This file is indexed.

/usr/share/perl5/Math/PlanePath/QuintetCurve.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# Boundary of unit squares:
# 2*(4*3^n+1)   cf A199108 = 4*3^n+1
#
# QuintetCurve unit squares boundary
# 12,28,76,220,652
# match 12,28,76,220,652
# [HALF]
# A079003 a(n) = 4*3^(n-2)+2



package Math::PlanePath::QuintetCurve;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 122;

# inherit: new(), rect_to_n_range(), arms_count(), n_start(),
#          parameter_info_array(), xy_is_visited()
use Math::PlanePath::QuintetCentres;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath::QuintetCentres');

use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh',
  'round_up_pow';

# uncomment this to run the ### lines
#use Smart::Comments;


{
  my @x_negative_at_n = (undef, 513, 9, 2, 2);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 2, 4, 6, 3);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}
{
  my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 8, 5, 5, 4);
  sub _UNDOCUMENTED__dxdy_list_at_n {
    my ($self) = @_;
    return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
  }
}

# N=4 first straight, then for other arms 18,27,36
# must override base Math::PlanePath::QuintetCentres
sub _UNDOCUMENTED__turn_any_straight_at_n {
  my ($self) = @_;
  # arms=1   4    only first arm has origin 0    
  # arms=2   7
  # arms=3  10
  # arms=4  13
  return 3*$self->arms_count + 1;
}


#------------------------------------------------------------------------------
my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);
my @digit_reverse = (0,1,0,0,1,0);

sub n_to_xy {
  my ($self, $n) = @_;
  ### QuintetCurve n_to_xy(): $n

  if ($n < 0) {
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $arms = $self->{'arms'};
  my $int = int($n);
  $n -= $int;  # fraction part

  my $rot = _divrem_mutate ($int,$arms);
  if ($rot) { $int += 1; }

  my @digits = digit_split_lowtohigh($int,5);
  my @sx;
  my @sy;
  {
    my $sy = 0 * $int; # inherit bignum 0
    my $sx = 1 + $sy;  # inherit bignum 1
    foreach (@digits) {
      push @sx, $sx;
      push @sy, $sy;

      # 2*(sx,sy) + rot+90(sx,sy)
      ($sx,$sy) = (2*$sx - $sy,
                   2*$sy + $sx);
    }
    # ### @digits
    # my $rev = 0;
    # for (my $i = $#digits; $i >= 0; $i--) {  # high to low
    #   ### digit: $digits[$i]
    #   if ($rev) {
    #     ### reverse: "$digits[$i] to ".(5 - $digits[$i])
    #     $digits[$i] = (5 - $digits[$i]) % 5;
    #   }
    #   #      $rev ^= $digit_reverse[$digits[$i]];
    #   ### now rev: $rev
  }
  #    ### reversed n: @digits


  my $x = 0;
  my $y = 0;
  my $rev = 0;

  while (defined (my $digit = pop @digits)) {  # high to low
    my $sx = pop @sx;
    my $sy = pop @sy;
    ### at: "$x,$y  digit $digit   side $sx,$sy"

    if ($rot & 2) {
      ($sx,$sy) = (-$sx,-$sy);
    }
    if ($rot & 1) {
      ($sx,$sy) = (-$sy,$sx);
    }

    if ($rev) {
      if ($digit == 0) {
        $rev = 0;
        $rot++;

      } elsif ($digit == 1) {
        $x -= $sy;
        $y += $sx;
        $rot++;

      } elsif ($digit == 2) {
        $x += -2*$sy;
        $y += 2*$sx;

      } elsif ($digit == 3) {
        $x += $sx - 2*$sy;    # add 2*rot-90(side) + side
        $y += $sy + 2*$sx;
        $rot--;
        $rev = 0;

      } else {  # $digit == 4
        $x += $sx - $sy;    # add rot-90(side) + side
        $y += $sy + $sx;
      }

    } else {
      # normal

      if ($digit == 0) {

      } elsif ($digit == 1) {
        $x += $sx;
        $y += $sy;
        $rot--;
        $rev = 1;

      } elsif ($digit == 2) {
        $x += $sx + $sy;    # add side + rot-90(side)
        $y += $sy - $sx;

      } elsif ($digit == 3) {
        $x += 2*$sx + $sy;
        $y += 2*$sy - $sx;
        $rot++;

      } else {  # $digit == 4
        $x += 2*$sx;
        $y += 2*$sy;
        $rot++;
        $rev = 1;
      }
    }

    # lowest non-zero digit determines the direction
    if ($digit != 0) {
      ### frac_dir at non-zero: $rot
    }
  }

  ### final: "$x,$y"
  ### $rot
  $rot &= 3;
  return ($n * $dir4_to_dx[$rot] + $x,
          $n * $dir4_to_dy[$rot] + $y);
}

#                  up  upl left
my @attempt_x = (0, 0, -1, -1);
my @attempt_y = (0, 1,  1, 0);
sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### QuintetCurve xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  my ($n, $cx, $cy);
  foreach my $i (0, 1, 2, 3) {
    if (defined ($n = $self->SUPER::xy_to_n($x + $attempt_x[$i],
                                            $y + $attempt_y[$i]))
        && (($cx,$cy) = $self->n_to_xy($n))
        && $x == $cx
        && $y == $cy) {
      return $n;
    }
  }
  return undef;
}

#------------------------------------------------------------------------------
# levels

#           arms=1       arms=2            arms=3                 arms=4
# level 0  0..1  = 2    0..2  = 2+1=3     0..3  = 2+1+1=4      0..4 = 2+1+1+1=5
# level 1  0..5  = 6    0..10 = 6+5=11    0..15 = 6+5+5=16     0..20 = 6+5+5+5=21
# level 2  0..25 = 26   0..50 = 26+25=51  0..75 = 26+25+25=76  0..100 = 26+25+25+25=101
#          5^k          2*5^k             3*5^k                 4*5^k
#
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0,  5**$level * $self->{'arms'});
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  $n += $self->{'arms'}-1;  # division rounding up
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_up_pow ($n, 5);
  return $exp;
}


#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Mandelbrot Math-PlanePath Nlevel

=head1 NAME

Math::PlanePath::QuintetCurve -- self-similar "plus" shaped curve

=head1 SYNOPSIS

 use Math::PlanePath::QuintetCurve;
 my $path = Math::PlanePath::QuintetCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path is traces out a spiralling self-similar "+" shape,

            125--...                 93--92                      11
              |                       |   |
        123-124                      94  91--90--89--88          10
          |                           |               |
        122-121-120 103-102          95  82--83  86--87           9
                  |   |   |           |   |   |   |
        115-116 119 104 101-100--99  96  81  84--85               8
          |   |   |   |           |   |   |
    113-114 117-118 105  32--33  98--97  80--79--78               7
      |               |   |   |                   |
    112-111-110-109 106  31  34--35--36--37  76--77               6
                  |   |   |               |   |
                108-107  30  43--42  39--38  75                   5
                          |   |   |   |       |
                 25--26  29  44  41--40  73--74                   4
                  |   |   |   |           |
             23--24  27--28  45--46--47  72--71--70--69--68       3
              |                       |                   |
             22--21--20--19--18  49--48  55--56--57  66--67       2
                              |   |       |       |   |
              5---6---7  16--17  50--51  54  59--58  65           1
              |       |   |           |   |   |       |
      0---1   4   9---8  15          52--53  60--61  64       <- Y=0
          |   |   |       |                       |   |
          2---3  10--11  14                      62--63          -1
                      |   |
                     12--13                                      -2

      ^
     X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 ...


The base figure is the initial N=0 to N=4.

              5
              |
              |
      0---1   4      base figure
          |   |
          |   |
          2---3

It corresponds to a traversal of the following "+" shape,

         .... 5
         .    |
         .   <|
              |
    0----1 .. 4 ....
      v  |    |    .
    .    |>   |>   .
    .    |    |    .
    .... 2----3 ....
         . v  .
         .    .
         .    .
         . .. .

The "v" and ">" notches are the side the figure is directed at the higher
replications.  The 0, 2 and 3 parts are the right hand side of the line and
are a plain repetition of the base figure.  The 1 and 4 parts are to the
left and are a reversal.  The first such reversal is seen above as N=5 to
N=10.
        .....
        .   .

    5---6---7 ...
    .   .   |   .
    .       |   .   reversed figure
    ... 9---8 ...
        |   .
        |   .
       10 ...

In the base figure it can be seen the N=5 endpoint is rotated up around from
the N=0 to N=1 direction.  This makes successive higher levels slowly spiral
around.

    N = 5^level
    angle = level * atan(1/2)
          = level * 26.56 degrees
    radius = sqrt(5) ^ level

In the sample shown above N=125 is level=3 and has spiralled around to angle
3*26.56=79.7 degrees.  The next level goes into the second quadrant with X
negative.  A full circle around the plane is around level 14.

=head2 Arms

The optional C<arms =E<gt> $a> parameter can give 1 to 4 copies of the
curve, each advancing successively.  For example C<arms=E<gt>4> is as
follows.  N=4*k points are the plain curve, and N=4*k+1, N=4*k+2 and N=4*k+3
are rotated copies of it.

                    69--65                      ...
                     |   |                       |
    ..-117-113-109  73  61--57--53--49         120
                 |   |               |           |
           101-105  77  25--29  41--45 100-104 116
             |       |   |   |   |       |   |   |
            97--93  81  21  33--37  92--96 108-112
                 |   |   |           |
        50--46  89--85  17--13-- 9  88--84--80--76--72
         |   |                   |                   |
        54  42--38  10-- 6   1-- 5  20--24--28  64--68
         |       |   |   |           |       |   |
        58  30--34  14   2   0-- 4  16  36--32  60
         |   |       |           |   |   |       |
    66--62  26--22--18   7-- 3   8--12  40--44  56
     |                   |                   |   |
    70--74--78--82--86  11--15--19  87--91  48--52
                     |           |   |   |
       110-106  94--90  39--35  23  83  95--99
         |   |   |       |   |   |   |       |
       114 102--98  47--43  31--27  79 107-103
         |           |               |   |
       118          51--55--59--63  75 111-115-119-..
         |                       |   |
        ...                     67--71

The curve is essentially an ever expanding "+" shape with one corner at the
origin.  Four such shapes can be packed as follows,

                +---+
                |   |
        +---+---    +---+
        |   |     A     |
    +---+   +---+   +---+
    |     B     |   |   |
    +---+   +---O---+   +---+
        |   |   |     D     |
        +---+   +---+   +---+
        |     C     |   |
        +---+   +---+---+ 
            |   |
            +---+

At higher replication levels the sides are wiggly and spiralling and the
centres of each rotated around, but they sides are symmetric and mesh
together perfectly to fill the plane.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::QuintetCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::QuintetCurve-E<gt>new (arms =E<gt> $a)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

In the current code the returned range is exact, meaning C<$n_lo> and
C<$n_hi> are the smallest and biggest in the rectangle, but don't rely on
that yet since finding the exact range is a touch on the slow side.  (The
advantage of which though is that it helps avoid very big ranges from a
simple over-estimate.)

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 5**$level)>, or for multiple arms return C<(0, $arms *
5**$level)>.

There are 5^level + 1 points in a level, numbered starting from 0.  On the
second and subsequent arms the origin is omitted (so as not to repeat that
point) and so just 5^level for them, giving 5^level+1 + (arms-1)*5^level =
arms*5^level + 1 many points starting from 0.

=back

=head1 FORMULAS

=head2 X,Y to N

The current approach uses the C<QuintetCentres> C<xy_to_n()>.  Because the
tiling in C<QuintetCurve> and C<QuintetCentres> is the same, the X,Y
coordinates for a given N are no more than 1 away in the grid.

The way the two lowest shapes are arranged in fact means that for a
C<QuintetCurve> N at X,Y then the same N on the C<QuintetCentres> is at one
of three locations

    X, Y          same
    X, Y+1        up
    X-1, Y+1      up and left
    X-1, Y        left

This is so even when the "arms" multiple paths are in use (the same arms in
both coordinates).

Is there an easy way to know which of the four offsets is right?  The
current approach is to give each to C<QuintetCentres> to make an N, put that
N back through C<n_to_xy()> to see if it's the target C<$n>.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::QuintetCentres>,
L<Math::PlanePath::QuintetReplicate>,
L<Math::PlanePath::Flowsnake>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut