This file is indexed.

/usr/share/perl5/Math/PlanePath/SierpinskiArrowhead.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::SierpinskiArrowhead;
use 5.004;
use strict;
use Carp 'croak';

#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'round_up_pow',
  'digit_split_lowtohigh';

# uncomment this to run the ### lines
#use Smart::Comments;


# Note: shared by SierpinskiArrowheadCentres
use constant parameter_info_array =>
  [ { name      => 'align',
      share_key => 'align_trld',
      display   => 'Align',
      type      => 'enum',
      default   => 'triangular',
      choices   => ['triangular','right','left','diagonal'],
      choices_display => ['Triangular','Right','Left','Diagonal'],
    },
  ];

use constant n_start => 0;
use constant class_y_negative => 0;

my %x_negative = (triangular => 1,
                  left       => 1,
                  right      => 0,
                  diagonal   => 0);
# Note: shared by SierpinskiArrowheadCentres
sub x_negative {
  my ($self) = @_;
  return $x_negative{$self->{'align'}};
}
{
  my %x_negative_at_n = (triangular => 3,
                         # right      => undef,
                         left       => 2,
                         # diagonal   => undef,
                        );
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n{$self->{'align'}};
  }
}

use constant sumxy_minimum => 0;  # triangular X>=-Y
use Math::PlanePath::SierpinskiTriangle;
*x_maximum      = \&Math::PlanePath::SierpinskiTriangle::x_maximum;
*diffxy_maximum = \&Math::PlanePath::SierpinskiTriangle::diffxy_maximum;

sub dx_minimum {
  my ($self) = @_;
  return ($self->{'align'} eq 'triangular' ? -2 : -1);
}
sub dx_maximum {
  my ($self) = @_;
  return ($self->{'align'} eq 'triangular' ? 2 : 1);
}
use constant dy_minimum => -1;
use constant dy_maximum => 1;

{
  my %_UNDOCUMENTED__dxdy_list
    = (triangular  => [ 2,0,   # E   N=4   six directions
                        1,1,   # NE  N=0
                        -1,1,  # NW  N=2
                        -2,0,  # W   N=1
                        -1,-1, # SW  N=15
                        1,-1,  # SE  N=6
                      ],
       right     => [ 1,0,   # E   N=4
                      1,1,   # NE  N=0
                      0,1,   # N   N=2
                      -1,0,  # W   N=1
                      -1,-1, # SW  N=15
                      0,-1,  # S   N=6
                    ],
       left      => [ 1,0,    # E   N=4
                      0,1,    # N   N=0
                      -1,1,   # NW  N=2
                      -1,0,   # W   N=1
                      0,-1,   # S   N=15
                      1,-1,   # SE  N=6
                    ],
       diagonal  => [ 1,0,   # E  N=0
                      0,1,   # N  N=2
                      -1,1,  # NW  N=1
                      -1,0,  # W  N=15
                      0,-1,  # S  N=6
                      1,-1,  # SE  N=4
                    ],
      );
  sub _UNDOCUMENTED__dxdy_list {
    my ($self) = @_;
    return @{$_UNDOCUMENTED__dxdy_list{$self->{'align'}}};
  }
}
use constant _UNDOCUMENTED__dxdy_list_at_n => 15;

sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'align'} eq 'triangular' ? 1 : 0);
}
sub absdx_maximum {
  my ($self) = @_;
  return ($self->{'align'} eq 'triangular' ? 2 : 1);
}

{
  my %dsumxy_minimum = (triangular => -2,
                        left       => -1,
                        right      => -2,
                        diagonal   => -1,
                       );
  sub dsumxy_minimum {
    my ($self) = @_;
    return $dsumxy_minimum{$self->{'align'}};
  }
}
{
  my %dsumxy_maximum = (triangular => 2,
                        left       => 1,
                        right      => 2,
                        diagonal   => 1,
                       );
  sub dsumxy_maximum {
    my ($self) = @_;
    return $dsumxy_maximum{$self->{'align'}};
  }
}

{
  my %ddiffxy_minimum = (triangular => -2,
                         left       => -2,
                         right      => -1,
                         diagonal   => -2,
                        );
  sub ddiffxy_minimum {
    my ($self) = @_;
    return $ddiffxy_minimum{$self->{'align'}};
  }
}
{
  my %ddiffxy_maximum = (triangular => 2,
                        left       => 2,
                        right      => 1,
                        diagonal   => 2,
                       );
  sub ddiffxy_maximum {
    my ($self) = @_;
    return $ddiffxy_maximum{$self->{'align'}};
  }
}

sub dir_maximum_dxdy {
  my ($self) = @_;
  return ($self->{'align'} eq 'right'
          ? (0,-1)   # South
          : (1,-1)); # South-East
}

use constant turn_any_straight => 0; # never straight


#------------------------------------------------------------------------------

# Note: shared by SierpinskiArrowheadCentres
sub new {
  my $self = shift->SUPER::new(@_);
  my $align = ($self->{'align'} ||= 'triangular');
  if (! exists $x_negative{$align}) {
    croak "Unrecognised align option: ", $align;
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### SierpinskiArrowhead n_to_xy(): $n
  if ($n < 0) {
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $x = int($n);
  my $y = $n - $x;  # fraction part
  $n = $x;
  $x = $y;

  if (my @digits = digit_split_lowtohigh($n,3)) {
    my $len = 1;
    for (;;) {
      my $digit = shift @digits;  # low to high

      ### odd right: "$x,$y  len=$len"
      ### $digit
      if ($digit == 0) {

      } elsif ($digit == 1) {
        $x = $len - $x;  # mirror and offset
        $y += $len;

      } else {
        ($x,$y) = (($x+3*$y)/-2,             # rotate +120
                   ($x-$y)/2    + 2*$len);
      }

      @digits || last;
      $len *= 2;
      $digit = shift @digits;  # low to high

      ### odd left: "$x,$y  len=$len"
      ### $digit
      if ($digit == 0) {

      } elsif ($digit == 1) {
        $x = - $x - $len;  # mirror and offset
        $y += $len;

      } else {
        ($x,$y) = ((3*$y-$x)/2,              # rotate -120
                   ($x+$y)/-2  + 2*$len)
      }

      @digits || last;
      $len *= 2;
    }
  }

  ### final: "$x,$y"
  if ($self->{'align'} eq 'right') {
    return (($x+$y)/2, $y);
  } elsif ($self->{'align'} eq 'left') {
    return (($x-$y)/2, $y);
  } elsif ($self->{'align'} eq 'diagonal') {
    return (($x+$y)/2, ($y-$x)/2);
  } else { # triangular
    return ($x,$y);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### SierpinskiArrowhead xy_to_n(): "$x, $y"

  if ($y < 0) {
    return undef;
  }

  if ($self->{'align'} eq 'left') {
    if ($x > 0) {
      return undef;
    }
    $x = 2*$x + $y; # adjust to triangular style

  } elsif ($self->{'align'} eq 'triangular') {
    if (($x%2) != ($y%2)) {
      return undef;
    }

  } else {
    # right or diagonal
    if ($x < 0) {
      return undef;
    }
    if ($self->{'align'} eq 'right') {
      $x = 2*$x - $y;
    } else { # diagonal
      ($x,$y) = ($x-$y, $x+$y);
      }
  }
  ### adjusted xy: "$x,$y"

  # On row Y=2^k the points belong to belong in the level below except for
  # the endmost X=Y or X=-Y.  For example Y=4 has N=6 which is in the level
  # below, but at the end has N=9 belongs to the level above.  So $y-1 puts
  # Y=2^k into the level below and +($y==abs($x)) pushes the end back up to
  # the next.
  #
  my ($len, $level) = round_down_pow ($y-1 + ($y==abs($x)),
                                      2);
  ### pow2 round down: $y-1+($y==abs($x))
  ### $len
  ### $level

  if (is_infinite($level)) {
    return $level;
  }

  my $n = 0;
  while ($level-- >= 0) {
    ### at: "$x,$y  level=$level  len=$len"
    $n *= 3;

    if ($y < 0 || $x < -$y || $x > $y) {
      ### out of range
      return undef;
    }
    if ($y < $len + !($x==$y||$x==-$y)) {
      ### digit 0, first triangle, no change

    } else {
      if ($level & 1) {
        ### odd level
        if ($x > 0) {
          ### digit 1, right triangle
          $n += 1;
          $y -= $len;
          $x = - ($x-$len);
          ### shift right and mirror to: "$x,$y"
        } else {
          ### digit 2, left triangle
          $n += 2;
          $y -= 2*$len;
          ### shift down to: "$x,$y"
          ($x,$y) = ((3*$y-$x)/2,   # rotate -120
                     ($x+$y)/-2);
          ### rotate to: "$x,$y"
        }
      } else {
        ### even level
        if ($x < 0) {
          ### digit 1, left triangle
          $n += 1;
          $y -= $len;
          $x = - ($x+$len);
          ### shift right and mirror to: "$x,$y"
        } else {
          ### digit 2, right triangle
          $n += 2;
          $y -= 2*$len;
          ### shift down to: "$x,$y"
          ($x,$y) = (($x+3*$y)/-2,             # rotate +120
                     ($x-$y)/2);
          ### now: "$x,$y"
        }
      }
    }

    $len /= 2;
  }

  if ($x == 0 && $y == 0) {
    return $n;
  } else {
    return undef;
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### SierpinskiArrowhead rect_to_n_range() ...

  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2

  if ($self->{'align'} eq 'diagonal') {
    $y2 += max (round_nearest ($x1),
                round_nearest ($x2));
  }

  unless ($y2 >= 0) {
    ### rect all negative, no N ...
    return (1, 0);
  }

  my ($pow,$exp) = round_down_pow ($y2-1, 2);
  ### $y2
  ### $level
  return (0, 3**($exp+1));
}

#-----------------------------------------------------------------------------
# level_to_n_range()

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 3**$level);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  my ($pow, $exp) = round_up_pow ($n, 3);
  return $exp;
}

#-----------------------------------------------------------------------------
1;
__END__




# sideways ...
#
#                         27 ...                           8
#                           \
#                       .    26                            7
#                           /
#                   24----25     .                         6
#                  /
#                23     .    20----19                      5
#                  \        /        \
#              .    22----21    .     18                   4
#                                    /
#           4---- 5     .     .    17    .                 3
#         /        \                 \
#        3     .     6     .     .    16----15             2
#         \         /                         \
#     .     2     7     .    10----11     .    14          1
#         /        \        /        \        /
#  0---- 1     .     8---- 9     .    12----13    .    <- Y=0
#
# X=0 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...


# rows
#          *           1 \
#         * *          2 |
#        *   *         2 |
#       * * * *        4 /
#      *       *       2 \
#     * *     * *      4 | 2x prev 4
#    *   *   *   *     4 |
#   * * * * * * * *    8 /
#  *               *   2 \
# * *             * *  4 | 2x prev 8
#
# cumulative
#
# 1
# 3
# 5
# 9
# 11 \
# 15 | *2+9
# 19 |
# 27 /
# 29 \
# 33 | *2+27
# 37
# 45
# 49
# 57
# 65
# 81


=for stopwords eg Ryde Sierpinski Nlevel ie bitwise-AND Math-PlanePath OEIS

=head1 NAME

Math::PlanePath::SierpinskiArrowhead -- self-similar triangular path traversal

=head1 SYNOPSIS

 use Math::PlanePath::SierpinskiArrowhead;
 my $path = Math::PlanePath::SierpinskiArrowhead->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Sierpinski, Waclaw>This path is an integer version of Sierpinski's curve
from

=over

Waclaw Sierpinski, "Sur une Courbe Dont Tout Point est un Point de
Ramification", Comptes Rendus Hebdomadaires des SE<233>ances de
l'AcadE<233>mie des Sciences, volume 160, January-June 1915, pages 302-305.
L<http://gallica.bnf.fr/ark:/12148/bpt6k31131/f302.image.langEN>

=back

=cut

# PDF download pages 304 to 307 inclusive

=pod

The path is self-similar triangular parts leaving middle triangle gaps
giving the Sierpinski triangle shape.

    \
     27----26          19----18          15----14              8
             \        /        \        /        \
              25    20          17----16          13           7
             /        \                          /
           24          21                11----12              6
             \        /                 /
              23----22                10                       5
                                        \
                        5---- 6           9                    4
                      /        \        /
                     4           7---- 8                       3
                      \
                        3---- 2                                2
                               \
                                 1                             1
                               /
                              0                            <- Y=0

     -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8

The base figure is the N=0 to N=3 shape.  It's repeated up in mirror image
as N=3 to N=6 then across as N=6 to N=9.  At the next level the same is done
with the N=0 to N=9 shape, up as N=9 to N=18 and across as N=18 to N=27,
etc.

The X,Y coordinates are on a triangular lattice done in integers by using
every second X, per L<Math::PlanePath/Triangular Lattice>.

The base pattern is a triangle like

    3---------2 - - - - .
     \         \
         C  /   \  B  /
       \      D  \
          /       \ /
         . - - - - 1
          \       /
              A  /
            \   /
               /
              0

Higher levels go into the triangles A,B,C but the middle triangle D is not
traversed.  It's hard to see that omitted middle in the initial N=0 to N=27
above.  The following is more of the visited points, making it clearer

        *   * *   * *   *                 * *   * *   * *
         * *   * *   * *                 *   * *   * *
            * *   * *                     * *     *   *
           *         *                       *     * *
            * *   * *                       *   * *
               * *                           * *   *
              *   *                             * *
               * *                             *
                  * *   * *   * *   * *   * *   *
                 *   * *   * *   * *   * *   * *
                  * *     *   *     * *   * *
                     *     * *     *         *
                    *   * *         * *   * *
                     * *   *           * *
                        * *           *   *
                       *               * *
                        * *   * *   * *
                           * *   * *   *
                          *   *     * *
                           * *     *
                              * *   *
                             *   * *
                              * *
                                 *
                                *

=head2 Sierpinski Triangle

The path is related to the Sierpinski triangle or "gasket" by treating each
line segment as the side of a little triangle.  The N=0 to N=1 segment has a
triangle on the left, N=1 to N=2 on the right, and N=2 to N=3 underneath,
which are per the A,B,C parts shown above.  Notice there's no middle little
triangle "D" in the triplets of line segments.  In general a segment N to
N+1 has its little triangle to the left if N even or to the right if N odd.

This pattern of little triangles is why the N=4 to N=5 looks like it hasn't
visited the vertex of the triangular N=0 to N=9 -- the 4 to 5 segment is
standing in for a little triangle to the left of that segment.  Similarly
N=13 to N=14 and each alternate side midway through replication levels.

There's easier ways to generate the Sierpinski triangle though.  One of the
simplest is to take X,Y coordinates which have no 1 bit on common, ie. a
bitwise-AND,

    ($x & $y) == 0

which gives the shape in the first quadrant XE<gt>=0,YE<gt>=0.  The same can
be had with the C<ZOrderCurve> path by plotting all numbers N which have no
digit 3 in their base-4 representation (see
L<Math::PlanePath::ZOrderCurve/Power of 2 Values>), since digit 3s in that
case are X,Y points with a 1 bit in common.

The attraction of this Arrowhead path is that it makes a connected traversal
through the Sierpinski triangle pattern.

=head2 Level Sizes

Counting the N=0,1,2,3 part as level 1, each level goes from

    Nstart = 0
    Nlevel = 3^level

inclusive of the final triangle corner position.  For example level 2 is
from N=0 to N=3^2=9.  Each level doubles in size,

           0  <= Y <= 2^level
    - 2^level <= X <= 2^level

The final Nlevel position is alternately on the right or left,

    Xlevel = /  2^level      if level even
             \  - 2^level    if level odd

The Y axis is crossed, ie. X=0, at N=2,6,18,etc which is is 2/3 through the
level, ie. after two replications of the previous level,

    Ncross = 2/3 * 3^level
           = 2 * 3^(level-1)

=head2 Align Parameter

An optional C<align> parameter controls how the points are arranged relative
to the Y axis.  The default shown above is "triangular".  The choices are
the same as for the C<SierpinskiTriangle> path.

"right" means points to the right of the axis, packed next to each other and
so using an eighth of the plane.

=cut

# math-image --path=SierpinskiArrowhead,align=right --all --output=numbers_dash --size=78x22

=pod

    align => "right"

        |   |
     8  |  27-26    19-18    15-14
        |      |   /    |   /    |
     7  |     25 20    17-16    13
        |    /    |            /
     6  |  24    21       11-12
        |   |   /        /
     5  |  23-22       10
        |               |
     4  |      5--6     9
        |    /    |   /
     3  |   4     7--8
        |   |
     2  |   3--2
        |      |
     1  |      1
        |    /
    Y=0 |   0
        +--------------------------
           X=0 1  2  3  4  5  6  7

"left" is similar but skewed to the left of the Y axis, ie. into negative X.

=cut

# math-image --path=SierpinskiArrowhead,align=left --all --output=numbers_dash --size=78x22

=pod

    align => "left"

    \
     27-26    19-18    15-14     |  8
          \    |   \    |   \    |
           25 20    17-16    13  |  7
            |   \             |  |
           24    21       11-12  |  6
             \    |        |     |
              23-22       10     |  5
                            \    |
                     5--6     9  |  4
                     |   \    |  |
                     4     7--8  |  3
                      \          |
                        3--2     |  2
                            \    |
                              1  |  1
                              |  |
                              0  | Y=0
    -----------------------------+

     -8 -7 -6 -5 -4 -3 -2 -1 X=0

"diagonal" put rows on diagonals down from the Y axis to the X axis.  This
uses the whole of the first quadrant (with gaps).

=cut

# math-image --expression='i<=27?i:0' --path=SierpinskiArrowhead,align=diagonal --output=numbers_dash --size=78x22

=pod

    align => "diagonal"

        |   |
     8  |  27
        |    \
     7  |     26
        |      |
     6  |  24-25
        |   |
     5  |  23    20-19
        |    \    |   \
     4  |     22-21    18
        |               |
     3  |   4--5       17
        |   |   \        \
     2  |   3     6       16-15
        |    \    |            \
     1  |      2  7    10-11    14
        |      |   \    |   \    |
    Y=0 |   0--1     8--9    12-13
        +--------------------------
           X=0 1  2  3  4  5  6  7

=head2 Sideways

Sierpinski presents the curve with a base along the X axis.  That can be had
here with a -60 degree rotation (see L<Math::PlanePath/Triangular Lattice>),

    (3Y+X)/2, (Y-X)/2       rotate -60

The first point N=1 is then along the X axis at X=2,Y=0.  Or to have it
diagonally upwards first then apply a mirroring -X before rotating

    (3Y-X)/2, (Y+X)/2       mirror X and rotate -60

The plain -60 rotate puts the Nlevel=3^level point on the X axis for even
number level, and at the top peak for odd level.  With the extra mirroring
it's the other way around.  If drawing successive levels then the two ways
can be alternated to have the endpoint on the X axis each time.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SierpinskiArrowhead-E<gt>new ()>

=item C<$path = Math::PlanePath::SierpinskiArrowhead-E<gt>new (align =E<gt> $str)>

Create and return a new arrowhead path object.  C<align> is a string, one of
the following as described above.

    "triangular"       the default
    "right"
    "left"
    "diagonal"

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

If C<$n> is not an integer then the return is on a straight line between the
integer points.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 3**$level)>.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,

=over

L<http://oeis.org/A189706> (etc)

=back

    A189706   turn 0=left,1=right at odd positions N=1,3,5,etc
    A189707     (N+1)/2 of the odd N positions of left turns
    A189708     (N+1)/2 of the odd N positions of right turns
    A156595   turn 0=left,1=right at even positions N=2,4,6,etc

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SierpinskiArrowheadCentres>,
L<Math::PlanePath::SierpinskiTriangle>,
L<Math::PlanePath::KochCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut