/usr/share/perl5/Math/PlanePath/QuintetCurve.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# Boundary of unit squares:
# 2*(4*3^n+1) cf A199108 = 4*3^n+1
#
# QuintetCurve unit squares boundary
# 12,28,76,220,652
# match 12,28,76,220,652
# [HALF]
# A079003 a(n) = 4*3^(n-2)+2
package Math::PlanePath::QuintetCurve;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 122;
# inherit: new(), rect_to_n_range(), arms_count(), n_start(),
# parameter_info_array(), xy_is_visited()
use Math::PlanePath::QuintetCentres;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath::QuintetCentres');
use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'digit_split_lowtohigh',
'round_up_pow';
# uncomment this to run the ### lines
#use Smart::Comments;
{
my @x_negative_at_n = (undef, 513, 9, 2, 2);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef, 2, 4, 6, 3);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
{
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 8, 5, 5, 4);
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
}
}
# N=4 first straight, then for other arms 18,27,36
# must override base Math::PlanePath::QuintetCentres
sub _UNDOCUMENTED__turn_any_straight_at_n {
my ($self) = @_;
# arms=1 4 only first arm has origin 0
# arms=2 7
# arms=3 10
# arms=4 13
return 3*$self->arms_count + 1;
}
#------------------------------------------------------------------------------
my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);
my @digit_reverse = (0,1,0,0,1,0);
sub n_to_xy {
my ($self, $n) = @_;
### QuintetCurve n_to_xy(): $n
if ($n < 0) {
return;
}
if (is_infinite($n)) {
return ($n,$n);
}
my $arms = $self->{'arms'};
my $int = int($n);
$n -= $int; # fraction part
my $rot = _divrem_mutate ($int,$arms);
if ($rot) { $int += 1; }
my @digits = digit_split_lowtohigh($int,5);
my @sx;
my @sy;
{
my $sy = 0 * $int; # inherit bignum 0
my $sx = 1 + $sy; # inherit bignum 1
foreach (@digits) {
push @sx, $sx;
push @sy, $sy;
# 2*(sx,sy) + rot+90(sx,sy)
($sx,$sy) = (2*$sx - $sy,
2*$sy + $sx);
}
# ### @digits
# my $rev = 0;
# for (my $i = $#digits; $i >= 0; $i--) { # high to low
# ### digit: $digits[$i]
# if ($rev) {
# ### reverse: "$digits[$i] to ".(5 - $digits[$i])
# $digits[$i] = (5 - $digits[$i]) % 5;
# }
# # $rev ^= $digit_reverse[$digits[$i]];
# ### now rev: $rev
}
# ### reversed n: @digits
my $x = 0;
my $y = 0;
my $rev = 0;
while (defined (my $digit = pop @digits)) { # high to low
my $sx = pop @sx;
my $sy = pop @sy;
### at: "$x,$y digit $digit side $sx,$sy"
if ($rot & 2) {
($sx,$sy) = (-$sx,-$sy);
}
if ($rot & 1) {
($sx,$sy) = (-$sy,$sx);
}
if ($rev) {
if ($digit == 0) {
$rev = 0;
$rot++;
} elsif ($digit == 1) {
$x -= $sy;
$y += $sx;
$rot++;
} elsif ($digit == 2) {
$x += -2*$sy;
$y += 2*$sx;
} elsif ($digit == 3) {
$x += $sx - 2*$sy; # add 2*rot-90(side) + side
$y += $sy + 2*$sx;
$rot--;
$rev = 0;
} else { # $digit == 4
$x += $sx - $sy; # add rot-90(side) + side
$y += $sy + $sx;
}
} else {
# normal
if ($digit == 0) {
} elsif ($digit == 1) {
$x += $sx;
$y += $sy;
$rot--;
$rev = 1;
} elsif ($digit == 2) {
$x += $sx + $sy; # add side + rot-90(side)
$y += $sy - $sx;
} elsif ($digit == 3) {
$x += 2*$sx + $sy;
$y += 2*$sy - $sx;
$rot++;
} else { # $digit == 4
$x += 2*$sx;
$y += 2*$sy;
$rot++;
$rev = 1;
}
}
# lowest non-zero digit determines the direction
if ($digit != 0) {
### frac_dir at non-zero: $rot
}
}
### final: "$x,$y"
### $rot
$rot &= 3;
return ($n * $dir4_to_dx[$rot] + $x,
$n * $dir4_to_dy[$rot] + $y);
}
# up upl left
my @attempt_x = (0, 0, -1, -1);
my @attempt_y = (0, 1, 1, 0);
sub xy_to_n {
my ($self, $x, $y) = @_;
### QuintetCurve xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
my ($n, $cx, $cy);
foreach my $i (0, 1, 2, 3) {
if (defined ($n = $self->SUPER::xy_to_n($x + $attempt_x[$i],
$y + $attempt_y[$i]))
&& (($cx,$cy) = $self->n_to_xy($n))
&& $x == $cx
&& $y == $cy) {
return $n;
}
}
return undef;
}
#------------------------------------------------------------------------------
# levels
# arms=1 arms=2 arms=3 arms=4
# level 0 0..1 = 2 0..2 = 2+1=3 0..3 = 2+1+1=4 0..4 = 2+1+1+1=5
# level 1 0..5 = 6 0..10 = 6+5=11 0..15 = 6+5+5=16 0..20 = 6+5+5+5=21
# level 2 0..25 = 26 0..50 = 26+25=51 0..75 = 26+25+25=76 0..100 = 26+25+25+25=101
# 5^k 2*5^k 3*5^k 4*5^k
#
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 5**$level * $self->{'arms'});
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
$n += $self->{'arms'}-1; # division rounding up
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_up_pow ($n, 5);
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Mandelbrot Math-PlanePath Nlevel
=head1 NAME
Math::PlanePath::QuintetCurve -- self-similar "plus" shaped curve
=head1 SYNOPSIS
use Math::PlanePath::QuintetCurve;
my $path = Math::PlanePath::QuintetCurve->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path is traces out a spiralling self-similar "+" shape,
125--... 93--92 11
| | |
123-124 94 91--90--89--88 10
| | |
122-121-120 103-102 95 82--83 86--87 9
| | | | | | |
115-116 119 104 101-100--99 96 81 84--85 8
| | | | | | |
113-114 117-118 105 32--33 98--97 80--79--78 7
| | | | |
112-111-110-109 106 31 34--35--36--37 76--77 6
| | | | |
108-107 30 43--42 39--38 75 5
| | | | |
25--26 29 44 41--40 73--74 4
| | | | |
23--24 27--28 45--46--47 72--71--70--69--68 3
| | |
22--21--20--19--18 49--48 55--56--57 66--67 2
| | | | |
5---6---7 16--17 50--51 54 59--58 65 1
| | | | | | |
0---1 4 9---8 15 52--53 60--61 64 <- Y=0
| | | | | |
2---3 10--11 14 62--63 -1
| |
12--13 -2
^
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
The base figure is the initial N=0 to N=4.
5
|
|
0---1 4 base figure
| |
| |
2---3
It corresponds to a traversal of the following "+" shape,
.... 5
. |
. <|
|
0----1 .. 4 ....
v | | .
. |> |> .
. | | .
.... 2----3 ....
. v .
. .
. .
. .. .
The "v" and ">" notches are the side the figure is directed at the higher
replications. The 0, 2 and 3 parts are the right hand side of the line and
are a plain repetition of the base figure. The 1 and 4 parts are to the
left and are a reversal. The first such reversal is seen above as N=5 to
N=10.
.....
. .
5---6---7 ...
. . | .
. | . reversed figure
... 9---8 ...
| .
| .
10 ...
In the base figure it can be seen the N=5 endpoint is rotated up around from
the N=0 to N=1 direction. This makes successive higher levels slowly spiral
around.
N = 5^level
angle = level * atan(1/2)
= level * 26.56 degrees
radius = sqrt(5) ^ level
In the sample shown above N=125 is level=3 and has spiralled around to angle
3*26.56=79.7 degrees. The next level goes into the second quadrant with X
negative. A full circle around the plane is around level 14.
=head2 Arms
The optional C<arms =E<gt> $a> parameter can give 1 to 4 copies of the
curve, each advancing successively. For example C<arms=E<gt>4> is as
follows. N=4*k points are the plain curve, and N=4*k+1, N=4*k+2 and N=4*k+3
are rotated copies of it.
69--65 ...
| | |
..-117-113-109 73 61--57--53--49 120
| | | |
101-105 77 25--29 41--45 100-104 116
| | | | | | | |
97--93 81 21 33--37 92--96 108-112
| | | |
50--46 89--85 17--13-- 9 88--84--80--76--72
| | | |
54 42--38 10-- 6 1-- 5 20--24--28 64--68
| | | | | | |
58 30--34 14 2 0-- 4 16 36--32 60
| | | | | | |
66--62 26--22--18 7-- 3 8--12 40--44 56
| | | |
70--74--78--82--86 11--15--19 87--91 48--52
| | | |
110-106 94--90 39--35 23 83 95--99
| | | | | | | |
114 102--98 47--43 31--27 79 107-103
| | | |
118 51--55--59--63 75 111-115-119-..
| | |
... 67--71
The curve is essentially an ever expanding "+" shape with one corner at the
origin. Four such shapes can be packed as follows,
+---+
| |
+---+--- +---+
| | A |
+---+ +---+ +---+
| B | | |
+---+ +---O---+ +---+
| | | D |
+---+ +---+ +---+
| C | |
+---+ +---+---+
| |
+---+
At higher replication levels the sides are wiggly and spiralling and the
centres of each rotated around, but they sides are symmetric and mesh
together perfectly to fill the plane.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::QuintetCurve-E<gt>new ()>
=item C<$path = Math::PlanePath::QuintetCurve-E<gt>new (arms =E<gt> $a)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
In the current code the returned range is exact, meaning C<$n_lo> and
C<$n_hi> are the smallest and biggest in the rectangle, but don't rely on
that yet since finding the exact range is a touch on the slow side. (The
advantage of which though is that it helps avoid very big ranges from a
simple over-estimate.)
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 5**$level)>, or for multiple arms return C<(0, $arms *
5**$level)>.
There are 5^level + 1 points in a level, numbered starting from 0. On the
second and subsequent arms the origin is omitted (so as not to repeat that
point) and so just 5^level for them, giving 5^level+1 + (arms-1)*5^level =
arms*5^level + 1 many points starting from 0.
=back
=head1 FORMULAS
=head2 X,Y to N
The current approach uses the C<QuintetCentres> C<xy_to_n()>. Because the
tiling in C<QuintetCurve> and C<QuintetCentres> is the same, the X,Y
coordinates for a given N are no more than 1 away in the grid.
The way the two lowest shapes are arranged in fact means that for a
C<QuintetCurve> N at X,Y then the same N on the C<QuintetCentres> is at one
of three locations
X, Y same
X, Y+1 up
X-1, Y+1 up and left
X-1, Y left
This is so even when the "arms" multiple paths are in use (the same arms in
both coordinates).
Is there an easy way to know which of the four offsets is right? The
current approach is to give each to C<QuintetCentres> to make an N, put that
N back through C<n_to_xy()> to see if it's the target C<$n>.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::QuintetCentres>,
L<Math::PlanePath::QuintetReplicate>,
L<Math::PlanePath::Flowsnake>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|