This file is indexed.

/usr/share/perl5/Math/PlanePath/TriangularHypot.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image  --path=TriangularHypot

# A034017 - loeschian primatives xx+xy+yy, primes 3k+1 and a factor of 3
#           which is when x^2-x+1 mod n has a solution
#
# A092572 - all x^2+3*y^2
# A158937 - all x^2+3*y^2 with repetitions x>0,y>0
#
# A092572 - 6n+1 primes
# A055664 - norms of Eisenstein-Jacobi primes
# A008458 - hex coordination sequence, 1 and multiples of 6
#
# A2 centred at lattice point:
# A014201 - x*x+x*y+y*y solutions excluding 0,0
# A038589 - lattice sizes, =A014201+1
# A038590 - sizes, uniques of A038589
# A038591 - 3fold symmetry, union A038588 and A038590
#
# A2 centred at hole
# A038587 - centred deep hole
# A038588 - centred deep hole uniques of A038587
# A005882 - theta relative hole
#           3,3,6,0,6,3,6,0,3,6,6,0,6,0,6,0,9,6,0,0,6,3,6,0,6,6,6,0,0,0,12,
# A033685 - theta series of hexagonal lattice A_2 with respect to deep hole.
#           1/3 steps of norm, so extra zeros
#           0,3,0,0,3,0,0,6,0,0,0,0,0,6,0,0,3,0,0,6,0,0,0,0,0,3,0,0,6,0,0,6,
#
# A005929 Theta series of hexagonal net with respect to mid-point of edge.

#                          [27] [28] [31]
#                          [12] [13] [16] [21] [28]
#                 [7]  [4]  [3]  [4]  [7] [12] [19] [28]
# [25] [16]  [9]  [4]  [1]  [0]  [1]  [4]  [9] [16] [25] [36]
#                 [7]  [4]  [3]  [4]  [7]
#                          [12]
#                          [27]

# mirror across +60
#   (X,Y) = ((X+3Y)/2, (Y-X)/2);   # rotate -60
#   Y = -Y;  # mirror
#   (X,Y) = ((X-3Y)/2, (X+Y)/2);    # rotate +60
#
#   (X,Y) = ((X+3Y)/2, (Y-X)/2);   # rotate -60
#   (X,Y) = ((X+3Y)/2, (X-Y)/2);
#
#   (X,Y) = (((X+3Y)/2+3(Y-X)/2)/2, ((X+3Y)/2-(Y-X)/2)/2);
#         = (((X+3Y)+3(Y-X))/4, ((X+3Y)-(Y-X))/4);
#         = ((X + 3Y + 3Y - 3X)/4, (X + 3Y - Y + X)/4);
#         = ((-2X + 6Y)/4, (2X + 2Y)/4);
#         = ((-X + 3Y)/2, (X+Y)/2);
# # eg X=6,Y=0 -> X=-6/2=-3 Y=(6+0)/2=3


package Math::PlanePath::TriangularHypot;
use 5.004;
use strict;
use Carp 'croak';

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'points',
      share_type      => 'points_eoahrc',
      display         => 'Points',
      type            => 'enum',
      default         => 'even',
      choices         => ['even','odd', 'all',
                          'hex','hex_rotated','hex_centred',
                         ],
      choices_display => ['Even','Odd', 'All',
                          'Hex','Hex Rotated','Hex Centred',
                         ],
      description     => 'Which X,Y points visit, either X+Y even or odd, or all points, or hexagonal grid points.',
    },
    Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

{
  my %x_negative_at_n = (even => 3,
                         odd  => 1,
                         all  => 2,
                         hex         => 2,
                         hex_rotated => 2,
                         hex_centred => 2,
                        );
  sub x_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $x_negative_at_n{$self->{'points'}};
  }
}
{
  my %y_negative_at_n = (even => 5,
                         odd  => 3,
                         all  => 4,
                         hex         => 3,
                         hex_rotated => 3,
                         hex_centred => 4,
                        );
  sub y_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $y_negative_at_n{$self->{'points'}};
  }
}
sub rsquared_minimum {
  my ($self) = @_;
  return ($self->{'points'} eq 'odd'           ? 1   # at X=1,Y=0
          : $self->{'points'} eq 'hex_centred' ? 2   # at X=1,Y=1
          : 0);   # even,all,hex,hex_rotated at X=0,Y=0
}
*sumabsxy_minimum = \&rsquared_minimum;

sub absdiffxy_minimum {
  my ($self) = @_;
  return ($self->{'points'} eq 'odd'
          ? 1     # odd, line X=Y not included
          : 0);   # even,all includes X=Y
}

{
  my %_UNDOCUMENTED__turn_any_left_at_n
    = (even        => 1, 
       odd         => 3,
       all         => 4,
       hex         => 1,
       hex_rotated => 1,
       hex_centred => 1,
      );
  sub _UNDOCUMENTED__turn_any_left_at_n {
    my ($self) = @_;
    my $n = $_UNDOCUMENTED__turn_any_left_at_n{$self->{'points'}};
    return (defined $n ? $self->n_start + $n : undef);
  }
}
{
  # even,hex, left or straight only
  # odd,all both left or right
  my %turn_any_right = (# even => 0,
                        odd  => 1,
                        all  => 1,
                        # hex         => 0,
                        #  hex_rotated => 0,
                        #  hex_centred => 0,
                       );
  sub turn_any_right {
    my ($self) = @_;
    return $turn_any_right{$self->{'points'}};
  }
}

sub turn_any_straight {
  my ($self) = @_;
  return ($self->{'points'} eq 'hex'
          || $self->{'points'} eq 'odd' ? 0   # never straight
          : 1);
}
{
  my %_UNDOCUMENTED__turn_any_straight_at_n
    = (even        => 30, 
       # odd         => undef,  # never straight
       all         => 1,
       # hex         => undef,  # never straight
       hex_rotated => 57,
       hex_centred => 23,
      );
  sub _UNDOCUMENTED__turn_any_straight_at_n {
    my ($self) = @_;
    my $n = $_UNDOCUMENTED__turn_any_straight_at_n{$self->{'points'}};
    return (defined $n ? $self->n_start + $n : undef);
  }
}

#------------------------------------------------------------------------------

sub new {
  ### TriangularHypot new() ...
  my $self = shift->SUPER::new(@_);

  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }

  my $points = ($self->{'points'} ||= 'even');
  if ($points eq 'all') {
    $self->{'n_to_x'} = [0];
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [1-1];
    $self->{'y_next_hypot'} = [3*0**2 + 1**2];
    $self->{'x_inc'} = 1;
    $self->{'x_inc_factor'} = 2;  # ((x+1)^2 - x^2) = 2*x+1
    $self->{'x_inc_squared'} = 1;
    $self->{'symmetry'} = 4;

  } elsif ($points eq 'even') {
    $self->{'n_to_x'} = [0];
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [2-2];
    $self->{'y_next_hypot'} = [3*0**2 + 2**2];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;
    $self->{'symmetry'} = 12;

  } elsif ($points eq 'odd') {
    $self->{'n_to_x'} = [];
    $self->{'n_to_y'} = [];
    $self->{'hypot_to_n'} = [];
    $self->{'y_next_x'} = [1-2];
    $self->{'y_next_hypot'} = [1];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 0;
    $self->{'symmetry'} = 4;

  } elsif ($points eq 'hex') {
    $self->{'n_to_x'} = [0];  # N=0 at X=0,Y=0
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [2-2];
    $self->{'y_next_hypot'} = [2**2 + 3*0**2]; # next at X=2,Y=0
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;  # should be even
    $self->{'skip_hex'} = 4;     # x+3y==0,2 only
    $self->{'symmetry'} = 6;

  } elsif ($points eq 'hex_rotated') {
    $self->{'n_to_x'} = [0];  # N=0 at X=0,Y=0
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [4-2,
                           1-2];
    $self->{'y_next_hypot'} = [4**2 + 3*0**2, # next at X=4,Y=0
                               1**2 + 3*1**2]; # next at X=1,Y=1
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;  # should be even
    $self->{'skip_hex'} = 2;     # x+3y==0,4 only
    $self->{'symmetry'} = 6;

