cummin (X)
 -- Built-in Function: cummin (X, DIM)
 -- Built-in Function: [W, IW] = cummin (X)
     Return the cumulative minimum values along dimension DIM.

     If DIM is unspecified it defaults to column-wise operation.  For example:

          cummin ([5 4 6 2 3 1])
             =>  5  4  4  2  2  1

     If called with two output arguments the index of the minimum value is also returned.

          [w, iw] = cummin ([5 4 6 2 3 1])
          =>
          w =  5  4  4  2  2  1
          iw = 1  2  2  4  4  6

     See also: cummax, min, max.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return the cumulative minimum values along dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cummax


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 579
 -- Built-in Function: cummax (X)
 -- Built-in Function: cummax (X, DIM)
 -- Built-in Function: [W, IW] = cummax (...)
     Return the cumulative maximum values along dimension DIM.

     If DIM is unspecified it defaults to column-wise operation.  For example:

          cummax ([1 3 2 6 4 5])
             =>  1  3  3  6  6  6

     If called with two output arguments the index of the maximum value is also returned.

          [w, iw] = cummax ([1 3 2 6 4 5])
          =>
          w =  1  3  3  6  6  6
          iw = 1  2  2  4  4  4

     See also: cummin, max, min.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return the cumulative maximum values along dimension DIM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
md5sum


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
 -- Built-in Function: md5sum (FILE)
 -- Built-in Function: md5sum (STR, OPT)
     Calculate the MD5 sum of the file FILE.

     If the second parameter OPT exists and is true, then calculate the MD5 sum of the string STR.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Calculate the MD5 sum of the file FILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mgorth


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 326
 -- Built-in Function: [Y, H] = mgorth (X, V)
     Orthogonalize a given column vector X with respect to a set of orthonormal vectors comprising the columns of V using the modified Gram-Schmidt method.

     On exit, Y is a unit vector such that:

            norm (Y) = 1
            V' * Y = 0
            X = [V, Y]*H'

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Orthogonalize a given column vector X with respect to a set of orthonormal vectors comprising the columns of V using the modified Gram-Schmidt method.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
nproc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 462
 -- Built-in Function: nproc ()
 -- Built-in Function: nproc (QUERY)
     Return the current number of available processors.

     If called with the optional argument QUERY, modify how processors are counted as follows:

     'all'
          total number of processors.

     'current'
          processors available to the current process.

     'overridable'
          same as 'current', but overridable through the 'OMP_NUM_THREADS' environment variable.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return the current number of available processors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
edit_history


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1287
 -- Command: edit_history
 -- Command: edit_history CMD_NUMBER
 -- Command: edit_history FIRST LAST
     Edit the history list using the editor named by the variable 'EDITOR'.

     The commands to be edited are first copied to a temporary file.  When you exit the editor, Octave executes the commands that remain in the file.  It is often more convenient to use 'edit_history' to define functions rather than attempting to enter them directly on the command line.  The block of commands is executed as soon as you exit the editor.  To avoid executing any commands, simply delete all the lines from the buffer before leaving the editor.

     When invoked with no arguments, edit the previously executed command; With one argument, edit the specified command CMD_NUMBER; With two arguments, edit the list of commands between FIRST and LAST.  Command number specifiers may also be negative where -1 refers to the most recently executed command.  The following are equivalent and edit the most recently executed command.

          edit_history
          edit_history -1

     When using ranges, specifying a larger number for the first command than the last command reverses the list of commands before they are placed in the buffer to be edited.

     See also: run_history, history.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Edit the history list using the editor named by the variable 'EDITOR'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
history


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1191
 -- Command: history
 -- Command: history OPT1 ...
 -- Built-in Function: H = history ()
 -- Built-in Function: H = history (OPT1, ...)
     If invoked with no arguments, 'history' displays a list of commands that you have executed.

     Valid options are:

     'N'
     '-N'
          Display only the most recent N lines of history.

     '-c'
          Clear the history list.

     '-q'
          Don't number the displayed lines of history.  This is useful for cutting and pasting commands using the X Window System.

     '-r FILE'
          Read the file FILE, appending its contents to the current history list.  If the name is omitted, use the default history file (normally '~/.octave_hist').

     '-w FILE'
          Write the current history to the file FILE.  If the name is omitted, use the default history file (normally '~/.octave_hist').

     For example, to display the five most recent commands that you have typed without displaying line numbers, use the command 'history -q 5'.

     If invoked with a single output argument, the history will be saved to that argument as a cell string and will not be output to screen.

     See also: edit_history, run_history.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 91
If invoked with no arguments, 'history' displays a list of commands that you have executed.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
run_history


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 967
 -- Command: run_history
 -- Command: run_history CMD_NUMBER
 -- Command: run_history FIRST LAST
     Run commands from the history list.

     When invoked with no arguments, run the previously executed command;

     With one argument, run the specified command CMD_NUMBER;

     With two arguments, run the list of commands between FIRST and LAST.  Command number specifiers may also be negative where -1 refers to the most recently executed command.  For example, the command

          run_history
               OR
          run_history -1

     executes the most recent command again.  The command

          run_history 13 169

     executes commands 13 through 169.

     Specifying a larger number for the first command than the last command reverses the list of commands before executing them.  For example:

          disp (1)
          disp (2)
          run_history -1 -2
          =>
           2
           1

     See also: edit_history, history.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Run commands from the history list.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
history_control


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1154
 -- Built-in Function: VAL = history_control ()
 -- Built-in Function: OLD_VAL = history_control (NEW_VAL)
     Query or set the internal variable that specifies how commands are saved to the history list.

     The default value is an empty character string, but may be overridden by the environment variable 'OCTAVE_HISTCONTROL'.

     The value of 'history_control' is a colon-separated list of values controlling how commands are saved on the history list.  If the list of values includes 'ignorespace', lines which begin with a space character are not saved in the history list.  A value of 'ignoredups' causes lines matching the previous history entry to not be saved.  A value of 'ignoreboth' is shorthand for 'ignorespace' and 'ignoredups'.  A value of 'erasedups' causes all previous lines matching the current line to be removed from the history list before that line is saved.  Any value not in the above list is ignored.  If 'history_control' is the empty string, all commands are saved on the history list, subject to the value of 'history_save'.

     See also: history_file, history_size, history_timestamp_format_string, history_save.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
Query or set the internal variable that specifies how commands are saved to the history list.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
history_size


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 387
 -- Built-in Function: VAL = history_size ()
 -- Built-in Function: OLD_VAL = history_size (NEW_VAL)
     Query or set the internal variable that specifies how many entries to store in the history file.

     The default value is '1000', but may be overridden by the environment variable 'OCTAVE_HISTSIZE'.

     See also: history_file, history_timestamp_format_string, history_save.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 96
Query or set the internal variable that specifies how many entries to store in the history file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
history_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 402
 -- Built-in Function: VAL = history_file ()
 -- Built-in Function: OLD_VAL = history_file (NEW_VAL)
     Query or set the internal variable that specifies the name of the file used to store command history.

     The default value is '~/.octave_hist', but may be overridden by the environment variable 'OCTAVE_HISTFILE'.

     See also: history_size, history_save, history_timestamp_format_string.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
Query or set the internal variable that specifies the name of the file used to store command history.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
history_timestamp_format_string


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 784
 -- Built-in Function: VAL = history_timestamp_format_string ()
 -- Built-in Function: OLD_VAL = history_timestamp_format_string (NEW_VAL)
 -- Built-in Function: history_timestamp_format_string (NEW_VAL, "local")
     Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits.

     The format string is passed to 'strftime'.  The default value is

          "# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: strftime, history_file, history_size, history_save.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
history_save


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 596
 -- Built-in Function: VAL = history_save ()
 -- Built-in Function: OLD_VAL = history_save (NEW_VAL)
 -- Built-in Function: history_save (NEW_VAL, "local")
     Query or set the internal variable that controls whether commands entered on the command line are saved in the history file.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: history_control, history_file, history_size, history_timestamp_format_string.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 124
Query or set the internal variable that controls whether commands entered on the command line are saved in the history file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ordschur


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 834
 -- Loadable Function: [UR, SR] = ordschur (U, S, SELECT)
     Reorders the real Schur factorization (U,S) obtained with the 'schur' function, so that selected eigenvalues appear in the upper left diagonal blocks of the quasi triangular Schur matrix.

     The logical vector SELECT specifies the selected eigenvalues as they appear along S's diagonal.

     For example, given the matrix 'A = [1, 2; 3, 4]', and its Schur decomposition

          [U, S] = schur (A)

     which returns

          U =

            -0.82456  -0.56577
             0.56577  -0.82456

          S =

            -0.37228  -1.00000
             0.00000   5.37228


     It is possible to reorder the decomposition so that the positive eigenvalue is in the upper left corner, by doing:

          [U, S] = ordschur (U, S, [0,1])

     See also: schur.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 187
Reorders the real Schur factorization (U,S) obtained with the 'schur' function, so that selected eigenvalues appear in the upper left diagonal blocks of the quasi triangular Schur matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
diary


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 571
 -- Command: diary
 -- Command: diary on
 -- Command: diary off
 -- Command: diary FILENAME
     Record a list of all commands _and_ the output they produce, mixed together just as they appear on the terminal.

     Valid options are:

     on
          Start recording a session in a file called 'diary' in the current working directory.

     off
          Stop recording the session in the diary file.

     FILENAME
          Record the session in the file named FILENAME.

     With no arguments, 'diary' toggles the current diary state.

     See also: history.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Record a list of all commands _and_ the output they produce, mixed together just as they appear on the terminal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
more


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
 -- Command: more
 -- Command: more on
 -- Command: more off
     Turn output pagination on or off.

     Without an argument, 'more' toggles the current state.

     The current state can be determined via 'page_screen_output'.

     See also: page_screen_output, page_output_immediately, PAGER, PAGER_FLAGS.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Turn output pagination on or off.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
terminal_size


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
 -- Built-in Function: terminal_size ()
     Return a two-element row vector containing the current size of the terminal window in characters (rows and columns).

     See also: list_in_columns.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
Return a two-element row vector containing the current size of the terminal window in characters (rows and columns).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
page_output_immediately


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 709
 -- Built-in Function: VAL = page_output_immediately ()
 -- Built-in Function: OLD_VAL = page_output_immediately (NEW_VAL)
 -- Built-in Function: page_output_immediately (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available.

     Otherwise, Octave buffers its output and waits until just before the prompt is printed to flush it to the pager.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: page_screen_output, more, PAGER, PAGER_FLAGS.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
page_screen_output


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 775
 -- Built-in Function: VAL = page_screen_output ()
 -- Built-in Function: OLD_VAL = page_screen_output (NEW_VAL)
 -- Built-in Function: page_screen_output (NEW_VAL, "local")
     Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager.

     This allows you to view one screenful at a time.  Some pagers (such as 'less'--see *note Installation::) are also capable of moving backward on the output.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: more, page_output_immediately, PAGER, PAGER_FLAGS.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
PAGER


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 689
 -- Built-in Function: VAL = PAGER ()
 -- Built-in Function: OLD_VAL = PAGER (NEW_VAL)
 -- Built-in Function: PAGER (NEW_VAL, "local")
     Query or set the internal variable that specifies the program to use to display terminal output on your system.

     The default value is normally "less", "more", or "pg", depending on what programs are installed on your system.  *Note Installation::.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: PAGER_FLAGS, page_output_immediately, more, page_screen_output.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that specifies the program to use to display terminal output on your system.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
PAGER_FLAGS


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 532
 -- Built-in Function: VAL = PAGER_FLAGS ()
 -- Built-in Function: OLD_VAL = PAGER_FLAGS (NEW_VAL)
 -- Built-in Function: PAGER_FLAGS (NEW_VAL, "local")
     Query or set the internal variable that specifies the options to pass to the pager.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: PAGER, more, page_screen_output, page_output_immediately.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Query or set the internal variable that specifies the options to pass to the pager.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 335
 -- Built-in Function: pinv (X)
 -- Built-in Function: pinv (X, TOL)
     Return the pseudoinverse of X.

     Singular values less than TOL are ignored.

     If the second argument is omitted, it is taken to be

          tol = max (size (X)) * sigma_max (X) * eps,

     where 'sigma_max (X)' is the maximal singular value of X.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Return the pseudoinverse of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rats


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 534
 -- Built-in Function: rats (X, LEN)
     Convert X into a rational approximation represented as a string.

     The string can be converted back into a matrix as follows:

          r = rats (hilb (4));
          x = str2num (r)

     The optional second argument defines the maximum length of the string representing the elements of X.  By default LEN is 9.

     If the length of the smallest possible rational approximation exceeds LEN, an asterisk (*) padded with spaces will be returned instead.

     See also: format, rat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Convert X into a rational approximation represented as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
disp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 395
 -- Built-in Function: disp (X)
     Display the value of X.

     For example:

          disp ("The value of pi is:"), disp (pi)

               -| the value of pi is:
               -| 3.1416

     Note that the output from 'disp' always ends with a newline.

     If an output value is requested, 'disp' prints nothing and returns the formatted output in a string.

     See also: fdisp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Display the value of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fdisp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 330
 -- Built-in Function: fdisp (FID, X)
     Display the value of X on the stream FID.

     For example:

          fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

               -| the value of pi is:
               -| 3.1416

     Note that the output from 'fdisp' always ends with a newline.

     See also: disp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Display the value of X on the stream FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
format


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5273
 -- Command: format
 -- Command: format options
     Reset or specify the format of the output produced by 'disp' and Octave's normal echoing mechanism.

     This command only affects the display of numbers but not how they are stored or computed.  To change the internal representation from the default double use one of the conversion functions such as 'single', 'uint8', 'int64', etc.

     By default, Octave displays 5 significant digits in a human readable form (option 'short' paired with 'loose' format for matrices).  If 'format' is invoked without any options, this default format is restored.

     Valid formats for floating point numbers are listed in the following table.

     'short'
          Fixed point format with 5 significant figures in a field that is a maximum of 10 characters wide.  (default).

          If Octave is unable to format a matrix so that columns line up on the decimal point and all numbers fit within the maximum field width then it switches to an exponential 'e' format.

     'long'
          Fixed point format with 15 significant figures in a field that is a maximum of 20 characters wide.

          As with the 'short' format, Octave will switch to an exponential 'e' format if it is unable to format a matrix properly using the current format.

     'short e'
     'long e'
          Exponential format.  The number to be represented is split between a mantissa and an exponent (power of 10).  The mantissa has 5 significant digits in the short format and 15 digits in the long format.  For example, with the 'short e' format, 'pi' is displayed as '3.1416e+00'.

     'short E'
     'long E'
          Identical to 'short e' or 'long e' but displays an uppercase 'E' to indicate the exponent.  For example, with the 'long E' format, 'pi' is displayed as '3.14159265358979E+00'.

     'short g'
     'long g'
          Optimally choose between fixed point and exponential format based on the magnitude of the number.  For example, with the 'short g' format, 'pi .^ [2; 4; 8; 16; 32]' is displayed as

               ans =

                     9.8696
                     97.409
                     9488.5
                 9.0032e+07
                 8.1058e+15

     'short eng'
     'long eng'
          Identical to 'short e' or 'long e' but displays the value using an engineering format, where the exponent is divisible by 3.  For example, with the 'short eng' format, '10 * pi' is displayed as '31.4159e+00'.

     'long G'
     'short G'
          Identical to 'short g' or 'long g' but displays an uppercase 'E' to indicate the exponent.

     'free'
     'none'
          Print output in free format, without trying to line up columns of matrices on the decimal point.  This also causes complex numbers to be formatted as numeric pairs like this '(0.60419, 0.60709)' instead of like this '0.60419 + 0.60709i'.

     The following formats affect all numeric output (floating point and integer types).

     '"+"'
     '"+" CHARS'
     'plus'
     'plus CHARS'
          Print a '+' symbol for matrix elements greater than zero, a '-' symbol for elements less than zero and a space for zero matrix elements.  This format can be very useful for examining the structure of a large sparse matrix.

          The optional argument CHARS specifies a list of 3 characters to use for printing values greater than zero, less than zero and equal to zero.  For example, with the '"+" "+-."' format, '[1, 0, -1; -1, 0, 1]' is displayed as

               ans =

               +.-
               -.+

     'bank'
          Print in a fixed format with two digits to the right of the decimal point.

     'native-hex'
          Print the hexadecimal representation of numbers as they are stored in memory.  For example, on a workstation which stores 8 byte real values in IEEE format with the least significant byte first, the value of 'pi' when printed in 'native-hex' format is '400921fb54442d18'.

     'hex'
          The same as 'native-hex', but always print the most significant byte first.

     'native-bit'
          Print the bit representation of numbers as stored in memory.  For example, the value of 'pi' is

               01000000000010010010000111111011
               01010100010001000010110100011000

          (shown here in two 32 bit sections for typesetting purposes) when printed in native-bit format on a workstation which stores 8 byte real values in IEEE format with the least significant byte first.

     'bit'
          The same as 'native-bit', but always print the most significant bits first.

     'rat'
          Print a rational approximation, i.e., values are approximated as the ratio of small integers.  For example, with the 'rat' format, 'pi' is displayed as '355/113'.

     The following two options affect the display of all matrices.

     'compact'
          Remove blank lines around column number labels and between matrices producing more compact output with more data per page.

     'loose'
          Insert blank lines above and below column number labels and between matrices to produce a more readable output with less data per page.  (default).

     See also: fixed_point_format, output_max_field_width, output_precision, split_long_rows, print_empty_dimensions, rats.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Reset or specify the format of the output produced by 'disp' and Octave's normal echoing mechanism.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
fixed_point_format


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1098
 -- Built-in Function: VAL = fixed_point_format ()
 -- Built-in Function: OLD_VAL = fixed_point_format (NEW_VAL)
 -- Built-in Function: fixed_point_format (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values.

     The scaled format prints a scaling factor on the first line of output chosen such that the largest matrix element can be written with a single leading digit.  For example:

          logspace (1, 7, 5)'
          ans =

            1.0e+07  *

            0.00000
            0.00003
            0.00100
            0.03162
            1.00000

     Notice that the first value appears to be 0 when it is actually 1.  Because of the possibility for confusion you should be careful about enabling 'fixed_point_format'.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: format, output_max_field_width, output_precision.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
print_empty_dimensions


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
 -- Built-in Function: VAL = print_empty_dimensions ()
 -- Built-in Function: OLD_VAL = print_empty_dimensions (NEW_VAL)
 -- Built-in Function: print_empty_dimensions (NEW_VAL, "local")
     Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, '[]'.

     For example, the expression

          zeros (3, 0)

     will print

          ans = [](3x0)

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: format.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, '[]'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
split_long_rows


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1149
 -- Built-in Function: VAL = split_long_rows ()
 -- Built-in Function: OLD_VAL = split_long_rows (NEW_VAL)
 -- Built-in Function: split_long_rows (NEW_VAL, "local")
     Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window.

     If the rows are split, Octave will display the matrix in a series of smaller pieces, each of which can fit within the limits of your terminal width and each set of rows is labeled so that you can easily see which columns are currently being displayed.  For example:

          octave:13> rand (2,10)
          ans =

           Columns 1 through 6:

            0.75883  0.93290  0.40064  0.43818  0.94958  0.16467
            0.75697  0.51942  0.40031  0.61784  0.92309  0.40201

           Columns 7 through 10:

            0.90174  0.11854  0.72313  0.73326
            0.44672  0.94303  0.56564  0.82150

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: format.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
output_max_field_width


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 564
 -- Built-in Function: VAL = output_max_field_width ()
 -- Built-in Function: OLD_VAL = output_max_field_width (NEW_VAL)
 -- Built-in Function: output_max_field_width (NEW_VAL, "local")
     Query or set the internal variable that specifies the maximum width of a numeric output field.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: format, fixed_point_format, output_precision.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Query or set the internal variable that specifies the maximum width of a numeric output field.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
output_precision


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 580
 -- Built-in Function: VAL = output_precision ()
 -- Built-in Function: OLD_VAL = output_precision (NEW_VAL)
 -- Built-in Function: output_precision (NEW_VAL, "local")
     Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: format, fixed_point_format, output_max_field_width.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
quad_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1127
 -- Built-in Function: quad_options ()
 -- Built-in Function: val = quad_options (OPT)
 -- Built-in Function: quad_options (OPT, VAL)
     Query or set options for the function 'quad'.

     When called with no arguments, the names of all available options and their current values are displayed.

     Given one argument, return the value of the option OPT.

     When called with two arguments, 'quad_options' sets the option OPT to value VAL.

     Options include

     '"absolute tolerance"'
          Absolute tolerance; may be zero for pure relative error test.

