This file is indexed.

/usr/share/perl5/Math/PlanePath/MPeaks.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::MPeaks;
use 5.004;
use strict;
use List::Util 'min';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad12;

sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start;
}
# dX jumps back unbounded negative, but forward only +1
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant dsumxy_maximum => 2; # NE diagonal
use constant ddiffxy_maximum => 2; # SE diagonal
use constant dir_minimum_dxdy => (1,1);  # North-East
use constant dir_maximum_dxdy => (1,-1); # South-East

use constant parameter_info_array =>
  [
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}

# starting each left side at 0.5 before
# [ 1,2,3 ],
# [ 1-0.5, 6-0.5, 17-0.5 ]
# N = (3 d^2 - 4 d + 3/2)
#   = (3*$d**2 - 4*$d + 3/2)
#   = ((3*$d - 4)*$d + 3/2)
# d = 2/3 + sqrt(1/3 * $n + -1/18)
#   = (2 + 3*sqrt(1/3 * $n - 1/18))/3
#   = (2 + sqrt(3 * $n - 1/2))/3
#   = (4 + 2*sqrt(3 * $n - 1/2))/6
#   = (4 + sqrt(12*$n - 2))/6
# at n=1/2 d=(4+sqrt(12/2-2))/6 = (4+sqrt(4))/6  = 1
#
# base at Y=0
# [ 1, 6, 17 ]
# N = (3 d^2 - 4 d + 2)
#   = (3*$d**2 - 4*$d + 2)
#   = ((3*$d - 4)*$d + 2)
#
# centre
# [ 3,11,25 ]
# N = (3 d^2 - d + 1)
#   = (3*$d**2 - $d + 1)
#   = ((3*$d - 1)*$d + 1)
#
sub n_to_xy {
  my ($self, $n) = @_;
  ### MPeaks n_to_xy(): $n

  # adjust to N=0 at start X=-1,Y=0
  $n = $n - $self->{'n_start'};

  my $d;
  {
    my $r = 12*$n + 10;
    if ($r < 4) {
      return;    # N < -0.5, so before start of path
    }
    $d = int( (sqrt(int($r)) + 4)/6 );
  }
  $n -= (3*$d - 1)*$d;   # to $n==0 at centre
  ### $d
  ### remainder: $n

  if ($n >= $d) {
    ### right vertical ...
    # N-d is top of right peak
    # N-(3d-1) = N-3d+1 is right Y=0
    # Y=-(N-2d+1)= -N+3d-1
    return ($d,
            -$n + 3*$d - 1);
  }
  if ($n <= (my $neg_d = -$d)) {
    ### left vertical ...
    # N+(3d-1) is left Y=0
    # Y=N+3d-1
    return ($neg_d,
            $n + 3*$d - 1);
  }
  ### centre diagonals ...
  return ($n,
          abs($n) + $d-1);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### MPeaks xy_to_n(): $x, $y

  $y = round_nearest ($y);
  if ($y < 0) {
    return undef;
  }
  $x = round_nearest ($x);

  {
    my $two_x = 2*$x;
    if ($two_x > $y) {
      ### right vertical ...
      # right end [ 5,16,33 ]
      # N = (3 x^2 + 2 x)
      return (3*$x+2)*$x - $y + $self->{'n_start'} - 1;
    }
    if ($two_x < -$y) {
      ### left vertical ...
      # Nleftend = (3 d^2 - 4 d + 2)
      #          = (3x+4)x + 2
      return (3*$x+4)*$x + 1 + $y + $self->{'n_start'};
    }
  }

  ### centre diagonals ...
  # d=Y+abs(x) with d=0 first (not d=1 as above),  N=(3 d^2 + 5 d + 3)
  my $d = $y - abs($x);
  ### $d
  return (3*$d+5)*$d + 2 + $x + $self->{'n_start'};
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);

  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2
  if ($y2 < 0) {
    return (1, 0); # rect all negative, no N
  }
  if ($y1 < 0) { $y1 *= 0; }   # "*=" to preserve bigint y1

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # swap to x1<=x2

  my $zero = $x1 * 0 * $x2;

  # columns X<0 are increasing with increasing Y
  # columns X>0 increase below Y=2*X
  #
  return ($self->{'n_start'},
          max (
               # left column
               $self->xy_to_n($x1,
                              ($y2 >= 2*$x1 ? $y2 : $y1)),

               # right column
               $self->xy_to_n($x2,
                              ($y2 >= 2*$x2 ? $y2 : $y1)),

               # top row centre X=0, if it's covered by x1,x2
               ($x1 < 0 && $x2 > 0
                ? $self->xy_to_n($zero,$y2)
                : ())));
}

# No, because N decreases in right hand columns
# return (1,
#         max ($self->xy_to_n($x1,$y2),
#              $self->xy_to_n($x2,$y2),
#              # and at X=0 if it's covered by x1,x2
#              ($x1 < 0 && $x2 > 0 ? $self->xy_to_n($zero,$y2) : ()));

# my @n;
# if ($y1 <= 2*$x2) {
#   # right vertical
#   push @n, (3*$x2+2)*$x2 - $y1;
# }
# if (($x1 > 0) != ($x2 > 0)) {
#   # centre vertical
#   return (3*$y2+5)*$y2 + 3;
# }

1;
__END__

=for stopwords Ryde Math-PlanePath ie OEIS

=head1 NAME

Math::PlanePath::MPeaks -- points in expanding M shape

=head1 SYNOPSIS

 use Math::PlanePath::MPeaks;
 my $path = Math::PlanePath::MPeaks->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path puts points in layers of an "M" shape

=cut

# math-image --path=MPeaks --expression='i<=56?i:0' --output=numbers --size=50x10

=pod

         41                              49         7
         40  42                      48  50         6
         39  22  43              47  28  51         5
         38  21  23  44      46  27  29  52         4
         37  20   9  24  45  26  13  30  53         3
         36  19   8  10  25  12  14  31  54         2
         35  18   7   2  11   4  15  32  55         1
         34  17   6   1   3   5  16  33  56     <- Y=0

                          ^
         -4  -3  -2  -1  X=0  1   2   3   4

N=1 to N=5 is the first "M" shape, then N=6 to N=16 on top of that, etc.
The centre goes half way down.  Reckoning the N=1 to N=5 as layer d=1 then

    Xleft = -d
    Xright = d
    Ypeak = 2*d - 1
    Ycentre = d - 1

Each "M" is 6 points longer than the preceding.  The verticals are each 2
longer, and the centre diagonals each 1 longer.  This step 6 is similar to
the C<HexSpiral>.

The octagonal numbers N=1,8,21,40,65,etc k*(3k-2) are a straight line
of slope 2 going up to the left.  The octagonal numbers of the second
kind N=5,16,33,56,etc k*(3k+2) are along the X axis to the right.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pattern.  For example to
start at 0,

=cut

# math-image --path=MPeaks,n_start=0 --expression='i<=55?i:0' --output=numbers --size=50x10

=pod

    n_start => 0

    40                              48
    39  41                      47  49
    38  21  42              46  27  50
    37  20  22  43      45  26  28  51
    36  19   8  23  44  25  12  29  52
    35  18   7   9  24  11  13  30  53
    34  17   6   1  10   3  14  31  54
    33  16   5   0   2   4  15  32  55

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::MPeaks-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n < 0.5> the return is an empty list, it being considered there are
no negative points.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are each
rounded to the nearest integer which has the effect of treating points as a
squares of side 1, so the half-plane y>=-0.5 is entirely covered.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include

=over

L<http://oeis.org/A045944> (etc)

=back

    n_start=1 (the default)
      A045944    N on X axis >= 1, extra initial 0
                   being octagonal numbers second kind
      A056106    N on Y axis, extra initial 1
      A056109    N on X negative axis <= -1

    n_start=0
      A049450    N on Y axis, extra initial 0, 2*pentagonal

    n_start=2
      A027599    N on Y axis, extra initial 6,2

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PyramidSides>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut


# Local variables:
# compile-command: "math-image --path=MPeaks --lines --scale=20"
# End:
#
# math-image --path=MPeaks --all --output=numbers