  } elsif ($points eq 'hex_centred') {
    $self->{'n_to_x'} = [];
    $self->{'n_to_y'} = [];
    $self->{'hypot_to_n'} = [];
    $self->{'y_next_x'} = [2-2];  # for first at X=2
    $self->{'y_next_hypot'} = [2**2 + 3*0**2]; # at X=2,Y=0
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;  # should be even
    $self->{'skip_hex'} = 0;     # x+3y==2,4 only
    $self->{'symmetry'} = 12;

  } else {
    croak "Unrecognised points option: ", $points;
  }

  ### $self
  ### assert: $self->{'y_next_hypot'}->[0] == (3 * 0**2 + ($self->{'y_next_x'}->[0]+$self->{'x_inc'})**2)

  return $self;
}

sub _extend {
  my ($self) = @_;
  ### _extend() ...

  my $n_to_x       = $self->{'n_to_x'};
  my $n_to_y       = $self->{'n_to_y'};
  my $hypot_to_n   = $self->{'hypot_to_n'};
  my $y_next_x     = $self->{'y_next_x'};
  my $y_next_hypot = $self->{'y_next_hypot'};

  ### $y_next_x
  ### $y_next_hypot

  # set @y to the Y with the smallest $y_next_hypot->[$y], and if there's some
  # Y's with equal smallest hypot then all those Y's in ascending order
  my @y = (0);
  my $hypot = $y_next_hypot->[0];
  for (my $i = 1; $i < @$y_next_x; $i++) {
    if ($hypot == $y_next_hypot->[$i]) {
      push @y, $i;
    } elsif ($hypot > $y_next_hypot->[$i]) {
      @y = ($i);
      $hypot = $y_next_hypot->[$i];
    }
  }

  ### chosen y list: @y

  # if the endmost of the @$y_next_x, @y_next_hypot arrays are used then
  # extend them by one
  if ($y[-1] == $#$y_next_x) {
    my $y = scalar(@$y_next_x);  # new Y value

    ### highest y: $y[-1]
    ### so grow y: $y

    my $points = $self->{'points'};
    if ($points eq 'even') {
      # h = (3 * $y**2 + $x**2)
      #   = (3 * $y**2 + ($3*y)**2)
      #   = (3*$y*$y + 9*$y*$y)
      #   = (12*$y*$y)
      $y_next_x->[$y] = 3*$y - $self->{'x_inc'};      # X=3*Y, so X-2=3*Y-2
      $y_next_hypot->[$y] = 12*$y*$y;

    } elsif ($points eq 'odd') {
      my $odd = ! ($y%2);
      $y_next_x->[$y] = $odd - $self->{'x_inc'};
      $y_next_hypot->[$y] = 3*$y*$y + $odd;

    } elsif ($points eq 'hex') {
      my $x = $y_next_x->[$y] = (($y % 3) == 1 ? $y : $y-2);
      $x += 2;
      $y_next_hypot->[$y] = $x*$x + 3*$y*$y;
      ### assert: (($x+$y*3) % 6 == 0 || ($x+$y*3) % 6 == 2)

    } elsif ($points eq 'hex_rotated') {
      my $x = $y_next_x->[$y] = (($y % 3) == 2 ? $y : $y-2);
      $x += 2;
      $y_next_hypot->[$y] = $x*$x + 3*$y*$y;
      ### assert: (($x+$y*3) % 6 == 4 || ($x+$y*3) % 6 == 0)

    } elsif ($points eq 'hex_centred') {
      my $x = $y_next_x->[$y] = 3*$y;
      $x += 2;
      $y_next_hypot->[$y] = $x*$x + 3*$y*$y;
      ### assert: (($x+$y*3) % 6 == 2 || ($x+$y*3) % 6 == 4)

    } else {
      ### assert: $points eq 'all'
      $y_next_x->[$y] = - $self->{'x_inc'};      # X=0, so X-1=0
      $y_next_hypot->[$y] = 3*$y*$y;
    }

    ### new y_next_x (with adjustment): $y_next_x->[$y]+$self->{'x_inc'}
    ### new y_next_hypot: $y_next_hypot->[$y]

    ### assert: ($points ne 'even' || (($y ^ ($y_next_x->[$y]+$self->{'x_inc'})) & 1) == 0)
    ### assert: $y_next_hypot->[$y] == (3 * $y**2 + ($y_next_x->[$y]+$self->{'x_inc'})**2)
  }

  # @x is the $y_next_x->[$y] for each of the @y smallests, and step those
  # selected elements next X and hypot for that new X,Y
  my @x = map {
    ### assert: (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2) == $y_next_hypot->[$_]

    my $x = ($y_next_x->[$_] += $self->{'x_inc'});
    ### map y _: $_
    ### map inc x to: $x
    if (defined $self->{'skip_hex'}
         && ($x+2 + 3*$_) % 6 == $self->{'skip_hex'}) {
      ### extra inc for hex ...
      $y_next_x->[$_] += 2;
      $y_next_hypot->[$_] += 8*$x+16;   # (X+4)^2-X^2 = 8X+16
    } else {
      $y_next_hypot->[$_]
        += $self->{'x_inc_factor'}*$x + $self->{'x_inc_squared'};
    }

    ### $x
    ### y_next_x (including adjust): $y_next_x->[$_]+$self->{'x_inc'}
    ### y_next_hypot[]: $y_next_hypot->[$_]

    ### assert: $y_next_hypot->[$_] == (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2)
    ### assert: $self->{'points'} ne 'hex' || (($x+3*$_) % 6 == 0 || ($x+3*$_) % 6 == 2)
    ### assert: $self->{'points'} ne 'hex_rotated' || (($x+$_*3) % 6 == 4 || ($x+$_*3) % 6 == 0)
    ### assert: $self->{'points'} ne 'hex_centred' || (($x+$_*3) % 6 == 2 || ($x+$_*3) % 6 == 4)

    $x
  } @y;
  ### $hypot

  my $p2;
  if ($self->{'symmetry'} == 12) {
    ### base twelvth: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
    my $p1 = scalar(@y);
    my @base_x = @x;
    my @base_y = @y;
    unless ($y[0]) { # no mirror of x,0
      shift @base_x;
      shift @base_y;
    }
    if ($x[-1] == 3*$y[-1]) { # no mirror of x=3*y line
      pop @base_x;
      pop @base_y;
    }
    $#x = $#y = ($p1+scalar(@base_x))*6-1;  # pre-extend arrays
    for (my $i = $#base_x; $i >= 0; $i--) {
      $x[$p1]   = ($base_x[$i] + 3*$base_y[$i]) / 2;
      $y[$p1++] = ($base_x[$i] - $base_y[$i]) / 2;
    }
    ### with mirror 30: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1)

    $p2 = 2*$p1;
    foreach my $i (0 .. $p1-1) {
      $x[$p1]   = ($x[$i] - 3*$y[$i])/2;   # rotate +60
      $y[$p1++] = ($x[$i] + $y[$i])/2;

      $x[$p2]   = ($x[$i] + 3*$y[$i])/-2;  # rotate +120
      $y[$p2++] = ($x[$i] - $y[$i])/2;
    }
    ### with rotates 60,120: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)

    foreach my $i (0 .. $p2-1) {
      $x[$p2]   = -$x[$i];        # rotate 180
      $y[$p2++] = -$y[$i];
    }
    ### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)

  } elsif ($self->{'symmetry'} == 6) {
    my $p1 = scalar(@x);
    my @base_x = @x;
    my @base_y = @y;
    unless ($y[0]) { # no mirror of x,0
      shift @base_x;
      shift @base_y;
    }
    if ($x[-1] == $y[-1]) { # no mirror of X=Y line
      pop @base_x;
      pop @base_y;
    }
    ### base xy: join(' ',map{"$base_x[$_],$base_y[$_]"} 0 .. $#base_x)

    for (my $i = $#base_x; $i >= 0; $i--) {
      $x[$p1]   = ($base_x[$i] - 3*$base_y[$i]) / -2;   # mirror +60
      $y[$p1++] = ($base_x[$i] + $base_y[$i]) / 2;
    }
    ### with mirror 60: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1)

