/usr/share/perl5/Math/PlanePath/SierpinskiArrowhead.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::SierpinskiArrowhead;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'round_up_pow',
'digit_split_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
# Note: shared by SierpinskiArrowheadCentres
use constant parameter_info_array =>
[ { name => 'align',
share_key => 'align_trld',
display => 'Align',
type => 'enum',
default => 'triangular',
choices => ['triangular','right','left','diagonal'],
choices_display => ['Triangular','Right','Left','Diagonal'],
},
];
use constant n_start => 0;
use constant class_y_negative => 0;
my %x_negative = (triangular => 1,
left => 1,
right => 0,
diagonal => 0);
# Note: shared by SierpinskiArrowheadCentres
sub x_negative {
my ($self) = @_;
return $x_negative{$self->{'align'}};
}
{
my %x_negative_at_n = (triangular => 3,
# right => undef,
left => 2,
# diagonal => undef,
);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n{$self->{'align'}};
}
}
use constant sumxy_minimum => 0; # triangular X>=-Y
use Math::PlanePath::SierpinskiTriangle;
*x_maximum = \&Math::PlanePath::SierpinskiTriangle::x_maximum;
*diffxy_maximum = \&Math::PlanePath::SierpinskiTriangle::diffxy_maximum;
sub dx_minimum {
my ($self) = @_;
return ($self->{'align'} eq 'triangular' ? -2 : -1);
}
sub dx_maximum {
my ($self) = @_;
return ($self->{'align'} eq 'triangular' ? 2 : 1);
}
use constant dy_minimum => -1;
use constant dy_maximum => 1;
{
my %_UNDOCUMENTED__dxdy_list
= (triangular => [ 2,0, # E N=4 six directions
1,1, # NE N=0
-1,1, # NW N=2
-2,0, # W N=1
-1,-1, # SW N=15
1,-1, # SE N=6
],
right => [ 1,0, # E N=4
1,1, # NE N=0
0,1, # N N=2
-1,0, # W N=1
-1,-1, # SW N=15
0,-1, # S N=6
],
left => [ 1,0, # E N=4
0,1, # N N=0
-1,1, # NW N=2
-1,0, # W N=1
0,-1, # S N=15
1,-1, # SE N=6
],
diagonal => [ 1,0, # E N=0
0,1, # N N=2
-1,1, # NW N=1
-1,0, # W N=15
0,-1, # S N=6
1,-1, # SE N=4
],
);
sub _UNDOCUMENTED__dxdy_list {
my ($self) = @_;
return @{$_UNDOCUMENTED__dxdy_list{$self->{'align'}}};
}
}
use constant _UNDOCUMENTED__dxdy_list_at_n => 15;
sub absdx_minimum {
my ($self) = @_;
return ($self->{'align'} eq 'triangular' ? 1 : 0);
}
sub absdx_maximum {
my ($self) = @_;
return ($self->{'align'} eq 'triangular' ? 2 : 1);
}
{
my %dsumxy_minimum = (triangular => -2,
left => -1,
right => -2,
diagonal => -1,
);
sub dsumxy_minimum {
my ($self) = @_;
return $dsumxy_minimum{$self->{'align'}};
}
}
{
my %dsumxy_maximum = (triangular => 2,
left => 1,
right => 2,
diagonal => 1,
);
sub dsumxy_maximum {
my ($self) = @_;
return $dsumxy_maximum{$self->{'align'}};
}
}
{
my %ddiffxy_minimum = (triangular => -2,
left => -2,
right => -1,
diagonal => -2,
);
sub ddiffxy_minimum {
my ($self) = @_;
return $ddiffxy_minimum{$self->{'align'}};
}
}
{
my %ddiffxy_maximum = (triangular => 2,
left => 2,
right => 1,
diagonal => 2,
);
sub ddiffxy_maximum {
my ($self) = @_;
return $ddiffxy_maximum{$self->{'align'}};
}
}
sub dir_maximum_dxdy {
my ($self) = @_;
return ($self->{'align'} eq 'right'
? (0,-1) # South
: (1,-1)); # South-East
}
use constant turn_any_straight => 0; # never straight
#------------------------------------------------------------------------------
# Note: shared by SierpinskiArrowheadCentres
sub new {
my $self = shift->SUPER::new(@_);
my $align = ($self->{'align'} ||= 'triangular');
if (! exists $x_negative{$align}) {
croak "Unrecognised align option: ", $align;
}
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### SierpinskiArrowhead n_to_xy(): $n
if ($n < 0) {
return;
}
if (is_infinite($n)) {
return ($n,$n);
}
my $x = int($n);
my $y = $n - $x; # fraction part
$n = $x;
$x = $y;
if (my @digits = digit_split_lowtohigh($n,3)) {
my $len = 1;
for (;;) {
my $digit = shift @digits; # low to high
### odd right: "$x,$y len=$len"
### $digit
if ($digit == 0) {
} elsif ($digit == 1) {
$x = $len - $x; # mirror and offset
$y += $len;
} else {
($x,$y) = (($x+3*$y)/-2, # rotate +120
($x-$y)/2 + 2*$len);
}
@digits || last;
$len *= 2;
$digit = shift @digits; # low to high
### odd left: "$x,$y len=$len"
### $digit
if ($digit == 0) {
} elsif ($digit == 1) {
$x = - $x - $len; # mirror and offset
$y += $len;
} else {
($x,$y) = ((3*$y-$x)/2, # rotate -120
($x+$y)/-2 + 2*$len)
}
@digits || last;
$len *= 2;
}
}
### final: "$x,$y"
if ($self->{'align'} eq 'right') {
return (($x+$y)/2, $y);
} elsif ($self->{'align'} eq 'left') {
return (($x-$y)/2, $y);
} elsif ($self->{'align'} eq 'diagonal') {
return (($x+$y)/2, ($y-$x)/2);
} else { # triangular
return ($x,$y);
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### SierpinskiArrowhead xy_to_n(): "$x, $y"
if ($y < 0) {
return undef;
}
if ($self->{'align'} eq 'left') {
if ($x > 0) {
return undef;
}
$x = 2*$x + $y; # adjust to triangular style
} elsif ($self->{'align'} eq 'triangular') {
if (($x%2) != ($y%2)) {
return undef;
}
} else {
# right or diagonal
if ($x < 0) {
return undef;
}
if ($self->{'align'} eq 'right') {
$x = 2*$x - $y;
} else { # diagonal
($x,$y) = ($x-$y, $x+$y);
}
}
### adjusted xy: "$x,$y"
# On row Y=2^k the points belong to belong in the level below except for
# the endmost X=Y or X=-Y. For example Y=4 has N=6 which is in the level
# below, but at the end has N=9 belongs to the level above. So $y-1 puts
# Y=2^k into the level below and +($y==abs($x)) pushes the end back up to
# the next.
#
my ($len, $level) = round_down_pow ($y-1 + ($y==abs($x)),
2);
### pow2 round down: $y-1+($y==abs($x))
### $len
### $level
if (is_infinite($level)) {
return $level;
}
my $n = 0;
while ($level-- >= 0) {
### at: "$x,$y level=$level len=$len"
$n *= 3;
if ($y < 0 || $x < -$y || $x > $y) {
### out of range
return undef;
}
if ($y < $len + !($x==$y||$x==-$y)) {
### digit 0, first triangle, no change
} else {
if ($level & 1) {
### odd level
if ($x > 0) {
### digit 1, right triangle
$n += 1;
$y -= $len;
$x = - ($x-$len);
### shift right and mirror to: "$x,$y"
} else {
### digit 2, left triangle
$n += 2;
$y -= 2*$len;
### shift down to: "$x,$y"
($x,$y) = ((3*$y-$x)/2, # rotate -120
($x+$y)/-2);
### rotate to: "$x,$y"
}
} else {
### even level
if ($x < 0) {
### digit 1, left triangle
$n += 1;
$y -= $len;
$x = - ($x+$len);
### shift right and mirror to: "$x,$y"
} else {
### digit 2, right triangle
$n += 2;
$y -= 2*$len;
### shift down to: "$x,$y"
($x,$y) = (($x+3*$y)/-2, # rotate +120
($x-$y)/2);
### now: "$x,$y"
}
}
}
$len /= 2;
}
if ($x == 0 && $y == 0) {
return $n;
} else {
return undef;
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### SierpinskiArrowhead rect_to_n_range() ...
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2
if ($self->{'align'} eq 'diagonal') {
$y2 += max (round_nearest ($x1),
round_nearest ($x2));
}
unless ($y2 >= 0) {
### rect all negative, no N ...
return (1, 0);
}
my ($pow,$exp) = round_down_pow ($y2-1, 2);
### $y2
### $level
return (0, 3**($exp+1));
}
#-----------------------------------------------------------------------------
# level_to_n_range()
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 3**$level);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
my ($pow, $exp) = round_up_pow ($n, 3);
return $exp;
}
#-----------------------------------------------------------------------------
1;
__END__
# sideways ...
#
# 27 ... 8
# \
# . 26 7
# /
# 24----25 . 6
# /
# 23 . 20----19 5
# \ / \
# . 22----21 . 18 4
# /
# 4---- 5 . . 17 . 3
# / \ \
# 3 . 6 . . 16----15 2
# \ / \
# . 2 7 . 10----11 . 14 1
# / \ / \ /
# 0---- 1 . 8---- 9 . 12----13 . <- Y=0
#
# X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
# rows
# * 1 \
# * * 2 |
# * * 2 |
# * * * * 4 /
# * * 2 \
# * * * * 4 | 2x prev 4
# * * * * 4 |
# * * * * * * * * 8 /
# * * 2 \
# * * * * 4 | 2x prev 8
#
# cumulative
#
# 1
# 3
# 5
# 9
# 11 \
# 15 | *2+9
# 19 |
# 27 /
# 29 \
# 33 | *2+27
# 37
# 45
# 49
# 57
# 65
# 81
=for stopwords eg Ryde Sierpinski Nlevel ie bitwise-AND Math-PlanePath OEIS
=head1 NAME
Math::PlanePath::SierpinskiArrowhead -- self-similar triangular path traversal
=head1 SYNOPSIS
use Math::PlanePath::SierpinskiArrowhead;
my $path = Math::PlanePath::SierpinskiArrowhead->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Sierpinski, Waclaw>This path is an integer version of Sierpinski's curve
from
=over
Waclaw Sierpinski, "Sur une Courbe Dont Tout Point est un Point de
Ramification", Comptes Rendus Hebdomadaires des SE<233>ances de
l'AcadE<233>mie des Sciences, volume 160, January-June 1915, pages 302-305.
L<http://gallica.bnf.fr/ark:/12148/bpt6k31131/f302.image.langEN>
=back
=cut
# PDF download pages 304 to 307 inclusive
=pod
The path is self-similar triangular parts leaving middle triangle gaps
giving the Sierpinski triangle shape.
\
27----26 19----18 15----14 8
\ / \ / \
25 20 17----16 13 7
/ \ /
24 21 11----12 6
\ / /
23----22 10 5
\
5---- 6 9 4
/ \ /
4 7---- 8 3
\
3---- 2 2
\
1 1
/
0 <- Y=0
-8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8
The base figure is the N=0 to N=3 shape. It's repeated up in mirror image
as N=3 to N=6 then across as N=6 to N=9. At the next level the same is done
with the N=0 to N=9 shape, up as N=9 to N=18 and across as N=18 to N=27,
etc.
The X,Y coordinates are on a triangular lattice done in integers by using
every second X, per L<Math::PlanePath/Triangular Lattice>.
The base pattern is a triangle like
3---------2 - - - - .
\ \
C / \ B /
\ D \
/ \ /
. - - - - 1
\ /
A /
\ /
/
0
Higher levels go into the triangles A,B,C but the middle triangle D is not
traversed. It's hard to see that omitted middle in the initial N=0 to N=27
above. The following is more of the visited points, making it clearer
* * * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * *
* * * * *
* * * * * * *
* * * * *
* * * *
* * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * *
* * * * *
* * * * * * *
* * * * *
* * * *
* * *
* * * * * *
* * * * *
* * * *
* * *
* * *
* * *
* *
*
*
=head2 Sierpinski Triangle
The path is related to the Sierpinski triangle or "gasket" by treating each
line segment as the side of a little triangle. The N=0 to N=1 segment has a
triangle on the left, N=1 to N=2 on the right, and N=2 to N=3 underneath,
which are per the A,B,C parts shown above. Notice there's no middle little
triangle "D" in the triplets of line segments. In general a segment N to
N+1 has its little triangle to the left if N even or to the right if N odd.
This pattern of little triangles is why the N=4 to N=5 looks like it hasn't
visited the vertex of the triangular N=0 to N=9 -- the 4 to 5 segment is
standing in for a little triangle to the left of that segment. Similarly
N=13 to N=14 and each alternate side midway through replication levels.
There's easier ways to generate the Sierpinski triangle though. One of the
simplest is to take X,Y coordinates which have no 1 bit on common, ie. a
bitwise-AND,
($x & $y) == 0
which gives the shape in the first quadrant XE<gt>=0,YE<gt>=0. The same can
be had with the C<ZOrderCurve> path by plotting all numbers N which have no
digit 3 in their base-4 representation (see
L<Math::PlanePath::ZOrderCurve/Power of 2 Values>), since digit 3s in that
case are X,Y points with a 1 bit in common.
The attraction of this Arrowhead path is that it makes a connected traversal
through the Sierpinski triangle pattern.
=head2 Level Sizes
Counting the N=0,1,2,3 part as level 1, each level goes from
Nstart = 0
Nlevel = 3^level
inclusive of the final triangle corner position. For example level 2 is
from N=0 to N=3^2=9. Each level doubles in size,
0 <= Y <= 2^level
- 2^level <= X <= 2^level
The final Nlevel position is alternately on the right or left,
Xlevel = / 2^level if level even
\ - 2^level if level odd
The Y axis is crossed, ie. X=0, at N=2,6,18,etc which is is 2/3 through the
level, ie. after two replications of the previous level,
Ncross = 2/3 * 3^level
= 2 * 3^(level-1)
=head2 Align Parameter
An optional C<align> parameter controls how the points are arranged relative
to the Y axis. The default shown above is "triangular". The choices are
the same as for the C<SierpinskiTriangle> path.
"right" means points to the right of the axis, packed next to each other and
so using an eighth of the plane.
=cut
# math-image --path=SierpinskiArrowhead,align=right --all --output=numbers_dash --size=78x22
=pod
align => "right"
| |
8 | 27-26 19-18 15-14
| | / | / |
7 | 25 20 17-16 13
| / | /
6 | 24 21 11-12
| | / /
5 | 23-22 10
| |
4 | 5--6 9
| / | /
3 | 4 7--8
| |
2 | 3--2
| |
1 | 1
| /
Y=0 | 0
+--------------------------
X=0 1 2 3 4 5 6 7
"left" is similar but skewed to the left of the Y axis, ie. into negative X.
=cut
# math-image --path=SierpinskiArrowhead,align=left --all --output=numbers_dash --size=78x22
=pod
align => "left"
\
27-26 19-18 15-14 | 8
\ | \ | \ |
25 20 17-16 13 | 7
| \ | |
24 21 11-12 | 6
\ | | |
23-22 10 | 5
\ |
5--6 9 | 4
| \ | |
4 7--8 | 3
\ |
3--2 | 2
\ |
1 | 1
| |
0 | Y=0
-----------------------------+
-8 -7 -6 -5 -4 -3 -2 -1 X=0
"diagonal" put rows on diagonals down from the Y axis to the X axis. This
uses the whole of the first quadrant (with gaps).
=cut
# math-image --expression='i<=27?i:0' --path=SierpinskiArrowhead,align=diagonal --output=numbers_dash --size=78x22
=pod
align => "diagonal"
| |
8 | 27
| \
7 | 26
| |
6 | 24-25
| |
5 | 23 20-19
| \ | \
4 | 22-21 18
| |
3 | 4--5 17
| | \ \
2 | 3 6 16-15
| \ | \
1 | 2 7 10-11 14
| | \ | \ |
Y=0 | 0--1 8--9 12-13
+--------------------------
X=0 1 2 3 4 5 6 7
=head2 Sideways
Sierpinski presents the curve with a base along the X axis. That can be had
here with a -60 degree rotation (see L<Math::PlanePath/Triangular Lattice>),
(3Y+X)/2, (Y-X)/2 rotate -60
The first point N=1 is then along the X axis at X=2,Y=0. Or to have it
diagonally upwards first then apply a mirroring -X before rotating
(3Y-X)/2, (Y+X)/2 mirror X and rotate -60
The plain -60 rotate puts the Nlevel=3^level point on the X axis for even
number level, and at the top peak for odd level. With the extra mirroring
it's the other way around. If drawing successive levels then the two ways
can be alternated to have the endpoint on the X axis each time.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::SierpinskiArrowhead-E<gt>new ()>
=item C<$path = Math::PlanePath::SierpinskiArrowhead-E<gt>new (align =E<gt> $str)>
Create and return a new arrowhead path object. C<align> is a string, one of
the following as described above.
"triangular" the default
"right"
"left"
"diagonal"
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
If C<$n> is not an integer then the return is on a straight line between the
integer points.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 3**$level)>.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,
=over
L<http://oeis.org/A189706> (etc)
=back
A189706 turn 0=left,1=right at odd positions N=1,3,5,etc
A189707 (N+1)/2 of the odd N positions of left turns
A189708 (N+1)/2 of the odd N positions of right turns
A156595 turn 0=left,1=right at even positions N=2,4,6,etc
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::SierpinskiArrowheadCentres>,
L<Math::PlanePath::SierpinskiTriangle>,
L<Math::PlanePath::KochCurve>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|