     '"relative tolerance"'
          Non-negative relative tolerance.  If the absolute tolerance is zero, the relative tolerance must be greater than or equal to 'max (50*eps, 0.5e-28)'.

     '"single precision absolute tolerance"'
          Absolute tolerance for single precision; may be zero for pure relative error test.

     '"single precision relative tolerance"'
          Non-negative relative tolerance for single precision.  If the absolute tolerance is zero, the relative tolerance must be greater than or equal to 'max (50*eps, 0.5e-28)'.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Query or set options for the function 'quad'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
quad


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1725
 -- Built-in Function: Q = quad (F, A, B)
 -- Built-in Function: Q = quad (F, A, B, TOL)
 -- Built-in Function: Q = quad (F, A, B, TOL, SING)
 -- Built-in Function: [Q, IER, NFUN, ERR] = quad (...)
     Numerically evaluate the integral of F from A to B using Fortran routines from QUADPACK.

     F is a function handle, inline function, or a string containing the name of the function to evaluate.  The function must have the form 'y = f (x)' where Y and X are scalars.

     A and B are the lower and upper limits of integration.  Either or both may be infinite.

     The optional argument TOL is a vector that specifies the desired accuracy of the result.  The first element of the vector is the desired absolute tolerance, and the second element is the desired relative tolerance.  To choose a relative test only, set the absolute tolerance to zero.  To choose an absolute test only, set the relative tolerance to zero.  Both tolerances default to 'sqrt (eps)' or approximately 1.5e^{-8}.

     The optional argument SING is a vector of values at which the integrand is known to be singular.

     The result of the integration is returned in Q.

     IER contains an integer error code (0 indicates a successful integration).

     NFUN indicates the number of function evaluations that were made.

     ERR contains an estimate of the error in the solution.

     The function 'quad_options' can set other optional parameters for 'quad'.

     Note: because 'quad' is written in Fortran it cannot be called recursively.  This prevents its use in integrating over more than one variable by routines 'dblquad' and 'triplequad'.

     See also: quad_options, quadv, quadl, quadgk, quadcc, trapz, dblquad, triplequad.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Numerically evaluate the integral of F from A to B using Fortran routines from QUADPACK.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
quadcc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2772
 -- Function File: Q = quadcc (F, A, B)
 -- Function File: Q = quadcc (F, A, B, TOL)
 -- Function File: Q = quadcc (F, A, B, TOL, SING)
 -- Function File: [Q, ERR, NR_POINTS] = quadcc (...)
     Numerically evaluate the integral of F from A to B using doubly-adaptive Clenshaw-Curtis quadrature.

     F is a function handle, inline function, or string containing the name of the function to evaluate.  The function F must be vectorized and must return a vector of output values if given a vector of input values.  For example,

          f = @(x) x .* sin (1./x) .* sqrt (abs (1 - x));

     which uses the element-by-element "dot" form for all operators.

     A and B are the lower and upper limits of integration.  Either or both limits may be infinite.  'quadcc' handles an inifinite limit by substituting the variable of integration with 'x = tan (pi/2*u)'.

     The optional argument TOL defines the relative tolerance used to stop the integration procedure.  The default value is 1e^{-6}.

     The optional argument SING contains a list of points where the integrand has known singularities, or discontinuities in any of its derivatives, inside the integration interval.  For the example above, which has a discontinuity at x=1, the call to 'quadcc' would be as follows

          int = quadcc (f, a, b, 1.0e-6, [ 1 ]);

     The result of the integration is returned in Q.

     ERR is an estimate of the absolute integration error.

     NR_POINTS is the number of points at which the integrand was evaluated.

     If the adaptive integration did not converge, the value of ERR will be larger than the requested tolerance.  Therefore, it is recommended to verify this value for difficult integrands.

     'quadcc' is capable of dealing with non-numeric values of the integrand such as 'NaN' or 'Inf'.  If the integral diverges, and 'quadcc' detects this, then a warning is issued and 'Inf' or '-Inf' is returned.

     Note: 'quadcc' is a general purpose quadrature algorithm and, as such, may be less efficient for a smooth or otherwise well-behaved integrand than other methods such as 'quadgk'.

     The algorithm uses Clenshaw-Curtis quadrature rules of increasing degree in each interval and bisects the interval if either the function does not appear to be smooth or a rule of maximum degree has been reached.  The error estimate is computed from the L2-norm of the difference between two successive interpolations of the integrand over the nodes of the respective quadrature rules.

     Reference: P. Gonnet, 'Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants', ACM Transactions on Mathematical Software, Vol.  37, Issue 3, Article No.  3, 2010.

     See also: quad, quadv, quadl, quadgk, trapz, dblquad, triplequad.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
Numerically evaluate the integral of F from A to B using doubly-adaptive Clenshaw-Curtis quadrature.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1858
 -- Built-in Function: LAMBDA = qz (A, B)
 -- Built-in Function: LAMBDA = qz (A, B, OPT)
     QZ decomposition of the generalized eigenvalue problem (A x = s B x).

     There are three ways to call this function:
       1. 'LAMBDA = qz (A, B)'

          Computes the generalized eigenvalues LAMBDA of (A - s B).

       2. '[AA, BB, Q, Z, V, W, LAMBDA] = qz (A, B)'

          Computes QZ decomposition, generalized eigenvectors, and generalized eigenvalues of (A - s B)


               A * V = B * V * diag (LAMBDA)
               W' * A = diag (LAMBDA) * W' * B
               AA = Q * A * Z, BB = Q * B * Z


          with Q and Z orthogonal (unitary)= I

       3. '[AA,BB,Z{, LAMBDA}] = qz (A, B, OPT)'

          As in form [2], but allows ordering of generalized eigenpairs for, e.g., solution of discrete time algebraic Riccati equations.  Form 3 is not available for complex matrices, and does not compute the generalized eigenvectors V, W, nor the orthogonal matrix Q.

          OPT
               for ordering eigenvalues of the GEP pencil.  The leading block of the revised pencil contains all eigenvalues that satisfy:

               "N"
                    = unordered (default)

               "S"
                    = small: leading block has all |lambda| <= 1

               "B"
                    = big: leading block has all |lambda| >= 1

               "-"
                    = negative real part: leading block has all eigenvalues in the open left half-plane

               "+"
                    = non-negative real part: leading block has all eigenvalues in the closed right half-plane

     Note: 'qz' performs permutation balancing, but not scaling (*note XREFbalance::).  The order of output arguments was selected for compatibility with MATLAB.

     See also: eig, balance, lu, chol, hess, qr, qzhess, schur, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
QZ decomposition of the generalized eigenvalue problem (A x = s B x).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3173
 -- Built-in Function: rand (N)
 -- Built-in Function: rand (M, N, ...)
 -- Built-in Function: rand ([M N ...])
 -- Built-in Function: V = rand ("state")
 -- Built-in Function: rand ("state", V)
 -- Built-in Function: rand ("state", "reset")
 -- Built-in Function: V = rand ("seed")
 -- Built-in Function: rand ("seed", V)
 -- Built-in Function: rand ("seed", "reset")
 -- Built-in Function: rand (..., "single")
 -- Built-in Function: rand (..., "double")
     Return a matrix with random elements uniformly distributed on the interval (0, 1).

     The arguments are handled the same as the arguments for 'eye'.

     You can query the state of the random number generator using the form

          v = rand ("state")

     This returns a column vector V of length 625.  Later, you can restore the random number generator to the state V using the form

          rand ("state", v)

     You may also initialize the state vector from an arbitrary vector of length <= 625 for V.  This new state will be a hash based on the value of V, not V itself.

     By default, the generator is initialized from '/dev/urandom' if it is available, otherwise from CPU time, wall clock time, and the current fraction of a second.  Note that this differs from MATLAB, which always initializes the state to the same state at startup.  To obtain behavior comparable to MATLAB, initialize with a deterministic state vector in Octave's startup files (*note Startup Files::).

     To compute the pseudo-random sequence, 'rand' uses the Mersenne Twister with a period of 2^{19937}-1 (See M. Matsumoto and T. Nishimura, 'Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator', ACM Trans.  on Modeling and Computer Simulation Vol.  8, No.  1, pp.  3-30, January 1998, <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>).  Do *not* use for cryptography without securely hashing several returned values together, otherwise the generator state can be learned after reading 624 consecutive values.

     Older versions of Octave used a different random number generator.  The new generator is used by default as it is significantly faster than the old generator, and produces random numbers with a significantly longer cycle time.  However, in some circumstances it might be desirable to obtain the same random sequences as produced by the old generators.  To do this the keyword "seed" is used to specify that the old generators should be used, as in

          rand ("seed", val)

     which sets the seed of the generator to VAL.  The seed of the generator can be queried with

          s = rand ("seed")

     However, it should be noted that querying the seed will not cause 'rand' to use the old generators, only setting the seed will.  To cause 'rand' to once again use the new generators, the keyword "state" should be used to reset the state of the 'rand'.

     The state or seed of the generator can be reset to a new random value using the "reset" keyword.

     The class of the value returned can be controlled by a trailing "double" or "single" argument.  These are the only valid classes.

     See also: randn, rande, randg, randp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Return a matrix with random elements uniformly distributed on the interval (0, 1).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1119
 -- Built-in Function: randn (N)
 -- Built-in Function: randn (M, N, ...)
 -- Built-in Function: randn ([M N ...])
 -- Built-in Function: V = randn ("state")
 -- Built-in Function: randn ("state", V)
 -- Built-in Function: randn ("state", "reset")
 -- Built-in Function: V = randn ("seed")
 -- Built-in Function: randn ("seed", V)
 -- Built-in Function: randn ("seed", "reset")
 -- Built-in Function: randn (..., "single")
 -- Built-in Function: randn (..., "double")
     Return a matrix with normally distributed random elements having zero mean and variance one.

     The arguments are handled the same as the arguments for 'rand'.

     By default, 'randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a normal distribution.

     The class of the value returned can be controlled by a trailing "double" or "single" argument.  These are the only valid classes.

     Reference: G. Marsaglia and W.W. Tsang, 'Ziggurat Method for Generating Random Variables', J. Statistical Software, vol 5, 2000, <http://www.jstatsoft.org/v05/i08/>

     See also: rand, rande, randg, randp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Return a matrix with normally distributed random elements having zero mean and variance one.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rande


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1090
 -- Built-in Function: rande (N)
 -- Built-in Function: rande (M, N, ...)
 -- Built-in Function: rande ([M N ...])
 -- Built-in Function: V = rande ("state")
 -- Built-in Function: rande ("state", V)
 -- Built-in Function: rande ("state", "reset")
 -- Built-in Function: V = rande ("seed")
 -- Built-in Function: rande ("seed", V)
 -- Built-in Function: rande ("seed", "reset")
 -- Built-in Function: rande (..., "single")
 -- Built-in Function: rande (..., "double")
     Return a matrix with exponentially distributed random elements.

     The arguments are handled the same as the arguments for 'rand'.

     By default, 'randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a normal distribution.

     The class of the value returned can be controlled by a trailing "double" or "single" argument.  These are the only valid classes.

     Reference: G. Marsaglia and W.W. Tsang, 'Ziggurat Method for Generating Random Variables', J. Statistical Software, vol 5, 2000, <http://www.jstatsoft.org/v05/i08/>

     See also: rand, randn, randg, randp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a matrix with exponentially distributed random elements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2028
 -- Built-in Function: randg (N)
 -- Built-in Function: randg (M, N, ...)
 -- Built-in Function: randg ([M N ...])
 -- Built-in Function: V = randg ("state")
 -- Built-in Function: randg ("state", V)
 -- Built-in Function: randg ("state", "reset")
 -- Built-in Function: V = randg ("seed")
 -- Built-in Function: randg ("seed", V)
 -- Built-in Function: randg ("seed", "reset")
 -- Built-in Function: randg (..., "single")
 -- Built-in Function: randg (..., "double")
     Return a matrix with 'gamma (A,1)' distributed random elements.

     The arguments are handled the same as the arguments for 'rand', except for the argument A.

     This can be used to generate many distributions:

     'gamma (a, b)' for 'a > -1', 'b > 0'

               r = b * randg (a)

     'beta (a, b)' for 'a > -1', 'b > -1'

               r1 = randg (a, 1)
               r = r1 / (r1 + randg (b, 1))

     'Erlang (a, n)'

               r = a * randg (n)

     'chisq (df)' for 'df > 0'

               r = 2 * randg (df / 2)

     't (df)' for '0 < df < inf' (use randn if df is infinite)

               r = randn () / sqrt (2 * randg (df / 2) / df)

     'F (n1, n2)' for '0 < n1', '0 < n2'

               ## r1 equals 1 if n1 is infinite
               r1 = 2 * randg (n1 / 2) / n1
               ## r2 equals 1 if n2 is infinite
               r2 = 2 * randg (n2 / 2) / n2
               r = r1 / r2


     negative 'binomial (n, p)' for 'n > 0', '0 < p <= 1'

               r = randp ((1 - p) / p * randg (n))

     non-central 'chisq (df, L)', for 'df >= 0' and 'L > 0'
          (use chisq if 'L = 0')

               r = randp (L / 2)
               r(r > 0) = 2 * randg (r(r > 0))
               r(df > 0) += 2 * randg (df(df > 0)/2)

     'Dirichlet (a1, ... ak)'

               r = (randg (a1), ..., randg (ak))
               r = r / sum (r)

     The class of the value returned can be controlled by a trailing "double" or "single" argument.  These are the only valid classes.

     See also: rand, randn, rande, randp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Return a matrix with 'gamma (A,1)' distributed random elements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
randp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1823
 -- Built-in Function: randp (L, N)
 -- Built-in Function: randp (L, M, N, ...)
 -- Built-in Function: randp (L, [M N ...])
 -- Built-in Function: V = randp ("state")
 -- Built-in Function: randp ("state", V)
 -- Built-in Function: randp ("state", "reset")
 -- Built-in Function: V = randp ("seed")
 -- Built-in Function: randp ("seed", V)
 -- Built-in Function: randp ("seed", "reset")
 -- Built-in Function: randp (..., "single")
 -- Built-in Function: randp (..., "double")
     Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L.

     The arguments are handled the same as the arguments for 'rand', except for the argument L.

     Five different algorithms are used depending on the range of L and whether or not L is a scalar or a matrix.

     For scalar L <= 12, use direct method.
          W.H. Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.

     For scalar L > 12, use rejection method.[1]
          W.H. Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.

     For matrix L <= 10, use inversion method.[2]
          E. Stadlober, et al., WinRand source code, available via FTP.

     For matrix L > 10, use patchwork rejection method.
          E. Stadlober, et al., WinRand source code, available via FTP, or H. Zechner, 'Efficient sampling from continuous and discrete unimodal distributions', Doctoral Dissertation, 156pp., Technical University Graz, Austria, 1994.

     For L > 1e8, use normal approximation.
          L. Montanet, et al., 'Review of Particle Properties', Physical Review D 50 p1284, 1994.

     The class of the value returned can be controlled by a trailing "double" or "single" argument.  These are the only valid classes.

     See also: rand, randn, rande, randg.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
randperm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 457
 -- Built-in Function: randperm (N)
 -- Built-in Function: randperm (N, M)
     Return a row vector containing a random permutation of '1:N'.

     If M is supplied, return M unique entries, sampled without replacement from '1:N'.

     The complexity is O(N) in memory and O(M) in time, unless M < N/5, in which case O(M) memory is used as well.  The randomization is performed using rand().  All permutations are equally likely.

     See also: perms.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return a row vector containing a random permutation of '1:N'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rcond


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 416
 -- Built-in Function: C = rcond (A)
     Compute the 1-norm estimate of the reciprocal condition number as returned by LAPACK.

     If the matrix is well-conditioned then C will be near 1 and if the matrix is poorly conditioned it will be close to 0.

     The matrix A must not be sparse.  If the matrix is sparse then 'condest (A)' or 'rcond (full (A))' should be used instead.

     See also: cond, condest.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Compute the 1-norm estimate of the reciprocal condition number as returned by LAPACK.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
regexp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8643
 -- Built-in Function: [S, E, TE, M, T, NM, SP] = regexp (STR, PAT)
 -- Built-in Function: [...] = regexp (STR, PAT, "OPT1", ...)
     Regular expression string matching.

     Search for PAT in STR and return the positions and substrings of any matches, or empty values if there are none.

     The matched pattern PAT can include any of the standard regex operators, including:

     '.'
          Match any character

     '* + ? {}'
          Repetition operators, representing

          '*'
               Match zero or more times

          '+'
               Match one or more times

          '?'
               Match zero or one times

          '{N}'
               Match exactly N times

          '{N,}'
               Match N or more times

          '{M,N}'
               Match between M and N times

     '[...] [^...]'

          List operators.  The pattern will match any character listed between "[" and "]".  If the first character is "^" then the pattern is inverted and any character except those listed between brackets will match.

          Escape sequences defined below can also be used inside list operators.  For example, a template for a floating point number might be '[-+.\d]+'.

     '() (?:)'
          Grouping operator.  The first form, parentheses only, also creates a token.

     '|'
          Alternation operator.  Match one of a choice of regular expressions.  The alternatives must be delimited by the grouping operator '()' above.

     '^ $'
          Anchoring operators.  Requires pattern to occur at the start ('^') or end ('$') of the string.

     In addition, the following escaped characters have special meaning.

     '\d'
          Match any digit

     '\D'
          Match any non-digit

     '\s'
          Match any whitespace character

     '\S'
          Match any non-whitespace character

     '\w'
          Match any word character

     '\W'
          Match any non-word character

     '\<'
          Match the beginning of a word

     '\>'
          Match the end of a word

     '\B'
          Match within a word

     Implementation Note: For compatibility with MATLAB, escape sequences in PAT (e.g., "\n" => newline) are expanded even when PAT has been defined with single quotes.  To disable expansion use a second backslash before the escape sequence (e.g., "\\n") or use the 'regexptranslate' function.

     The outputs of 'regexp' default to the order given below

     S
          The start indices of each matching substring

     E
          The end indices of each matching substring

     TE
          The extents of each matched token surrounded by '(...)' in PAT

     M
          A cell array of the text of each match

     T
          A cell array of the text of each token matched

     NM
          A structure containing the text of each matched named token, with the name being used as the fieldname.  A named token is denoted by '(?<name>...)'.

     SP
          A cell array of the text not returned by match, i.e., what remains if you split the string based on PAT.

     Particular output arguments, or the order of the output arguments, can be selected by additional OPT arguments.  These are strings and the correspondence between the output arguments and the optional argument are

                                                                                                                                                                                                                   'start'                                                                                                                                                                                                                                                                                                             S
                                                                                                                                                                                                                   'end'                                                                                                                                                                                                                                                                                                               E
                                                                                                                                                                                                                   'tokenExtents'                                                                                                                                                                                                                                                                                                      TE
                                                                                                                                                                                                                   'match'                                                                                                                                                                                                                                                                                                             M
                                                                                                                                                                                                                   'tokens'                                                                                                                                                                                                                                                                                                            T
                                                                                                                                                                                                                   'names'                                                                                                                                                                                                                                                                                                             NM
                                                                                                                                                                                                                   'split'                                                                                                                                                                                                                                                                                                             SP

     Additional arguments are summarized below.

     'once'
          Return only the first occurrence of the pattern.

     'matchcase'
          Make the matching case sensitive.  (default)

          Alternatively, use (?-i) in the pattern.

     'ignorecase'
          Ignore case when matching the pattern to the string.

          Alternatively, use (?i) in the pattern.

     'stringanchors'
          Match the anchor characters at the beginning and end of the string.  (default)

          Alternatively, use (?-m) in the pattern.

     'lineanchors'
          Match the anchor characters at the beginning and end of the line.

          Alternatively, use (?m) in the pattern.

     'dotall'
          The pattern '.' matches all characters including the newline character.  (default)

          Alternatively, use (?s) in the pattern.

     'dotexceptnewline'
          The pattern '.' matches all characters except the newline character.

          Alternatively, use (?-s) in the pattern.

     'literalspacing'
          All characters in the pattern, including whitespace, are significant and are used in pattern matching.  (default)

          Alternatively, use (?-x) in the pattern.

     'freespacing'
          The pattern may include arbitrary whitespace and also comments beginning with the character '#'.

          Alternatively, use (?x) in the pattern.

     'noemptymatch'
          Zero-length matches are not returned.  (default)

     'emptymatch'
          Return zero-length matches.

          'regexp ('a', 'b*', 'emptymatch')' returns '[1 2]' because there are zero or more 'b' characters at positions 1 and end-of-string.

     See also: regexpi, strfind, regexprep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Regular expression string matching.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
regexpi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 413
 -- Built-in Function: [S, E, TE, M, T, NM, SP] = regexpi (STR, PAT)
 -- Built-in Function: [...] = regexpi (STR, PAT, "OPT1", ...)

     Case insensitive regular expression string matching.

     Search for PAT in STR and return the positions and substrings of any matches, or empty values if there are none.  *Note regexp: XREFregexp, for details on the syntax of the search pattern.

     See also: regexp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Case insensitive regular expression string matching.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
regexprep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1072
 -- Built-in Function: OUTSTR = regexprep (STRING, PAT, REPSTR)
 -- Built-in Function: OUTSTR = regexprep (STRING, PAT, REPSTR, "OPT1", ...)
     Replace occurrences of pattern PAT in STRING with REPSTR.

     The pattern is a regular expression as documented for 'regexp'.  *Note regexp: XREFregexp.

     The replacement string may contain '$i', which substitutes for the ith set of parentheses in the match string.  For example,

          regexprep ("Bill Dunn", '(\w+) (\w+)', '$2, $1')

     returns "Dunn, Bill"

     Options in addition to those of 'regexp' are

     'once'
          Replace only the first occurrence of PAT in the result.

     'warnings'
          This option is present for compatibility but is ignored.

     Implementation Note: For compatibility with MATLAB, escape sequences in PAT (e.g., "\n" => newline) are expanded even when PAT has been defined with single quotes.  To disable expansion use a second backslash before the escape sequence (e.g., "\\n") or use the 'regexptranslate' function.

     See also: regexp, regexpi, strrep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Replace occurrences of pattern PAT in STRING with REPSTR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
schur


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1735
 -- Built-in Function: S = schur (A)
 -- Built-in Function: S = schur (A, "real")
 -- Built-in Function: S = schur (A, "complex")
 -- Built-in Function: S = schur (A, OPT)
 -- Built-in Function: [U, S] = schur (...)
     Compute the Schur decomposition of A.

     The Schur decomposition is defined as

          S = U' * A * U

     where U is a unitary matrix ('U'* U' is identity) and S is upper triangular.  The eigenvalues of A (and S) are the diagonal elements of S.  If the matrix A is real, then the real Schur decomposition is computed, in which the matrix U is orthogonal and S is block upper triangular with blocks of size at most '2 x 2' along the diagonal.  The diagonal elements of S (or the eigenvalues of the '2 x 2' blocks, when appropriate) are the eigenvalues of A and S.

     The default for real matrices is a real Schur decomposition.  A complex decomposition may be forced by passing the flag "complex".

     The eigenvalues are optionally ordered along the diagonal according to the value of OPT.  'OPT = "a"' indicates that all eigenvalues with negative real parts should be moved to the leading block of S (used in 'are'), 'OPT = "d"' indicates that all eigenvalues with magnitude less than one should be moved to the leading block of S (used in 'dare'), and 'OPT = "u"', the default, indicates that no ordering of eigenvalues should occur.  The leading K columns of U always span the A-invariant subspace corresponding to the K leading eigenvalues of S.

     The Schur decomposition is used to compute eigenvalues of a square matrix, and has applications in the solution of algebraic Riccati equations in control (see 'are' and 'dare').

     See also: rsf2csf, ordschur, lu, chol, hess, qr, qz, svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Compute the Schur decomposition of A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rsf2csf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
 -- Function File: [U, T] = rsf2csf (UR, TR)
     Convert a real, upper quasi-triangular Schur form TR to a complex, upper triangular Schur form T.

     Note that the following relations hold:

     UR * TR * UR' = U * T * U' and 'U' * U' is the identity matrix I.

     Note also that U and T are not unique.

     See also: schur.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Convert a real, upper quasi-triangular Schur form TR to a complex, upper triangular Schur form T.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
SIG


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
 -- Built-in Function: SIG ()
     Return a structure containing Unix signal names and their defined values.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Return a structure containing Unix signal names and their defined values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
debug_on_interrupt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 727
 -- Built-in Function: VAL = debug_on_interrupt ()
 -- Built-in Function: OLD_VAL = debug_on_interrupt (NEW_VAL)
 -- Built-in Function: debug_on_interrupt (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with 'C-c').

     If a second interrupt signal is received before reaching the debugging mode, a normal interrupt will occur.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: debug_on_error, debug_on_warning.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with 'C-c').



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
sighup_dumps_octave_core


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 576
 -- Built-in Function: VAL = sighup_dumps_octave_core ()
 -- Built-in Function: OLD_VAL = sighup_dumps_octave_core (NEW_VAL)
 -- Built-in Function: sighup_dumps_octave_core (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a hangup signal.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 162
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a hangup signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
sigterm_dumps_octave_core


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 582
 -- Built-in Function: VAL = sigterm_dumps_octave_core ()
 -- Built-in Function: OLD_VAL = sigterm_dumps_octave_core (NEW_VAL)
 -- Built-in Function: sigterm_dumps_octave_core (NEW_VAL, "local")
     Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a terminate signal.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 165
Query or set the internal variable that controls whether Octave tries to save all current variables to the file 'octave-workspace' if it receives a terminate signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
issparse


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
 -- Built-in Function: issparse (X)
     Return true if X is a sparse matrix.

     See also: ismatrix.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return true if X is a sparse matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sparse


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2146
 -- Built-in Function: S = sparse (A)
 -- Built-in Function: S = sparse (I, J, SV, M, N)
 -- Built-in Function: S = sparse (I, J, SV)
 -- Built-in Function: S = sparse (M, N)
 -- Built-in Function: S = sparse (I, J, S, M, N, "unique")
 -- Built-in Function: S = sparse (I, J, SV, M, N, NZMAX)
     Create a sparse matrix from a full matrix, or row, column, value triplets.

     If A is a full matrix, convert it to a sparse matrix representation, removing all zero values in the process.

     Given the integer index vectors I and J, and a 1-by-'nnz' vector of real or complex values SV, construct the sparse matrix 'S(I(K),J(K)) = SV(K)' with overall dimensions M and N.  If any of SV, I or J are scalars, they are expanded to have a common size.

     If M or N are not specified their values are derived from the maximum index in the vectors I and J as given by 'M = max (I)', 'N = max (J)'.

     *Note*: if multiple values are specified with the same I, J indices, the corresponding value in S will be the sum of the values at the repeated location.  See 'accumarray' for an example of how to produce different behavior, such as taking the minimum instead.

     If the option "unique" is given, and more than one value is specified at the same I, J indices, then the last specified value will be used.

     'sparse (M, N)' will create an empty MxN sparse matrix and is equivalent to 'sparse ([], [], [], M, N)'

     The argument 'nzmax' is ignored but accepted for compatibility with MATLAB.

     Example 1 (sum at repeated indices):

          I = [1 1 2]; J = [1 1 2]; SV = [3 4 5];
          sparse (I, J, SV, 3, 4)
          =>
          Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])

            (1, 1) ->  7
            (2, 2) ->  5

     Example 2 ("unique" option):

          I = [1 1 2]; J = [1 1 2]; SV = [3 4 5];
          sparse (I, J, SV, 3, 4, "unique")
          =>
          Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])

            (1, 1) ->  4
            (2, 2) ->  5

     See also: full, accumarray, spalloc, spdiags, speye, spones, sprand, sprandn, sprandsym, spconvert, spfun.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Create a sparse matrix from a full matrix, or row, column, value triplets.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spalloc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1043
 -- Built-in Function: S = spalloc (M, N, NZ)
     Create an M-by-N sparse matrix with pre-allocated space for at most NZ nonzero elements.

     This is useful for building a matrix incrementally by a sequence of indexed assignments.  Subsequent indexed assignments after 'spalloc' will reuse the pre-allocated memory, provided they are of one of the simple forms

        * 'S(I:J) = X'

        * 'S(:,I:J) = X'

        * 'S(K:L,I:J) = X'

     and that the following conditions are met:

        * the assignment does not decrease nnz (S).

        * after the assignment, nnz (S) does not exceed NZ.

        * no index is out of bounds.

     Partial movement of data may still occur, but in general the assignment will be more memory and time efficient under these circumstances.  In particular, it is possible to efficiently build a pre-allocated sparse matrix from a contiguous block of columns.

     The amount of pre-allocated memory for a given matrix may be queried using the function 'nzmax'.

     See also: nzmax, sparse.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Create an M-by-N sparse matrix with pre-allocated space for at most NZ nonzero elements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
spparms


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2317
 -- Built-in Function: spparms ()
 -- Built-in Function: VALS = spparms ()
 -- Built-in Function: [KEYS, VALS] = spparms ()
 -- Built-in Function: VAL = spparms (KEY)
 -- Built-in Function: spparms (VALS)
 -- Built-in Function: spparms ("default")
 -- Built-in Function: spparms ("tight")
 -- Built-in Function: spparms (KEY, VAL)
     Query or set the parameters used by the sparse solvers and factorization functions.

     The first four calls above get information about the current settings, while the others change the current settings.  The parameters are stored as pairs of keys and values, where the values are all floats and the keys are one of the following strings:

     'spumoni'
          Printing level of debugging information of the solvers (default 0)

     'ths_rel'
          Included for compatibility.  Not used.  (default 1)

     'ths_abs'
          Included for compatibility.  Not used.  (default 1)

     'exact_d'
          Included for compatibility.  Not used.  (default 0)

     'supernd'
          Included for compatibility.  Not used.  (default 3)

     'rreduce'
          Included for compatibility.  Not used.  (default 3)

     'wh_frac'
          Included for compatibility.  Not used.  (default 0.5)

     'autommd'
          Flag whether the LU/QR and the '\' and '/' operators will automatically use the sparsity preserving mmd functions (default 1)

     'autoamd'
          Flag whether the LU and the '\' and '/' operators will automatically use the sparsity preserving amd functions (default 1)

     'piv_tol'
          The pivot tolerance of the UMFPACK solvers (default 0.1)

     'sym_tol'
          The pivot tolerance of the UMFPACK symmetric solvers (default 0.001)

     'bandden'
          The density of nonzero elements in a banded matrix before it is treated by the LAPACK banded solvers (default 0.5)

     'umfpack'
          Flag whether the UMFPACK or mmd solvers are used for the LU, '\' and '/' operations (default 1)

     The value of individual keys can be set with 'spparms (KEY, VAL)'.  The default values can be restored with the special keyword "default".  The special keyword "tight" can be used to set the mmd solvers to attempt a sparser solution at the potential cost of longer running time.

     See also: chol, colamd, lu, qr, symamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Query or set the parameters used by the sparse solvers and factorization functions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sqrtm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 355
 -- Built-in Function: S = sqrtm (A)
 -- Built-in Function: [S, ERROR_ESTIMATE] = sqrtm (A)
     Compute the matrix square root of the square matrix A.

     Ref: N.J. Higham.  'A New sqrtm for MATLAB'.  Numerical Analysis Report No.  336, Manchester Centre for Computational Mathematics, Manchester, England, January 1999.

     See also: expm, logm.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Compute the matrix square root of the square matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
str2double


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1491
 -- Built-in Function: str2double (S)
     Convert a string to a real or complex number.

     The string must be in one of the following formats where a and b are real numbers and the complex unit is 'i' or 'j':

        * a + bi

        * a + b*i

        * a + i*b

        * bi + a

        * b*i + a

        * i*b + a

     If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate optional arguments and 'd' indicates zero or more digits.  The special input values 'Inf', 'NaN', and 'NA' are also accepted.

     S may be a character string, character matrix, or cell array.  For character arrays the conversion is repeated for every row, and a double or complex array is returned.  Empty rows in S are deleted and not returned in the numeric array.  For cell arrays each character string element is processed and a double or complex array of the same dimensions as S is returned.

     For unconvertible scalar or character string input 'str2double' returns a NaN.  Similarly, for character array input 'str2double' returns a NaN for any row of S that could not be converted.  For a cell array, 'str2double' returns a NaN for any element of S for which conversion fails.  Note that numeric elements in a mixed string/numeric cell array are not strings and the conversion will fail for these elements and return NaN.

     'str2double' can replace 'str2num', and it avoids the security risk of using 'eval' on unknown data.

     See also: str2num.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Convert a string to a real or complex number.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strfind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1205
 -- Built-in Function: IDX = strfind (STR, PATTERN)
 -- Built-in Function: IDX = strfind (CELLSTR, PATTERN)
 -- Built-in Function: IDX = strfind (..., "overlaps", VAL)
     Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX.

     If there is no such occurrence, or if PATTERN is longer than STR, or if PATTERN itself is empty, then IDX is the empty array '[]'.

     The optional argument "overlaps" determines whether the pattern can match at every position in STR (true), or only for unique occurrences of the complete pattern (false).  The default is true.

     If a cell array of strings CELLSTR is specified then IDX is a cell array of vectors, as specified above.

     Examples:

          strfind ("abababa", "aba")
               => [1, 3, 5]

          strfind ("abababa", "aba", "overlaps", false)
               => [1, 5]

          strfind ({"abababa", "bebebe", "ab"}, "aba")
               =>
                  {
                    [1,1] =

                       1   3   5

                    [1,2] = [](1x0)
                    [1,3] = [](1x0)
                  }

     See also: findstr, strmatch, regexp, regexpi, find.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strrep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 778
 -- Built-in Function: NEWSTR = strrep (STR, PTN, REP)
 -- Built-in Function: NEWSTR = strrep (CELLSTR, PTN, REP)
 -- Built-in Function: NEWSTR = strrep (..., "overlaps", VAL)
     Replace all occurrences of the pattern PTN in the string STR with the string REP and return the result.

     The optional argument "overlaps" determines whether the pattern can match at every position in STR (true), or only for unique occurrences of the complete pattern (false).  The default is true.

     S may also be a cell array of strings, in which case the replacement is done for each element and a cell array is returned.

     Example:

          strrep ("This is a test string", "is", "&%$")
              =>  "Th&%$ &%$ a test string"

     See also: regexprep, strfind, findstr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
Replace all occurrences of the pattern PTN in the string STR with the string REP and return the result.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
char


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1108
 -- Built-in Function: char (X)
 -- Built-in Function: char (X, ...)
 -- Built-in Function: char (S1, S2, ...)
 -- Built-in Function: char (CELL_ARRAY)
     Create a string array from one or more numeric matrices, character matrices, or cell arrays.

     Arguments are concatenated vertically.  The returned values are padded with blanks as needed to make each row of the string array have the same length.  Empty input strings are significant and will concatenated in the output.

     For numerical input, each element is converted to the corresponding ASCII character.  A range error results if an input is outside the ASCII range (0-255).

     For cell arrays, each element is concatenated separately.  Cell arrays converted through 'char' can mostly be converted back with 'cellstr'.  For example:

          char ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
             => ["abc    "
                 "       "
                 "98     "
                 "99     "
                 "d      "
                 "str1   "
                 "half   "]

     See also: strvcat, cellstr.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Create a string array from one or more numeric matrices, character matrices, or cell arrays.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strvcat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1128
 -- Built-in Function: strvcat (X)
 -- Built-in Function: strvcat (X, ...)
 -- Built-in Function: strvcat (S1, S2, ...)
 -- Built-in Function: strvcat (CELL_ARRAY)
     Create a character array from one or more numeric matrices, character matrices, or cell arrays.

     Arguments are concatenated vertically.  The returned values are padded with blanks as needed to make each row of the string array have the same length.  Unlike 'char', empty strings are removed and will not appear in the output.

     For numerical input, each element is converted to the corresponding ASCII character.  A range error results if an input is outside the ASCII range (0-255).

     For cell arrays, each element is concatenated separately.  Cell arrays converted through 'strvcat' can mostly be converted back with 'cellstr'.  For example:

          strvcat ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
                => ["abc    "
                    "98     "
                    "99     "
                    "d      "
                    "str1   "
                    "half   "]

     See also: char, strcat, cstrcat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Create a character array from one or more numeric matrices, character matrices, or cell arrays.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ischar


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
 -- Built-in Function: ischar (X)
     Return true if X is a character array.

     See also: isfloat, isinteger, islogical, isnumeric, iscellstr, isa.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return true if X is a character array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strcmp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
 -- Built-in Function: strcmp (S1, S2)
     Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

     *Caution:* For compatibility with MATLAB, Octave's strcmp function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.

     See also: strcmpi, strncmp, strncmpi.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strncmp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 834
 -- Built-in Function: strncmp (S1, S2, N)
     Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.

          strncmp ("abce", "abcd", 3)
                => 1

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

          strncmp ("abce", {"abcd", "bca", "abc"}, 3)
               => [1, 0, 1]

     *Caution:* For compatibility with MATLAB, Octave's strncmp function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.

     See also: strncmpi, strcmp, strcmpi.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
strcmpi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 774
 -- Built-in Function: strcmpi (S1, S2)
     Return 1 if the character strings S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

     *Caution:* For compatibility with MATLAB, Octave's strcmp function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.

     *Caution:* National alphabets are not supported.

     See also: strcmp, strncmp, strncmpi.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
Return 1 if the character strings S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strncmpi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 782
 -- Built-in Function: strncmpi (S1, S2, N)
     Return 1 if the first N character of S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

     *Caution:* For compatibility with MATLAB, Octave's strncmpi function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.

     *Caution:* National alphabets are not supported.

     See also: strncmp, strcmp, strcmpi.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Return 1 if the first N character of S1 and S2 are the same, disregarding case of alphabetic characters, and 0 otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
list_in_columns


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1054
 -- Built-in Function: list_in_columns (ARG, WIDTH, PREFIX)
     Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH and optional prefix PREFIX.

     The argument ARG must be a cell array of character strings or a character array.

     If WIDTH is not specified or is an empty matrix, or less than or equal to zero, the width of the terminal screen is used.  Newline characters are used to break the lines in the output string.  For example:

          list_in_columns ({"abc", "def", "ghijkl", "mnop", "qrs", "tuv"}, 20)
               => abc     mnop
                  def     qrs
                  ghijkl  tuv

          whos ans
               =>
               Variables in the current scope:

                 Attr Name        Size                     Bytes  Class
                 ==== ====        ====                     =====  =====
                      ans         1x37                        37  char

               Total is 37 elements using 37 bytes

     See also: terminal_size.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 131
Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH and optional prefix PREFIX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sub2ind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 459
 -- Function File: IND = sub2ind (DIMS, I, J)
 -- Function File: IND = sub2ind (DIMS, S1, S2, ..., SN)
     Convert subscripts to a linear index.

     The following example shows how to convert the two-dimensional index '(2,3)' of a 3-by-3 matrix to a linear index.  The matrix is linearly indexed moving from one column to next, filling up all rows in each column.

          linear_index = sub2ind ([3, 3], 2, 3)
          => 8

     See also: ind2sub.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert subscripts to a linear index.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ind2sub


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 425
 -- Function File: [S1, S2, ..., SN] = ind2sub (DIMS, IND)
     Convert a linear index to subscripts.

     The following example shows how to convert the linear index '8' in a 3-by-3 matrix into a subscript.  The matrix is linearly indexed moving from one column to next, filling up all rows in each column.

          [r, c] = ind2sub ([3, 3], 8)
              => r =  2
              => c =  3

     See also: sub2ind.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Convert a linear index to subscripts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
svd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1151
 -- Built-in Function: S = svd (A)
 -- Built-in Function: [U, S, V] = svd (A)
 -- Built-in Function: [U, S, V] = svd (A, ECON)
     Compute the singular value decomposition of A

          A = U*S*V'

     The function 'svd' normally returns only the vector of singular values.  When called with three return values, it computes U, S, and V.  For example,

          svd (hilb (3))

     returns

          ans =

            1.4083189
            0.1223271
            0.0026873

     and

          [u, s, v] = svd (hilb (3))

     returns

          u =

            -0.82704   0.54745   0.12766
            -0.45986  -0.52829  -0.71375
            -0.32330  -0.64901   0.68867

          s =

            1.40832  0.00000  0.00000
            0.00000  0.12233  0.00000
            0.00000  0.00000  0.00269

          v =

            -0.82704   0.54745   0.12766
            -0.45986  -0.52829  -0.71375
            -0.32330  -0.64901   0.68867

     If given a second argument, 'svd' returns an economy-sized decomposition, eliminating the unnecessary rows or columns of U or V.

     See also: svd_driver, svds, eig, lu, chol, hess, qr, qz.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Compute the singular value decomposition of A 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
svd_driver


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 533
 -- Built-in Function: VAL = svd_driver ()
 -- Built-in Function: OLD_VAL = svd_driver (NEW_VAL)
 -- Built-in Function: svd_driver (NEW_VAL, "local")
     Query or set the underlying LAPACK driver used by 'svd'.

     Currently recognized values are "gesvd" and "gesdd".  The default is "gesvd".

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: svd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Query or set the underlying LAPACK driver used by 'svd'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
sylvester


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
 -- Built-in Function: X = syl (A, B, C)
     Solve the Sylvester equation

          A X + X B = C

     using standard LAPACK subroutines.

     For example:

          sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
             => [ 0.50000, 0.66667; 0.66667, 0.50000 ]
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Solve the Sylvester equation 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
ignore_function_time_stamp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 837
 -- Built-in Function: VAL = ignore_function_time_stamp ()
 -- Built-in Function: OLD_VAL = ignore_function_time_stamp (NEW_VAL)
     Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files.

     If the internal variable is set to "system", Octave will not automatically recompile function files in subdirectories of 'OCTAVE-HOME/lib/VERSION' if they have changed since they were last compiled, but will recompile other function files in the search path if they change.

     If set to "all", Octave will not recompile any function files unless their definitions are removed with 'clear'.

     If set to "none", Octave will always check time stamps on files to determine whether functions defined in function files need to recompiled.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dup2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Built-in Function: [FID, MSG] = dup2 (OLD, NEW)
     Duplicate a file descriptor.

     If successful, FID is greater than zero and contains the new file ID.  Otherwise, FID is negative and MSG contains a system-dependent error message.

     See also: fopen, fclose, fcntl.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Duplicate a file descriptor.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
exec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 490
 -- Built-in Function: [ERR, MSG] = exec (FILE, ARGS)
     Replace current process with a new process.

     Calling 'exec' without first calling 'fork' will terminate your current Octave process and replace it with the program named by FILE.  For example,

          exec ("ls" "-l")

     will run 'ls' and return you to your shell prompt.

     If successful, 'exec' does not return.  If 'exec' does return, ERR will be nonzero, and MSG will contain a system-dependent error message.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Replace current process with a new process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
popen2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1290
 -- Built-in Function: [IN, OUT, PID] = popen2 (COMMAND, ARGS)
     Start a subprocess with two-way communication.

     The name of the process is given by COMMAND, and ARGS is an array of strings containing options for the command.

     The file identifiers for the input and output streams of the subprocess are returned in IN and OUT.  If execution of the command is successful, PID contains the process ID of the subprocess.  Otherwise, PID is -1.

     For example:

          [in, out, pid] = popen2 ("sort", "-r");
          fputs (in, "these\nare\nsome\nstrings\n");
          fclose (in);
          EAGAIN = errno ("EAGAIN");
          done = false;
          do
            s = fgets (out);
            if (ischar (s))
              fputs (stdout, s);
            elseif (errno () == EAGAIN)
              sleep (0.1);
              fclear (out);
            else
              done = true;
            endif
          until (done)
          fclose (out);
          waitpid (pid);

             -| these
             -| strings
             -| some
             -| are

     Note that 'popen2', unlike 'popen', will not "reap" the child process.  If you don't use 'waitpid' to check the child's exit status, it will linger until Octave exits.

     See also: popen, waitpid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Start a subprocess with two-way communication.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fcntl


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1336
 -- Built-in Function: [ERR, MSG] = fcntl (FID, REQUEST, ARG)
     Change the properties of the open file FID.

     The following values may be passed as REQUEST:

     'F_DUPFD'
          Return a duplicate file descriptor.

     'F_GETFD'
          Return the file descriptor flags for FID.

     'F_SETFD'
          Set the file descriptor flags for FID.

     'F_GETFL'
          Return the file status flags for FID.  The following codes may be returned (some of the flags may be undefined on some systems).

          'O_RDONLY'
               Open for reading only.

          'O_WRONLY'
               Open for writing only.

          'O_RDWR'
               Open for reading and writing.

          'O_APPEND'
               Append on each write.

          'O_CREAT'
               Create the file if it does not exist.

          'O_NONBLOCK'
               Non-blocking mode.

          'O_SYNC'
               Wait for writes to complete.

          'O_ASYNC'
               Asynchronous I/O.

     'F_SETFL'
          Set the file status flags for FID to the value specified by ARG.  The only flags that can be changed are 'O_APPEND' and 'O_NONBLOCK'.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: fopen, dup2.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Change the properties of the open file FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fork


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 630
 -- Built-in Function: [PID, MSG] = fork ()
     Create a copy of the current process.

     Fork can return one of the following values:

     > 0
          You are in the parent process.  The value returned from 'fork' is the process id of the child process.  You should probably arrange to wait for any child processes to exit.

     0
          You are in the child process.  You can call 'exec' to start another process.  If that fails, you should probably call 'exit'.

     < 0
          The call to 'fork' failed for some reason.  You must take evasive action.  A system dependent error message will be waiting in MSG.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Create a copy of the current process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getpgrp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
 -- Built-in Function: pgid = getpgrp ()
     Return the process group id of the current process.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return the process group id of the current process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getpid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
 -- Built-in Function: pid = getpid ()
     Return the process id of the current process.

     See also: getppid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the process id of the current process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getppid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Built-in Function: pid = getppid ()
     Return the process id of the parent process.

     See also: getpid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return the process id of the parent process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
getegid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 127
 -- Built-in Function: egid = getegid ()
     Return the effective group id of the current process.

     See also: getgid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Return the effective group id of the current process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getgid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
 -- Built-in Function: gid = getgid ()
     Return the real group id of the current process.

     See also: getegid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the real group id of the current process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
geteuid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
 -- Built-in Function: euid = geteuid ()
     Return the effective user id of the current process.

     See also: getuid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the effective user id of the current process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getuid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 120
 -- Built-in Function: uid = getuid ()
     Return the real user id of the current process.

     See also: geteuid.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return the real user id of the current process.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
kill


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 565
 -- Built-in Function: [ERR, MSG] = kill (PID, SIG)
     Send signal SIG to process PID.

     If PID is positive, then signal SIG is sent to PID.

     If PID is 0, then signal SIG is sent to every process in the process group of the current process.

     If PID is -1, then signal SIG is sent to every process except process 1.

     If PID is less than -1, then signal SIG is sent to every process in the process group -PID.

     If SIG is 0, then no signal is sent, but error checking is still performed.

     Return 0 if successful, otherwise return -1.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Send signal SIG to process PID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
lstat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 297
 -- Built-in Function: INFO = lstat (SYMLINK)
 -- Built-in Function: [INFO, ERR, MSG] = lstat (SYMLINK)
     Return a structure INFO containing information about the symbolic link SYMLINK.

     The function outputs are described in the documentation for 'stat'.

     See also: stat, symlink.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return a structure INFO containing information about the symbolic link SYMLINK.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mkfifo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 479
 -- Built-in Function: ERR = mkfifo (NAME, MODE)
 -- Built-in Function: [ERR, MSG] = mkfifo (NAME, MODE)
     Create a FIFO special file named NAME with file mode MODE.

     MODE is interpreted as a decimal number (_not_ octal) and is subject to umask processing.  The final calculated mode is 'MODE - UMASK'.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: pipe, umask.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Create a FIFO special file named NAME with file mode MODE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pipe


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 337
 -- Built-in Function: [READ_FD, WRITE_FD, ERR, MSG] = pipe ()
     Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: mkfifo.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
stat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2535
 -- Built-in Function: [INFO, ERR, MSG] = stat (FILE)
 -- Built-in Function: [INFO, ERR, MSG] = stat (FID)
 -- Built-in Function: [INFO, ERR, MSG] = lstat (FILE)
 -- Built-in Function: [INFO, ERR, MSG] = lstat (FID)
     Return a structure INFO containing the following information about FILE or file identifier FID.

     'dev'
          ID of device containing a directory entry for this file.

     'ino'
          File number of the file.

     'mode'
          File mode, as an integer.  Use the functions 'S_ISREG', 'S_ISDIR', 'S_ISCHR', 'S_ISBLK', 'S_ISFIFO', 'S_ISLNK', or 'S_ISSOCK' to extract information from this value.

     'modestr'
          File mode, as a string of ten letters or dashes as would be returned by 'ls -l'.

     'nlink'
          Number of links.

     'uid'
          User ID of file's owner.

     'gid'
          Group ID of file's group.

     'rdev'
          ID of device for block or character special files.

     'size'
          Size in bytes.

     'atime'
          Time of last access in the same form as time values returned from 'time'.  *Note Timing Utilities::.

     'mtime'
          Time of last modification in the same form as time values returned from 'time'.  *Note Timing Utilities::.

     'ctime'
          Time of last file status change in the same form as time values returned from 'time'.  *Note Timing Utilities::.

     'blksize'
          Size of blocks in the file.

     'blocks'
          Number of blocks allocated for file.

     If the call is successful ERR is 0 and MSG is an empty string.  If the file does not exist, or some other error occurs, INFO is an empty matrix, ERR is -1, and MSG contains the corresponding system error message.

     If FILE is a symbolic link, 'stat' will return information about the actual file that is referenced by the link.  Use 'lstat' if you want information about the symbolic link itself.

     For example:

          [info, err, msg] = stat ("/vmlinuz")
            => info =
               {
                 atime = 855399756
                 rdev = 0
                 ctime = 847219094
                 uid = 0
                 size = 389218
                 blksize = 4096
                 mtime = 847219094
                 gid = 6
                 nlink = 1
                 blocks = 768
                 mode = -rw-r--r--
                 modestr = -rw-r--r--
                 ino = 9316
                 dev = 2049
               }
            => err = 0
            => msg =

     See also: lstat, ls, dir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
Return a structure INFO containing the following information about FILE or file identifier FID.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISREG


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 199
 -- Built-in Function: S_ISREG (MODE)
     Return true if MODE corresponds to a regular file.

     The value of MODE is assumed to be returned from a call to 'stat'.

     See also: stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if MODE corresponds to a regular file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISDIR


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 196
 -- Built-in Function: S_ISDIR (MODE)
     Return true if MODE corresponds to a directory.

     The value of MODE is assumed to be returned from a call to 'stat'.

     See also: stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Return true if MODE corresponds to a directory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISCHR


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 203
 -- Built-in Function: S_ISCHR (MODE)
     Return true if MODE corresponds to a character device.

     The value of MODE is assumed to be returned from a call to 'stat'.

     See also: stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return true if MODE corresponds to a character device.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISBLK


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 199
 -- Built-in Function: S_ISBLK (MODE)
     Return true if MODE corresponds to a block device.

     The value of MODE is assumed to be returned from a call to 'stat'.

     See also: stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if MODE corresponds to a block device.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
S_ISFIFO


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 192
 -- Built-in Function: S_ISFIFO (MODE)
     Return true if MODE corresponds to a fifo.

     The value of MODE is assumed to be returned from a call to 'stat'.

     See also: stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Return true if MODE corresponds to a fifo.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
S_ISLNK


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 200
 -- Built-in Function: S_ISLNK (MODE)
     Return true if MODE corresponds to a symbolic link.

     The value of MODE is assumed to be returned from a call to 'stat'.

     See also: stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return true if MODE corresponds to a symbolic link.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
S_ISSOCK


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 194
 -- Built-in Function: S_ISSOCK (MODE)
     Return true if MODE corresponds to a socket.

     The value of MODE is assumed to be returned from a call to 'stat'.

     See also: stat, lstat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return true if MODE corresponds to a socket.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
gethostname


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Built-in Function: gethostname ()
     Return the hostname of the system where Octave is running.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Return the hostname of the system where Octave is running.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
uname


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 539
 -- Built-in Function: [UTS, ERR, MSG] = uname ()
     Return system information in the structure.

     For example:

          uname ()
             => {
                   sysname = x86_64
                   nodename = segfault
                   release = 2.6.15-1-amd64-k8-smp
                   version = Linux
                   machine = #2 SMP Thu Feb 23 04:57:49 UTC 2006
                }

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return system information in the structure.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unlink


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 253
 -- Built-in Function: [ERR, MSG] = unlink (FILE)
     Delete the file named FILE.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.

     See also: delete, rmdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Delete the file named FILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
waitpid


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1428
 -- Built-in Function: [PID, STATUS, MSG] = waitpid (PID, OPTIONS)
     Wait for process PID to terminate.

     The PID argument can be:

     -1
          Wait for any child process.

     0
          Wait for any child process whose process group ID is equal to that of the Octave interpreter process.

     > 0
          Wait for termination of the child process with ID PID.

     The OPTIONS argument can be a bitwise OR of zero or more of the following constants:

     '0'
          Wait until signal is received or a child process exits (this is the default if the OPTIONS argument is missing).

     'WNOHANG'
          Do not hang if status is not immediately available.

     'WUNTRACED'
          Report the status of any child processes that are stopped, and whose status has not yet been reported since they stopped.

     'WCONTINUE'
          Return if a stopped child has been resumed by delivery of 'SIGCONT'.  This value may not be meaningful on all systems.

     If the returned value of PID is greater than 0, it is the process ID of the child process that exited.  If an error occurs, PID will be less than zero and MSG will contain a system-dependent error message.  The value of STATUS contains additional system-dependent information about the subprocess that exited.

     See also: WCONTINUE, WCOREDUMP, WEXITSTATUS, WIFCONTINUED, WIFSIGNALED, WIFSTOPPED, WNOHANG, WSTOPSIG, WTERMSIG, WUNTRACED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Wait for process PID to terminate.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WIFEXITED


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
 -- Built-in Function: WIFEXITED (STATUS)
     Given STATUS from a call to 'waitpid', return true if the child terminated normally.

     See also: waitpid, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Given STATUS from a call to 'waitpid', return true if the child terminated normally.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
WEXITSTATUS


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 308
 -- Built-in Function: WEXITSTATUS (STATUS)
     Given STATUS from a call to 'waitpid', return the exit status of the child.

     This function should only be employed if 'WIFEXITED' returned true.

     See also: waitpid, WIFEXITED, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Given STATUS from a call to 'waitpid', return the exit status of the child.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
WIFSIGNALED


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 258
 -- Built-in Function: WIFSIGNALED (STATUS)
     Given STATUS from a call to 'waitpid', return true if the child process was terminated by a signal.

     See also: waitpid, WIFEXITED, WEXITSTATUS, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Given STATUS from a call to 'waitpid', return true if the child process was terminated by a signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
WTERMSIG


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 349
 -- Built-in Function: WTERMSIG (STATUS)
     Given STATUS from a call to 'waitpid', return the number of the signal that caused the child process to terminate.

     This function should only be employed if 'WIFSIGNALED' returned true.

     See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Given STATUS from a call to 'waitpid', return the number of the signal that caused the child process to terminate.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WCOREDUMP


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 466
 -- Built-in Function: WCOREDUMP (STATUS)
     Given STATUS from a call to 'waitpid', return true if the child produced a core dump.

     This function should only be employed if 'WIFSIGNALED' returned true.  The macro used to implement this function is not specified in POSIX.1-2001 and is not available on some Unix implementations (e.g., AIX, SunOS).

     See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 85
Given STATUS from a call to 'waitpid', return true if the child produced a core dump.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
WIFSTOPPED


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 385
 -- Built-in Function: WIFSTOPPED (STATUS)
     Given STATUS from a call to 'waitpid', return true if the child process was stopped by delivery of a signal.

     This is only possible if the call was done using 'WUNTRACED' or when the child is being traced (see ptrace(2)).

     See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WSTOPSIG, WIFCONTINUED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Given STATUS from a call to 'waitpid', return true if the child process was stopped by delivery of a signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
WSTOPSIG


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
 -- Built-in Function: WSTOPSIG (STATUS)
     Given STATUS from a call to 'waitpid', return the number of the signal which caused the child to stop.

     This function should only be employed if 'WIFSTOPPED' returned true.

     See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WIFCONTINUED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Given STATUS from a call to 'waitpid', return the number of the signal which caused the child to stop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
WIFCONTINUED


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 268
 -- Built-in Function: WIFCONTINUED (STATUS)
     Given STATUS from a call to 'waitpid', return true if the child process was resumed by delivery of 'SIGCONT'.

     See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Given STATUS from a call to 'waitpid', return true if the child process was resumed by delivery of 'SIGCONT'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
canonicalize_file_name


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
 -- Built-in Function: [CNAME, STATUS, MSG] = canonicalize_file_name (FNAME)
     Return the canonical name of file FNAME.

     If the file does not exist the empty string ("") is returned.

     See also: make_absolute_filename, is_absolute_filename, is_rooted_relative_filename.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Return the canonical name of file FNAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_DUPFD


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
 -- Built-in Function: F_DUPFD ()
     Return the numerical value to pass to 'fcntl' to return a duplicate file descriptor.

     See also: fcntl, F_GETFD, F_GETFL, F_SETFD, F_SETFL.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return the numerical value to pass to 'fcntl' to return a duplicate file descriptor.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_GETFD


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 184
 -- Built-in Function: F_GETFD ()
     Return the numerical value to pass to 'fcntl' to return the file descriptor flags.

     See also: fcntl, F_DUPFD, F_GETFL, F_SETFD, F_SETFL.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
Return the numerical value to pass to 'fcntl' to return the file descriptor flags.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_GETFL


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
 -- Built-in Function: F_GETFL ()
     Return the numerical value to pass to 'fcntl' to return the file status flags.

     See also: fcntl, F_DUPFD, F_GETFD, F_SETFD, F_SETFL.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Return the numerical value to pass to 'fcntl' to return the file status flags.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_SETFD


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
 -- Built-in Function: F_SETFD ()
     Return the numerical value to pass to 'fcntl' to set the file descriptor flags.

     See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFL.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Return the numerical value to pass to 'fcntl' to set the file descriptor flags.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
F_SETFL


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 177
 -- Built-in Function: F_SETFL ()
     Return the numerical value to pass to 'fcntl' to set the file status flags.

     See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFD.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
Return the numerical value to pass to 'fcntl' to set the file status flags.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
O_APPEND


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 340
 -- Built-in Function: O_APPEND ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate each write operation appends, or that may be passed to 'fcntl' to set the write mode to append.

     See also: fcntl, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 190
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate each write operation appends, or that may be passed to 'fcntl' to set the write mode to append.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
O_ASYNC


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 262
 -- Built-in Function: O_ASYNC ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate asynchronous I/O.

     See also: fcntl, O_APPEND, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 112
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate asynchronous I/O.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
O_CREAT


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 296
 -- Built-in Function: O_CREAT ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file should be created if it does not exist.

     See also: fcntl, O_APPEND, O_ASYNC, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 146
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file should be created if it does not exist.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
O_EXCL


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 271
 -- Built-in Function: O_EXCL ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that file locking is used.

     See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that file locking is used.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
O_NONBLOCK


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 336
 -- Built-in Function: O_NONBLOCK ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to 'fcntl' to set non-blocking I/O.

     See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to 'fcntl' to set non-blocking I/O.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
O_RDONLY


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Built-in Function: O_RDONLY ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for reading only.

     See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for reading only.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
O_RDWR


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
 -- Built-in Function: O_RDWR ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for both reading and writing.

     See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_SYNC, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for both reading and writing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
O_SYNC


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 285
 -- Built-in Function: O_SYNC ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for synchronous I/O.

     See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_TRUNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for synchronous I/O.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
O_TRUNC


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 302
 -- Built-in Function: O_TRUNC ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that if file exists, it should be truncated when writing.

     See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_WRONLY.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that if file exists, it should be truncated when writing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
O_WRONLY


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Built-in Function: O_WRONLY ()
     Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for writing only.

     See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by 'fcntl' to indicate that a file is open for writing only.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
WNOHANG


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 270
 -- Built-in Function: WNOHANG ()
     Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit.

     See also: waitpid, WUNTRACED, WCONTINUE.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WUNTRACED


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
 -- Built-in Function: WUNTRACED ()
     Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if the child process has stopped but is not traced via the 'ptrace' system call

     See also: waitpid, WNOHANG, WCONTINUE.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 201
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if the child process has stopped but is not traced via the 'ptrace' system call 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
WCONTINUE


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 281
 -- Built-in Function: WCONTINUE ()
     Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a 'SIGCONT' signal.

     See also: waitpid, WNOHANG, WUNTRACED.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
Return the numerical value of the option argument that may be passed to 'waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a 'SIGCONT' signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
clc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
 -- Built-in Function: clc ()
 -- Built-in Function: home ()
     Clear the terminal screen and move the cursor to the upper left corner.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Clear the terminal screen and move the cursor to the upper left corner.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
getenv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 232
 -- Built-in Function: getenv (VAR)
     Return the value of the environment variable VAR.

     For example,

          getenv ("PATH")

     returns a string containing the value of your path.

     See also: setenv, unsetenv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Return the value of the environment variable VAR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
setenv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 296
 -- Built-in Function: setenv (VAR, VALUE)
 -- Built-in Function: setenv (VAR)
 -- Built-in Function: putenv (...)
     Set the value of the environment variable VAR to VALUE.

     If no VALUE is specified then the variable will be assigned the null string.

     See also: unsetenv, getenv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Set the value of the environment variable VAR to VALUE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
unsetenv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
 -- Built-in Function: STATUS = unsetenv (VAR)
     Delete the environment variable VAR.

     Return 0 if the variable was deleted, or did not exist, and -1 if an error occurred.

     See also: setenv, getenv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Delete the environment variable VAR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
kbhit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 487
 -- Built-in Function: kbhit ()
 -- Built-in Function: kbhit (1)
     Read a single keystroke from the keyboard.

     If called with an argument, don't wait for a keypress.

     For example,

          x = kbhit ();

     will set X to the next character typed at the keyboard as soon as it is typed.

          x = kbhit (1);

     is identical to the above example, but doesn't wait for a keypress, returning the empty string if no key is available.

     See also: input, pause.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Read a single keystroke from the keyboard.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
pause


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 508
 -- Built-in Function: pause ()
 -- Built-in Function: pause (N)
     Suspend the execution of the program for N seconds.

     N is a positive real value and may be a fraction of a second.

     If invoked without an input arguments then the program is suspended until a character is typed.

     The following example prints a message and then waits 5 seconds before clearing the screen.

          fprintf (stderr, "wait please...\n");
          pause (5);
          clc;

     See also: kbhit, sleep.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Suspend the execution of the program for N seconds.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sleep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
 -- Built-in Function: sleep (SECONDS)
     Suspend the execution of the program for the given number of seconds.

     See also: usleep, pause.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Suspend the execution of the program for the given number of seconds.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
usleep


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 327
 -- Built-in Function: usleep (MICROSECONDS)
     Suspend the execution of the program for the given number of microseconds.

     On systems where it is not possible to sleep for periods of time less than one second, 'usleep' will pause the execution for 'round (MICROSECONDS / 1e6)' seconds.

     See also: sleep, pause.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Suspend the execution of the program for the given number of microseconds.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isieee


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 181
 -- Built-in Function: isieee ()
     Return true if your computer _claims_ to conform to the IEEE standard for floating point calculations.

     No actual tests are performed.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
Return true if your computer _claims_ to conform to the IEEE standard for floating point calculations.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
native_float_format


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
 -- Built-in Function: native_float_format ()
     Return the native floating point format as a string.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Return the native floating point format as a string.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
tilde_expand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 669
 -- Built-in Function: tilde_expand (STRING)
     Perform tilde expansion on STRING.

     If STRING begins with a tilde character, ('~'), all of the characters preceding the first slash (or all characters, if there is no slash) are treated as a possible user name, and the tilde and the following characters up to the slash are replaced by the home directory of the named user.  If the tilde is followed immediately by a slash, the tilde is replaced by the home directory of the user running Octave.

     For example:

          tilde_expand ("~joeuser/bin")
               => "/home/joeuser/bin"
          tilde_expand ("~/bin")
               => "/home/jwe/bin"
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Perform tilde expansion on STRING.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
get_home_directory


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 333
 -- Built-in Function: HOMEDIR = get_home_directory ()
     Return the current home directory.

     On most systems, this is equivalent to 'getenv ("HOME")'.  On Windows systems, if the environment variable 'HOME' is not set then it is equivalent to 'fullfile (getenv ("HOMEDRIVE"), getenv ("HOMEPATH"))'

     See also: getenv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Return the current home directory.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
have_window_system


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
 -- Built-in Function: have_window_system ()
     Return true if a window system is available (X11, Windows, or Apple OS X) and false otherwise.

     See also: isguirunning.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 94
Return true if a window system is available (X11, Windows, or Apple OS X) and false otherwise.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
time


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 432
 -- Built-in Function: SECONDS = time ()
     Return the current time as the number of seconds since the epoch.

     The epoch is referenced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970.  For example, on Monday February 17, 1997 at 07:15:06 CUT, the value returned by 'time' was 856163706.

     See also: strftime, strptime, localtime, gmtime, mktime, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Return the current time as the number of seconds since the epoch.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gmtime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 740
 -- Built-in Function: TM_STRUCT = gmtime (T)
     Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to CUT (Coordinated Universal Time).

     For example:

          gmtime (time ())
               => {
                     usec = 0
                     sec = 6
                     min = 15
                     hour = 7
                     mday = 17
                     mon = 1
                     year = 97
                     wday = 1
                     yday = 47
                     isdst = 0
                     zone = CST
                  }

     See also: strftime, strptime, localtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to CUT (Coordinated Universal Time).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
localtime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 711
 -- Built-in Function: TM_STRUCT = localtime (T)
     Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to the local time zone.

          localtime (time ())
               => {
                     usec = 0
                     sec = 6
                     min = 15
                     hour = 1
                     mday = 17
                     mon = 1
                     year = 97
                     wday = 1
                     yday = 47
                     isdst = 0
                     zone = CST
                  }

     See also: strftime, strptime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
Given a value returned from 'time', or any non-negative integer, return a time structure corresponding to the local time zone.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mktime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 371
 -- Built-in Function: SECONDS = mktime (TM_STRUCT)
     Convert a time structure corresponding to the local time to the number of seconds since the epoch.

     For example:

          mktime (localtime (time ()))
               => 856163706

     See also: strftime, strptime, localtime, gmtime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Convert a time structure corresponding to the local time to the number of seconds since the epoch.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strftime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2932
 -- Built-in Function: strftime (FMT, TM_STRUCT)
     Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains '%' substitutions similar to those in 'printf'.

     Except where noted, substituted fields have a fixed size; numeric fields are padded if necessary.  Padding is with zeros by default; for fields that display a single number, padding can be changed or inhibited by following the '%' with one of the modifiers described below.  Unknown field specifiers are copied as normal characters.  All other characters are copied to the output without change.  For example:

          strftime ("%r (%Z) %A %e %B %Y", localtime (time ()))
                => "01:15:06 AM (CST) Monday 17 February 1997"

     Octave's 'strftime' function supports a superset of the ANSI C field specifiers.

     Literal character fields:

     '%%'
          % character.

     '%n'
          Newline character.

     '%t'
          Tab character.

     Numeric modifiers (a nonstandard extension):

     '- (dash)'
          Do not pad the field.

     '_ (underscore)'
          Pad the field with spaces.

     Time fields:

     '%H'
          Hour (00-23).

     '%I'
          Hour (01-12).

     '%k'
          Hour (0-23).

     '%l'
          Hour (1-12).

     '%M'
          Minute (00-59).

     '%p'
          Locale's AM or PM.

     '%r'
          Time, 12-hour (hh:mm:ss [AP]M).

     '%R'
          Time, 24-hour (hh:mm).

     '%s'
          Time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard extension).

     '%S'
          Second (00-61).

     '%T'
          Time, 24-hour (hh:mm:ss).

     '%X'
          Locale's time representation (%H:%M:%S).

     '%Z'
          Time zone (EDT), or nothing if no time zone is determinable.

     Date fields:

     '%a'
          Locale's abbreviated weekday name (Sun-Sat).

     '%A'
          Locale's full weekday name, variable length (Sunday-Saturday).

     '%b'
          Locale's abbreviated month name (Jan-Dec).

     '%B'
          Locale's full month name, variable length (January-December).

     '%c'
          Locale's date and time (Sat Nov 04 12:02:33 EST 1989).

     '%C'
          Century (00-99).

     '%d'
          Day of month (01-31).

     '%e'
          Day of month ( 1-31).

     '%D'
          Date (mm/dd/yy).

     '%h'
          Same as %b.

     '%j'
          Day of year (001-366).

     '%m'
          Month (01-12).

     '%U'
          Week number of year with Sunday as first day of week (00-53).

     '%w'
          Day of week (0-6).

     '%W'
          Week number of year with Monday as first day of week (00-53).

     '%x'
          Locale's date representation (mm/dd/yy).

     '%y'
          Last two digits of year (00-99).

     '%Y'
          Year (1970-).

     See also: strptime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains '%' substitutions similar to those in 'printf'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
strptime


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 503
 -- Built-in Function: [TM_STRUCT, NCHARS] = strptime (STR, FMT)
     Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.

     If FMT fails to match, NCHARS is 0; otherwise, it is set to the position of last matched character plus 1.  Always check for this unless you're absolutely sure the date string will be parsed correctly.

     See also: strftime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
quit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 591
 -- Built-in Function: exit
 -- Built-in Function: exit (STATUS)
 -- Built-in Function: quit
 -- Built-in Function: quit (STATUS)
     Exit the current Octave session.

     If the optional integer value STATUS is supplied, pass that value to the operating system as Octave's exit status.  The default value is zero.

     When exiting, Octave will attempt to run the m-file 'finish.m' if it exists.  User commands to save the workspace or clean up temporary files may be placed in that file.  Alternatively, another m-file may be scheduled to run using 'atexit'.

     See also: atexit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Exit the current Octave session.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
warranty


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
 -- Built-in Function: warranty ()
     Describe the conditions for copying and distributing Octave.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Describe the conditions for copying and distributing Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
system


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1623
 -- Built-in Function: system ("STRING")
 -- Built-in Function: system ("STRING", RETURN_OUTPUT)
 -- Built-in Function: system ("STRING", RETURN_OUTPUT, TYPE)
 -- Built-in Function: [STATUS, OUTPUT] = system (...)
     Execute a shell command specified by STRING.

     If the optional argument TYPE is "async", the process is started in the background and the process ID of the child process is returned immediately.  Otherwise, the child process is started and Octave waits until it exits.  If the TYPE argument is omitted, it defaults to the value "sync".

     If SYSTEM is called with one or more output arguments, or if the optional argument RETURN_OUTPUT is true and the subprocess is started synchronously, then the output from the command is returned as a variable.  Otherwise, if the subprocess is executed synchronously, its output is sent to the standard output.  To send the output of a command executed with 'system' through the pager, use a command like

          [output, text] = system ("cmd");
          disp (text);

     or

          printf ("%s\n", nthargout (2, "system", "cmd"));

     The 'system' function can return two values.  The first is the exit status of the command and the second is any output from the command that was written to the standard output stream.  For example,

          [status, output] = system ("echo foo; exit 2");

     will set the variable 'output' to the string 'foo', and the variable 'status' to the integer '2'.

     For commands run asynchronously, STATUS is the process id of the command shell that is started to run the command.

     See also: unix, dos.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Execute a shell command specified by STRING.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
atexit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 986
 -- Built-in Function: atexit (FCN)
 -- Built-in Function: atexit (FCN, FLAG)
     Register a function to be called when Octave exits.

     For example,

          function last_words ()
            disp ("Bye bye");
          endfunction
          atexit ("last_words");

     will print the message "Bye bye" when Octave exits.

     The additional argument FLAG will register or unregister FCN from the list of functions to be called when Octave exits.  If FLAG is true, the function is registered, and if FLAG is false, it is unregistered.  For example, after registering the function 'last_words' above,

          atexit ("last_words", false);

     will remove the function from the list and Octave will not call 'last_words' when it exits.

     Note that 'atexit' only removes the first occurrence of a function from the list, so if a function was placed in the list multiple times with 'atexit', it must also be removed from the list multiple times.

     See also: quit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Register a function to be called when Octave exits.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
octave_config_info


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
 -- Built-in Function: octave_config_info ()
 -- Built-in Function: octave_config_info (OPTION)
     Return a structure containing configuration and installation information for Octave.

     If OPTION is a string, return the configuration information for the specified option.

     See also: computer.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 84
Return a structure containing configuration and installation information for Octave.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
tril


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1325
 -- Function File: tril (A)
 -- Function File: tril (A, K)
 -- Function File: tril (A, K, PACK)
 -- Function File: triu (A)
 -- Function File: triu (A, K)
 -- Function File: triu (A, K, PACK)
     Return a new matrix formed by extracting the lower ('tril') or upper ('triu') triangular part of the matrix A, and setting all other elements to zero.

     The second argument is optional, and specifies how many diagonals above or below the main diagonal should also be set to zero.

     The default value of K is zero, so that 'triu' and 'tril' normally include the main diagonal as part of the result.

     If the value of K is nonzero integer, the selection of elements starts at an offset of K diagonals above or below the main diagonal; above for positive K and below for negative K.

     The absolute value of K must not be greater than the number of subdiagonals or superdiagonals.

     For example:

          tril (ones (3), -1)
               =>  0  0  0
                   1  0  0
                   1  1  0

     and

          tril (ones (3), 1)
               =>  1  1  0
                   1  1  1
                   1  1  1

     If the option "pack" is given as third argument, the extracted elements are not inserted into a matrix, but rather stacked column-wise one above other.

     See also: diag.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
Return a new matrix formed by extracting the lower ('tril') or upper ('triu') triangular part of the matrix A, and setting all other elements to zero.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
triu


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 188
 -- Function File: triu (A)
 -- Function File: triu (A, K)
 -- Function File: triu (A, K, PACK)
     See the documentation for the 'tril' function (*note tril::).

     See also: tril.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
See the documentation for the 'tril' function (*note tril::).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tsearch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 284
 -- Built-in Function: IDX = tsearch (X, Y, T, XI, YI)
     Search for the enclosing Delaunay convex hull.

     For 'T = delaunay (X, Y)', finds the index in T containing the points '(XI, YI)'.  For points outside the convex hull, IDX is NaN.

     See also: delaunay, delaunayn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Search for the enclosing Delaunay convex hull.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
typecast


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1400
 -- Built-in Function: Y = typecast (X, "CLASS")
     Return a new array Y resulting from interpreting the data of X in memory as data of the numeric class CLASS.

     Both the class of X and CLASS must be one of the built-in numeric classes:

          "logical"
          "char"
          "int8"
          "int16"
          "int32"
          "int64"
          "uint8"
          "uint16"
          "uint32"
          "uint64"
          "double"
          "single"
          "double complex"
          "single complex"

     the last two are only used with CLASS; they indicate that a complex-valued result is requested.  Complex arrays are stored in memory as consecutive pairs of real numbers.  The sizes of integer types are given by their bit counts.  Both logical and char are typically one byte wide; however, this is not guaranteed by C++.  If your system is IEEE conformant, single and double will be 4 bytes and 8 bytes wide, respectively.  "logical" is not allowed for CLASS.

     If the input is a row vector, the return value is a row vector, otherwise it is a column vector.

     If the bit length of X is not divisible by that of CLASS, an error occurs.

     An example of the use of typecast on a little-endian machine is

          X = uint16 ([1, 65535]);
          typecast (X, "uint8")
          => [   1,   0, 255, 255]

     See also: cast, bitpack, bitunpack, swapbytes.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
Return a new array Y resulting from interpreting the data of X in memory as data of the numeric class CLASS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bitpack


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 835
 -- Built-in Function: Y = bitpack (X, CLASS)
     Return a new array Y resulting from interpreting the logical array X as raw bit patterns for data of the numeric class CLASS.

     CLASS must be one of the built-in numeric classes:

          "double"
          "single"
          "double complex"
          "single complex"
          "char"
          "int8"
          "int16"
          "int32"
          "int64"
          "uint8"
          "uint16"
          "uint32"
          "uint64"

     The number of elements of X should be divisible by the bit length of CLASS.  If it is not, excess bits are discarded.  Bits come in increasing order of significance, i.e., 'x(1)' is bit 0, 'x(2)' is bit 1, etc.

     The result is a row vector if X is a row vector, otherwise it is a column vector.

     See also: bitunpack, typecast.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
Return a new array Y resulting from interpreting the logical array X as raw bit patterns for data of the numeric class CLASS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
bitunpack


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 504
 -- Built-in Function: Y = bitunpack (X)
     Return a logical array Y corresponding to the raw bit patterns of X.

     X must belong to one of the built-in numeric classes:

          "double"
          "single"
          "char"
          "int8"
          "int16"
          "int32"
          "int64"
          "uint8"
          "uint16"
          "uint32"
          "uint64"

     The result is a row vector if X is a row vector; otherwise, it is a column vector.

     See also: bitpack, typecast.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Return a logical array Y corresponding to the raw bit patterns of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
urlwrite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1343
 -- Loadable Function: urlwrite (URL, LOCALFILE)
 -- Loadable Function: F = urlwrite (URL, LOCALFILE)
 -- Loadable Function: [F, SUCCESS] = urlwrite (URL, LOCALFILE)
 -- Loadable Function: [F, SUCCESS, MESSAGE] = urlwrite (URL, LOCALFILE)
     Download a remote file specified by its URL and save it as LOCALFILE.

     For example:

          urlwrite ("ftp://ftp.octave.org/pub/README",
                    "README.txt");

     The full path of the downloaded file is returned in F.

     The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message.

     If no output argument is specified and an error occurs, then the error is signaled through Octave's error handling mechanism.

     This function uses libcurl.  Curl supports, among others, the HTTP, FTP and FILE protocols.  Username and password may be specified in the URL, for example:

          urlwrite ("http://username:password@example.com/file.txt",
                    "file.txt");

     GET and POST requests can be specified by METHOD and PARAM.  The parameter METHOD is either 'get' or 'post' and PARAM is a cell array of parameter and value pairs.  For example:

          urlwrite ("http://www.google.com/search", "search.html",
                    "get", {"query", "octave"});

     See also: urlread.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Download a remote file specified by its URL and save it as LOCALFILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
urlread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1195
 -- Loadable Function: S = urlread (URL)
 -- Loadable Function: [S, SUCCESS] = urlread (URL)
 -- Loadable Function: [S, SUCCESS, MESSAGE] = urlread (URL)
 -- Loadable Function: [...] = urlread (URL, METHOD, PARAM)
     Download a remote file specified by its URL and return its content in string S.

     For example:

          s = urlread ("ftp://ftp.octave.org/pub/README");

     The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message.

     If no output argument is specified and an error occurs, then the error is signaled through Octave's error handling mechanism.

     This function uses libcurl.  Curl supports, among others, the HTTP, FTP and FILE protocols.  Username and password may be specified in the URL.  For example:

          s = urlread ("http://user:password@example.com/file.txt");

     GET and POST requests can be specified by METHOD and PARAM.  The parameter METHOD is either 'get' or 'post' and PARAM is a cell array of parameter and value pairs.  For example:

          s = urlread ("http://www.google.com/search", "get",
                      {"query", "octave"});

     See also: urlwrite.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Download a remote file specified by its URL and return its content in string S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isvarname


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
 -- Built-in Function: isvarname (NAME)
     Return true if NAME is a valid variable name.

     See also: iskeyword, exist, who.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return true if NAME is a valid variable name.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
file_in_loadpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 682
 -- Built-in Function: file_in_loadpath (FILE)
 -- Built-in Function: file_in_loadpath (FILE, "all")

     Return the absolute name of FILE if it can be found in the list of directories specified by 'path'.

     If no file is found, return an empty character string.

     If the first argument is a cell array of strings, search each directory of the loadpath for element of the cell array and return the first that matches.

     If the second optional argument "all" is supplied, return a cell array containing the list of all files that have the same name in the path.  If no files are found, return an empty cell array.

     See also: file_in_path, dir_in_loadpath, path.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
Return the absolute name of FILE if it can be found in the list of directories specified by 'path'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
file_in_path


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 833
 -- Built-in Function: file_in_path (PATH, FILE)
 -- Built-in Function: file_in_path (PATH, FILE, "all")
     Return the absolute name of FILE if it can be found in PATH.

     The value of PATH should be a colon-separated list of directories in the format described for 'path'.  If no file is found, return an empty character string.  For example:

          file_in_path (EXEC_PATH, "sh")
               => "/bin/sh"

     If the second argument is a cell array of strings, search each directory of the path for element of the cell array and return the first that matches.

     If the third optional argument "all" is supplied, return a cell array containing the list of all files that have the same name in the path.  If no files are found, return an empty cell array.

     See also: file_in_loadpath, dir_in_loadpath, path.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return the absolute name of FILE if it can be found in PATH.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
do_string_escapes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 277
 -- Built-in Function: do_string_escapes (STRING)
     Convert escape sequences in STRING to the characters they represent.

     Escape sequences begin with a leading backslash ('\') followed by 1-3 characters (.e.g., "\n" => newline).

     See also: undo_string_escapes.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Convert escape sequences in STRING to the characters they represent.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
undo_string_escapes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 770
 -- Built-in Function: undo_string_escapes (S)
     Convert special characters in strings back to their escaped forms.

     For example, the expression

          bell = "\a";

     assigns the value of the alert character (control-g, ASCII code 7) to the string variable 'bell'.  If this string is printed, the system will ring the terminal bell (if it is possible).  This is normally the desired outcome.  However, sometimes it is useful to be able to print the original representation of the string, with the special characters replaced by their escape sequences.  For example,

          octave:13> undo_string_escapes (bell)
          ans = \a

     replaces the unprintable alert character with its printable representation.

     See also: do_string_escapes.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Convert special characters in strings back to their escaped forms.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
is_absolute_filename


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 180
 -- Built-in Function: is_absolute_filename (FILE)
     Return true if FILE is an absolute filename.

     See also: is_rooted_relative_filename, make_absolute_filename, isdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Return true if FILE is an absolute filename.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
is_rooted_relative_filename


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 186
 -- Built-in Function: is_rooted_relative_filename (FILE)
     Return true if FILE is a rooted-relative filename.

     See also: is_absolute_filename, make_absolute_filename, isdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return true if FILE is a rooted-relative filename.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
make_absolute_filename


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 282
 -- Built-in Function: make_absolute_filename (FILE)
     Return the full name of FILE beginning from the root of the file system.

     No check is done for the existence of FILE.

     See also: canonicalize_file_name, is_absolute_filename, is_rooted_relative_filename, isdir.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Return the full name of FILE beginning from the root of the file system.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
dir_in_loadpath


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 543
 -- Built-in Function: dir_in_loadpath (DIR)
 -- Built-in Function: dir_in_loadpath (DIR, "all")
     Return the full name of the path element matching DIR.

     The match is performed at the end of each path element.  For example, if DIR is "foo/bar", it matches the path element "/some/dir/foo/bar", but not "/some/dir/foo/bar/baz" "/some/dir/allfoo/bar".

     If the optional second argument is supplied, return a cell array containing all name matches rather than just the first.

     See also: file_in_path, file_in_loadpath, path.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Return the full name of the path element matching DIR.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
errno


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 367
 -- Built-in Function: ERR = errno ()
 -- Built-in Function: ERR = errno (VAL)
 -- Built-in Function: ERR = errno (NAME)
     Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.

     See also: errno_list.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 209
Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
errno_list


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
 -- Built-in Function: errno_list ()
     Return a structure containing the system-dependent errno values.

     See also: errno.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Return a structure containing the system-dependent errno values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
isindex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 629
 -- Built-in Function: isindex (IND)
 -- Built-in Function: isindex (IND, N)
     Return true if IND is a valid index.

     Valid indices are either positive integers (although possibly of real data type), or logical arrays.

     If present, N specifies the maximum extent of the dimension to be indexed.  When possible the internal result is cached so that subsequent indexing using IND will not perform the check again.

     Implementation Note: Strings are first converted to double values before the checks for valid indices are made.  Unless a string contains the NULL character "\0", it will always be a valid index.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Return true if IND is a valid index.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
isstudent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 -- Built-in Function: isstudent ()
     Return true if running in the student edition of MATLAB.

     'isstudent' always returns false in Octave.

     See also: false.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Return true if running in the student edition of MATLAB.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isglobal


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
 -- Built-in Function: isglobal (NAME)
     Return true if NAME is a globally visible variable.

     For example:

          global x
          isglobal ("x")
             => 1

     See also: isvarname, exist.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Return true if NAME is a globally visible variable.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
exist


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1663
 -- Built-in Function: C = exist (NAME)
 -- Built-in Function: C = exist (NAME, TYPE)
     Check for the existence of NAME as a variable, function, file, directory, or class.

     The return code C is one of

     1
          NAME is a variable.

     2
          NAME is an absolute file name, an ordinary file in Octave's 'path', or (after appending '.m') a function file in Octave's 'path'.

     3
          NAME is a '.oct' or '.mex' file in Octave's 'path'.

     5
          NAME is a built-in function.

     7
          NAME is a directory.

     103
          NAME is a function not associated with a file (entered on the command line).

     0
          NAME does not exist.

     If the optional argument TYPE is supplied, check only for symbols of the specified type.  Valid types are

     "var"
          Check only for variables.

     "builtin"
          Check only for built-in functions.

     "dir"
          Check only for directories.

     "file"
          Check only for files and directories.

     "class"
          Check only for classes.  (Note: This option is accepted, but not currently implemented)

     If no type is given, and there are multiple possible matches for name, 'exist' will return a code according to the following priority list: variable, built-in function, oct-file, directory, file, class.

     'exist' returns 2 if a regular file called NAME is present in Octave's search path.  If you want information about other types of files not on the search path you should use some combination of the functions 'file_in_path' and 'stat' instead.

     See also: file_in_loadpath, file_in_path, dir_in_loadpath, stat.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Check for the existence of NAME as a variable, function, file, directory, or class.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
who


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1094
 -- Command: who
 -- Command: who pattern ...
 -- Command: who option pattern ...
 -- Command: C = who ("pattern", ...)
     List currently defined variables matching the given patterns.

     Valid pattern syntax is the same as described for the 'clear' command.  If no patterns are supplied, all variables are listed.

     By default, only variables visible in the local scope are displayed.

     The following are valid options, but may not be combined.

     'global'
          List variables in the global scope rather than the current scope.

     '-regexp'
          The patterns are considered to be regular expressions when matching the variables to display.  The same pattern syntax accepted by the 'regexp' function is used.

     '-file'
          The next argument is treated as a filename.  All variables found within the specified file are listed.  No patterns are accepted when reading variables from a file.

     If called as a function, return a cell array of defined variable names matching the given patterns.

     See also: whos, isglobal, isvarname, exist, regexp.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
List currently defined variables matching the given patterns.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
whos


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1666
 -- Command: whos
 -- Command: whos pattern ...
 -- Command: whos option pattern ...
 -- Built-in Function: S = whos ("pattern", ...)
     Provide detailed information on currently defined variables matching the given patterns.

     Options and pattern syntax are the same as for the 'who' command.

     Extended information about each variable is summarized in a table with the following default entries.

     Attr
          Attributes of the listed variable.  Possible attributes are:

          blank
               Variable in local scope

          'a'
               Automatic variable.  An automatic variable is one created by the interpreter, for example 'argn'.

          'c'
               Variable of complex type.

          'f'
               Formal parameter (function argument).

          'g'
               Variable with global scope.

          'p'
               Persistent variable.

     Name
          The name of the variable.

     Size
          The logical size of the variable.  A scalar is 1x1, a vector is 1xN or Nx1, a 2-D matrix is MxN.

     Bytes
          The amount of memory currently used to store the variable.

     Class
          The class of the variable.  Examples include double, single, char, uint16, cell, and struct.

     The table can be customized to display more or less information through the function 'whos_line_format'.

     If 'whos' is called as a function, return a struct array of defined variable names matching the given patterns.  Fields in the structure describing each variable are: name, size, bytes, class, global, sparse, complex, nesting, persistent.

     See also: who, whos_line_format.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
Provide detailed information on currently defined variables matching the given patterns.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
mlock


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
 -- Built-in Function: mlock ()
     Lock the current function into memory so that it can't be cleared.

     See also: munlock, mislocked, persistent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Lock the current function into memory so that it can't be cleared.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
munlock


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 220
 -- Built-in Function: munlock ()
 -- Built-in Function: munlock (FCN)
     Unlock the named function FCN.

     If no function is named then unlock the current function.

     See also: mlock, mislocked, persistent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Unlock the named function FCN.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
mislocked


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 258
 -- Built-in Function: mislocked ()
 -- Built-in Function: mislocked (FCN)
     Return true if the named function FCN is locked.

     If no function is named then return true if the current function is locked.

     See also: mlock, munlock, persistent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return true if the named function FCN is locked.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
clear


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2095
 -- Command: clear [options] pattern ...
     Delete the names matching the given patterns from the symbol table.

     The pattern may contain the following special characters:

     '?'
          Match any single character.

     '*'
          Match zero or more characters.

     '[ LIST ]'
          Match the list of characters specified by LIST.  If the first character is '!' or '^', match all characters except those specified by LIST.  For example, the pattern '[a-zA-Z]' will match all lowercase and uppercase alphabetic characters.

     For example, the command

          clear foo b*r

     clears the name 'foo' and all names that begin with the letter 'b' and end with the letter 'r'.

     If 'clear' is called without any arguments, all user-defined variables (local and global) are cleared from the symbol table.

     If 'clear' is called with at least one argument, only the visible names matching the arguments are cleared.  For example, suppose you have defined a function 'foo', and then hidden it by performing the assignment 'foo = 2'.  Executing the command 'clear foo' once will clear the variable definition and restore the definition of 'foo' as a function.  Executing 'clear foo' a second time will clear the function definition.

     The following options are available in both long and short form

     '-all, -a'
          Clear all local and global user-defined variables and all functions from the symbol table.

     '-exclusive, -x'
          Clear the variables that don't match the following pattern.

     '-functions, -f'
          Clear the function names and the built-in symbols names.

     '-global, -g'
          Clear global symbol names.

     '-variables, -v'
          Clear local variable names.

     '-classes, -c'
          Clears the class structure table and clears all objects.

     '-regexp, -r'
          The arguments are treated as regular expressions as any variables that match will be cleared.

     With the exception of 'exclusive', all long options can be used without the dash as well.

     See also: who, whos, exist.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Delete the names matching the given patterns from the symbol table.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
whos_line_format


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1910
 -- Built-in Function: VAL = whos_line_format ()
 -- Built-in Function: OLD_VAL = whos_line_format (NEW_VAL)
 -- Built-in Function: whos_line_format (NEW_VAL, "local")
     Query or set the format string used by the command 'whos'.

     A full format string is:

          %[modifier]<command>[:width[:left-min[:balance]]];

     The following command sequences are available:

     '%a'
          Prints attributes of variables (g=global, p=persistent, f=formal parameter, a=automatic variable).

     '%b'
          Prints number of bytes occupied by variables.

     '%c'
          Prints class names of variables.

     '%e'
          Prints elements held by variables.

     '%n'
          Prints variable names.

     '%s'
          Prints dimensions of variables.

     '%t'
          Prints type names of variables.

     Every command may also have an alignment modifier:

     'l'
          Left alignment.

     'r'
          Right alignment (default).

     'c'
          Column-aligned (only applicable to command %s).

     The 'width' parameter is a positive integer specifying the minimum number of columns used for printing.  No maximum is needed as the field will auto-expand as required.

     The parameters 'left-min' and 'balance' are only available when the column-aligned modifier is used with the command '%s'.  'balance' specifies the column number within the field width which will be aligned between entries.  Numbering starts from 0 which indicates the leftmost column.  'left-min' specifies the minimum field width to the left of the specified balance column.

     The default format is:

     " %a:4; %ln:6; %cs:16:6:1; %rb:12; %lc:-1;\n"

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: whos.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Query or set the format string used by the command 'whos'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
missing_function_hook


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
 -- Built-in Function: VAL = missing_function_hook ()
 -- Built-in Function: OLD_VAL = missing_function_hook (NEW_VAL)
 -- Built-in Function: missing_function_hook (NEW_VAL, "local")
     Query or set the internal variable that specifies the function to call when an unknown identifier is requested.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: missing_component_hook.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that specifies the function to call when an unknown identifier is requested.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
missing_component_hook


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1025
 -- Built-in Function: VAL = missing_component_hook ()
 -- Built-in Function: OLD_VAL = missing_component_hook (NEW_VAL)
 -- Built-in Function: missing_component_hook (NEW_VAL, "local")
     Query or set the internal variable that specifies the function to call when a component of Octave is missing.

     This can be useful for packagers that may split the Octave installation into multiple sub-packages, for example, to provide a hint to users for how to install the missing components.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     The hook function is expected to be of the form

          FCN (COMPONENT)

     Octave will call FCN with the name of the function that requires the component and a string describing the missing component.  The hook function should return an error message to be displayed.

     See also: missing_function_hook.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
Query or set the internal variable that specifies the function to call when a component of Octave is missing.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
jit_failcnt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 535
 -- Built-in Function: VAL = jit_failcnt ()
 -- Built-in Function: OLD_VAL = jit_failcnt (NEW_VAL)
 -- Built-in Function: jit_failcnt (NEW_VAL, "local")
     Query or set the internal variable that counts the number of JIT fail exceptions for Octave's JIT compiler.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: jit_enable, jit_startcnt, debug_jit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 107
Query or set the internal variable that counts the number of JIT fail exceptions for Octave's JIT compiler.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
debug_jit


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 525
 -- Built-in Function: VAL = debug_jit ()
 -- Built-in Function: OLD_VAL = debug_jit (NEW_VAL)
 -- Built-in Function: debug_jit (NEW_VAL, "local")
     Query or set the internal variable that determines whether debugging/tracing is enabled for Octave's JIT compiler.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: jit_enable, jit_startcnt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 114
Query or set the internal variable that determines whether debugging/tracing is enabled for Octave's JIT compiler.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
jit_enable


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 483
 -- Built-in Function: VAL = jit_enable ()
 -- Built-in Function: OLD_VAL = jit_enable (NEW_VAL)
 -- Built-in Function: jit_enable (NEW_VAL, "local")
     Query or set the internal variable that enables Octave's JIT compiler.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: jit_startcnt, debug_jit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Query or set the internal variable that enables Octave's JIT compiler.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
jit_startcnt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 732
 -- Built-in Function: VAL = jit_startcnt ()
 -- Built-in Function: OLD_VAL = jit_startcnt (NEW_VAL)
 -- Built-in Function: jit_startcnt (NEW_VAL, "local")
     Query or set the internal variable that determines whether JIT compilation will take place for a specific loop.

     Because compilation is a costly operation it does not make sense to employ JIT when the loop count is low.  By default only loops with greater than 1000 iterations will be accelerated.

     When called from inside a function with the "local" option, the variable is changed locally for the function and any subroutines it calls.  The original variable value is restored when exiting the function.

     See also: jit_enable, jit_failcnt, debug_jit.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 111
Query or set the internal variable that determines whether JIT compilation will take place for a specific loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
autoload


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1206
 -- Built-in Function: AUTOLOAD_MAP = autoload ()
 -- Built-in Function: autoload (FUNCTION, FILE)
 -- Built-in Function: autoload (..., "remove")
     Define FUNCTION to autoload from FILE.

     The second argument, FILE, should be an absolute file name or a file name in the same directory as the function or script from which the autoload command was run.  FILE _should not_ depend on the Octave load path.

     Normally, calls to 'autoload' appear in PKG_ADD script files that are evaluated when a directory is added to Octave's load path.  To avoid having to hardcode directory names in FILE, if FILE is in the same directory as the PKG_ADD script then

          autoload ("foo", "bar.oct");

     will load the function 'foo' from the file 'bar.oct'.  The above usage when 'bar.oct' is not in the same directory, or usages such as

          autoload ("foo", file_in_loadpath ("bar.oct"))

     are strongly discouraged, as their behavior may be unpredictable.

     With no arguments, return a structure containing the current autoload map.

     If a third argument "remove" is given, the function is cleared and not loaded anymore during the current Octave session.

     See also: PKG_ADD.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Define FUNCTION to autoload from FILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
mfilename


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 462
 -- Built-in Function: mfilename ()
 -- Built-in Function: mfilename ("fullpath")
 -- Built-in Function: mfilename ("fullpathext")
     Return the name of the currently executing file.

     When called from outside an m-file return the empty string.

     Given the argument "fullpath", include the directory part of the file name, but not the extension.

     Given the argument "fullpathext", include the directory part of the file name and the extension.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Return the name of the currently executing file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
source


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 226
 -- Built-in Function: source (FILE)
     Parse and execute the contents of FILE.

     This is equivalent to executing commands from a script file, but without requiring the file to be named 'FILE.m'.

     See also: run.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Parse and execute the contents of FILE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
feval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 892
 -- Built-in Function: feval (NAME, ...)
     Evaluate the function named NAME.

     Any arguments after the first are passed as inputs to the named function.  For example,

          feval ("acos", -1)
               => 3.1416

     calls the function 'acos' with the argument '-1'.

     The function 'feval' can also be used with function handles of any sort (*note Function Handles::).  Historically, 'feval' was the only way to call user-supplied functions in strings, but function handles are now preferred due to the cleaner syntax they offer.  For example,

          F = @exp;
          feval (F, 1)
              => 2.7183
          F (1)
              => 2.7183

     are equivalent ways to call the function referred to by F.  If it cannot be predicted beforehand whether F is a function handle, function name in a string, or inline function then 'feval' can be used instead.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Evaluate the function named NAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
builtin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 622
 -- Built-in Function: [...] = builtin (F, ...)
     Call the base function F even if F is overloaded to another function for the given type signature.

     This is normally useful when doing object-oriented programming and there is a requirement to call one of Octave's base functions rather than the overloaded one of a new class.

     A trivial example which redefines the 'sin' function to be the 'cos' function shows how 'builtin' works.

          sin (0)
            => 0
          function y = sin (x), y = cos (x); endfunction
          sin (0)
            => 1
          builtin ("sin", 0)
            => 0
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 98
Call the base function F even if F is overloaded to another function for the given type signature.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
eval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1191
 -- Built-in Function: eval (TRY)
 -- Built-in Function: eval (TRY, CATCH)
     Parse the string TRY and evaluate it as if it were an Octave program.

     If execution fails, evaluate the optional string CATCH.

     The string TRY is evaluated in the current context, so any results remain available after 'eval' returns.

     The following example creates the variable A with the approximate value of 3.1416 in the current workspace.

          eval ("A = acos(-1);");

     If an error occurs during the evaluation of TRY then the CATCH string is evaluated, as the following example shows:

          eval ('error ("This is a bad example");',
                'printf ("This error occurred:\n%s\n", lasterr ());');
               -| This error occurred:
                  This is a bad example

     Programming Note: if you are only using 'eval' as an error-capturing mechanism, rather than for the execution of arbitrary code strings, Consider using try/catch blocks or unwind_protect/unwind_protect_cleanup blocks instead.  These techniques have higher performance and don't introduce the security considerations that the evaluation of arbitrary code does.

     See also: evalin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Parse the string TRY and evaluate it as if it were an Octave program.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
assignin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 -- Built-in Function: assignin (CONTEXT, VARNAME, VALUE)
     Assign VALUE to VARNAME in context CONTEXT, which may be either "base" or "caller".

     See also: evalin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 83
Assign VALUE to VARNAME in context CONTEXT, which may be either "base" or "caller".



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
evalin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 256
 -- Built-in Function: evalin (CONTEXT, TRY)
 -- Built-in Function: evalin (CONTEXT, TRY, CATCH)
     Like 'eval', except that the expressions are evaluated in the context CONTEXT, which may be either "caller" or "base".

     See also: eval, assignin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
Like 'eval', except that the expressions are evaluated in the context CONTEXT, which may be either "caller" or "base".



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
amd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1189
 -- Loadable Function: P = amd (S)
 -- Loadable Function: P = amd (S, OPTS)

     Return the approximate minimum degree permutation of a matrix.

     This is a permutation such that the Cholesky factorization of 'S (P, P)' tends to be sparser than the Cholesky factorization of S itself.  'amd' is typically faster than 'symamd' but serves a similar purpose.

     The optional parameter OPTS is a structure that controls the behavior of 'amd'.  The fields of the structure are

     OPTS.dense
          Determines what 'amd' considers to be a dense row or column of the input matrix.  Rows or columns with more than 'max (16, (dense * sqrt (N)))' entries, where N is the order of the matrix S, are ignored by 'amd' during the calculation of the permutation.  The value of dense must be a positive scalar and the default value is 10.0

     OPTS.aggressive
          If this value is a nonzero scalar, then 'amd' performs aggressive absorption.  The default is not to perform aggressive absorption.

     The author of the code itself is Timothy A. Davis <davis@cise.ufl.edu>, University of Florida (see <http://www.cise.ufl.edu/research/sparse/amd>).

     See also: symamd, colamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return the approximate minimum degree permutation of a matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ccolamd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3636
 -- Loadable Function: P = ccolamd (S)
 -- Loadable Function: P = ccolamd (S, KNOBS)
 -- Loadable Function: P = ccolamd (S, KNOBS, CMEMBER)
 -- Loadable Function: [P, STATS] = ccolamd (...)

     Constrained column approximate minimum degree permutation.

     'P = ccolamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S.  For a non-symmetric matrix S, 'S(:, P)' tends to have sparser LU factors than S.  'chol (S(:, P)' * S(:, P))' also tends to be sparser than 'chol (S' * S)'.  'P = ccolamd (S, 1)' optimizes the ordering for 'lu (S(:, P))'.  The ordering is followed by a column elimination tree post-ordering.

     KNOBS is an optional 1-element to 5-element input vector, with a default value of '[0 10 10 1 0]' if not present or empty.  Entries not present are set to their defaults.

     'KNOBS(1)'
          if nonzero, the ordering is optimized for 'lu (S(:, p))'.  It will be a poor ordering for 'chol (S(:, P)' * S(:, P))'.  This is the most important knob for ccolamd.

     'KNOBS(2)'
          if S is m-by-n, rows with more than 'max (16, KNOBS(2) * sqrt (n))' entries are ignored.

     'KNOBS(3)'
          columns with more than 'max (16, KNOBS(3) * sqrt (min (M, N)))' entries are ignored and ordered last in the output permutation (subject to the cmember constraints).

     'KNOBS(4)'
          if nonzero, aggressive absorption is performed.

     'KNOBS(5)'
          if nonzero, statistics and knobs are printed.

     CMEMBER is an optional vector of length n.  It defines the constraints on the column ordering.  If 'CMEMBER(j) = C', then column J is in constraint set C (C must be in the range 1 to n).  In the output permutation P, all columns in set 1 appear first, followed by all columns in set 2, and so on.  'CMEMBER = ones (1,n)' if not present or empty.  'ccolamd (S, [], 1 : n)' returns '1 : n'

     'P = ccolamd (S)' is about the same as 'P = colamd (S)'.  KNOBS and its default values differ.  'colamd' always does aggressive absorption, and it finds an ordering suitable for both 'lu (S(:, P))' and 'chol (S(:, P)' * S(:, P))'; it cannot optimize its ordering for 'lu (S(:, P))' to the extent that 'ccolamd (S, 1)' can.

     STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S.  Ordering statistics are in 'STATS(1 : 3)'.  'STATS(1)' and 'STATS(2)' are the number of dense or empty rows and columns ignored by CCOLAMD and 'STATS(3)' is the number of garbage collections performed on the internal data structure used by CCOLAMD (roughly of size '2.2 * nnz (S) + 4 * M + 7 * N' integers).

     'STATS(4 : 7)' provide information if CCOLAMD was able to continue.  The matrix is OK if 'STATS(4)' is zero, or 1 if invalid.  'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists.  'STATS(7)' is the number of duplicate or out-of-order row indices.  'STATS(8 : 20)' is always zero in the current version of CCOLAMD (reserved for future use).

     The authors of the code itself are S. Larimore, T. Davis (Univ.  of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng.  Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab.  See <http://www.cise.ufl.edu/research/sparse> for ccolamd, csymamd, amd, colamd, symamd, and other related orderings.

     See also: colamd, csymamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Constrained column approximate minimum degree permutation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
csymamd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2576
 -- Loadable Function: P = csymamd (S)
 -- Loadable Function: P = csymamd (S, KNOBS)
 -- Loadable Function: P = csymamd (S, KNOBS, CMEMBER)
 -- Loadable Function: [P, STATS] = csymamd (...)

     For a symmetric positive definite matrix S, return the permutation vector P such that 'S(P,P)' tends to have a sparser Cholesky factor than S.

     Sometimes 'csymamd' works well for symmetric indefinite matrices too.  The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced.  S must be square.  The ordering is followed by an elimination tree post-ordering.

     KNOBS is an optional 1-element to 3-element input vector, with a default value of '[10 1 0]'.  Entries not present are set to their defaults.

     'KNOBS(1)'
          If S is n-by-n, then rows and columns with more than 'max(16,KNOBS(1)*sqrt(n))' entries are ignored, and ordered last in the output permutation (subject to the cmember constraints).

     'KNOBS(2)'
          If nonzero, aggressive absorption is performed.

     'KNOBS(3)'
          If nonzero, statistics and knobs are printed.

     CMEMBER is an optional vector of length n.  It defines the constraints on the ordering.  If 'CMEMBER(j) = S', then row/column j is in constraint set C (C must be in the range 1 to n).  In the output permutation P, rows/columns in set 1 appear first, followed by all rows/columns in set 2, and so on.  'CMEMBER = ones (1,n)' if not present or empty.  'csymamd (S,[],1:n)' returns '1:n'.

     'P = csymamd (S)' is about the same as 'P = symamd (S)'.  KNOBS and its default values differ.

     'STATS(4:7)' provide information if CCOLAMD was able to continue.  The matrix is OK if 'STATS(4)' is zero, or 1 if invalid.  'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists.  'STATS(7)' is the number of duplicate or out-of-order row indices.  'STATS(8:20)' is always zero in the current version of CCOLAMD (reserved for future use).

     The authors of the code itself are S. Larimore, T. Davis (Univ.  of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng.  Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab.  See <http://www.cise.ufl.edu/research/sparse> for ccolamd, csymamd, amd, colamd, symamd, and other related orderings.

     See also: symamd, ccolamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
For a symmetric positive definite matrix S, return the permutation vector P such that 'S(P,P)' tends to have a sparser Cholesky factor than S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
chol


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1711
 -- Loadable Function: R = chol (A)
 -- Loadable Function: [R, P] = chol (A)
 -- Loadable Function: [R, P, Q] = chol (S)
 -- Loadable Function: [R, P, Q] = chol (S, "vector")
 -- Loadable Function: [L, ...] = chol (..., "lower")
 -- Loadable Function: [L, ...] = chol (..., "upper")
     Compute the Cholesky factor, R, of the symmetric positive definite matrix A.

     The Cholesky factor is defined by

          R' * R = A.

     Called with one output argument 'chol' fails if A or S is not positive definite.  With two or more output arguments P flags whether the matrix was positive definite and 'chol' does not fail.  A zero value indicated that the matrix was positive definite and the R gives the factorization, and P will have a positive value otherwise.

     If called with 3 outputs then a sparsity preserving row/column permutation is applied to A prior to the factorization.  That is R is the factorization of 'A(Q,Q)' such that

          R' * R = Q' * A * Q.

     The sparsity preserving permutation is generally returned as a matrix.  However, given the flag "vector", Q will be returned as a vector such that

          R' * R = A(Q, Q).

     Called with either a sparse or full matrix and using the "lower" flag, 'chol' returns the lower triangular factorization such that

          L * L' = A.

     For full matrices, if the "lower" flag is set only the lower triangular part of the matrix is used for the factorization, otherwise the upper triangular part is used.

     In general the lower triangular factorization is significantly faster for sparse matrices.

     See also: hess, lu, qr, qz, schur, svd, ichol, cholinv, chol2inv, cholupdate, cholinsert, choldelete, cholshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Compute the Cholesky factor, R, of the symmetric positive definite matrix A.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
cholinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
 -- Loadable Function: cholinv (A)
     Compute the inverse of the symmetric positive definite matrix A using the Cholesky factorization.

     See also: chol, chol2inv, inv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 97
Compute the inverse of the symmetric positive definite matrix A using the Cholesky factorization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
chol2inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 334
 -- Loadable Function: chol2inv (U)
     Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U.

     Note that U should be an upper-triangular matrix with positive diagonal elements.  'chol2inv (U)' provides 'inv (U'*U)' but it is much faster than using 'inv'.

     See also: chol, cholinv, inv.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cholupdate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 629
 -- Loadable Function: [R1, INFO] = cholupdate (R, U, OP)
     Update or downdate a Cholesky factorization.

     Given an upper triangular matrix R and a column vector U, attempt to determine another upper triangular matrix R1 such that

        * R1'*R1 = R'*R + U*U' if OP is "+"

        * R1'*R1 = R'*R - U*U' if OP is "-"

     If OP is "-", INFO is set to

        * 0 if the downdate was successful,

        * 1 if R'*R - U*U' is not positive definite,

        * 2 if R is singular.

     If INFO is not present, an error message is printed in cases 1 and 2.

     See also: chol, cholinsert, choldelete, cholshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Update or downdate a Cholesky factorization.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
cholinsert


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 662
 -- Loadable Function: R1 = cholinsert (R, J, U)
 -- Loadable Function: [R1, INFO] = cholinsert (R, J, U)
     Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1].  u(j) should be positive.

     On return, INFO is set to

        * 0 if the insertion was successful,

        * 1 if A1 is not positive definite,

        * 2 if R is singular.

     If INFO is not present, an error message is printed in cases 1 and 2.

     See also: chol, cholupdate, choldelete, cholshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 234
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
choldelete


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 310
 -- Loadable Function: R1 = choldelete (R, J)
     Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1].

     See also: chol, cholupdate, cholinsert, cholshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 198
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1].



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
cholshift


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 422
 -- Loadable Function: R1 = cholshift (R, I, J)
     Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation
     'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
     or
     'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.

     See also: chol, cholupdate, cholinsert, choldelete.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 295
Given a Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation  'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J  or  'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
colamd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3358
 -- Loadable Function: P = colamd (S)
 -- Loadable Function: P = colamd (S, KNOBS)
 -- Loadable Function: [P, STATS] = colamd (S)
 -- Loadable Function: [P, STATS] = colamd (S, KNOBS)

     Compute the column approximate minimum degree permutation.

     'P = colamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S.  For a non-symmetric matrix S, 'S(:,P)' tends to have sparser LU factors than S.  The Cholesky factorization of 'S(:,P)' * S(:,P)' also tends to be sparser than that of 'S' * S'.

     KNOBS is an optional one- to three-element input vector.  If S is m-by-n, then rows with more than 'max(16,KNOBS(1)*sqrt(n))' entries are ignored.  Columns with more than 'max (16,KNOBS(2)*sqrt(min(m,n)))' entries are removed prior to ordering, and ordered last in the output permutation P.  Only completely dense rows or columns are removed if 'KNOBS(1)' and 'KNOBS(2)' are < 0, respectively.  If 'KNOBS(3)' is nonzero, STATS and KNOBS are printed.  The default is 'KNOBS = [10 10 0]'.  Note that KNOBS differs from earlier versions of colamd.

     STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S.  Ordering statistics are in 'STATS(1:3)'.  'STATS(1)' and 'STATS(2)' are the number of dense or empty rows and columns ignored by COLAMD and 'STATS(3)' is the number of garbage collections performed on the internal data structure used by COLAMD (roughly of size '2.2 * nnz(S) + 4 * M + 7 * N' integers).

     Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!)  and so on.  If a matrix is invalid, then COLAMD may or may not be able to continue.  If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then COLAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however).  If a matrix is invalid in other ways then COLAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned.  COLAMD is thus a simple way to check a sparse matrix to see if it's valid.

     'STATS(4:7)' provide information if COLAMD was able to continue.  The matrix is OK if 'STATS(4)' is zero, or 1 if invalid.  'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists.  'STATS(7)' is the number of duplicate or out-of-order row indices.  'STATS(8:20)' is always zero in the current version of COLAMD (reserved for future use).

     The ordering is followed by a column elimination tree post-ordering.

     The authors of the code itself are Stefan I. Larimore and Timothy A. Davis <davis@cise.ufl.edu>, University of Florida.  The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.  (see <http://www.cise.ufl.edu/research/sparse/colamd>)

     See also: colperm, symamd, ccolamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Compute the column approximate minimum degree permutation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
symamd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3212
 -- Loadable Function: P = symamd (S)
 -- Loadable Function: P = symamd (S, KNOBS)
 -- Loadable Function: [P, STATS] = symamd (S)
 -- Loadable Function: [P, STATS] = symamd (S, KNOBS)

     For a symmetric positive definite matrix S, returns the permutation vector p such that 'S(P, P)' tends to have a sparser Cholesky factor than S.

     Sometimes 'symamd' works well for symmetric indefinite matrices too.  The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced.  S must be square.

     KNOBS is an optional one- to two-element input vector.  If S is n-by-n, then rows and columns with more than 'max (16,KNOBS(1)*sqrt(n))' entries are removed prior to ordering, and ordered last in the output permutation P.  No rows/columns are removed if 'KNOBS(1) < 0'.  If 'KNOBS (2)' is nonzero, 'stats' and KNOBS are printed.  The default is 'KNOBS = [10 0]'.  Note that KNOBS differs from earlier versions of 'symamd'.

     STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S.  Ordering statistics are in 'STATS(1:3)'.  'STATS(1) = STATS(2)' is the number of dense or empty rows and columns ignored by SYMAMD and 'STATS(3)' is the number of garbage collections performed on the internal data structure used by SYMAMD (roughly of size '8.4 * nnz (tril (S, -1)) + 9 * N' integers).

     Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!)  and so on.  If a matrix is invalid, then SYMAMD may or may not be able to continue.  If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then SYMAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however).  If a matrix is invalid in other ways then SYMAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned.  SYMAMD is thus a simple way to check a sparse matrix to see if it's valid.

     'STATS(4:7)' provide information if SYMAMD was able to continue.  The matrix is OK if 'STATS (4)' is zero, or 1 if invalid.  'STATS(5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  'STATS(6)' is the last seen duplicate or out-of-order row index in the column index given by 'STATS(5)', or zero if no such row index exists.  'STATS(7)' is the number of duplicate or out-of-order row indices.  'STATS(8:20)' is always zero in the current version of SYMAMD (reserved for future use).

     The ordering is followed by a column elimination tree post-ordering.

     The authors of the code itself are Stefan I. Larimore and Timothy A. Davis <davis@cise.ufl.edu>, University of Florida.  The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.  (see <http://www.cise.ufl.edu/research/sparse/colamd>)

     See also: colperm, colamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 144
For a symmetric positive definite matrix S, returns the permutation vector p such that 'S(P, P)' tends to have a sparser Cholesky factor than S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
etree


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
 -- Loadable Function: P = etree (S)
 -- Loadable Function: P = etree (S, TYP)
 -- Loadable Function: [P, Q] = etree (S, TYP)

     Return the elimination tree for the matrix S.

     By default S is assumed to be symmetric and the symmetric elimination tree is returned.  The argument TYP controls whether a symmetric or column elimination tree is returned.  Valid values of TYP are "sym" or "col", for symmetric or column elimination tree respectively.

     Called with a second argument, 'etree' also returns the postorder permutations on the tree.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Return the elimination tree for the matrix S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
convhulln


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1218
 -- Loadable Function: H = convhulln (PTS)
 -- Loadable Function: H = convhulln (PTS, OPTIONS)
 -- Loadable Function: [H, V] = convhulln (...)
     Compute the convex hull of the set of points PTS.

     PTS is a matrix of size [n, dim] containing n points in a space of dimension dim.

     The hull H is an index vector into the set of points and specifies which points form the enclosing hull.

     An optional second argument, which must be a string or cell array of strings, contains options passed to the underlying qhull command.  See the documentation for the Qhull library for details <http://www.qhull.org/html/qh-quick.htm#options>.  The default options depend on the dimension of the input:

        * 2D, 3D, 4D: OPTIONS = '{"Qt"}'

        * 5D and higher: OPTIONS = '{"Qt", "Qx"}'

     If OPTIONS is not present or '[]' then the default arguments are used.  Otherwise, OPTIONS replaces the default argument list.  To append user options to the defaults it is necessary to repeat the default arguments in OPTIONS.  Use a null string to pass no arguments.

     If the second output V is requested the volume of the enclosing convex hull is calculated.

     See also: convhull, delaunayn, voronoin.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Compute the convex hull of the set of points PTS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
dmperm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 729
 -- Loadable Function: P = dmperm (S)
 -- Loadable Function: [P, Q, R, S] = dmperm (S)

     Perform a Dulmage-Mendelsohn permutation of the sparse matrix S.

     With a single output argument 'dmperm' performs the row permutations P such that 'S(P,:)' has no zero elements on the diagonal.

     Called with two or more output arguments, returns the row and column permutations, such that 'S(P, Q)' is in block triangular form.  The values of R and S define the boundaries of the blocks.  If S is square then 'R == S'.

     The method used is described in: A. Pothen & C.-J. Fan.  'Computing the Block Triangular Form of a Sparse Matrix'.  ACM Trans.  Math.  Software, 16(4):303-324, 1990.

     See also: colamd, ccolamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Perform a Dulmage-Mendelsohn permutation of the sparse matrix S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sprank


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 412
 -- Loadable Function: P = sprank (S)

     Calculate the structural rank of the sparse matrix S.

     Note that only the structure of the matrix is used in this calculation based on a Dulmage-Mendelsohn permutation to block triangular form.  As such the numerical rank of the matrix S is bounded by 'sprank (S) >= rank (S)'.  Ignoring floating point errors 'sprank (S) == rank (S)'.

     See also: dmperm.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Calculate the structural rank of the sparse matrix S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
fftw


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3147
 -- Loadable Function: METHOD = fftw ("planner")
 -- Loadable Function: fftw ("planner", METHOD)
 -- Loadable Function: WISDOM = fftw ("dwisdom")
 -- Loadable Function: fftw ("dwisdom", WISDOM)
 -- Loadable Function: fftw ("threads", NTHREADS)
 -- Loadable Function: NTHREADS = fftw ("threads")

     Manage FFTW wisdom data.

     Wisdom data can be used to significantly accelerate the calculation of the FFTs, but implies an initial cost in its calculation.  When the FFTW libraries are initialized, they read a system wide wisdom file (typically in '/etc/fftw/wisdom'), allowing wisdom to be shared between applications other than Octave.  Alternatively, the 'fftw' function can be used to import wisdom.  For example,

          WISDOM = fftw ("dwisdom")

     will save the existing wisdom used by Octave to the string WISDOM.  This string can then be saved to a file and restored using the 'save' and 'load' commands respectively.  This existing wisdom can be re-imported as follows

          fftw ("dwisdom", WISDOM)

     If WISDOM is an empty string, then the wisdom used is cleared.

     During the calculation of Fourier transforms further wisdom is generated.  The fashion in which this wisdom is generated is also controlled by the 'fftw' function.  There are five different manners in which the wisdom can be treated:

     "estimate"
          Specifies that no run-time measurement of the optimal means of calculating a particular is performed, and a simple heuristic is used to pick a (probably sub-optimal) plan.  The advantage of this method is that there is little or no overhead in the generation of the plan, which is appropriate for a Fourier transform that will be calculated once.

     "measure"
          In this case a range of algorithms to perform the transform is considered and the best is selected based on their execution time.

     "patient"
          Similar to "measure", but a wider range of algorithms is considered.

     "exhaustive"
          Like "measure", but all possible algorithms that may be used to treat the transform are considered.

     "hybrid"
          As run-time measurement of the algorithm can be expensive, this is a compromise where "measure" is used for transforms up to the size of 8192 and beyond that the "estimate" method is used.

     The default method is "estimate".  The current method can be queried with

          METHOD = fftw ("planner")

     or set by using

          fftw ("planner", METHOD)

     Note that calculated wisdom will be lost when restarting Octave.  However, the wisdom data can be reloaded if it is saved to a file as described above.  Saved wisdom files should not be used on different platforms since they will not be efficient and the point of calculating the wisdom is lost.

     The number of threads used for computing the plans and executing the transforms can be set with

          fftw ("threads", NTHREADS)

     Note that octave must be compiled with multi-threaded FFTW support for this feature.  The number of processors available to the current process is used per default.

     See also: fft, ifft, fft2, ifft2, fftn, ifftn.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Manage FFTW wisdom data.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2290
 -- Loadable Function: [Q, R, P] = qr (A)
 -- Loadable Function: [Q, R, P] = qr (A, '0')
 -- Loadable Function: [C, R] = qr (A, B)
 -- Loadable Function: [C, R] = qr (A, B, '0')
     Compute the QR factorization of A, using standard LAPACK subroutines.

     For example, given the matrix 'A = [1, 2; 3, 4]',

          [Q, R] = qr (A)

     returns

          Q =

            -0.31623  -0.94868
            -0.94868   0.31623

          R =

            -3.16228  -4.42719
             0.00000  -0.63246

     The 'qr' factorization has applications in the solution of least squares problems

          min norm(A x - b)

     for overdetermined systems of equations (i.e., A is a tall, thin matrix).  The QR factorization is 'Q * R = A' where Q is an orthogonal matrix and R is upper triangular.

     If given a second argument of '0', 'qr' returns an economy-sized QR factorization, omitting zero rows of R and the corresponding columns of Q.

     If the matrix A is full, the permuted QR factorization '[Q, R, P] = qr (A)' forms the QR factorization such that the diagonal entries of R are decreasing in magnitude order.  For example, given the matrix 'a = [1, 2; 3, 4]',

          [Q, R, P] = qr (A)

     returns

          Q =

            -0.44721  -0.89443
            -0.89443   0.44721

          R =

            -4.47214  -3.13050
             0.00000   0.44721

          P =

             0  1
             1  0

     The permuted 'qr' factorization '[Q, R, P] = qr (A)' factorization allows the construction of an orthogonal basis of 'span (A)'.

     If the matrix A is sparse, then compute the sparse QR factorization of A, using CSPARSE.  As the matrix Q is in general a full matrix, this function returns the Q-less factorization R of A, such that 'R = chol (A' * A)'.

     If the final argument is the scalar '0' and the number of rows is larger than the number of columns, then an economy factorization is returned.  That is R will have only 'size (A,1)' rows.

     If an additional matrix B is supplied, then 'qr' returns C, where 'C = Q' * B'.  This allows the least squares approximation of 'A \ B' to be calculated as

          [C, R] = qr (A, B)
          x = R \ C

     See also: chol, hess, lu, qz, schur, svd, qrupdate, qrinsert, qrdelete, qrshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Compute the QR factorization of A, using standard LAPACK subroutines.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qrupdate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 638
 -- Loadable Function: [Q1, R1] = qrupdate (Q, R, U, V)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).  Notice that the latter case is done as a sequence of rank-1 updates; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.

     The QR factorization supplied may be either full (Q is square) or economized (R is square).

     See also: qr, qrinsert, qrdelete, qrshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 244
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qrinsert


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1022
 -- Loadable Function: [Q1, R1] = qrinsert (Q, R, J, X, ORIENT)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is "row").

     The default value of ORIENT is "col".  If ORIENT is "col", U may be a matrix and J an index vector resulting in the QR factorization of a matrix B such that B(:,J) gives U and B(:,J) = [] gives A.  Notice that the latter case is done as a sequence of k insertions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.

     If ORIENT is "col", the QR factorization supplied may be either full (Q is square) or economized (R is square).

     If ORIENT is "row", full factorization is needed.

     See also: qr, qrupdate, qrdelete, qrshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 343
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is "row").



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qrdelete


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 955
 -- Loadable Function: [Q1, R1] = qrdelete (Q, R, J, ORIENT)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.e., A with one column deleted (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);A(j+1:n,:)], i.e., A with one row deleted (if ORIENT is "row").

     The default value of ORIENT is "col".

     If ORIENT is "col", J may be an index vector resulting in the QR factorization of a matrix B such that A(:,J) = [] gives B.  Notice that the latter case is done as a sequence of k deletions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.

     If ORIENT is "col", the QR factorization supplied may be either full (Q is square) or economized (R is square).

     If ORIENT is "row", full factorization is needed.

     See also: qr, qrupdate, qrinsert, qrshift.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 155
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
qrshift


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 385
 -- Loadable Function: [Q1, R1] = qrshift (Q, R, I, J)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation
     'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
     or
     'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.

     See also: qr, qrupdate, qrinsert, qrdelete.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 259
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation  'p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J  or  'p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
symbfact


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1261
 -- Loadable Function: [COUNT, H, PARENT, POST, R] = symbfact (S)
 -- Loadable Function: [...] = symbfact (S, TYP)
 -- Loadable Function: [...] = symbfact (S, TYP, MODE)

     Perform a symbolic factorization analysis on the sparse matrix S.

     The input variables are

     S
          S is a complex or real sparse matrix.

     TYP
          Is the type of the factorization and can be one of

          'sym'
               Factorize S.  This is the default.

          'col'
               Factorize 'S' * S'.

          'row'
               Factorize S * S'.

          'lo'
               Factorize S'

     MODE
          The default is to return the Cholesky factorization for R, and if MODE is 'L', the conjugate transpose of the Cholesky factorization is returned.  The conjugate transpose version is faster and uses less memory, but returns the same values for COUNT, H, PARENT and POST outputs.

     The output variables are

     COUNT
          The row counts of the Cholesky factorization as determined by TYP.

     H
          The height of the elimination tree.

     PARENT
          The elimination tree itself.

     POST
          A sparse boolean matrix whose structure is that of the Cholesky factorization as determined by TYP.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Perform a symbolic factorization analysis on the sparse matrix S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
symrcm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 933
 -- Loadable Function: P = symrcm (S)
     Return the symmetric reverse Cuthill-McKee permutation of S.

     P is a permutation vector such that 'S(P, P)' tends to have its diagonal elements closer to the diagonal than S.  This is a good preordering for LU or Cholesky factorization of matrices that come from "long, skinny" problems.  It works for both symmetric and asymmetric S.

     The algorithm represents a heuristic approach to the NP-complete bandwidth minimization problem.  The implementation is based in the descriptions found in

     E. Cuthill, J. McKee.  'Reducing the Bandwidth of Sparse Symmetric Matrices'.  Proceedings of the 24th ACM National Conference, 157-172 1969, Brandon Press, New Jersey.

     A. George, J.W.H. Liu.  'Computer Solution of Large Sparse Positive Definite Systems', Prentice Hall Series in Computational Mathematics, ISBN 0-13-165274-5, 1981.

     See also: colperm, colamd, symamd.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Return the symmetric reverse Cuthill-McKee permutation of S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
audioread


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 721
 -- Loadable Function: [Y, FS] = audioread (FILENAME)
 -- Loadable Function: [Y, FS] = audioread (FILENAME, SAMPLES)

 -- Loadable Function: [Y, FS] = audioread (FILENAME, DATATYPE)
 -- Loadable Function: [Y, FS] = audioread (FILENAME, SAMPLES, DATATYPE)
     Read the audio file FILENAME and return the audio data Y and sampling rate FS.

     The audio data is stored as matrix with rows corresponding to audio frames and columns corresponding to channels.

     The optional two-element vector argument SAMPLES specifies starting and ending frames.

     The optional argument DATATYPE specifies the datatype to return.  If it is "native", then the type of data depends on how the data is stored in the audio file.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Read the audio file FILENAME and return the audio data Y and sampling rate FS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
audiowrite


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 841
 -- Loadable Function: audiowrite (FILENAME, Y, FS)
 -- Loadable Function: audiowrite (FILENAME, Y, FS, NAME, VALUE, ...)

     Write audio data from the matrix Y to FILENAME at sampling rate FS with the file format determined by the file extension.

     Additional name/value argument pairs may be used to specify the following options:

     'BitsPerSample'
          Number of bits per sample, valid values are 8, 16, 24 and 32.  Default is 16.

     'BitRate'
          Valid argument name, but ignored.  Left for compatibility with MATLAB.

     'Quality'
          Quality setting for the Ogg Vorbis compressor.  Values can range between 0 and 100 with 100 being the highest quality setting.  Default is 75.

     'Title'
          Title for the audio file.

     'Artist'
          Artist name.

     'Comment'
          Comment.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
Write audio data from the matrix Y to FILENAME at sampling rate FS with the file format determined by the file extension.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
audioinfo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 121
 -- Loadable Function: INFO = audioinfo (FILENAME)
     Return information about an audio file specified by FILENAME.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Return information about an audio file specified by FILENAME.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
audiodevinfo


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1254
 -- Loadable Function: DEVINFO = audiodevinfo ()

 -- Loadable Function: DEVS = audiodevinfo (IO)
 -- Loadable Function: NAME = audiodevinfo (IO, ID)
 -- Loadable Function: ID = audiodevinfo (IO, NAME)
 -- Loadable Function: ID = audiodevinfo (IO, RATE, BITS, CHANS)

 -- Loadable Function: SUPPORTS = audiodevinfo (IO, ID, RATE, BITS, CHANS)

     Return a structure describing the available audio input and output devices.

     The DEVINFO structure has two fields "input" and "output".  The value of each field is a structure array with fields "Name", "DriverVersion" and "ID" describing an audio device.

     If the optional argument IO is 1, return information about input devices only.  If it is 0, return information about output devices only.

     If the optional argument ID is provided, return information about the corresponding device.

     If the optional argument NAME is provided, return the id of the named device.

     Given a sampling rate, bits per sample, and number of channels for an input or output device, return the ID of the first device that supports playback or recording using the specified parameters.

     If also given a device ID, return true if the device supports playback or recording using those parameters.
   


# name: <cell-element>
# type: sq_string
# elements: 0



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
break


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
 -- Keyword: break
     Exit the innermost enclosing do, while or for loop.

     See also: do, while, for, parfor, continue.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Exit the innermost enclosing do, while or for loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
case


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 272
 -- Keyword: case VALUE
 -- Keyword: case {VALUE, ...}
     A case statement in a switch.  Octave cases are exclusive and do not fall-through as do C-language cases.  A switch statement must have at least one case.  See 'switch' for an example.

     See also: switch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
A case statement in a switch.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
catch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 118
 -- Keyword: catch
 -- Keyword: catch VALUE
     Begin the cleanup part of a try-catch block.

     See also: try.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Begin the cleanup part of a try-catch block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
continue


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
 -- Keyword: continue
     Jump to the end of the innermost enclosing do, while or for loop.

     See also: do, while, for, parfor, break.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Jump to the end of the innermost enclosing do, while or for loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
do


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 246
 -- Keyword: do
     Begin a do-until loop.  This differs from a do-while loop in that the body of the loop is executed at least once.

          i = 0;
          do
            i++
          until (i == 10)

     See also: for, until, while.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Begin a do-until loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
else


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 106
 -- Keyword: else
     Alternate action for an if block.  See 'if' for an example.

     See also: if.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Alternate action for an if block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
elseif


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
 -- Keyword: elseif (CONDITION)
     Alternate conditional test for an if block.  See 'if' for an example.

     See also: if.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Alternate conditional test for an if block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
end


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 294
 -- Built-in Function: end
     The magic index "end" refers to the last valid entry in an indexing operation.

     Example:

          X = [ 1 2 3
                4 5 6 ];
          X(1,end)
              => 3
          X(end,1)
              => 4
          X(end,end)
              => 6

   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
The magic index "end" refers to the last valid entry in an indexing operation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
end_try_catch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
 -- Keyword: end_try_catch
     Mark the end of an 'try-catch' block.

     See also: try, catch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Mark the end of an 'try-catch' block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
end_unwind_protect


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 113
 -- Keyword: end_unwind_protect
     Mark the end of an unwind_protect block.

     See also: unwind_protect.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Mark the end of an unwind_protect block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
endfor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
 -- Keyword: endfor
     Mark the end of a for loop.  See 'for' for an example.

     See also: for.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Mark the end of a for loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
endfunction


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
 -- Keyword: endfunction
     Mark the end of a function.

     See also: function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Mark the end of a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
endif


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 102
 -- Keyword: endif
     Mark the end of an if block.  See 'if' for an example.

     See also: if.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Mark the end of an if block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
endparfor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
 -- Keyword: endparfor
     Mark the end of a parfor loop.  See 'parfor' for an example.

     See also: parfor.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Mark the end of a parfor loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
endswitch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Keyword: endswitch
     Mark the end of a switch block.  See 'switch' for an example.

     See also: switch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Mark the end of a switch block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
endwhile


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
 -- Keyword: endwhile
     Mark the end of a while loop.  See 'while' for an example.

     See also: do, while.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Mark the end of a while loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
for


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
 -- Keyword: for I = RANGE
     Begin a for loop.

          for i = 1:10
            i
          endfor

     See also: do, parfor, while.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
Begin a for loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
function


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 243
 -- Keyword: function OUTPUTS = function (INPUT, ...)
 -- Keyword: function function (INPUT, ...)
 -- Keyword: function OUTPUTS = function
     Begin a function body with OUTPUTS as results and INPUTS as parameters.

     See also: return.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Begin a function body with OUTPUTS as results and INPUTS as parameters.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
global


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
 -- Keyword: global VAR
     Declare variables to have global scope.

          global X;
          if (isempty (X))
            x = 1;
          endif

     See also: persistent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Declare variables to have global scope.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
if


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 423
 -- Keyword: if (COND) ... endif
 -- Keyword: if (COND) ... else ... endif
 -- Keyword: if (COND) ... elseif (COND) ... endif
 -- Keyword: if (COND) ... elseif (COND) ... else ... endif
     Begin an if block.

          x = 1;
          if (x == 1)
            disp ("one");
          elseif (x == 2)
            disp ("two");
          else
            disp ("not one or two");
          endif

     See also: switch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Begin an if block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
otherwise


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 129
 -- Keyword: otherwise
     The default statement in a switch block (similar to else in an if block).

     See also: switch.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
The default statement in a switch block (similar to else in an if block).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
parfor


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 219
 -- Keyword: parfor I = RANGE
 -- Keyword: parfor (I = RANGE, MAXPROC)
     Begin a for loop that may execute in parallel.

          parfor i = 1:10
            i
          endparfor

     See also: for, do, while.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Begin a for loop that may execute in parallel.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
persistent


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 409
 -- Keyword: persistent VAR
     Declare variables as persistent.  A variable that has been declared persistent within a function will retain its contents in memory between subsequent calls to the same function.  The difference between persistent variables and global variables is that persistent variables are local in scope to a particular function and are not visible elsewhere.

     See also: global.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Declare variables as persistent.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
return


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
 -- Keyword: return
     Return from a function.

     See also: function.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Return from a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
static


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Keyword: static
     This statement has been deprecated in favor of 'persistent'.

     See also: persistent.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
This statement has been deprecated in favor of 'persistent'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
switch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 364
 -- Keyword: switch STATEMENT
     Begin a switch block.

          yesno = "yes"

          switch yesno
            case {"Yes" "yes" "YES" "y" "Y"}
              value = 1;
            case {"No" "no" "NO" "n" "N"}
              value = 0;
            otherwise
              error ("invalid value");
          endswitch

     See also: if, case, otherwise.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Begin a switch block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
try


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 326
 -- Keyword: try
     Begin a try-catch block.

     If an error occurs within a try block, then the catch code will be run and execution will proceed after the catch block (though it is often recommended to use the lasterr function to re-throw the error after cleanup is completed).

     See also: catch, unwind_protect.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Begin a try-catch block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
until


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
 -- Keyword: until (COND)
     End a do-until loop.  See 'do' for an example.

     See also: do.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
End a do-until loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
unwind_protect


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 475
 -- Keyword: unwind_protect
     Begin an unwind_protect block.

     If an error occurs within the first part of an unwind_protect block the commands within the unwind_protect_cleanup block are executed before the error is thrown.  If an error is not thrown, then the unwind_protect_cleanup block is still executed (in other words, the unwind_protect_cleanup will be run with or without an error in the unwind_protect block).

     See also: unwind_protect_cleanup, try.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Begin an unwind_protect block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
unwind_protect_cleanup


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 130
 -- Keyword: unwind_protect_cleanup
     Begin the cleanup section of an unwind_protect block.

     See also: unwind_protect.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Begin the cleanup section of an unwind_protect block.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
varargin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 150
 -- Keyword: varargin
     Pass an arbitrary number of arguments into a function.

     See also: varargout, nargin, isargout, nargout, nthargout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Pass an arbitrary number of arguments into a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
varargout


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 152
 -- Keyword: varargout
     Pass an arbitrary number of arguments out of a function.

     See also: varargin, nargin, isargout, nargout, nthargout.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Pass an arbitrary number of arguments out of a function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
while


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 167
 -- Keyword: while
     Begin a while loop.

          i = 0;
          while (i < 10)
            i++
          endwhile

     See also: do, endwhile, for, until.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
Begin a while loop.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
!


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 -- Operator: !
     Logical 'not' operator.

     See also: ~, not.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Logical 'not' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
!=


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 -- Operator: !=
     Logical 'not equals' operator.

     See also: ~=, ne.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Logical 'not equals' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
"


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 -- Operator: "
     String delimiter.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
String delimiter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
#


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 -- Operator: #
     Begin comment character.

     See also: %, #{.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Begin comment character.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
#{


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
 -- Operator: #{
     Begin block comment.  There must be nothing else, other than whitespace, in the line both before and after '#{'.  It is possible to nest block comments.

     See also: %{, #}, #.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Begin block comment.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
#}


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
 -- Operator: #}
     Close block comment.  There must be nothing else, other than whitespace, in the line both before and after '#}'.  It is possible to nest block comments.

     See also: %}, #{, #.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Close block comment.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
%


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 -- Operator: %
     Begin comment character.

     See also: #, %{.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Begin comment character.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
%{


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
 -- Operator: %{
     Begin block comment.  There must be nothing else, other than whitespace, in the line both before and after '%{'.  It is possible to nest block comments.

     See also: #{, %}, %.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Begin block comment.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
%}


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 205
 -- Operator: %}
     Close block comment.  There must be nothing else, other than whitespace, in the line both before and after '%}'.  It is possible to nest block comments.

     See also: #}, %{, %.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Close block comment.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
&


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
 -- Operator: &
     Element by element logical 'and' operator.

     See also: &&, and.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Element by element logical 'and' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
&&


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Operator: &&
     Logical 'and' operator (with short-circuit evaluation).

     See also: &, and.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Logical 'and' operator (with short-circuit evaluation).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
'


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
 -- Operator: '
     Matrix transpose operator.  For complex matrices, computes the complex conjugate (Hermitian) transpose.

     The single quote character may also be used to delimit strings, but it is better to use the double quote character, since that is never ambiguous.

     See also: .', transpose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Matrix transpose operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
(


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
 -- Operator: (
     Array index or function argument delimiter.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Array index or function argument delimiter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
)


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
 -- Operator: )
     Array index or function argument delimiter.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Array index or function argument delimiter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
*


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
 -- Operator: *
     Multiplication operator.

     See also: .*, times.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Multiplication operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
**


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 248
 -- Operator: **
     Power operator.  This may return complex results for real inputs.  Use 'realsqrt', 'cbrt', 'nthroot', or 'realroot' to obtain real results when possible.

     See also: power, ^, .**, .^, realpow, realsqrt, cbrt, nthroot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
Power operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
+


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
 -- Operator: +
     Addition operator.

     See also: plus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Addition operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
++


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 122
 -- Operator: ++
     Increment operator.  As in C, may be applied as a prefix or postfix operator.

     See also: -.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
Increment operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
,


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
 -- Operator: ,
     Array index, function argument, or command separator.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Array index, function argument, or command separator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
-


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
 -- Operator: -
     Subtraction or unary negation operator.

     See also: minus.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Subtraction or unary negation operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
-


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 123
 -- Operator: --
     Decrement operator.  As in C, may be applied as a prefix or postfix operator.

     See also: ++.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
Decrement operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.'


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 168
 -- Operator: .'
     Matrix transpose operator.  For complex matrices, computes the transpose, _not_ the complex conjugate transpose.

     See also: ', transpose.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Matrix transpose operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.*


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 95
 -- Operator: .*
     Element by element multiplication operator.

     See also: *, times.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Element by element multiplication operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
.**


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 311
 -- Operator: .*
     Element by element power operator.  If several complex results are possible, returns the one with smallest non-negative argument (angle).  Use 'realpow', 'realsqrt', 'cbrt', or 'nthroot' if a real result is preferred.

     See also: **, ^, .^, power, realpow, realsqrt, cbrt, nthroot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Element by element power operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
...


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
 -- Operator: ...
     Continuation marker.  Joins current line with following line.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Continuation marker.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
./


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 110
 -- Operator: ./
     Element by element right division operator.

     See also: /, ., rdivide, mrdivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Element by element right division operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.\


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 109
 -- Operator: .\
     Element by element left division operator.

     See also: , ./, rdivide, mrdivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Element by element left division operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
.^


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
 -- Operator: .^
     Element by element power operator.  If several complex results are possible, returns the one with smallest non-negative argument (angle).  Use 'realpow', 'realsqrt', 'cbrt', or 'nthroot' if a real result is preferred.

     See also: .**, ^, **, power, realpow, realsqrt, cbrt, nthroot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Element by element power operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
/


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
 -- Operator: /
     Right division operator.

     See also: ./, , rdivide, mrdivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Right division operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
:


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
 -- Operator: :
     Select entire rows or columns of matrices.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Select entire rows or columns of matrices.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
;


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
 -- Operator: ;
     Array row or command separator.

     See also: ,.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Array row or command separator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
<


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
 -- Operator: <
     'Less than' operator.

     See also: lt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
'Less than' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
<=


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
 -- Operator: <=
     'Less than' or 'equals' operator.

     See also: le.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
'Less than' or 'equals' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
=


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
 -- Operator: =
     Assignment operator.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
Assignment operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
==


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 -- Operator: ==
     Equality test operator.

     See also: eq.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Equality test operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
>


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 -- Operator: >
     'Greater than' operator.

     See also: gt.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
'Greater than' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
>=


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 82
 -- Operator: >=
     'Greater than' or 'equals' operator.

     See also: ge.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
'Greater than' or 'equals' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
[


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
 -- Operator: [
     Return list delimiter.

     See also: ].
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Return list delimiter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
\


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 89
 -- Operator: \
     Left division operator.

     See also: ., /, ldivide, mldivide.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Left division operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
]


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
 -- Operator: ]
     Return list delimiter.

     See also: [.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
Return list delimiter.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
^


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 248
 -- Operator: ^
     Power operator.  This may return complex results for real inputs.  Use 'realsqrt', 'cbrt', 'nthroot', or 'realroot' to obtain real results when possible.

     See also: power, **, .^, .**, realpow, realsqrt, cbrt, nthroot.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
Power operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
|


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
 -- Operator: |
     Element by element logical 'or' operator.

     See also: ||, or.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Element by element logical 'or' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
||


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 103
 -- Operator: ||
     Logical 'or' (with short-circuit evaluation) operator.

     See also: |, or.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Logical 'or' (with short-circuit evaluation) operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1
~


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 -- Operator: ~
     Logical 'not' operator.

     See also: !, not.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Logical 'not' operator.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
~=


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 -- Operator: ~=
     Logical 'not equals' operator.

     See also: !=, ne.
   


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Logical 'not equals' operator.