    $p2 = 2*$p1;
    foreach my $i (0 .. $#x) {
      $x[$p1]   = ($x[$i] + 3*$y[$i])/-2;  # rotate +120
      $y[$p1++] = ($x[$i] - $y[$i])/2;

      $x[$p2]   = ($x[$i] - 3*$y[$i])/-2;  # rotate +240 == -120
      $y[$p2++] = ($x[$i] + $y[$i])/-2;

      # should be on correct grid
      # ### assert: (($x[$p1-1]+$y[$p1-1]*3) % 6 == 0 || ($x[$p1-1]+$y[$p1-1]*3) % 6 == 2)
      # ### assert: (($x[$p2-1]+$y[$p2-1]*3) % 6 == 0 || ($x[$p2-1]+$y[$p2-1]*3) % 6 == 2)
    }
    ### with rotates 120,240: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)

  } else {
    ### assert: $self->{'symmetry'} == 4
    ### base quarter: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
    my $p1 = $#x;
    push @y, reverse @y;
    push @x, map {-$_} reverse @x;
    if ($x[$p1] == 0) {
      splice @x, $p1, 1;  # don't duplicate X=0 in mirror
      splice @y, $p1, 1;
    }
    if ($y[-1] == 0) {
      pop @y;  # omit final Y=0 ready for rotate
      pop @x;
    }
    $p2 = scalar(@y);
    ### with mirror +90: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)

    foreach my $i (0 .. $p2-1) {
      $x[$p2]   = -$x[$i];        # rotate 180
      $y[$p2++] = -$y[$i];
    }
    ### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
  }

  ### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
  ### at n: scalar(@$n_to_x)
  ### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x)
  $hypot_to_n->[$hypot] = scalar(@$n_to_x);
  push @$n_to_x, @x;
  push @$n_to_y, @y;

  # ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#hypot_to_n)
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### TriangularHypot n_to_xy(): $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $int = int($n);
  $n -= $int;  # fraction part

  my $n_to_x = $self->{'n_to_x'};
  my $n_to_y = $self->{'n_to_y'};

  while ($int >= $#$n_to_x) {
    _extend($self);
  }

  my $x = $n_to_x->[$int];
  my $y = $n_to_y->[$int];
  return ($x + $n * ($n_to_x->[$int+1] - $x),
          $y + $n * ($n_to_y->[$int+1] - $y));
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;

  if (defined $self->{'skip_parity'}) {
    $x = round_nearest ($x);
    $y = round_nearest ($y);
    if ((($x%2) ^ ($y%2)) == $self->{'skip_parity'}) {
      ### XY wrong parity, no point ...
      return 0;
    }
  }
  if (defined $self->{'skip_hex'}) {
    $x = round_nearest ($x);
    $y = round_nearest ($y);
    if ((($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) {
      ### XY wrong hex, no point ...
      return 0;
    }
  }
  return 1;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### TriangularHypot xy_to_n(): "$x, $y    points=$self->{'points'}"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  ### parity xor: ($x%2) ^ ($y%2)
  ### hex modulo: (($x%6) + 3*($y%6)) % 6
  if (defined $self->{'skip_parity'}
      && (($x%2) ^ ($y%2)) == $self->{'skip_parity'}) {
    ### XY wrong parity, no point ...
    return undef;
  }
  if (defined $self->{'skip_hex'}
      && (($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) {
    ### XY wrong hex, no point ...
    return undef;
  }


  my $hypot = 3*$y*$y + $x*$x;
  if (is_infinite($hypot)) {
    # avoid infinite loop extending @hypot_to_n
    return undef;
  }
  ### $hypot

  my $hypot_to_n = $self->{'hypot_to_n'};
  my $n_to_x     = $self->{'n_to_x'};
  my $n_to_y     = $self->{'n_to_y'};

  while ($hypot > $#$hypot_to_n) {
    _extend($self);
  }
  my $n = $hypot_to_n->[$hypot];
  for (;;) {
    if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) {
      return $n + $self->{'n_start'};
    }
    $n += 1;

    if ($n_to_x->[$n]**2 + 3*$n_to_y->[$n]**2 != $hypot) {
      ### oops, hypot_to_n no good ...
      return undef;
    }
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = abs (round_nearest ($x1));
  $y1 = abs (round_nearest ($y1));
  $x2 = abs (round_nearest ($x2));
  $y2 = abs (round_nearest ($y2));

  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }

  # xyradius r^2 = 1/4 * $x2**2 + 3/4 * $y2**2
  # (r+1/2)^2 = r^2 + r + 1/4
  # circlearea = pi*(r+1/2)^2
  # each hexagon area outradius 1/2 is hexarea = sqrt(27/64)

  my $r2 = $x2*$x2 + 3*$y2*$y2;
  my $n = (3.15 / sqrt(27/64) / 4) * ($r2 + sqrt($r2))
    * (3 - $self->{'x_inc'});  # *2 for odd or even, *1 for all
  return ($self->{'n_start'},
          $self->{'n_start'} + int($n));
}

1;
__END__

=for stopwords Ryde Math-PlanePath hypot ie OEIS

=head1 NAME

Math::PlanePath::TriangularHypot -- points of triangular lattice in order of hypotenuse distance

=head1 SYNOPSIS

 use Math::PlanePath::TriangularHypot;
 my $path = Math::PlanePath::TriangularHypot->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path visits X,Y points on a triangular "A2" lattice in order of their
distance from the origin 0,0 and anti-clockwise around from the X axis among
those of equal distance.

=cut

# math-image --all --output=numbers --path=TriangularHypot

=pod

             58    47    39    46    57                 4

          48    34    23    22    33    45              3

       40    24    16     9    15    21    38           2

    49    25    10     4     3     8    20    44        1

       35    17     5     1     2    14    32      <- Y=0

    50    26    11     6     7    13    31    55       -1

       41    27    18    12    19    30    43          -2

          51    36    28    29    37    54             -3

             60    52    42    53    61                -4

                          ^
    -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7

The lattice is put on a square X,Y grid using every second point per
L<Math::PlanePath/Triangular Lattice>.  Scaling X/2,Y*sqrt(3)/2 gives
equilateral triangles of side length 1 making a distance from X,Y to the
origin

    dist^2 = (X/2^2 + (Y*sqrt(3)/2)^2
           = (X^2 + 3*Y^2) / 4

For example N=19 at X=2,Y=-2 is sqrt((2**2+3*-2**2)/4) = sqrt(4) from the
origin.  The next smallest after that is X=5,Y=1 at sqrt(7).  The key part
is X^2 + 3*Y^2 as the distance measure to order the points.

=head2 Equal Distances

Points with the same distance are taken in anti-clockwise order around from
the X axis.  For example N=14 at X=4,Y=0 is sqrt(4) from the origin, and so
are the rotated X=2,Y=2 and X=-2,Y=2 etc in other sixth segments, for a
total 6 points N=14 to N=19 all the same distance.

Symmetry means there's a set of 6 or 12 points with the same distance, so
the count of same-distance points is always a multiple of 6 or 12.  There
are 6 symmetric points when on the six radial lines X=0, X=Y or X=-Y, and on
the lines Y=0, X=3*Y or X=-3*Y which are midway between them.  There's 12
symmetric points for anything else, ie. anything in the twelve slices
between those twelve lines.  The first set of 12 equal is N=20 to N=31 all
at sqrt(28).

There can also be further ways for the same distance to arise, as multiple
solutions to X^2+3*Y^3=d^2, but the 6-way or 12-way symmetry means there's
always a multiple of 6 or 12 in total.

=head2 Odd Points

Option C<points =E<gt> "odd"> visits just the odd points, meaning sum X+Y
odd, which is X,Y one odd the other even.

=cut

# math-image --path=TriangularHypot,points=odd --output=numbers --expression='i<=70?i:0'

=pod

    points => "odd"
                         69                              5
          66    50    45    44    49    65               4
       58    40    28    25    27    39    57            3
    54    32    20    12    11    19    31    53         2
       36    16     6     3     5    15    35            1
    46    24    10     2     1     9    23    43    <- Y=0
       37    17     7     4     8    18    38           -1
    55    33    21    13    14    22    34    56        -2
       59    41    29    26    30    42    60           -3
          67    51    47    48    52    68              -4
                         70                             -5

                          ^
       -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

=head2 All Points

Option C<points =E<gt> "all"> visits all integer X,Y points.

=cut

# math-image --path=TriangularHypot,points=all --output=numbers --expression='i<=71?i:0'

=pod

    points => "all"

                64 59 49 44 48 58 63                  3
          69 50 39 30 25 19 24 29 38 47 68            2
          51 35 20 13  8  4  7 12 18 34 46            1
       65 43 31 17  9  3  1  2  6 16 28 42 62    <- Y=0
          52 36 21 14 10  5 11 15 23 37 57           -1
          70 53 40 32 26 22 27 33 41 56 71           -2
                66 60 54 45 55 61 67                 -3

                          ^
       -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

=head2 Hex Points

Option C<points =E<gt> "hex"> visits X,Y points making a hexagonal grid,

=cut

# math-image --path=TriangularHypot,points=hex --output=numbers --expression='i<=61?i:0' --size=150x20

=pod

    points => "hex"

                         50----42          49----59                    5
                        /        \        /        \
                51----39          27----33          48                 4
               /        \        /        \        /
             43          22----15          21----32                    3
               \        /        \        /        \
                28----16           6----11          26----41           2
               /        \        /        \        /        \
       52----34           7---- 3           5----14          47        1
      /        \        /        \        /        \        /
    60          23----12           1-----2          20----38      <- Y=0
      \        /        \        /        \        /        \
       53----35           8---- 4          10----19          58       -1
               \        /        \        /        \        /
                29----17           9----13          31----46          -2
               /        \        /        \        /
             44          24----18          25----37                   -3
               \        /        \        /        \
                54----40          30----36          57                -4
                        \        /        \        /
                         55----45          56----61                   -5

                                   ^
       -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

N=1 is at the origin X=0,Y=0, then N=2,3,4 are all at X^2+3Y^2=4 away from
the origin, etc.  The joining lines drawn above show the grid pattern but
points are in order of distance from the origin.

The points are all integer X,Y with X+3Y mod 6 == 0 or 2.  This is a subset
of the default "even" points in that X+Y is even but with 1 of each 3 points
skipped to make the hexagonal outline.

=head2 Hex Rotated Points

Option C<points =E<gt> "hex_rotated"> is the same hexagonal points but
rotated around so N=2 is at +60 degrees instead of on the X axis.

=cut

# math-image --path=TriangularHypot,points=hex_rotated --output=numbers --expression='i<=61?i:0' --size=150x20

=pod

    points => "hex_rotated"


                60----50          42----49                             5
               /        \        /        \
             51          33----27          38----48                    4
               \        /        \        /        \
                34----22          15----21          41                 3
               /        \        /        \        /
       43----28          12-----6          14----26                    2
      /        \        /        \        /        \
    52          16-----7           2-----5          32----47           1
      \        /        \        /        \        /        \
       39----23           3-----1          11----20          59   <- Y=0
      /        \        /        \        /        \        /
    53          17-----8           4----10          37----58          -1
      \        /        \        /        \        /
       44----29          13-----9          19----31                   -2
               \        /        \        /        \
                35----24          18----25          46                -3
               /        \        /        \        /
             54          36----30          40----57                   -4
               \        /        \        /
                61----55          45----56                            -5


                                ^
    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

Points are still numbered from the X axis clockwise.  The sets of points at
equal hypotenuse distances are the same as plain "hex" but the numbering is
changed by the rotation.

The points visited are all integer X,Y with X+3Y mod 6 == 0 or 4.  This grid
can be viewed either as a +60 degree or a +180 degree rotation of the plain
hex.

=head2 Hex Centred Points

Option C<points =E<gt> "hex_centred"> is the same hexagonal grid as hex
above, but with the origin X=0,Y=0 in the centre of a hexagon,

=cut

# math-image --path=TriangularHypot,points=hex_centred --output=numbers --expression='i<=61?i:0' --size=150x20

=pod

    points => "hex_centred"

                         46----45                              5
                        /        \
                39----28          27----38                     4
               /        \        /        \
       47----29          16----15          26----44            3
      /        \        /        \        /        \
    48          17-----9           8----14          43         2
      \        /        \        /        \        /
       30----18           3-----2          13----25            1
      /        \        /        \        /        \
    40          10-----4     .     1-----7          37    <- Y=0
      \        /        \        /        \        /
       31----19           5-----6          24----36           -1
      /        \        /        \        /        \
    49          20----11          12----23          54        -2
      \        /        \        /        \        /
       50----32          21----22          35----53           -3
               \        /        \        /
                41----33          34----42                    -4
                        \        /
                         51----52                             -5

                             ^
    -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

N=1,2,3,4,5,6 are all at X^2+3Y^2=4 away from the origin, then
N=7,8,9,10,11,12, etc.  The points visited are all integer X,Y with X+3Y mod
6 == 2 or 4.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::TriangularHypot-E<gt>new ()>

=item C<$path = Math::PlanePath::TriangularHypot-E<gt>new (points =E<gt> $str)>

Create and return a new hypot path object.  The C<points> option can be

    "even"          only points with X+Y even (the default)
    "odd"           only points with X+Y odd
    "all"           all integer X,Y
    "hex"           hexagonal X+3Y==0,2 mod 6
    "hex_rotated"   hexagonal X+3Y==0,4 mod 6
    "hex_centred"   hexagonal X+3Y==2,4 mod 6

Create and return a new triangular hypot path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n E<lt> 1> the return is an empty list as the first point at X=0,Y=0
is N=1.

Currently it's unspecified what happens if C<$n> is not an integer.
Successive points are a fair way apart, so it may not make much sense to say
give an X,Y position in between the integer C<$n>.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.

For "even" and "odd" options only every second square in the plane has an N
and if C<$x,$y> is a position not covered then the return is C<undef>.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,

=over

L<http://oeis.org/A003136> (etc)

=back

    points="even" (the default)
      A003136  norms (X^2+3*Y^2)/4 which occur
      A004016  count of points of norm==n
      A035019    skipping zero counts
      A088534    counting only in the twelfth 0<=X<=Y

The counts in these sequences are expressed as norm = x^2+x*y+y^2.  That x,y
is related to the "even" X,Y on the path here by a -45 degree rotation,

    x = (Y-X)/2           X = 2*(x+y)
    y = (X+Y)/2           Y = 2*(y-x)

    norm = x^2+x*y+y^2
         = ((Y-X)/2)^2 + (Y-X)/2 * (X+Y)/2 + ((X+Y)/2)^2
         = (X^2 + 3*Y^2) / 4

The X^2+3*Y^2 is the dist^2 described above for equilateral triangles of
unit side.  The factor of /4 scales the distance but of course doesn't
change the sets of points of the same distance.

    points="all"
      A092572  norms X^2+3*Y^2 which occur
      A158937  norms X^2+3*Y^2 which occur, X>0,Y>0 with repeats
      A092573  count of points norm==n for X>0,Y>0

      A092574  norms X^2+3*Y^2 which occur for X>0,Y>0, gcd(X,Y)=1
      A092575  count of points norm==n for X>0,Y>0, gcd(X,Y)=1
                 ie. X,Y no common factor

=cut

# ((Y-X)/2)^2 + (Y-X)/2 * (X+Y)/2 + ((X+Y)/2)^2
#  = YY-2XY+XX + YY-XX + XX+2XY+YY   / 4
#  = 3YY + XX

=pod

    points="hex"
      A113062  count of points norm=X^2+3*Y^2=4*n (theta series)
      A113063   divided by 3

    points="hex_centred"
      A217219  count of points norm=X^2+3*Y^2=4*n (theta series)

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::HypotOctant>,
L<Math::PlanePath::PixelRings>,
L<Math::PlanePath::HexSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut