/usr/share/perl5/Math/PlanePath/WythoffArray.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 | # Copyright 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# Classic Sequences
# http://oeis.org/classic.html
#
# Clark Kimberling
# http://faculty.evansville.edu/ck6/integer/intersp.html
#
# cf A175004 similar to wythoff but rows recurrence
# r(n-1)+r(n-2)+1 extra +1 in each step
# floor(n*phi+2/phi)
#
# cf Stolarsky round_nearest(n*phi)
# A035506 stolarsky by diagonals
# A035507 inverse
# A007067 stolarsky first column
# Maybe:
# my ($x,$y) = $path->pair_to_xy($a,$b);
# Return the $x,$y which has ($a,$b).
# Advance $a,$b if before start of row.
# Carlitz and Hoggatt "Fibonacci Representations", Fibonacci Quarterly,
# volume 10, number 1, January 1972
# http://www.fq.math.ca/10-1.html
# http://www.fq.math.ca/Scanned/10-1/carlitz1.pdf
package Math::PlanePath::WythoffArray;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'bit_split_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant parameter_info_array =>
[ { name => 'x_start',
display => 'X start',
type => 'integer',
default => 0,
width => 3,
description => 'Starting X coordinate.',
},
{ name => 'y_start',
display => 'Y start',
type => 'integer',
default => 0,
width => 3,
description => 'Starting Y coordinate.',
},
];
use constant default_n_start => 1;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
sub x_minimum {
my ($self) = @_;
return $self->{'x_start'};
}
sub y_minimum {
my ($self) = @_;
return $self->{'y_start'};
}
use constant absdx_minimum => 1;
use constant dir_maximum_dxdy => (3,-1); # N=4 to N=5 dX=3,dY=-1
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'x_start'} ||= 0;
$self->{'y_start'} ||= 0;
return $self;
}
sub xy_is_visited {
my ($self, $x, $y) = @_;
return ((round_nearest($x) >= $self->{'x_start'})
&& (round_nearest($y) >= $self->{'y_start'}));
}
#------------------------------------------------------------------------------
# 4 | 12 20 32 52 84 136 220 356 576 932 1508
# 3 | 9 15 24 39 63 102 165 267 432 699 1131
# 2 | 6 10 16 26 42 68 110 178 288 466 754
# 1 | 4 7 11 18 29 47 76 123 199 322 521
# Y=0 | 1 2 3 5 8 13 21 34 55 89 144
# +-------------------------------------------------------
# X=0 1 2 3 4 5 6 7 8 9 10
# 13,8,5,3,2,1
# 4 = 3+1 -> 1
# 6 = 5+1 -> 2
# 9 = 8+1 -> 3
# 12 = 8+3+1 -> 3+1=4
# 14 = 13+1 -> 5
sub n_to_xy {
my ($self, $n) = @_;
### WythoffArray n_to_xy(): $n
if ($n < 1) { return; }
if (is_infinite($n) || $n == 0) { return ($n,$n); }
{
# fractions on straight line between integer points
my $int = int($n);
if ($n != $int) {
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
# f1+f0 > i
# f0 > i-f1
# check i-f1 as the stopping point, so that if i=UV_MAX then won't
# overflow a UV trying to get to f1>=i
#
my @fibs;
{
my $f0 = ($n * 0); # inherit bignum 0
my $f1 = $f0 + 1; # inherit bignum 1
while ($f0 <= $n-$f1) {
($f1,$f0) = ($f1+$f0,$f1);
push @fibs, $f1; # starting $fibs[0]=1
}
}
### @fibs
# indices into fib[] which are the Fibonaccis adding up to $n
my @indices;
for (my $i = $#fibs; $i >= 0; $i--) {
### at: "n=$n f=".$fibs[$i]
if ($n >= $fibs[$i]) {
push @indices, $i;
$n -= $fibs[$i];
### sub: "$fibs[$i] to n=$n"
--$i;
}
}
### @indices
# X is low index, ie. how many low 0 bits in Zeckendorf form
my $x = pop @indices;
### $x
# Y is indices shifted down by $x and 2 more
my $y = 0;
my $shift = $x+2;
foreach my $i (@indices) {
### y add: "ishift=".($i-$shift)." fib=".$fibs[$i-$shift]
$y += $fibs[$i-$shift];
}
### $shift
### $y
return ($x+$self->{'x_start'},$y+$self->{'y_start'});
}
# phi = (sqrt(5)+1)/2
# (y+1)*phi = (y+1)*(sqrt(5)+1)/2
# = ((y+1)*sqrt(5)+(y+1))/2
# = (sqrt(5*(y+1)^2)+(y+1))/2
#
# from x=0,y=0
# N = floor((y+1)*Phi) * Fib(x+2) + y*Fib(x+1)
#
sub xy_to_n {
my ($self, $x, $y) = @_;
### WythoffArray xy_to_n(): "$x, $y"
$x = round_nearest($x) - $self->{'x_start'};
$y = round_nearest($y) - $self->{'y_start'};
if ($x < 0 || $y < 0) {
return undef;
}
my $zero = $x * 0 * $y;
$x += 2;
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
my @bits = bit_split_lowtohigh($x);
### @bits
pop @bits; # discard high 1-bit
my $yplus1 = $zero + $y+1; # inherit bigint from $x perhaps
# spectrum(Y+1) so Y,Ybefore are notional two values at X=-2 and X=-1
my $ybefore = int((sqrt(5*$yplus1*$yplus1) + $yplus1) / 2);
### $ybefore
# k=1, Fk1=F[k-1]=0, Fk=F[k]=1
my $Fk1 = $zero;
my $Fk = 1 + $zero;
my $add = -2;
while (@bits) {
### remaining bits: @bits
### Fk1: "$Fk1"
### Fk: "$Fk"
# two squares and some adds
# F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k
# F[2k-1] = F[k]^2 + F[k-1]^2
# F[2k] = F[2k+1] - F[2k-1]
#
$Fk *= $Fk;
$Fk1 *= $Fk1;
my $F2kplus1 = 4*$Fk - $Fk1 + $add;
$Fk1 += $Fk; # F[2k-1]
my $F2k = $F2kplus1 - $Fk1;
if (pop @bits) { # high to low
$Fk1 = $F2k; # F[2k]
$Fk = $F2kplus1; # F[2k+1]
$add = -2;
} else {
# $Fk1 is F[2k-1] already
$Fk = $F2k; # F[2k]
$add = 2;
}
}
### final pair ...
### Fk1: "$Fk1"
### Fk: "$Fk"
### @bits
return ($Fk*$ybefore + $Fk1*$y);
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### WythoffArray rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest($x1);
$y1 = round_nearest($y1);
$x2 = round_nearest($x2);
$y2 = round_nearest($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < $self->{'x_start'} || $y2 < $self->{'y_start'}) {
### all outside first quadrant ...
return (1, 0);
}
# bottom left into first quadrant
$x1 = max($x1, $self->{'x_start'});
$y1 = max($y1, $self->{'y_start'});
return ($self->xy_to_n($x1,$y1), # bottom left
$self->xy_to_n($x2,$y2)); # top right
}
1;
__END__
=for stopwords eg Ryde ie Math-PlanePath Wythoff Zeckendorf concecutive fibbinary bignum OEIS Stolarsky Morrison's Knott Generalising
=head1 NAME
Math::PlanePath::WythoffArray -- table of Fibonacci recurrences
=head1 SYNOPSIS
use Math::PlanePath::WythoffArray;
my $path = Math::PlanePath::WythoffArray->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Morrison, David R.>X<Wythoff array>This path is the Wythoff array by David
R. Morrison
=over
"A Stolarsky Array of Wythoff Pairs", in Collection of Manuscripts Related
to the Fibonacci Sequence, pages 134 to 136, The Fibonacci Association,
1980. L<http://www.math.ucsb.edu/~drm/papers/stolarsky.pdf>
=back
It's an array of Fibonacci recurrences which positions each N according to
Zeckendorf base trailing zeros.
=cut
# math-image --path=WythoffArray --output=numbers --all --size=60x16
=pod
15 | 40 65 105 170 275 445 720 1165 1885 3050 4935
14 | 38 62 100 162 262 424 686 1110 1796 2906 4702
13 | 35 57 92 149 241 390 631 1021 1652 2673 4325
12 | 33 54 87 141 228 369 597 966 1563 2529 4092
11 | 30 49 79 128 207 335 542 877 1419 2296 3715
10 | 27 44 71 115 186 301 487 788 1275 2063 3338
9 | 25 41 66 107 173 280 453 733 1186 1919 3105
8 | 22 36 58 94 152 246 398 644 1042 1686 2728
7 | 19 31 50 81 131 212 343 555 898 1453 2351
6 | 17 28 45 73 118 191 309 500 809 1309 2118
5 | 14 23 37 60 97 157 254 411 665 1076 1741
4 | 12 20 32 52 84 136 220 356 576 932 1508
3 | 9 15 24 39 63 102 165 267 432 699 1131
2 | 6 10 16 26 42 68 110 178 288 466 754
1 | 4 7 11 18 29 47 76 123 199 322 521
Y=0 | 1 2 3 5 8 13 21 34 55 89 144
+-------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
All rows have the Fibonacci style recurrence
W(X+1) = W(X) + W(X-1)
eg. X=4,Y=2 is N=42=16+26, sum of the two values to its left
X<Fibonacci numbers>X axis N=1,2,3,5,8,etc is the Fibonacci numbers.
X<Lucas numbers>The row Y=1 above them N=4,7,11,18,etc is the Lucas numbers.
X<Golden Ratio>Y axis N=1,4,6,9,12,etc is the "spectrum" of the golden
ratio, meaning its multiples rounded down to an integer.
phi = (sqrt(5)+1)/2
spectrum(k) = floor(phi*k)
N on Y axis = Y + spectrum(Y+1)
Eg. Y=5 N=5+floor((5+1)*phi)=14
The recurrence in each row starts as if the row was preceded by two values Y
and spectrum(Y+1) which can be thought of adding to be Y+spectrum(Y+1) on
the Y axis, then Y+2*spectrum(Y+1) in the X=1 column, etc.
If the first two values in a row have a common factor then that factor
remains in all subsequent sums. For example the Y=2 row starts with two
even numbers N=6,N=10 so all N values in the row are even.
Every N from 1 upwards occurs precisely once in the table. The recurrence
means that in each row N grows roughly as a power phi^X, the same as the
Fibonacci numbers. This means they become large quite quickly.
=head2 Zeckendorf Base
X<Zeckendorf Base>The N values are arranged according to trailing zero bits
when N is represented in the Zeckendorf base. The Zeckendorf base expresses
N as a sum of Fibonacci numbers, choosing at each stage the largest possible
Fibonacci. For example
Fibonacci numbers F[0]=1, F[1]=2, F[2]=3, F[3]=5, etc
45 = 34 + 8 + 3
= F[7] + F[4] + F[2]
= 10010100 1-bits at 7,4,2
The Wythoff array written in Zeckendorf base bits is
=cut
# This table printed by tools/wythoff-array-zeck.pl
=pod
8 | 1000001 10000010 100000100 1000001000 10000010000
7 | 101001 1010010 10100100 101001000 1010010000
6 | 100101 1001010 10010100 100101000 1001010000
5 | 100001 1000010 10000100 100001000 1000010000
4 | 10101 101010 1010100 10101000 101010000
3 | 10001 100010 1000100 10001000 100010000
2 | 1001 10010 100100 1001000 10010000
1 | 101 1010 10100 101000 1010000
Y=0 | 1 10 100 1000 10000
+---------------------------------------------------
X=0 1 2 3 4
The X coordinate is the number of trailing zeros, or equivalently the index
of the lowest Fibonacci used in the sum. For example in the X=3 column all
the N's there have F[3]=5 as their lowest term.
The Y coordinate is formed by removing the trailing "0100..00", ie. all
trailing zeros plus the "01" above them. For example,
N = 45 = Zeck 10010100
^^^^ strip low zeros and "01" above them
Y = Zeck(1001) = F[3]+F[0] = 5+1 = 6
The Zeckendorf form never has consecutive "11" bits, because after
subtracting an F[k] the remainder is smaller than the next lower F[k-1].
Numbers with no concecutive "11" bits are sometimes called the fibbinary
numbers (see L<Math::NumSeq::Fibbinary>).
Stripping low zeros is similar to what the C<PowerArray> does with low zero
digits in an ordinary base such as binary (see
L<Math::PlanePath::PowerArray>). Doing it in the Zeckendorf base is like
taking out powers of the golden ratio phi=1.618.
=head2 Turn Sequence
The path turns
straight at N=2 and N=10
right N="...101" in Zeckendorf base
left otherwise
For example at N=12 the path turns to the right, since N=13 is on the right
hand side of the vector from N=11 to N=12. It's almost 180-degrees around
and back, but on the right hand side.
4 | 12
3 |
2 |
1 | 11
Y=0 | 13
+--------------------
X=0 1 2 3 4 5
This happens because N=12 is Zeckendorf "10101" which ends "..101". For
such an ending N-1 is "..100" and N+1 is "..1000". So N+1 has more trailing
zeros and hence bigger X smaller Y than N-1 has. The way the curve grows in
a "concave" fashion means that therefore N+1 is on the right-hand side.
| N N ending "..101"
|
| N+1 bigger X smaller Y
| N-1 than N-1
| N+1
+--------------------
Cases for N ending "..000", "..010" and "..100" can be worked through to see
that everything else turns left (or the initial N=2 and N=10 go straight
ahead).
On the Y axis all N values end "..01", with no trailing 0s. As noted above
stripping that "01" from N gives the Y coordinate. Those N ending "..101"
are therefore at Y coordinates which end "..1", meaning "odd" Y in
Zeckendorf base.
=head2 X,Y Start
Options C<x_start =E<gt> $x> and C<y_start =E<gt> $y> give a starting
position for the array. For example to start at X=1,Y=1
4 | 9 15 24 39 63 x_start => 1
3 | 6 10 16 26 42 y_start => 1
2 | 4 7 11 18 29
1 | 1 2 3 5 8
Y=0 |
+----------------------
X=0 1 2 3 4 5
This can be helpful to work in rows and columns numbered from 1 instead of
from 0. Numbering from X=1,Y=1 corresponds to the array in Morrison's paper
above.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::WythoffArray-E<gt>new ()>
=item C<$path = Math::PlanePath::WythoffArray-E<gt>new (x_start =E<gt> $x, y_start =E<gt> $y)>
Create and return a new path object. The default C<x_start> and C<y_start>
are 0.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 1 and if C<$n E<lt> 1> then the return is an empty list.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the N point number at coordinates C<$x,$y>. If C<$xE<lt>0> or
C<$yE<lt>0> (or the C<x_start> or C<y_start> options) then there's no N and
the return is C<undef>.
N values grow rapidly with C<$x>. Pass in a bignum type such as
C<Math::BigInt> for full precision.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head1 FORMULAS
=head2 Rectangle to N Range
Within each row increasing X is increasing N, and in each column increasing
Y is increasing N. So in any rectangle the minimum N is in the lower left
corner and the maximum N is in the upper right corner.
| N max
| ----------+
| | ^ |
| | | |
| | ----> |
| +----------
| N min
+-------------------
=head1 OEIS
The Wythoff array is in Sloane's Online Encyclopedia of Integer Sequences
in various forms,
=over
L<http://oeis.org/A035614> (etc)
=back
x_start=0,y_start=0 (the defaults)
A035614 X, column numbered from 0
A191360 X-Y, the diagonal containing N
A019586 Y, the row containing N
A083398 max diagonal X+Y+1 for points 1 to N
x_start=1,y_start=1
A035612 X, column numbered from 1
A003603 Y, vertical para-budding sequence
A143299 Zeckendorf bit count in row Y
A185735 left-justified row addition
A186007 row subtraction
A173028 row multiples
A173027 row of n * Fibonacci numbers
A220249 row of n * Lucas numbers
A003622 N on Y axis, odd Zeckendorfs "..1"
A020941 N on X=Y diagonal
A139764 N dropped down to X axis, ie. N value on the X axis,
being lowest Fibonacci used in the Zeckendorf form
A000045 N on X axis, Fibonacci numbers skipping initial 0,1
A000204 N on Y=1 row, Lucas numbers skipping initial 1,3
A001950 N+1 of N on Y axis, anti-spectrum of phi
A022342 N not on Y axis, even Zeckendorfs "..0"
A000201 N+1 of N not on Y axis, spectrum of phi
A003849 bool 1,0 if N on Y axis or not, being the Fibonacci word
A035336 N in second column
A160997 total N along anti-diagonals X+Y=k
A188436 turn 1=right,0=left or straight, skip initial five 0s
A134860 N positions of right turns, Zeckendorf "..101"
A003622 Y coordinate of right turns, Zeckendorf "..1"
A114579 permutation N at transpose Y,X
A083412 permutation N by Diagonals from Y axis downwards
A035513 permutation N by Diagonals from X axis upwards
A064274 inverse permutation
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::PowerArray>,
L<Math::PlanePath::FibonacciWordFractal>
L<Math::NumSeq::Fibbinary>,
L<Math::NumSeq::Fibonacci>,
L<Math::NumSeq::LucasNumbers>,
L<Math::Fibonacci>,
L<Math::Fibonacci::Phi>
Ron Knott, "Generalising the Fibonacci Series",
L<http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibGen.html#wythoff>
OEIS Classic Sequences, "The Wythoff Array and The Para-Fibonacci Sequence",
L<http://oeis.org/classic.html>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|