/usr/share/perl5/Math/PlanePath/TriangleSpiralSkewed.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | # Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::TriangleSpiralSkewed;
use 5.004;
use strict;
#use List::Util 'max','min';
*max = \&Math::PlanePath::_max;
*min = \&Math::PlanePath::_min;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant xy_is_visited => 1;
use constant parameter_info_array =>
[
{ name => 'skew',
type => 'enum',
share_key => 'skew_lrud',
display => 'Skew',
default => 'left',
choices => ['left', 'right','up','down' ],
choices_display => ['Left', 'Right','Up','Down' ],
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
{
my %x_negative_at_n = (left => 3,
right => 5,
up => 3,
down => 5);
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + $x_negative_at_n{$self->{'skew'}};
}
}
{
my %y_negative_at_n = (left => 6,
right => 6,
up => 5,
down => 1);
sub y_negative_at_n {
my ($self) = @_;
return $self->n_start + $y_negative_at_n{$self->{'skew'}};
}
}
use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
{
my %_UNDOCUMENTED__dxdy_list = (left => [1,0, # E
-1,1, # NW
0,-1], # S
right => [1,0, # E
0,1, # N
-1,-1], # SW
up => [1,1, # NE
-1,0, # W
0,-1], # S
down => [0,1, # N
-1,0, # W
1,-1], # SE
);
sub _UNDOCUMENTED__dxdy_list {
my ($self) = @_;
return @{$_UNDOCUMENTED__dxdy_list{$self->{'skew'}}};
}
}
{
my %dsumxy_minimum = (left => -1, # diagonal only NW across
right => -2, # SW
up => -1, # S
down => -1); # W
sub dsumxy_minimum {
my ($self) = @_;
return $dsumxy_minimum{$self->{'skew'}};
}
}
{
my %dsumxy_maximum = (left => 1, # E
right => 1, # N
up => 2, # NE
down => 1); # N
sub dsumxy_maximum {
my ($self) = @_;
return $dsumxy_maximum{$self->{'skew'}};
}
}
{
my %ddiffxy_minimum = (left => -2, # North-West
right => -1, # N
up => -1, # W
down => -1); # W
sub ddiffxy_minimum {
my ($self) = @_;
return $ddiffxy_minimum{$self->{'skew'}};
}
}
{
my %ddiffxy_maximum = (left => 1, # S
right => 1, # S
up => 1, # S
down => 2); # South-East
sub ddiffxy_maximum {
my ($self) = @_;
return $ddiffxy_maximum{$self->{'skew'}};
}
}
{
my %dir_minimum_dxdy = (left => [1,0], # East
right => [1,0], # East
up => [1,1], # NE
down => [0,1]); # North
sub dir_minimum_dxdy {
my ($self) = @_;
return @{$dir_minimum_dxdy{$self->{'skew'}}};
}
}
{
my %dir_maximum_dxdy = (left => [0,-1], # South
right => [-1,-1], # South-West
up => [0,-1], # South
down => [1,-1]); # South-East
sub dir_maximum_dxdy {
my ($self) = @_;
return @{$dir_maximum_dxdy{$self->{'skew'}}};
}
}
use constant turn_any_right => 0; # only left or straight
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
$self->{'skew'} ||= 'left';
return $self;
}
# base at bottom left corner, N=0 basis, first loop d=1
# d = [ 1, 2, 3 ]
# n = [ 0, 6, 21 ]
# d = 5/6 + sqrt(2/9 * $n + 1/36)
# = (5 + sqrt(8N + 1))/6
# N = (9/2 d^2 - 15/2 d + 3)
# = (9/2*$d**2 - 15/2*$d + 3)
# = ((9/2*$d - 15/2)*$d + 3)
# = (9*$d - 15)*$d/2 + 3
#
# bottom right corner is further 3*$d along, so
# rem = $n - (9/2 d^2 - 15/2 d + 3) - 3*d
# = $n - (9/2 d^2 - 9/2 d + 3)
# = $n - (9/2*$d + -9/2)*$d - 3
# = $n - (9*$d + -9)*$d/2 - 3
# = $n - ($d - 1)*$d*9/2 - 3
# is rem < 0 bottom horizontal
# rem <= 3*d-1 right slope
# rem >= 3*d-1 left vertical
#
sub n_to_xy {
my ($self, $n) = @_;
#### TriangleSpiralSkewed n_to_xy: $n
$n = $n - $self->{'n_start'}; # starting N==0, and warning if $n==undef
if ($n < 0) { return; }
my $d = int((sqrt(8*$n + 1) + 5) / 6); # first loop d=1 at n=0
#### $d
$n -= ($d-1)*$d/2 * 9;
#### remainder: $n
my $zero = $n*0; # inherit BigFloat frac rather than $d=BigInt
my ($x,$y);
if ($n <= 1) {
### bottom horizontal: "nrem=$n"
$d -= 1;
$y = $zero - $d;
$x = $n + 2*$d;
} elsif (($n -= 3*$d) <= 0) {
### right slope: "nrem=$n"
$x = -$n - $d;
$y = $n + 2*$d;
} else {
### left vertical: "nrem=$n"
$x = $zero - $d;
$y = - $n + 2*$d;
}
### xy skew=left: "$x,$y"
if ($self->{'skew'} eq 'right') {
$x += $y;
} elsif ($self->{'skew'} eq 'up') {
$y += $x;
} elsif ($self->{'skew'} eq 'down') {
($x,$y) = ($x+$y, -$x);
}
return ($x,$y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### xy_to_n(): "$x,$y"
if ($self->{'skew'} eq 'right') {
$x -= $y;
} elsif ($self->{'skew'} eq 'up') {
$y -= $x;
} elsif ($self->{'skew'} eq 'down') {
($x,$y) = (-$y, $x+$y);
}
# now $x,$y in skew="left" style
my $n;
if ($y < 0 && $y <= $x && $x <= -2*$y) {
### bottom horizontal ...
# negative y, vertical at x=0
# [ -1, -2, -3, -4 ]
# [ 8, 24, 49, 83 ]
# n = (9/2*$d**2 + -5/2*$d + 1)
#
$n = (9*$y - 5)*$y/2 + $x;
} elsif ($x < 0 && $x <= $y && $y <= -2*$x) {
### upper left vertical ...
# negative x, horizontal at y=0
# [ -1, -2, -3, -4 ]
# [ 6, 20, 43, 75 ]
# n = (9/2*$d**2 + -1/2*$d + 1)
#
$n = (9*$x - 1)*$x/2 - $y;
} else {
my $d = $x + $y;
### upper right slope ...
### $d
# positive y, vertical at x=0
# [ 1, 2, 3, 4 ]
# [ 3, 14, 34, 63 ]
# n = (9/2*$d**2 + -5/2*$d + 1)
#
$n = (9*$d - 5)*$d/2 - $x;
}
return $n + $self->{'n_start'};
}
# n_hi exact, n_lo not
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
return ($self->{'n_start'},
max ($self->xy_to_n ($x1,$y1),
$self->xy_to_n ($x1,$y2),
$self->xy_to_n ($x2,$y1),
$self->xy_to_n ($x2,$y2)));
}
# my $d = 0;
# foreach my $x ($x1, $x2) {
# foreach my $y ($y1, $y2) {
# $d = max ($d,
# 1 + ($y < 0 && $y <= $x && $x <= -2*$y
# ? -$y # bottom horizontal
# : $x < 0 && $x <= $y && $y <= 2*-$x
# ? -$x # left vertical
# : abs($x) + $y)); # right slope
# }
# }
# (9*$d - 9)*$d + 1 + $self->{'n_start'});
1;
__END__
=for stopwords Ryde Math-PlanePath 11-gonals hendecagonal hendecagonals OEIS
=head1 NAME
Math::PlanePath::TriangleSpiralSkewed -- integer points drawn around a skewed equilateral triangle
=head1 SYNOPSIS
use Math::PlanePath::TriangleSpiralSkewed;
my $path = Math::PlanePath::TriangleSpiralSkewed->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path makes an spiral shaped as an equilateral triangle (each side the
same length), but skewed to the left to fit on a square grid,
=cut
# math-image --path=TriangleSpiralSkewed --expression='i<=31?i:0' --output=numbers_dash
=pod
16 4
|\
17 15 3
| \
18 4 14 2
| |\ \
19 5 3 13 1
| | \ \
20 6 1--2 12 ... <- Y=0
| | \ \
21 7--8--9-10-11 30 -1
| \
22-23-24-25-26-27-28-29 -2
^
-2 -1 X=0 1 2 3 4 5
The properties are the same as the spread-out C<TriangleSpiral>. The
triangle numbers fall on straight lines as the do in the C<TriangleSpiral>
but the skew means the top corner goes up at an angle to the vertical and
the left and right downwards are different angles plotted (but are symmetric
by N count).
=head2 Skew Right
Option C<skew =E<gt> 'right'> directs the skew towards the right, giving
=cut
# math-image --path=TriangleSpiralSkewed,skew=right --expression='i<=31?i:0' --output=numbers_dash
=pod
4 16 skew="right"
/ |
3 17 15
/ |
2 18 4 14
/ / | |
1 ... 5 3 13
/ | |
Y=0 -> 6 1--2 12
/ |
-1 7--8--9-10-11
^
-2 -1 X=0 1 2
This is a shear "X -E<gt> X+Y" of the default skew="left" shown above. The
coordinates are related by
Xright = Xleft + Yleft Xleft = Xright - Yright
Yright = Yleft Yleft = Yright
=head2 Skew Up
=cut
# math-image --path=TriangleSpiralSkewed,skew=up --expression='i<=31?i:0' --output=numbers_dash
=pod
2 16-15-14-13-12-11 skew="up"
| /
1 17 4--3--2 10
| | / /
Y=0 -> 18 5 1 9
| | /
-1 ... 6 8
|/
-2 7
^
-2 -1 X=0 1 2
This is a shear "Y -E<gt> X+Y" of the default skew="left" shown above. The
coordinates are related by
Xup = Xleft Xleft = Xup
Yup = Yleft + Xleft Yleft = Yup - Xup
=head2 Skew Down
=cut
# math-image --path=TriangleSpiralSkewed,skew=down --expression='i<=31?i:0' --output=numbers_dash
=pod
2 ..-18-17-16 skew="down"
|
1 7--6--5--4 15
\ | |
Y=0 -> 8 1 3 14
\ \ | |
-1 9 2 13
\ |
-2 10 12
\ |
11
^
-2 -1 X=0 1 2
This is a rotate by -90 degrees of the skew="up" above. The coordinates are
related
Xdown = Yup Xup = - Ydown
Ydown = - Xup Yup = Xdown
Or related to the default skew="left" by
Xdown = Yleft + Xleft Xleft = - Ydown
Ydown = - Xleft Yleft = Xdown + Ydown
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start, with the same shape etc. For example
to start at 0,
=cut
# math-image --path=TriangleSpiralSkewed,n_start=0 --expression='i<=31?i:0' --output=numbers_dash
=pod
15 n_start => 0
|\
16 14
| \
17 3 13 ...
| |\ \ \
18 4 2 12 31
| | \ \ \
19 5 0--1 11 30
| | \ \
20 6--7--8--9-10 29
| \
21-22-23-24-25-26-27-28
With this adjustment for example the X axis N=0,1,11,30,etc is (9X-7)*X/2,
the hendecagonal numbers (11-gonals). And South-East N=0,8,25,etc is the
hendecagonals of the second kind, (9Y-7)*Y/2 with Y negative.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::TriangleSpiralSkewed-E<gt>new ()>
=item C<$path = Math::PlanePath::TriangleSpiralSkewed-E<gt>new (skew =E<gt> $str, n_start =E<gt> $n)>
Create and return a new skewed triangle spiral object. The C<skew>
parameter can be
"left" (the default)
"right"
"up"
"down"
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each N
in the path as centred in a square of side 1, so the entire plane is
covered.
=back
=head1 FORMULAS
=head2 Rectangle to N Range
Within each row there's a minimum N and the N values then increase
monotonically away from that minimum point. Likewise in each column. This
means in a rectangle the maximum N is at one of the four corners of the
rectangle.
|
x1,y2 M---|----M x2,y2 maximum N at one of
| | | the four corners
-------O--------- of the rectangle
| | |
| | |
x1,y1 M---|----M x1,y1
|
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include
=over
L<http://oeis.org/A117625> (etc)
=back
n_start=1, skew="left" (the defaults)
A204439 abs(dX)
A204437 abs(dY)
A010054 turn 1=left,0=straight, extra initial 1
A117625 N on X axis
A064226 N on Y axis, but without initial value=1
A006137 N on X negative
A064225 N on Y negative
A081589 N on X=Y leading diagonal
A038764 N on X=Y negative South-West diagonal
A081267 N on X=-Y negative South-East diagonal
A060544 N on ESE slope dX=+2,dY=-1
A081272 N on SSE slope dX=+1,dY=-2
A217010 permutation N values of points in SquareSpiral order
A217291 inverse
A214230 sum of 8 surrounding N
A214231 sum of 4 surrounding N
n_start=0
A051682 N on X axis (11-gonal numbers)
A081268 N on X=1 vertical (next to Y axis)
A062708 N on Y axis
A062725 N on Y negative axis
A081275 N on X=Y+1 North-East diagonal
A062728 N on South-East diagonal (11-gonal second kind)
A081266 N on X=Y negative South-West diagonal
A081270 N on X=1-Y North-West diagonal, starting N=3
A081271 N on dX=-1,dY=2 NNW slope up from N=1 at X=1,Y=0
n_start=-1
A023531 turn 1=left,0=straight, being 1 at N=k*(k+3)/2
A023532 turn 1=straight,0=left
n_start=1, skew="right"
A204435 abs(dX)
A204437 abs(dY)
A217011 permutation N values of points in SquareSpiral order
but with 90-degree rotation
A217292 inverse
A214251 sum of 8 surrounding N
n_start=1, skew="up"
A204439 abs(dX)
A204435 abs(dY)
A217012 permutation N values of points in SquareSpiral order
but with 90-degree rotation
A217293 inverse
A214252 sum of 8 surrounding N
n_start=1, skew="down"
A204435 abs(dX)
A204439 abs(dY)
The square spiral order in A217011,A217012 and their inverses has first step
at 90-degrees to the first step of the triangle spiral, hence the rotation
by 90 degrees when relating to the C<SquareSpiral> path. A217010 on the
other hand has no such rotation since it reckons the square and triangle
spirals starting in the same direction.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::TriangleSpiral>,
L<Math::PlanePath::PyramidSpiral>,
L<Math::PlanePath::SquareSpiral>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|