/usr/share/perl5/Math/PlanePath/ZOrderCurve.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | # Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=ZOrderCurve,radix=3 --all --output=numbers
# math-image --path=ZOrderCurve --values=Fibbinary --text
#
# increment N+1 changes low 1111 to 10000
# X bits change 011 to 000, no carry, decreasing by number of low 1s
# Y bits change 011 to 100, plain +1
#
# cf A105186 replace odd position ternary digits with 0
#
package Math::PlanePath::ZOrderCurve;
use 5.004;
use strict;
use List::Util 'max';
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'parameter_info_array',
'round_up_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;
use constant dx_maximum => 1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1; # X coord always changes
use constant dsumxy_maximum => 1; # forward straight only
sub dir_maximum_dxdy {
my ($self) = @_;
return (1, 1 - $self->{'radix'}); # SE diagonal
}
sub turn_any_straight {
my ($self) = @_;
return ($self->{'radix'} != 2); # radix=2 never straight
}
sub _UNDOCUMENTED__turn_any_left_at_n {
my ($self) = @_;
return $self->{'radix'} - 1;
}
sub _UNDOCUMENTED__turn_any_right_at_n {
my ($self) = @_;
return $self->{'radix'};
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
my $radix = $self->{'radix'};
if (! defined $radix || $radix <= 2) { $radix = 2; }
$self->{'radix'} = $radix;
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### ZOrderCurve n_to_xy(): $n
if ($n < 0) {
return;
}
if (is_infinite($n)) {
return ($n,$n);
}
my $int = int($n);
$n -= $int; # fraction part
my $radix = $self->{'radix'};
my @ndigits = digit_split_lowtohigh ($int, $radix);
### @ndigits
unless ($#ndigits & 1) {
push @ndigits, 0; # pad @ndigits to an even number of digits
}
my @xdigits;
my @ydigits;
while (@ndigits) {
push @xdigits, shift @ndigits; # low to high
push @ydigits, shift @ndigits; # low to high
}
### @xdigits
### @ydigits
my $zero = ($int * 0); # inherit bigint 0
my $x = digit_join_lowtohigh (\@xdigits, $radix, $zero);
my $y = digit_join_lowtohigh (\@ydigits, $radix, $zero);
if ($n) {
# fraction part
my $dx = 1;
my $dy = $zero;
my $radix_minus_1 = $radix - 1;
foreach my $i (0 .. $#xdigits) { # low to high
if ($xdigits[$i] != $radix_minus_1) {
### lowest non-9 is an X digit, so dx=1 dy=0,-R+1,-R^2+1,etc
last;
}
$dy = ($dy * $radix) - $radix_minus_1; # 1-$radix**$i
if ($ydigits[$i] != $radix_minus_1) {
### lowest non-9 is a Y digit, so dy=1, dx=-R+1,-R^2+1,etc
$dx = $dy;
$dy = 1;
last;
}
}
### $dx
### $dy
$x = $n*$dx + $x;
$y = $n*$dy + $y;
}
return ($x, $y);
}
sub n_to_dxdy {
my ($self, $n) = @_;
### ZOrderCurve n_to_xy(): $n
if ($n < 0) {
return;
}
my $int = int($n);
$n -= $int; # fraction part
if (is_infinite($int)) {
return ($int,$int);
}
my $radix = $self->{'radix'};
my $digit = _divrem_mutate($int,$radix); # lowest digit of N
if ($digit < $radix - 2) {
# N an integer at lowdigit<radix-2, so dx=1,dy=0
return (1, 0);
}
my $radix_minus_1 = $radix - 1;
my $scan_for_dx = ($digit == $radix_minus_1);
unless ($scan_for_dx) {
### assert: $digit == $radix-2
unless ($n) {
# N an integer with lowdigit==radix-2, so dx=1,dy=0
return (1, 0);
}
# scan digits for next_dx,next_dy
}
my $power = $radix + ($int*0); # $radix**$i, inherit bigint
for (;;) {
if (_divrem_mutate($int,$radix) != $radix_minus_1) {
### lowest non-9 is a Y digit, so dy=1, dx=-R+1,-R^2+1,etc
if ($scan_for_dx) {
# scanned for dx=1-power,dy=1 have nextdx=1,nextdy=0
# frac*(nextdx-dx) + dx = n*(1-(1-power))+(1-power)
# = n*(1-1+power))+1-power
# = n*power+1-power
# = (n-1)*power+1
# frac*(nextdy-dy) + dy = n*(0-1) + 1
# = 1-n
return (($n-1)*$power + 1,
1-$n);
} else {
# scanned for nextdx=1-power,nextdy=1 have dx=1,dy=0
# frac*(nextdx-dx) + dx = n*((1-power)-1)+1
# = n*(1-power-1)+1
# = n*-power+1
# = 1 - n*power
# frac*(nextdy-dy) + dy = n*(1-0) + 0
# = n
return (1 - $n*$power,
$n);
}
}
if (_divrem_mutate($int,$radix) != $radix_minus_1) {
### lowest non-9 is an X digit, so dx=1 dy=0,-R+1,-R^2+1,etc
$power -= 1;
if ($scan_for_dx) {
# scanned for dx=1,dy=1-power have nextdx=1,nextdy=0
# frac*(nextdx-dx) + dx = n*(1-1)+1
# = 1
# frac*(nextdy-dy) + dy = n*(0-(1-power)) + (1-power)
# = n*(-1+power) + 1-power
# = -n + n*power + 1 - power
# = 1-n + (n-1)*power
# = (n-1)*(power-1)
return (1,
($n-1) * $power);
} else {
# scanned for nextdx=1,nextdy=1-power have dx=1,dy=0
# frac*(nextdx-dx) + dx = n*(1-1) + 1
# = 1
# frac*(nextdy-dy) + dy = n*((1-power) - 0) + 0
# = n*(1-power)
return (1,
-$n*$power);
}
}
$power *= $radix;
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### ZOrderCurve xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0 || $y < 0) { return undef; }
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
my $radix = $self->{'radix'};
my $zero = ($x * 0 * $y); # inherit bigint 0
my @x = digit_split_lowtohigh($x,$radix);
my @y = digit_split_lowtohigh($y,$radix);
return digit_join_lowtohigh ([ _digit_interleave (\@x, \@y) ],
$radix,
$zero);
}
# return list of @$xaref interleaved with @$yaref
# ($xaref->[0], $yaref->[0], $xaref->[1], $yaref->[1], ...)
#
sub _digit_interleave {
my ($xaref, $yaref) = @_;
my @ret;
foreach my $i (0 .. max($#$xaref,$#$yaref)) {
push @ret, $xaref->[$i] || 0;
push @ret, $yaref->[$i] || 0;
}
return @ret;
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # x1 smaller
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # y1 smaller
if ($y2 < 0 || $x2 < 0) {
return (1, 0); # rect all negative, no N
}
if ($x1 < 0) { $x1 *= 0; } # "*=" to preserve bigint x1 or y1
if ($y1 < 0) { $y1 *= 0; }
# monotonic increasing in X and Y directions, so this is exact
return ($self->xy_to_n ($x1, $y1),
$self->xy_to_n ($x2, $y2));
}
#------------------------------------------------------------------------------
# levels
# arms=1
# level 1 0..0 = 1
# level 1 0..3 = 4
# level 2 0..15 = 16
# 4^k-1
# shared by Math::PlanePath::GrayCode and others
sub level_to_n_range {
my ($self, $level) = @_;
return (0, $self->{'radix'}**(2*$level) - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
$n = round_nearest($n);
my ($pow, $exp) = round_up_pow ($n+1, $self->{'radix'}*$self->{'radix'});
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords Ryde Math-PlanePath Karatsuba undrawn fibbinary eg Radix radix radix-1 RxR OEIS
=head1 NAME
Math::PlanePath::ZOrderCurve -- alternate digits to X and Y
=head1 SYNOPSIS
use Math::PlanePath::ZOrderCurve;
my $path = Math::PlanePath::ZOrderCurve->new;
my ($x, $y) = $path->n_to_xy (123);
# or another radix digits ...
my $path3 = Math::PlanePath::ZOrderCurve->new (radix => 3);
=head1 DESCRIPTION
This path puts points in a self-similar Z pattern described by G.M. Morton,
7 | 42 43 46 47 58 59 62 63
6 | 40 41 44 45 56 57 60 61
5 | 34 35 38 39 50 51 54 55
4 | 32 33 36 37 48 49 52 53
3 | 10 11 14 15 26 27 30 31
2 | 8 9 12 13 24 25 28 29
1 | 2 3 6 7 18 19 22 23
Y=0 | 0 1 4 5 16 17 20 21 64 ...
+---------------------------------------
X=0 1 2 3 4 5 6 7 8
The first four points make a "Z" shape if written with Y going downwards
(inverted if drawn upwards as above),
0---1 Y=0
/
/
2---3 Y=1
Then groups of those are arranged as a further Z, etc, doubling in size each
time.
0 1 4 5 Y=0
2 3 --- 6 7 Y=1
/
/
/
8 9 --- 12 13 Y=2
10 11 14 15 Y=3
Within an power of 2 square 2x2, 4x4, 8x8, 16x16 etc (2^k)x(2^k), all the N
values 0 to 2^(2*k)-1 are within the square. The top right corner 3, 15,
63, 255 etc of each is the 2^(2*k)-1 maximum.
Along the X axis N=0,1,4,5,16,17,etc is the integers with only digits 0,1 in
base 4. Along the Y axis N=0,2,8,10,32,etc is the integers with only digits
0,2 in base 4. And along the X=Y diagonal N=0,3,12,15,etc is digits 0,3 in
base 4.
In the base Z pattern it can be seen that transposing to Y,X means swapping
parts 1 and 2. This applies in the sub-parts too so in general if N is at
X,Y then changing base 4 digits 1E<lt>-E<gt>2 gives the N at the transpose
Y,X. For example N=22 at X=6,Y=1 is base-4 "112", change 1E<lt>-E<gt>2 is
"221" for N=41 at X=1,Y=6.
=head2 Power of 2 Values
Plotting N values related to powers of 2 can come out as interesting
patterns. For example displaying the N's which have no digit 3 in their
base 4 representation gives
*
* *
* *
* * * *
* *
* * * *
* * * *
* * * * * * * *
* *
* * * *
* * * *
* * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
The 0,1,2 and not 3 makes a little 2x2 "L" at the bottom left, then
repeating at 4x4 with again the whole "3" position undrawn, and so on. This
is the Sierpinski triangle (a rotated version of
L<Math::PlanePath::SierpinskiTriangle>). The blanks are also a visual
representation of 1-in-4 cross-products saved by recursive use of the
Karatsuba multiplication algorithm.
Plotting the fibbinary numbers (eg. L<Math::NumSeq::Fibbinary>) which are N
values with no adjacent 1 bits in binary makes an attractive tree-like
pattern,
*
**
*
****
*
**
* *
********
*
**
*
****
* *
** **
* * * *
****************
* *
** **
* *
**** ****
* *
** **
* * * *
******** ********
* * * *
** ** ** **
* * * *
**** **** **** ****
* * * * * * * *
** ** ** ** ** ** ** **
* * * * * * * * * * * * * * * *
****************************************************************
The horizontals arise from N=...0a0b0c for bits a,b,c so Y=...000 and
X=...abc, making those N values adjacent. Similarly N=...a0b0c0 for a
vertical.
=head2 Radix
The C<radix> parameter can do the same N E<lt>-E<gt> X/Y digit splitting in
a higher base. For example radix 3 makes 3x3 groupings,
radix => 3
5 | 33 34 35 42 43 44
4 | 30 31 32 39 40 41
3 | 27 28 29 36 37 38 45 ...
2 | 6 7 8 15 16 17 24 25 26
1 | 3 4 5 12 13 14 21 22 23
Y=0 | 0 1 2 9 10 11 18 19 20
+--------------------------------------
X=0 1 2 3 4 5 6 7 8
Along the X axis N=0,1,2,9,10,11,etc is integers with only digits 0,1,2 in
base 9. Along the Y axis digits 0,3,6, and along the X=Y diagonal digits
0,4,8. In general for a given radix it's base R*R with the R many digits of
the first RxR block.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::ZOrderCurve-E<gt>new ()>
=item C<$path = Math::PlanePath::ZOrderCurve-E<gt>new (radix =E<gt> $r)>
Create and return a new path object. The optional C<radix> parameter gives
the base for digit splitting (the default is binary, radix 2).
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions. The lines don't overlap, but the lines between bit
squares soon become rather long and probably of very limited use.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return an integer point number for coordinates C<$x,$y>. Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, $radix**(2*$level) - 1)>.
=back
=head1 FORMULAS
=head2 N to X,Y
The coordinate calculation is simple. The bits of X and Y are every second
bit of N. So if N = binary 101010 then X=000 and Y=111 in binary, which is
the N=42 shown above at X=0,Y=7.
With the C<radix> parameter the digits are treated likewise, in the given
radix rather than binary.
If N includes a fraction part then it's applied to a straight line towards
point N+1. The +1 of N+1 changes X and Y according to how many low radix-1
digits there are in N, and thus in X and Y. In general if the lowest non
radix-1 is in X then
dX=1
dY = - (R^pos - 1) # pos=0 for lowest digit
The simplest case is when the lowest digit of N is not radix-1, so dX=1,dY=0
across.
If the lowest non radix-1 is in Y then
dX = - (R^(pos+1) - 1) # pos=0 for lowest digit
dY = 1
If all digits of X and Y are radix-1 then the implicit 0 above the top of X
is considered the lowest non radix-1 and so the first case applies. In the
radix=2 above this happens for instance at N=15 binary 1111 so X = binary 11
and Y = binary 11. The 0 above the top of X is at pos=2 so dX=1,
dY=-(2^2-1)=-3.
=head2 Rectangle to N Range
Within each row the N values increase as X increases, and within each column
N increases with increasing Y (for all C<radix> parameters).
So for a given rectangle the smallest N is at the lower left corner
(smallest X and smallest Y), and the biggest N is at the upper right
(biggest X and biggest Y).
=head1 OEIS
This path is in Sloane's Online Encyclopedia of Integer Sequences in various
forms,
=over
L<http://oeis.org/A059905> (etc)
=back
radix=2
A059905 X coordinate
A059906 Y coordinate
A000695 N on X axis (base 4 digits 0,1 only)
A062880 N on Y axis (base 4 digits 0,2 only)
A001196 N on X=Y diagonal (base 4 digits 0,3 only)
A057300 permutation N at transpose Y,X (swap bit pairs)
radix=3
A163325 X coordinate
A163326 Y coordinate
A037314 N on X axis, base 9 digits 0,1,2
A208665 N on X=Y diagonal, base 9 digits 0,3,6
A163327 permutation N at transpose Y,X (swap trit pairs)
radix=4
A126006 permutation N at transpose Y,X (swap digit pairs)
radix=10
A080463 X+Y of radix=10 (from N=1 onwards)
A080464 X*Y of radix=10 (from N=10 onwards)
A080465 abs(X-Y), from N=10 onwards
A051022 N on X axis (base 100 digits 0 to 9)
radix=16
A217558 permutation N at transpose Y,X (swap digit pairs)
And taking X,Y points in the Diagonals sequence then the value of the
following sequences is the N of the C<ZOrderCurve> at those positions.
radix=2
A054238 numbering by diagonals, from same axis as first step
A054239 inverse permutation
radix=3
A163328 numbering by diagonals, same axis as first step
A163329 inverse permutation
A163330 numbering by diagonals, opp axis as first step
A163331 inverse permutation
C<Math::PlanePath::Diagonals> numbers points from the Y axis down, which is
the opposite axis to the C<ZOrderCurve> first step along the X axis, so a
transpose is needed to give A054238.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::ImaginaryBase>,
L<Math::PlanePath::CornerReplicate>,
L<Math::PlanePath::DigitGroups>
X<Arndt, Jorg>X<fxtbook>C<http://www.jjj.de/fxt/#fxtbook> (section 1.31.2)
L<Algorithm::QuadTree>, L<DBIx::SpatialKeys>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|