This file is indexed.

/usr/share/perl5/Math/PlanePath/R5DragonCurve.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
# Copyright 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::R5DragonCurve;
use 5.004;
use strict;
use List::Util 'first','sum';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh',
  'round_up_pow';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;
use constant parameter_info_array =>
  [ { name        => 'arms',
      share_key   => 'arms_4',
      display     => 'Arms',
      type        => 'integer',
      minimum     => 1,
      maximum     => 4,
      default     => 1,
      width       => 1,
      description => 'Arms',
    } ];

{
  my @x_negative_at_n = (undef, 9,5,5,6);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 54,19,8,7);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}

use constant turn_any_straight => 0; # never straight


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(4, $self->{'arms'} || 1));
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### R5dragonCurve n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $int = int($n);
  $n -= $int;    # fraction part

  my $zero = ($n * 0);    # inherit bignum 0
  my $one = $zero + 1;    # inherit bignum 1

  my $x = 0;
  my $y = 0;
  my $sx = $zero;
  my $sy = $zero;

  # initial rotation from arm number
  {
    my $rot = _divrem_mutate ($int, $self->{'arms'});
    if ($rot == 0)    { $x = $n;  $sx = $one;  }
    elsif ($rot == 1) { $y = $n;  $sy = $one;  }
    elsif ($rot == 2) { $x = -$n; $sx = -$one; }
    else              { $y = -$n; $sy = -$one; } # rot==3
  }

  foreach my $digit (digit_split_lowtohigh($int,5)) {

    ### at: "$x,$y   side $sx,$sy"
    ### $digit

    if ($digit == 1) {
      ($x,$y) = ($sx-$y, $sy+$x); # rotate +90 and offset
    } elsif ($digit == 2) {
      $x = $sx-$sy - $x;  # rotate 180 and offset diag
      $y = $sy+$sx - $y;
    } elsif ($digit == 3) {
      ($x,$y) = (-$sy - $y, $sx + $x); # rotate +90 and offset vert
    } elsif ($digit == 4) {
      $x -= 2*$sy;  # offset vert 2*
      $y += 2*$sx;
    }

    # add 2*(rot+90), which is multiply by (2i+1)
    ($sx,$sy) = ($sx - 2*$sy,
                 $sy + 2*$sx);
  }

  ### final: "$x,$y   side $sx,$sy"

  return ($x, $y);
}

my @digit_to_dir = (0,1,2,1,0);
my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);
my @digit_to_nextturn = (1,1,-1,-1);

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### R5dragonCurve n_to_dxdy(): $n

  if ($n < 0) { return; }

  my $int = int($n);
  $n -= $int;    # fraction part

  if (is_infinite($int)) { return ($int, $int); }

  # direction from arm number
  my $dir = _divrem_mutate ($int, $self->{'arms'});

  # plus direction from digits
  my @ndigits = digit_split_lowtohigh($int,5);
  $dir = sum($dir, map {$digit_to_dir[$_]} @ndigits) & 3;

  ### direction: $dir
  my $dx = $dir4_to_dx[$dir];
  my $dy = $dir4_to_dy[$dir];

  # fractional $n incorporated using next turn
  if ($n) {
    # lowest non-4 digit, or 0 if all 4s (implicit 0 above high digit)
    $dir += $digit_to_nextturn[ first {$_!=4} @ndigits, 0 ];
    $dir &= 3;
    ### next direction: $dir
    $dx += $n*($dir4_to_dx[$dir] - $dx);
    $dy += $n*($dir4_to_dy[$dir] - $dy);
  }
  return ($dx, $dy);
}

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### R5DragonCurve xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  if (is_infinite($x)) {
    return $x;  # infinity
  }
  if (is_infinite($y)) {
    return $y;  # infinity
  }

  if ($x == 0 && $y == 0) {
    return (0 .. $self->arms_count - 1);
  }

  require Math::PlanePath::R5DragonMidpoint;

  my @n_list;
  my $xm = $x+$y;  # rotate -45 and mul sqrt(2)
  my $ym = $y-$x;
  foreach my $dx (0,-1) {
    foreach my $dy (0,1) {
      my $t = $self->Math::PlanePath::R5DragonMidpoint::xy_to_n
        ($xm+$dx, $ym+$dy);

      ### try: ($xm+$dx).",".($ym+$dy)
      ### $t
      next unless defined $t;

      my ($tx,$ty) = $self->n_to_xy($t)
        or next;

      if ($tx == $x && $ty == $y) {
        ### found: $t
        if (@n_list && $t < $n_list[0]) {
          unshift @n_list, $t;
        } else {
          push @n_list, $t;
        }
        if (@n_list == 2) {
          return @n_list;
        }
      }
    }
  }
  return @n_list;
}

#------------------------------------------------------------------------------

# whole plane covered when arms==4
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  return ($self->{'arms'} == 4
          || defined($self->xy_to_n($x,$y)));
}

#------------------------------------------------------------------------------

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### R5DragonCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"
  my $xmax = int(max(abs($x1),abs($x2))) + 1;
  my $ymax = int(max(abs($y1),abs($y2))) + 1;
  return (0,
          ($xmax*$xmax + $ymax*$ymax)
          * 10
          * $self->{'arms'});
}

#------------------------------------------------------------------------------
{
  # This is a search for disallowed digit pairs going from low to high.
  # $state encodes the preceding digit, ie. of lower significance.  Initial
  # $state=1 for no low digits yet.  The initial no low digits skips low
  # digit=1 and then begins the allowing/disallowing on the first non-1
  # digit.
  #
  # The digits are found by repeated _divrem_mutate() in the expectation
  # that with 8 out of 20 digit pairs disallowed, after stripping low 1s, we
  # should be able to usually answer "no" in less work than a full
  # digit_split_lowtohigh(), and since currently that code for base 5 is
  # only repeated divrems anyway.
  #
  my @table
    = (undef,                              # state   prev  allowed pairs
       #                                   # -----   ----  -------------
       [     2,     1,     3,     4, 5 ],  #   1     none
       [     2,     2,     3           ],  #   2      0      00, 20
       [     2,     3, undef, undef, 5 ],  #   3      2      02,    42
       [     2,     4, undef, undef, 5 ],  #   4      3      03,    43
       [     2,     5, undef, undef, 5 ],  #   5      4      04,    44
      );

  sub _UNDOCUMENTED__n_segment_is_right_boundary {
    my ($self, $n) = @_;
    if (is_infinite($n)) { return 0; }
    unless ($n >= 0) { return 0; }
    $n = int($n);

    my $state = 1;
    while ($n) {
      my $digit = _divrem_mutate($n,5);  # low to high
      $state = $table[$state][$digit] || return 0;
    }
    return 1;
  }

  sub _UNDOCUMENTED__n_segment_is_left_boundary {
    my ($self, $n, $level) = @_;
    ### _UNDOCUMENTED__n_segment_is_left_boundary(): $n
    if (is_infinite($n)) { return 0; }
    unless ($n >= 0) { return 0; }
    $n = int($n);

    my $state = 1;
    while ($n) {
      if (defined $level && ($level -= 1) < 0) {
        ### stop at level: "state=$state"
        if ($n) {
          ### N >= 5**$level ...
          return undef;
        }
        last;
        return 1;
        return ($state == 2);
      }
      my $digit = 4 - _divrem_mutate($n,5);  # low to high
      $state = $table[$state][$digit] || return 0;
    }
    ### final state: $state
    if (defined $level) {
      if ($level > 0) {
        return ($state != 2);
      } else {
        return 1;
      }
    }
    return ($state != 2);

    # my @table
    #   #       0     1     2  3  4 digit
    #   = (undef,
    #      [    4,    3,    2, 1, 1 ],  # 1 L -> ZYXLL
    #      [undef,undef,undef, 2, 1 ],  # 2 X -> ___XL
    #      [undef,undef,undef, 3    ],  # 3 Y -> ___Y_
    #      [    4,    3,    2, 4    ],  # 4 Z -> ZYXX_
    #     );
    #   my $state = 4;
    #   foreach my $digit (reverse digit_split_lowtohigh($n,5)) { # high to low
    #     $state = $table[$state][$digit] || return 0;
    #   }
    #   return 1;
  }
}


#-----------------------------------------------------------------------------
# level_to_n_range()

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0,  (5**$level + 1) * $self->{'arms'} - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_up_pow ($n, 5);
  return $exp;
}

#-----------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Dragon Math-PlanePath Nlevel et al vertices doublings OEIS Online terdragon ie morphism R5DragonMidpoint radix Jorg Arndt Arndt's fxtbook PlanePath min xy TerdragonCurve arctan gt lt undef diff abs dX dY characterization DDUU

=head1 NAME

Math::PlanePath::R5DragonCurve -- radix 5 dragon curve

=head1 SYNOPSIS

 use Math::PlanePath::R5DragonCurve;
 my $path = Math::PlanePath::R5DragonCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path is a "DDUU" turn pattern similar in nature to the terdragon but on
a square grid and with 5 segments instead of 3.

             31-----30     27-----26                                  5
              |      |      |      |
             32---29/33--28/24----25                                  4
                     |      |
             35---34/38--39/23----22     11-----10      7------6      3
              |      |             |      |      |      |      |
             36---37/41--20/40--21/17--16/12---13/9----8/4-----5      2
                     |      |      |      |      |      |
    --50     47---42/46--19/43----18     15-----14      3------2      1
       |      |      |      |                                  |
    49/53--48/64  45/65--44/68    69                    0------1  <-Y=0

       ^      ^      ^      ^      ^      ^      ^      ^      ^
      -7     -6     -5     -4     -3     -2     -1     X=0     1

X<Arndt, Jorg>The name "R5" is by Jorg Arndt.  The base figure is an "S"
shape

    4----5
    |
    3----2
         |
    0----1

which then repeats in self-similar style, so N=5 to N=10 is a copy rotated
+90 degrees, as per the direction of the N=1 to N=2 segment.

    10    7----6
     |    |    |  <- repeat rotated +90
     9---8,4---5
          |
          3----2
               |
          0----1

Like the terdragon there are no reversals or mirroring.  Each replication is
the plain base curve.

The shape of N=0,5,10,15,20,25 repeats the initial N=0 to N=5,

           25                          4
          /
         /           10__              3
        /           /    ----___
      20__         /            5      2
          ----__  /            /
                15            /        1
                            /
                           0       <-Y=0

       ^    ^    ^    ^    ^    ^
      -4   -3   -2   -1   X=0   1


The curve never crosses itself.  The vertices touch at corners like N=4 and
N=8 above, but no edges repeat.

=head2 Spiralling

The first step N=1 is to the right along the X axis and the path then slowly
spirals anti-clockwise and progressively fatter.  The end of each
replication is

    Nlevel = 5^level

Each such point is at arctan(2/1)=63.43 degrees further around from the
previous,

    Nlevel     X,Y     angle (degrees)
    ------    -----    -----
      1        1,0         0
      5        2,1        63.4
     25       -3,4      2*63.4 = 126.8
    125      -11,-2     3*63.4 = 190.3

=head2 Arms

The curve fills a quarter of the plane and four copies mesh together
perfectly rotated by 90, 180 and 270 degrees.  The C<arms> parameter can
choose 1 to 4 such curve arms successively advancing.

C<arms =E<gt> 4> begins as follows.  N=0,4,8,12,16,etc is the first arm (the
same shape as the plain curve above), then N=1,5,9,13,17 the second,
N=2,6,10,14 the third, etc.

    arms => 4
                    16/32---20/63
                      |
    21/60    9/56----5/12----8/59
      |       |       |       |
    17/33--- 6/13--0/1/2/3---4/15---19/35
              |       |       |       |
            10/57----7/14---11/58   23/62
                      |
            22/61---18/34

With four arms every X,Y point is visited twice, except the origin 0,0 where
all four begin.  Every edge between the points is traversed once.

=head2 Tiling

The little "S" shapes of the N=0to5 base shape tile the plane with 2x1
bricks and 1x1 holes in the following pattern,

    +--+-----|  |--+--+-----|  |--+--+---
    |  |     |  |  |  |     |  |  |  |
    |  |-----+-----|  |-----+-----|  |---
    |  |  |  |     |  |  |  |     |  |  |
    +-----|  |-----+-----|  |-----+-----+
    |     |  |  |  |     |  |  |  |     |
    +-----+-----|  |-----+-----|  |-----+
    |  |  |     |  |  |  |     |  |  |  |
    ---|  |-----+-----|  |-----+-----|  |
       |  |  |  |     |  |  |  |     |  |
    ---+-----|  |-----o-----|  |-----+---
    |  |     |  |  |  |     |  |  |  |
    |  |-----+-----|  |-----+-----|  |---
    |  |  |  |     |  |  |  |     |  |  |
    +-----|  |-----+-----|  |-----+-----+
    |     |  |  |  |     |  |  |  |     |
    +-----+-----|  |-----+-----|  |-----+
    |  |  |     |  |  |  |     |  |  |  |
    ---|  |-----+-----|  |-----+-----|  |
       |  |  |  |     |  |  |  |     |  |
    ---+--+--|  |-----+--+--|  |-----+--+

This is the curve with each segment N=2mod5 to N=3mod5 omitted.  A 2x1 block
has 6 edges but the "S" traverses just 4 of them.  The way the blocks mesh
meshes together mean the other 2 edges are traversed by another brick,
possibly a brick on another arm of the curve.

This tiling is also found for example at

=over

L<http://tilingsearch.org/HTML/data182/AL04.html>

Or with enlarged square part,
L<http://tilingsearch.org/HTML/data149/L3010.html>

=back

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::R5DragonCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::R5DragonCurve-E<gt>new (arms =E<gt> 4)>

Create and return a new path object.

The optional C<arms> parameter can make 1 to 4 copies of the curve, each arm
successively advancing.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional C<$n> gives an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

The curve can visit an C<$x,$y> twice.  The smallest of the these N values
is returned.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers for coordinates C<$x,$y>.

The origin 0,0 has C<arms_count()> many N since it's the starting point for
each arm.  Other points have up to two Ns for a given C<$x,$y>.  If arms=4
then every C<$x,$y> except the origin has exactly two Ns.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 5**$level)>, or for multiple arms return C<(0, $arms *
5**$level + ($arms-1))>.

There are 5^level segments in a curve level, so 5^level+1 points numbered
from 0.  For multiple arms there are arms*(5^level+1) points, numbered from
0 so n_hi = arms*(5^level+1)-1.

=back

=head1 FORMULAS

Various formulas for boundary length and area can be found in the author's
mathematical write-up

=over

L<http://user42.tuxfamily.org/r5dragon/index.html>

=back

=head2 Turn

X<Arndt, Jorg>X<fxtbook>At each point N the curve always turns 90 degrees
either to the left or right, it never goes straight ahead.  As per the code
in Jorg Arndt's fxtbook, if N is written in base 5 then the lowest non-zero
digit gives the turn

    lowest non-0 digit     turn
    ------------------     ----
            1              left
            2              left
            3              right
            4              right

At a point N=digit*5^level for digit=1,2,3,4 the turn follows the shape at
that digit, so two lefts then two rights,

    4*5^k----5^(k+1)
     |
     |
    2*5^k----2*5^k
              |
              |
     0------1*5^k

The first and last unit segments in each level are the same direction, so at
those endpoints it's the next level up which gives the turn.

=head2 Next Turn

The turn at N+1 can be calculated in a similar way but from the lowest non-4
digit.

    lowest non-4 digit     turn
    ------------------     ----
            0              left
            1              left
            2              right
            3              right

This works simply because in N=...z444 becomes N+1=...(z+1)000 and so the
turn at N+1 is given by digit z+1.

=head2 Total Turn

The direction at N, ie. the total cumulative turn, is given by the direction
of each digit when N is written in base 5,

    digit       direction
      0             0
      1             1
      2             2
      3             1
      4             0

    direction = (sum direction for each digit) * 90 degrees

For example N=13 in base 5 is "23" so digit=2 direction=2 plus digit=3
direction=1 gives direction=(2+1)*90 = 270 degrees, ie. south.

Because there's no reversals etc in the replications there's no state to
maintain when considering the digits, just a plain sum of direction for each
digit.

=head1 OEIS

The R5 dragon is in Sloane's Online Encyclopedia of Integer Sequences as,

=over

L<http://oeis.org/A175337> (etc)

=back

    A175337    next turn 0=left,1=right
                 (n=0 is the turn at N=1)

    A006495    level end X, Re(b^k)
    A006496    level end Y, Re(b^k)

    A079004    boundary length N=0 to 5^k, skip initial 7,10
                 being 4*3^k - 2

    A048473    boundary/2 (one side), N=0 to 5^k
                 being half whole, 2*3^n - 1
    A198859    boundary/2 (one side), N=0 to 25^k
                 being even levels, 2*9^n - 1
    A198963    boundary/2 (one side), N=0 to 5*25^k
                 being odd levels, 6*9^n - 1

    A007798    1/2 * area enclosed N=0 to 5^k
    A016209    1/4 * area enclosed N=0 to 5^k

    A005058    1/2 * new area N=5^k to N=5^(k+1)
                 being area increments, 5^n - 3^n
    A005059    1/4 * new area N=5^k to N=5^(k+1)
                 being area increments, (5^n - 3^n)/2

    A008776    count single-visited points N=0 to 5^k
                 being 2*3^k

    A024024    C[k] boundary lengths, 3^k-k
    A104743    E[k] boundary lengths, 3^k+k

    arms=1 and arms=3
      A059841    abs(dX), being simply 1,0 repeating
      A000035    abs(dY), being simply 0,1 repeating

    arms=4
      A165211    abs(dY), being 0,1,0,1,1,0,1,0 repeating

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::TerdragonCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut