This file is indexed.

/usr/share/perl5/Math/PlanePath/TriangleSpiralSkewed.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::TriangleSpiralSkewed;
use 5.004;
use strict;
#use List::Util 'max','min';
*max = \&Math::PlanePath::_max;
*min = \&Math::PlanePath::_min;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;

use constant xy_is_visited => 1;
use constant parameter_info_array =>
  [
   { name            => 'skew',
     type            => 'enum',
     share_key       => 'skew_lrud',
     display         => 'Skew',
     default         => 'left',
     choices         => ['left', 'right','up','down' ],
     choices_display => ['Left', 'Right','Up','Down' ],
   },
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

{
  my %x_negative_at_n = (left  => 3,
                         right => 5,
                         up    => 3,
                         down  => 5);
  sub x_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $x_negative_at_n{$self->{'skew'}};
  }
}
{
  my %y_negative_at_n = (left  => 6,
                                        right => 6,
                                        up    => 5,
                                        down  => 1);
  sub y_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $y_negative_at_n{$self->{'skew'}};
  }
}
use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
{
  my %_UNDOCUMENTED__dxdy_list = (left  => [1,0,   # E
                             -1,1,  # NW
                             0,-1], # S
                   right => [1,0,    # E
                             0,1,    # N
                             -1,-1], # SW
                   up    => [1,1,   # NE
                             -1,0,  # W
                             0,-1], # S
                   down  => [0,1,   # N
                             -1,0,  # W
                             1,-1], # SE
                  );
  sub _UNDOCUMENTED__dxdy_list {
    my ($self) = @_;
    return @{$_UNDOCUMENTED__dxdy_list{$self->{'skew'}}};
  }
}
{
  my %dsumxy_minimum = (left  => -1,  # diagonal only NW across
                        right => -2,  # SW
                        up    => -1,  # S
                        down  => -1); # W
  sub dsumxy_minimum {
    my ($self) = @_;
    return $dsumxy_minimum{$self->{'skew'}};
  }
}
{
  my %dsumxy_maximum = (left  => 1,  # E
                        right => 1,  # N
                        up    => 2,  # NE
                        down  => 1); # N
  sub dsumxy_maximum {
    my ($self) = @_;
    return $dsumxy_maximum{$self->{'skew'}};
  }
}
{
  my %ddiffxy_minimum = (left  => -2,  # North-West
                         right => -1,  # N
                         up    => -1,  # W
                         down  => -1); # W
  sub ddiffxy_minimum {
    my ($self) = @_;
    return $ddiffxy_minimum{$self->{'skew'}};
  }
}
{
  my %ddiffxy_maximum = (left  => 1,  # S
                         right => 1,  # S
                         up    => 1,  # S
                         down  => 2); # South-East
  sub ddiffxy_maximum {
    my ($self) = @_;
    return $ddiffxy_maximum{$self->{'skew'}};
  }
}

{
  my %dir_minimum_dxdy = (left  => [1,0],  # East
                          right => [1,0],  # East
                          up    => [1,1],  # NE
                          down  => [0,1]); # North
  sub dir_minimum_dxdy {
    my ($self) = @_;
    return @{$dir_minimum_dxdy{$self->{'skew'}}};
  }
}
{
  my %dir_maximum_dxdy = (left  => [0,-1],   # South
                          right => [-1,-1],  # South-West
                          up    => [0,-1],   # South
                          down  => [1,-1]);  # South-East
  sub dir_maximum_dxdy {
    my ($self) = @_;
    return @{$dir_maximum_dxdy{$self->{'skew'}}};
  }
}

use constant turn_any_right => 0; # only left or straight


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  $self->{'skew'} ||= 'left';
  return $self;
}

# base at bottom left corner, N=0 basis, first loop d=1
#   d = [ 1,  2,  3 ]
#   n = [ 0,  6, 21 ]
#   d = 5/6 + sqrt(2/9 * $n + 1/36)
#     = (5 + sqrt(8N + 1))/6
# N = (9/2 d^2 - 15/2 d + 3)
#   = (9/2*$d**2 - 15/2*$d + 3)
#   = ((9/2*$d - 15/2)*$d + 3)
#   = (9*$d - 15)*$d/2 + 3
#
# bottom right corner is further 3*$d along, so
#   rem = $n - (9/2 d^2 - 15/2 d + 3) - 3*d
#       = $n - (9/2 d^2 - 9/2 d + 3)
#       = $n - (9/2*$d + -9/2)*$d - 3
#       = $n - (9*$d + -9)*$d/2 - 3
#       = $n - ($d - 1)*$d*9/2 - 3
# is rem < 0       bottom horizontal
#    rem <= 3*d-1  right slope
#    rem >= 3*d-1  left vertical
#
sub n_to_xy {
  my ($self, $n) = @_;
  #### TriangleSpiralSkewed n_to_xy: $n

  $n = $n - $self->{'n_start'};  # starting N==0, and warning if $n==undef
  if ($n < 0) { return; }

  my $d = int((sqrt(8*$n + 1) + 5) / 6);  # first loop d=1 at n=0
  #### $d

  $n -= ($d-1)*$d/2 * 9;
  #### remainder: $n

  my $zero = $n*0; # inherit BigFloat frac rather than $d=BigInt
  my ($x,$y);

  if ($n <= 1) {
    ### bottom horizontal: "nrem=$n"
    $d -= 1;
    $y = $zero - $d;
    $x = $n + 2*$d;
  } elsif (($n -= 3*$d) <= 0) {
    ### right slope: "nrem=$n"
    $x = -$n - $d;
    $y = $n + 2*$d;
  } else {
    ### left vertical: "nrem=$n"
    $x = $zero - $d;
    $y = - $n + 2*$d;
  }
  ### xy skew=left: "$x,$y"

  if ($self->{'skew'} eq 'right') {
    $x += $y;
  } elsif ($self->{'skew'} eq 'up') {
    $y += $x;
  } elsif ($self->{'skew'} eq 'down') {
    ($x,$y) = ($x+$y, -$x);
  }
  return ($x,$y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### xy_to_n(): "$x,$y"

  if ($self->{'skew'} eq 'right') {
    $x -= $y;
  } elsif ($self->{'skew'} eq 'up') {
    $y -= $x;
  } elsif ($self->{'skew'} eq 'down') {
    ($x,$y) = (-$y, $x+$y);
  }
  # now $x,$y in skew="left" style

  my $n;
  if ($y < 0 && $y <= $x && $x <= -2*$y) {
    ### bottom horizontal ...

    # negative y, vertical at x=0
    #   [ -1, -2, -3, -4 ]
    #   [  8, 24, 49, 83 ]
    #   n = (9/2*$d**2 + -5/2*$d + 1)
    #
    $n = (9*$y - 5)*$y/2 + $x;

  } elsif ($x < 0 && $x <= $y && $y <= -2*$x) {
    ### upper left vertical ...

    # negative x, horizontal at y=0
    #   [ -1, -2, -3, -4 ]
    #   [  6, 20, 43, 75 ]
    #   n = (9/2*$d**2 + -1/2*$d + 1)
    #
    $n = (9*$x - 1)*$x/2 - $y;

  } else {
    my $d = $x + $y;
    ### upper right slope ...
    ### $d

    # positive y, vertical at x=0
    #   [ 1,  2,  3,  4 ]
    #   [ 3, 14, 34, 63 ]
    #   n = (9/2*$d**2 + -5/2*$d + 1)
    #
    $n = (9*$d - 5)*$d/2 - $x;
  }

  return $n + $self->{'n_start'};
}

# n_hi exact, n_lo not
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  return ($self->{'n_start'},
          max ($self->xy_to_n ($x1,$y1),
               $self->xy_to_n ($x1,$y2),
               $self->xy_to_n ($x2,$y1),
               $self->xy_to_n ($x2,$y2)));
}
# my $d = 0;
# foreach my $x ($x1, $x2) {
#   foreach my $y ($y1, $y2) {
#     $d = max ($d,
#               1 + ($y < 0 && $y <= $x && $x <= -2*$y
#                    ? -$y                          # bottom horizontal
#                    : $x < 0 && $x <= $y && $y <= 2*-$x
#                    ? -$x              # left vertical
#                    : abs($x) + $y));  # right slope
#   }
# }
#         (9*$d - 9)*$d + 1 + $self->{'n_start'});

1;
__END__

=for stopwords Ryde Math-PlanePath 11-gonals hendecagonal hendecagonals OEIS

=head1 NAME

Math::PlanePath::TriangleSpiralSkewed -- integer points drawn around a skewed equilateral triangle

=head1 SYNOPSIS

 use Math::PlanePath::TriangleSpiralSkewed;
 my $path = Math::PlanePath::TriangleSpiralSkewed->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes an spiral shaped as an equilateral triangle (each side the
same length), but skewed to the left to fit on a square grid,

=cut

# math-image --path=TriangleSpiralSkewed --expression='i<=31?i:0' --output=numbers_dash

=pod

    16                              4
     |\
    17 15                           3
     |   \
    18  4 14                        2
     |  |\  \
    19  5  3 13                     1
     |  |   \  \
    20  6  1--2 12 ...         <- Y=0
     |  |         \  \
    21  7--8--9-10-11 30           -1
     |                  \
    22-23-24-25-26-27-28-29        -2

           ^
    -2 -1 X=0 1  2  3  4  5

The properties are the same as the spread-out C<TriangleSpiral>.  The
triangle numbers fall on straight lines as the do in the C<TriangleSpiral>
but the skew means the top corner goes up at an angle to the vertical and
the left and right downwards are different angles plotted (but are symmetric
by N count).

=head2 Skew Right

Option C<skew =E<gt> 'right'> directs the skew towards the right, giving

=cut

# math-image --path=TriangleSpiralSkewed,skew=right --expression='i<=31?i:0' --output=numbers_dash

=pod

      4                  16      skew="right"
                        / |
      3               17 15
                     /    |
      2            18  4 14
                  /  / |  |
      1        ...  5  3 13
                  /    |  |
    Y=0 ->       6  1--2 12
               /          |
     -1       7--8--9-10-11

                    ^
             -2 -1 X=0 1  2

This is a shear "X -E<gt> X+Y" of the default skew="left" shown above.  The
coordinates are related by

    Xright = Xleft + Yleft         Xleft = Xright - Yright
    Yright = Yleft                 Yleft = Yright          

=head2 Skew Up

=cut

# math-image --path=TriangleSpiralSkewed,skew=up --expression='i<=31?i:0' --output=numbers_dash

=pod

      2       16-15-14-13-12-11      skew="up"
               |            /   
      1       17  4--3--2 10
               |  |   /  /  
    Y=0 ->    18  5  1  9 
               |  |   /  
     -1      ...  6  8 
                  |/  
     -2           7 

                    ^
             -2 -1 X=0 1  2

This is a shear "Y -E<gt> X+Y" of the default skew="left" shown above.  The
coordinates are related by

    Xup = Xleft                 Xleft = Xup
    Yup = Yleft + Xleft         Yleft = Yup - Xup

=head2 Skew Down

=cut

# math-image --path=TriangleSpiralSkewed,skew=down --expression='i<=31?i:0' --output=numbers_dash

=pod

      2          ..-18-17-16       skew="down"
                           |  
      1        7--6--5--4 15 
                \       |  | 
    Y=0 ->        8  1  3 14 
                   \  \ |  | 
     -1              9  2 13 
                      \    | 
     -2                10 12 
                         \ | 
                          11 

                     ^
              -2 -1 X=0 1  2

This is a rotate by -90 degrees of the skew="up" above.  The coordinates are
related

    Xdown = Yup          Xup = - Ydown
    Ydown = - Xup        Yup = Xdown

Or related to the default skew="left" by

    Xdown = Yleft + Xleft        Xleft = - Ydown
    Ydown = - Xleft              Yleft = Xdown + Ydown

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, with the same shape etc.  For example
to start at 0,

=cut

# math-image --path=TriangleSpiralSkewed,n_start=0 --expression='i<=31?i:0' --output=numbers_dash

=pod

    15        n_start => 0
     |\
    16 14
     |   \
    17  3 13 ...
     |  |\  \  \
    18  4  2 12 31
     |  |   \  \  \
    19  5  0--1 11 30
     |  |         \  \
    20  6--7--8--9-10 29
     |                  \
    21-22-23-24-25-26-27-28

With this adjustment for example the X axis N=0,1,11,30,etc is (9X-7)*X/2,
the hendecagonal numbers (11-gonals).  And South-East N=0,8,25,etc is the
hendecagonals of the second kind, (9Y-7)*Y/2 with Y negative.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::TriangleSpiralSkewed-E<gt>new ()>

=item C<$path = Math::PlanePath::TriangleSpiralSkewed-E<gt>new (skew =E<gt> $str, n_start =E<gt> $n)>

Create and return a new skewed triangle spiral object.  The C<skew>
parameter can be

    "left"    (the default)
    "right"
    "up"
    "down"

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each N
in the path as centred in a square of side 1, so the entire plane is
covered.

=back

=head1 FORMULAS

=head2 Rectangle to N Range

Within each row there's a minimum N and the N values then increase
monotonically away from that minimum point.  Likewise in each column.  This
means in a rectangle the maximum N is at one of the four corners of the
rectangle.

              |
    x1,y2 M---|----M x2,y2        maximum N at one of
          |   |    |              the four corners
       -------O---------          of the rectangle
          |   |    |
          |   |    |
    x1,y1 M---|----M x1,y1
              |

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include

=over

L<http://oeis.org/A117625> (etc)

=back

    n_start=1, skew="left" (the defaults)
      A204439     abs(dX)
      A204437     abs(dY)
      A010054     turn 1=left,0=straight, extra initial 1

      A117625     N on X axis
      A064226     N on Y axis, but without initial value=1
      A006137     N on X negative
      A064225     N on Y negative
      A081589     N on X=Y leading diagonal
      A038764     N on X=Y negative South-West diagonal
      A081267     N on X=-Y negative South-East diagonal
      A060544     N on ESE slope dX=+2,dY=-1
      A081272     N on SSE slope dX=+1,dY=-2

      A217010     permutation N values of points in SquareSpiral order
      A217291      inverse
      A214230     sum of 8 surrounding N
      A214231     sum of 4 surrounding N

    n_start=0
      A051682     N on X axis (11-gonal numbers)
      A081268     N on X=1 vertical (next to Y axis)
      A062708     N on Y axis
      A062725     N on Y negative axis
      A081275     N on X=Y+1 North-East diagonal
      A062728     N on South-East diagonal (11-gonal second kind)
      A081266     N on X=Y negative South-West diagonal
      A081270     N on X=1-Y North-West diagonal, starting N=3
      A081271     N on dX=-1,dY=2 NNW slope up from N=1 at X=1,Y=0

    n_start=-1
      A023531     turn 1=left,0=straight, being 1 at N=k*(k+3)/2
      A023532     turn 1=straight,0=left

    n_start=1, skew="right"
      A204435     abs(dX)
      A204437     abs(dY)
      A217011     permutation N values of points in SquareSpiral order
                    but with 90-degree rotation
      A217292     inverse
      A214251     sum of 8 surrounding N

    n_start=1, skew="up"
      A204439     abs(dX)
      A204435     abs(dY)
      A217012     permutation N values of points in SquareSpiral order
                    but with 90-degree rotation
      A217293     inverse
      A214252     sum of 8 surrounding N

    n_start=1, skew="down"
      A204435     abs(dX)
      A204439     abs(dY)

The square spiral order in A217011,A217012 and their inverses has first step
at 90-degrees to the first step of the triangle spiral, hence the rotation
by 90 degrees when relating to the C<SquareSpiral> path.  A217010 on the
other hand has no such rotation since it reckons the square and triangle
spirals starting in the same direction.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::TriangleSpiral>,
L<Math::PlanePath::PyramidSpiral>,
L<Math::PlanePath::SquareSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut