This file is indexed.

/usr/share/perl5/Math/PlanePath/PyramidSides.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::PyramidSides;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant class_y_negative => 0;
use constant n_frac_discontinuity => 0.5;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad12;

use constant parameter_info_array =>
  [ Math::PlanePath::Base::Generic::parameter_info_nstart1() ];

sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 1;
}
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;
use constant dsumxy_maximum => 2; # NE diagonal
use constant ddiffxy_maximum => 2; # SE diagonal

use constant dir_minimum_dxdy => (1,1);  # North-East
use constant dir_maximum_dxdy => (1,-1); # South-East

use constant turn_any_left =>  0; # only right or straight


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}

# starting each left side at 0.5 before
#
# d = [  0,   1,   2,   3,    4  ]
# n = [ 0-0.5, 1-0.5, 4-0.5, 9-0.5, 16-0.5 ]
# N = (d^2 - 1/2)
#   = ($d**2 - 1/2)
# d = 0 + sqrt(1 * $n + 1/2)
#   = sqrt(4*$n+2)/2
#
sub n_to_xy {
  my ($self, $n) = @_;
  ### PyramidSides n_to_xy: $n

  # adjust to N=0 at origin X=0,Y=0
  $n = $n - $self->{'n_start'};

  my $d;
  {
    my $r = 4*$n + 2;
    if ($r < 0) {
      return;   # N < -0.5
    }
    $d = int( sqrt(int($r)) / 2 );
  }
  $n -= $d*($d+1);   # to $n=0 on Y axis, so X=$n
  ### remainder: $n

  return ($n,
          - abs($n) + $d);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### PyramidSides xy_to_n(): $x, $y

  $y = round_nearest ($y);
  if ($y < 0) {
    return undef;
  }
  $x = round_nearest ($x);

  my $d = abs($x) + $y;
  return $d*$d + $x+$d + $self->{'n_start'};
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2
  if ($y2 < 0) {
    return (1, 0); # rect all negative, no N
  }
  if ($y1 < 0) { $y1 *= 0; }   # "*=" to preserve bigint y1

  my ($xlo, $xhi) = (abs($x1) < abs($x2)   # lo,hi by absolute value
                     ? ($x1, $x2)
                     : ($x2, $x1));
  if ($x2 == -$x1) {
    # when say x1=-5 x2=+5 then x=+5 is the bigger N
    $xhi = abs($xhi);
  }
  if (($x1 >= 0) ^ ($x2 >= 0)) {
    # if x1>=0 and x2<0 or other way around then x=0 is covered and is the
    # smallest N
    $xlo *= 0;   # "*=" to preserve bigint
  }

  return ($self->xy_to_n ($xlo, $y1),
          $self->xy_to_n ($xhi, $y2));
}

1;
__END__

=for stopwords pronic versa PlanePath Ryde Math-PlanePath ie Euler's OEIS

=head1 NAME

Math::PlanePath::PyramidSides -- points along the sides of pyramid

=head1 SYNOPSIS

 use Math::PlanePath::PyramidSides;
 my $path = Math::PlanePath::PyramidSides->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path puts points in layers along the sides of a pyramid growing
upwards.

                        21                        4
                    20  13  22                    3
                19  12   7  14  23                2
            18  11   6   3   8  15  24            1
        17  10   5   2   1   4   9  16  25    <- Y=0
       ------------------------------------
                         ^
    ... -4  -3  -2  -1  X=0  1   2   3   4 ...

X<Square numbers>N=1,4,9,16,etc along the positive X axis is the perfect
squares.  N=2,6,12,20,etc in the X=-1 vertical is the
X<Pronic numbers>pronic numbers k*(k+1) half way between those successive
squares.

The pattern is the same as the C<Corner> path but turned and spread so the
single quadrant in the C<Corner> becomes a half-plane here.

The pattern is similar to C<PyramidRows> (with its default step=2), just
with the columns dropped down vertically to start at the X axis.  Any
pattern occurring within a column is unchanged, but what was a row becomes a
diagonal and vice versa.

=head2 Lucky Numbers of Euler

An interesting sequence for this path is Euler's k^2+k+41.  The low values
are spread around a bit, but from N=1763 (k=41) they're the vertical at
X=40.  There's quite a few primes in this quadratic and when plotting primes
that vertical stands out a little denser than its surrounds (at least for up
to the first 2500 or so values).  The line shows in other step==2 paths too,
but not as clearly.  In the C<PyramidRows> for instance the beginning is up
at Y=40, and in the C<Corner> path it's a diagonal.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pyramid pattern.  For
example to start at 0,

=cut

# math-image --path=PyramidSides,n_start=0 --all --output=numbers --size=48x5

=pod

    n_start => 0

                20                    4
             19 12 21                 3
          18 11  6 13 22              2
       17 10  5  2  7 14 23           1
    16  9  4  1  0  3  8 15 24    <- Y=0
    --------------------------
    -4 -3 -2 -1 X=0 1  2  3  4

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::PyramidSides-E<gt>new ()>

=item C<$path = Math::PlanePath::PyramidSides-E<gt>new (n_start =E<gt> $n)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n < 0.5> the return is an empty list, it being considered there are no
negative points in the pyramid.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer which has the effect of treating points
in the pyramid as a squares of side 1, so the half-plane y>=-0.5 is entirely
covered.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head1 FORMULAS

=head2 Rectangle to N Range

For C<rect_to_n_range()>, in each column N increases so the biggest N is in
the topmost row and and smallest N in the bottom row.

In each row N increases along the sequence X=0,-1,1,-2,2,-3,3, etc.  So the
biggest N is at the X of biggest absolute value and preferring the positive
X=k over the negative X=-k.

The smallest N conversely is at the X of smallest absolute value.  If the X
range crosses 0, ie. C<$x1> and C<$x2> have different signs, then X=0 is the
smallest.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include

=over

L<http://oeis.org/A196199> (etc)

=back

    n_start=1 (the default)
      A049240    abs(dY), being 0=horizontal step at N=square
      A002522    N on X negative axis, x^2+1
      A033951    N on X=Y diagonal, 4d^2+3d+1
      A004201    N for which X>=0, ie. right hand half
      A020703    permutation N at -X,Y
 
   n_start=0
      A196199    X coordinate, runs -n to +n
      A053615    abs(X), runs n to 0 to n
      A000196    abs(X)+abs(Y), floor(sqrt(N)),
                   k repeated 2k+1 times starting 0

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PyramidRows>,
L<Math::PlanePath::Corner>,
L<Math::PlanePath::DiamondSpiral>,
L<Math::PlanePath::SacksSpiral>,
L<Math::PlanePath::MPeaks>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut