This file is indexed.

/usr/share/perl5/Math/PlanePath/SacksSpiral.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# could loop by more or less, eg. 4*n^2 each time like a square spiral
# (Kevin Vicklund at the_surprises_never_eend_the_u.php)


package Math::PlanePath::SacksSpiral;
use 5.004;
use strict;
use Math::Libm 'hypot';
use POSIX 'floor';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use Math::PlanePath;
use Math::PlanePath::MultipleRings;

use vars '$VERSION', '@ISA';
$VERSION = 122;
@ISA = ('Math::PlanePath');


# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant figure => 'circle';
use constant x_negative_at_n => 2;
use constant y_negative_at_n => 3;

use constant 1.02; # for leading underscore
use constant _TWO_PI => 4*atan2(1,0);

# at N=k^2 polygon of 2k+1 sides R=k
# dX -> sin(2pi/(2k+1))*k
#    -> 2pi/(2k+1) * k
#    -> pi
use constant dx_minimum => - 2*atan2(1,0);  # -pi
use constant dx_maximum =>   2*atan2(1,0);  # +pi
use constant dy_minimum => - 2*atan2(1,0);
use constant dy_maximum =>   2*atan2(1,0);

use constant turn_any_right    => 0; # left always
use constant turn_any_straight => 0; # left always


#------------------------------------------------------------------------------
# sub _as_float {
#   my ($x) = @_;
#   if (ref $x) {
#     if ($x->isa('Math::BigInt')) {
#       return Math::BigFloat->new($x);
#     }
#     if ($x->isa('Math::BigRat')) {
#       return $x->as_float;
#     }
#   }
#   return $x;
# }

# Note: this is "use Math::BigFloat" not "require Math::BigFloat" because
# BigFloat 1.997 does some setups in its import() needed to tie-in to the
# BigInt back-end, or something.
use constant::defer _bigfloat => sub {
  eval "use Math::BigFloat; 1" or die $@;
  return "Math::BigFloat";
};

sub n_to_xy {
  my ($self, $n) = @_;
  if ($n < 0) {
    return;
  }
  my $two_pi = _TWO_PI();

  if (ref $n) {
    if ($n->isa('Math::BigInt')) {
      $n = _bigfloat()->new($n);
    }
    if ($n->isa('Math::BigRat')) {
      $n = $n->as_float;
    }
    if ($n->isa('Math::BigFloat')) {
      $two_pi = 2 * Math::BigFloat->bpi ($n->accuracy
                                         || $n->precision
                                         || $n->div_scale);
    }
  }

  my $r = sqrt($n);
  my $theta = $two_pi * ($r - int($r));  # 0 <= $theta < 2*pi
  return ($r * cos($theta),
          $r * sin($theta));

}

sub n_to_rsquared {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  return $n;  # exactly RSquared=$n
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### SacksSpiral xy_to_n(): "$x, $y"

  my $theta_frac = Math::PlanePath::MultipleRings::_xy_to_angle_frac($x,$y);
  ### assert: 0 <= $theta_frac && $theta_frac < 1

  # the nearest arc, integer
  my $s = floor (hypot($x,$y) - $theta_frac + 0.5);

  # the nearest N on the arc
  my $n = floor ($s*$s + $theta_frac * (2*$s + 1) + 0.5);

  # check within 0.5 radius
  my ($nx, $ny) = $self->n_to_xy($n);

  ### $theta_frac
  ### raw hypot: hypot($x,$y)
  ### $s
  ### $n
  ### hypot: hypot($nx-$x, $ny-$y)
  if (hypot($nx-$x,$ny-$y) <= 0.5) {
    return $n;
  } else {
    return undef;
  }
}

# r^2 = x^2 + y^2
# (r+1)^2 = r^2 + 2r + 1
# r < x+y
# (r+1)^2 < x^2+y^2 + x + y + 1
#         < (x+.5)^2 + (y+.5)^2 + 1
# (x+1)^2 + (y+1)^2 = x^2+y^2 + 2x+2y+2
#
# (x+1)^2 + (y+1)^2 - (r+1)^2
#   = x^2+y^2 + 2x+2y+2 - (r^2 + 2r + 1)
#   = x^2+y^2 + 2x+2y+2 - x^2-y^2 - 2*sqrt(x^2+y^2) - 1
#   = 2x+2y+1 - 2*sqrt(x^2+y^2)
#   >= 2x+2y+1 - 2*(x+y)
#   = 1
#
# (x+e)^2 + (y+e)^2 - (r+e)^2
#   = x^2+y^2 + 2xe+2ye + 2e^2 - (r^2 + 2re + e^2)
#   = x^2+y^2 + 2xe+2ye + 2e^2 - x^2-y^2 - 2*e*sqrt(x^2+y^2) - e^2
#   = 2xe+2ye + e^2 - 2*e*sqrt(x^2+y^2)
#   >= 2xe+2ye + e^2 - 2*e*(x+y)
#   = e^2 
#
# x+1,y+1 increases the radius by at least 1 thus pushing it to the outside
# of a ring.  Actually it's more, as much as sqrt(2)=1.4142 on the leading
# diagonal X=Y.  But the over-estimate is close enough for now.
# 

# r = hypot(xmin,ymin)
# Nlo = (r-1/2)^2
#     = r^2 - r + 1/4
#     >= x^2+y^2 - (x+y)    because x+y >= r
#     = x(x-1) + y(y-1)
#     >= floorx(floorx-1) + floory(floory-1)
# in integers if round down to x=0 then x*(x-1)=0 too, so not negative
#
# r = hypot(xmax,ymax)
# Nhi = (r+1/2)^2
#     = r^2 + r + 1/4
#     <= x^2+y^2 + (x+y) + 1
#     = x(x+1) + y(y+1) + 1
#     <= ceilx(ceilx+1) + ceily(ceily+1) + 1

# Note: this code shared by TheodorusSpiral.  If start using the polar angle
# for more accuracy here then unshare it first.
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ($x1,$y1, $x2,$y2) = _rect_to_radius_corners ($x1,$y1, $x2,$y2);

  ### $x_min
  ### $y_min
  ### N min: $x_min*($x_min-1) + $y_min*($y_min-1)

  ### $x_max
  ### $y_max
  ### N max: $x_max*($x_max+1) + $y_max*($y_max+1) + 1

  return ($x1*($x1-1) + $y1*($y1-1),
          $x2*($x2+1) + $y2*($y2+1) + 1);
}

#------------------------------------------------------------------------------
# generic

# $x1,$y1, $x2,$y2 is a rectangle.
# Return ($xmin,$ymin, $xmax,$ymax).
#
# The two points are respectively minimum and maximum radius from the
# origin, rounded down or up to integers.
#
# If the rectangle is entirely one quadrant then the points are two opposing
# corners.  But if an axis is crossed then the minimum is on that axis and
# if the origin is covered then the minimum is 0,0.
#
# Currently the return is abs() absolute values of the places.  Could change
# that if there was any significance to the quadrant containing the min/max
# corners.
#
sub _rect_to_radius_corners {
  my ($x1,$y1, $x2,$y2) = @_;

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  return (int($x2 < 0 ? -$x2
              : $x1 > 0 ? $x1
              : 0),
          int($y2 < 0 ? -$y2
              : $y1 > 0 ? $y1
              : 0),

          max(_ceil(abs($x1)), _ceil(abs($x2))),
          max(_ceil(abs($y1)), _ceil(abs($y2))));
}

sub _ceil {
  my ($x) = @_;
  my $int = int($x);
  return ($x > $int ? $int+1 : $int);
}

# FIXME: prefer to stay in integers if possible
# return ($rlo,$rhi) which is the radial distance range found in the rectangle
sub _rect_to_radius_range {
  my ($x1,$y1, $x2,$y2) = @_;

  ($x1,$y1, $x2,$y2) = _rect_to_radius_corners ($x1,$y1, $x2,$y2);
  return (hypot($x1,$y1),
          hypot($x2,$y2));
}

1;
__END__

=for stopwords Archimedean ie pronic PlanePath Ryde Math-PlanePath XPM Euler's arctan Theodorus dX dY

=head1 NAME

Math::PlanePath::SacksSpiral -- circular spiral squaring each revolution

=head1 SYNOPSIS

 use Math::PlanePath::SacksSpiral;
 my $path = Math::PlanePath::SacksSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Sacks, Robert>X<Square numbers>The Sacks spiral by Robert Sacks is an
Archimedean spiral with points N placed on the spiral so the perfect squares
fall on a line going to the right.  Read more at

=over

L<http://www.numberspiral.com>

=back

An Archimedean spiral means each loop is a constant distance from the
preceding, in this case 1 unit.  The polar coordinates are

    R = sqrt(N)
    theta = sqrt(N) * 2pi

which comes out roughly as

                    18
          19   11        10  17
                     5
             
    20  12  6   2
                   0  1   4   9  16  25

                   3
      21   13   7        8
                             15   24
                    14
               22        23

The X,Y positions returned are fractional, except for the perfect squares on
the positive X axis at X=0,1,2,3,etc.  The perfect squares are the closest
points, at 1 unit apart.  Other points are a little further apart.

The arms going to the right like N=5,10,17,etc or N=8,15,24,etc are constant
offsets from the perfect squares, ie. S<d^2 + c> for positive or negative
integer c.  To the left the central arm N=2,6,12,20,etc is the
X<Pronic numbers>pronic numbers S<d^2 + d> = S<d*(d+1)>, half way between
the successive perfect squares.  Other arms going to the left are offsets
from that, ie. S<d*(d+1) + c> for integer c.

Euler's quadratic d^2+d+41 is one such arm going left.  Low values loop
around a few times before straightening out at about y=-127.  This quadratic
has relatively many primes and in a plot of primes on the spiral it can be
seen standing out from its surrounds.

Plotting various quadratic sequences of points can form attractive patterns.
For example the X<Triangular numbers>triangular numbers k*(k+1)/2 come out
as spiral arcs going clockwise and anti-clockwise.

See F<examples/sacks-xpm.pl> in the Math-PlanePath sources for a complete
program plotting the spiral points to an XPM image.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SacksSpiral-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

C<$n> can be any value C<$n E<gt>= 0> and fractions give positions on the
spiral in between the integer points.

For C<$n < 0> the return is an empty list, it being considered there are no
negative points in the spiral.

=item C<$rsquared = $path-E<gt>n_to_rsquared ($n)>

Return the radial distance R^2 of point C<$n>, or C<undef> if there's
no point C<$n>.  This is simply C<$n> itself, since R=sqrt(N).

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N
is considered the centre of a circle of diameter 1 and an C<$x,$y> within
that circle returns N.

The unit spacing of the spiral means those circles don't overlap, but they
also don't cover the plane and if C<$x,$y> is not within one then the
return is C<undef>.

=back

=head2 Descriptive Methods

=over

=item C<$dx = $path-E<gt>dx_minimum()>

=item C<$dx = $path-E<gt>dx_maximum()>

=item C<$dy = $path-E<gt>dy_minimum()>

=item C<$dy = $path-E<gt>dy_maximum()>

dX and dY have minimum -pi=-3.14159 and maximum pi=3.14159.  The loop
beginning at N=2^k is approximately a polygon of 2k+1 many sides and radius
R=k.  Each side is therefore

    side = sin(2pi/(2k+1)) * k
        -> 2pi/(2k+1) * k
        -> pi

=item C<$str = $path-E<gt>figure ()>

Return "circle".

=back

=head1 FORMULAS

=head2 Rectangle to N Range

R=sqrt(N) here is the same as in the C<TheodorusSpiral> and the code is
shared here.  See L<Math::PlanePath::TheodorusSpiral/Rectangle to N Range>.

The accuracy could be improved here by taking into account the polar angle
of the corners which are candidates for the maximum radius.  On the X axis
the stripes of N are from X-0.5 to X+0.5, but up on the Y axis it's 0.25
further out at Y-0.25 to Y+0.75.  The stripe the corner falls in can thus be
biased by theta expressed as a fraction 0 to 1 around the plane.

An exact theta 0 to 1 would require an arctan, but approximations 0, 0.25,
0.5, 0.75 from the quadrants, or eighths of the plane by XE<gt>Y etc
diagonals.  As noted for the Theodorus spiral the over-estimate from
ignoring the angle is at worst R many points, which corresponds to a full
loop here.  Using the angle would reduce that to 1/4 or 1/8 etc of a loop.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PyramidRows>,
L<Math::PlanePath::ArchimedeanChords>,
L<Math::PlanePath::TheodorusSpiral>,
L<Math::PlanePath::VogelFloret>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut