/usr/share/perl5/Math/PlanePath/PyramidSides.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | # Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::PyramidSides;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => 0.5;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad12;
use constant parameter_info_array =>
[ Math::PlanePath::Base::Generic::parameter_info_nstart1() ];
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + 1;
}
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;
use constant dsumxy_maximum => 2; # NE diagonal
use constant ddiffxy_maximum => 2; # SE diagonal
use constant dir_minimum_dxdy => (1,1); # North-East
use constant dir_maximum_dxdy => (1,-1); # South-East
use constant turn_any_left => 0; # only right or straight
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
return $self;
}
# starting each left side at 0.5 before
#
# d = [ 0, 1, 2, 3, 4 ]
# n = [ 0-0.5, 1-0.5, 4-0.5, 9-0.5, 16-0.5 ]
# N = (d^2 - 1/2)
# = ($d**2 - 1/2)
# d = 0 + sqrt(1 * $n + 1/2)
# = sqrt(4*$n+2)/2
#
sub n_to_xy {
my ($self, $n) = @_;
### PyramidSides n_to_xy: $n
# adjust to N=0 at origin X=0,Y=0
$n = $n - $self->{'n_start'};
my $d;
{
my $r = 4*$n + 2;
if ($r < 0) {
return; # N < -0.5
}
$d = int( sqrt(int($r)) / 2 );
}
$n -= $d*($d+1); # to $n=0 on Y axis, so X=$n
### remainder: $n
return ($n,
- abs($n) + $d);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### PyramidSides xy_to_n(): $x, $y
$y = round_nearest ($y);
if ($y < 0) {
return undef;
}
$x = round_nearest ($x);
my $d = abs($x) + $y;
return $d*$d + $x+$d + $self->{'n_start'};
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2
if ($y2 < 0) {
return (1, 0); # rect all negative, no N
}
if ($y1 < 0) { $y1 *= 0; } # "*=" to preserve bigint y1
my ($xlo, $xhi) = (abs($x1) < abs($x2) # lo,hi by absolute value
? ($x1, $x2)
: ($x2, $x1));
if ($x2 == -$x1) {
# when say x1=-5 x2=+5 then x=+5 is the bigger N
$xhi = abs($xhi);
}
if (($x1 >= 0) ^ ($x2 >= 0)) {
# if x1>=0 and x2<0 or other way around then x=0 is covered and is the
# smallest N
$xlo *= 0; # "*=" to preserve bigint
}
return ($self->xy_to_n ($xlo, $y1),
$self->xy_to_n ($xhi, $y2));
}
1;
__END__
=for stopwords pronic versa PlanePath Ryde Math-PlanePath ie Euler's OEIS
=head1 NAME
Math::PlanePath::PyramidSides -- points along the sides of pyramid
=head1 SYNOPSIS
use Math::PlanePath::PyramidSides;
my $path = Math::PlanePath::PyramidSides->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path puts points in layers along the sides of a pyramid growing
upwards.
21 4
20 13 22 3
19 12 7 14 23 2
18 11 6 3 8 15 24 1
17 10 5 2 1 4 9 16 25 <- Y=0
------------------------------------
^
... -4 -3 -2 -1 X=0 1 2 3 4 ...
X<Square numbers>N=1,4,9,16,etc along the positive X axis is the perfect
squares. N=2,6,12,20,etc in the X=-1 vertical is the
X<Pronic numbers>pronic numbers k*(k+1) half way between those successive
squares.
The pattern is the same as the C<Corner> path but turned and spread so the
single quadrant in the C<Corner> becomes a half-plane here.
The pattern is similar to C<PyramidRows> (with its default step=2), just
with the columns dropped down vertically to start at the X axis. Any
pattern occurring within a column is unchanged, but what was a row becomes a
diagonal and vice versa.
=head2 Lucky Numbers of Euler
An interesting sequence for this path is Euler's k^2+k+41. The low values
are spread around a bit, but from N=1763 (k=41) they're the vertical at
X=40. There's quite a few primes in this quadratic and when plotting primes
that vertical stands out a little denser than its surrounds (at least for up
to the first 2500 or so values). The line shows in other step==2 paths too,
but not as clearly. In the C<PyramidRows> for instance the beginning is up
at Y=40, and in the C<Corner> path it's a diagonal.
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start, in the same pyramid pattern. For
example to start at 0,
=cut
# math-image --path=PyramidSides,n_start=0 --all --output=numbers --size=48x5
=pod
n_start => 0
20 4
19 12 21 3
18 11 6 13 22 2
17 10 5 2 7 14 23 1
16 9 4 1 0 3 8 15 24 <- Y=0
--------------------------
-4 -3 -2 -1 X=0 1 2 3 4
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::PyramidSides-E<gt>new ()>
=item C<$path = Math::PlanePath::PyramidSides-E<gt>new (n_start =E<gt> $n)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n < 0.5> the return is an empty list, it being considered there are no
negative points in the pyramid.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. C<$x> and C<$y> are
each rounded to the nearest integer which has the effect of treating points
in the pyramid as a squares of side 1, so the half-plane y>=-0.5 is entirely
covered.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head1 FORMULAS
=head2 Rectangle to N Range
For C<rect_to_n_range()>, in each column N increases so the biggest N is in
the topmost row and and smallest N in the bottom row.
In each row N increases along the sequence X=0,-1,1,-2,2,-3,3, etc. So the
biggest N is at the X of biggest absolute value and preferring the positive
X=k over the negative X=-k.
The smallest N conversely is at the X of smallest absolute value. If the X
range crosses 0, ie. C<$x1> and C<$x2> have different signs, then X=0 is the
smallest.
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include
=over
L<http://oeis.org/A196199> (etc)
=back
n_start=1 (the default)
A049240 abs(dY), being 0=horizontal step at N=square
A002522 N on X negative axis, x^2+1
A033951 N on X=Y diagonal, 4d^2+3d+1
A004201 N for which X>=0, ie. right hand half
A020703 permutation N at -X,Y
n_start=0
A196199 X coordinate, runs -n to +n
A053615 abs(X), runs n to 0 to n
A000196 abs(X)+abs(Y), floor(sqrt(N)),
k repeated 2k+1 times starting 0
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::PyramidRows>,
L<Math::PlanePath::Corner>,
L<Math::PlanePath::DiamondSpiral>,
L<Math::PlanePath::SacksSpiral>,
L<Math::PlanePath::MPeaks>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|