/usr/share/perl5/Math/PlanePath/LTiling.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::LTiling;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'round_up_pow',
'digit_split_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant parameter_info_array =>
[ { name => 'L_fill',
display => 'L Fill',
type => 'enum',
default => 'middle',
choices => ['middle','left','upper','ends','all'],
choices_display => ['Middle','Left','Upper','Ends','All'],
description => 'Which points to number with each "L".',
},
];
my %sumxy_minimum = (middle => 0, # X=0,Y=0
left => 1, # X=1,Y=0
upper => 1, # X=0,Y=1
ends => 1, # X=1,Y=0 and X=0,Y=1
all => 0, # X=0,Y=0
);
sub sumxy_minimum {
my ($self) = @_;
return $sumxy_minimum{$self->{'L_fill'}};
}
*sumabsxy_minimum = \&sumxy_minimum;
*absdiffxy_minimum = \&sumxy_minimum;
*rsquared_minimum = \&sumxy_minimum;
{
my %turn_any_straight = (# middle => 0,
left => 1,
# upper => 0,
ends => 1,
all => 1,
);
sub turn_any_straight {
my ($self) = @_;
return $turn_any_straight{$self->{'L_fill'}};
}
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
my $L_fill = $self->{'L_fill'};
if (! defined $L_fill) {
$self->{'L_fill'} = 'middle';
} elsif (! exists $sumxy_minimum{$L_fill}) {
croak "Unrecognised L_fill option: ",$L_fill;
}
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### LTiling n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
my $x = my $y = ($n * 0); # inherit bignum 0
my $len = $x + 1; # inherit bignum 1
my $L_fill = $self->{'L_fill'};
if ($L_fill eq 'left') {
$x += 1;
} elsif ($L_fill eq 'upper') {
$y += 1;
} elsif ($L_fill eq 'ends') {
my $rem = _divrem_mutate ($n, 2);
if ($rem) { # low digit==1
$y = $len; # 1
} else { # low digit==0
$x = $len; # 1
}
} elsif ($L_fill eq 'all') {
my $rem = _divrem_mutate ($n, 3);
if ($rem == 1) {
$x = $len; # 1
} elsif ($rem == 2) {
$y = $len; # 1
}
}
foreach my $digit (digit_split_lowtohigh($n,4)) {
### at: "$x,$y digit=$digit"
if ($digit == 1) {
($x,$y) = (4*$len-1-$y,$x);
} elsif ($digit == 2) {
$x += $len;
$y += $len;
} elsif ($digit == 3) {
($x,$y) = ($y,4*$len-1-$x);
}
$len *= 2;
}
### final: "$x,$y"
return ($x,$y);
}
my @yx_to_digit = ([0,0,1,1],
[0,2,2,1],
[3,2],
[3,3]);
my %fill_factor = (middle => 1,
left => 1,
upper => 1,
ends => 2,
all => 3);
my %yx_to_fill = (middle => [[0]],
left => [[undef,0]],
upper => [[],
[0]],
ends => [[undef,0],
[1]],
all => [[0,1],
[2]]);
sub xy_to_n {
my ($self, $x, $y) = @_;
### LTiling xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0 || $y < 0) {
return undef;
}
my ($len, $level) = round_down_pow (max($x,$y),
2);
if (is_infinite($level)) {
return $level;
}
my $n = ($x * 0 * $y); # inherit bignum 0
while ($level-- >= 0) {
### assert: $x >= 0
### assert: $y >= 0
### assert: ($y < 2*$len && $x < 4*$len) || ($x < 2*$len && $y < 4*$len)
### $len
### x: int($x/$len)
### y: int($y/$len)
my $digit = $yx_to_digit[int($y/$len)]->[int($x/$len)];
if ($digit == 1) {
($x,$y) = ($y,4*$len-1-$x);
} elsif ($digit == 2) {
$x -= $len;
$y -= $len;
} elsif ($digit == 3) {
($x,$y) = (4*$len-1-$y,$x);
}
### to: "digit=$digit xy=$x,$y"
$n = $n*4 + $digit;
$len /= 2;
}
### assert: ($x==0 && $y== 0) || ($x==1 && $y== 0) || ($x==0 && $y== 1)
my $fill = $self->{'L_fill'};
if (defined (my $digit = $yx_to_fill{$fill}->[$y]->[$x])) {
return $n*$fill_factor{$fill} + $digit;
}
return undef;
}
my %range_factor = (middle => 3,
left => 3,
upper => 3,
ends => 6,
all => 8);
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### LTiling rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### rect: "X = $x1 to $x2, Y = $y1 to $y2"
if ($x2 < 0 || $y2 < 0) {
### rectangle outside first quadrant ...
return (1, 0);
}
my ($len, $level) = round_down_pow (max($x2,$y2), 2);
### $len
### $level
if (is_infinite($level)) {
return (0,$level);
}
return (0,
$len*$len * $range_factor{$self->{'L_fill'}});
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 4**$level * $fill_factor{$self->{'L_fill'}} - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
_divrem_mutate ($n, $fill_factor{$self->{'L_fill'}});
my ($pow, $exp) = round_up_pow ($n+1, 4);
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde ie Math-PlanePath Asano Ranjan Roos Welzl Widmayer Informatics Nlevel OEIS bitwise
=head1 NAME
Math::PlanePath::LTiling -- 2x2 self-similar of four pattern parts
=head1 SYNOPSIS
use Math::PlanePath::LTiling;
my $path = Math::PlanePath::LTiling->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is a self-similar tiling by "L" shapes. A base "L" is replicated four
times with end parts turned +90 and -90 degrees to make a larger L,
+-----+-----+
|12 | 15|
| +--+--+ |
| |14 | |
+--+ +--+--+
| | |11 |
| +--+ +--+
|13 | | |
+-----+ +-----+--+ +--+--+-----+
| 3 | | 3 | |10 | | 5|
| +--+ --> | +--+ +--+--+ +--+ |
| | | | | | 8 | 9 | | |
+--+ +--+ +--+--+ +--+ +--+--+--+--+ +--+
| | --> | | 2 | | | | 2 | | | 6 | |
| +--+ | +--+--+ | | +--+--+ | +--+--+ |
| 0 | | 0 | 1 | | 0 | 1 | 7 | 4 |
+-----+ +-----+-----+ +-----+-----+-----+-----+
The parts are numbered to the left then middle then upper. This relative
numbering is maintained when rotated at the next replication level, as for
example N=4 to N=7.
The result is to visit 1 of every 3 points in the first quadrant with a
subtle layout of points and spaces making diagonal lines and little 2x2
blocks.
15 | 48 51 61 60 140 143 163
14 | 50 62 142 168
13 | 56 59 139 162
12 | 49 58 63 141 160
11 | 55 44 47 131 138
10 | 57 46 136 137
9 | 54 43 130 134
8 | 52 53 45 128 129 135
7 | 12 15 35 42 37 21
6 | 14 40 41 22
5 | 11 34 38 25
4 | 13 32 33 39 36
3 | 3 10 5 31 26
2 | 8 9 27 24
1 | 2 6 30 18
Y=0 | 0 1 7 4 28 29 19
+------------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
On the X=Y leading diagonal N=0,2,8,10,32,etc is the integers made from only
digits 0 and 2 in base 4. Or equivalently integers which have zero bits at
all even numbered positions, binary c0d0e0f0.
=head2 Left or Upper
Option C<L_fill =E<gt> "left"> or C<L_fill =E<gt> "upper"> numbers the tiles
instead at their left end or upper end respectively.
L_fill => 'left' 8 | 52 45 43
7 | 15 42
+-----+ 6 | 12 35 40
| | 5 | 14 34 33
| +--+ 4 | 13 11 32
| 3| | 3 | 10 9 5
+--+ +--+--+ 2 | 3 8 6 31
| | 2| 1| 1 | 2 1 4
| +--+--+ | Y=0 | 0 7
| 0| | +------------------------------------
+-----+-----+ X=0 1 2 3 4 5 6 7 8
L_fill => 'upper' 8 | 53 42
7 | 12 35 40
+-----+ 6 | 14 15 34 41
| 3| 5 | 13 11 32 39
| +--+ 4 | 10 33
| | 2| 3 | 3 8
+--+ +--+--+ 2 | 2 9 5
| 0| | | 1 | 0 7 6 28
| +--+--+ | Y=0 | 1 4
| | 1 | +------------------------------------
+-----+-----+ X=0 1 2 3 4 5 6 7 8
The effect is to disrupt the pattern a bit though the overall structure of
the replications is unchanged.
"left" is as viewed looking towards the L from above. It may have been
better to call it "right", but won't change that now.
=head2 Ends
Option C<L_fill =E<gt> "ends"> numbers the two endpoints within each "L",
first the left then upper. This is the inverse of the default middle shown
above, ie. it visits all the points which the middle option doesn't, and so
2 of every 3 points in the first quadrant.
+-----+
| 7|
| +--+
| 6| 5|
+--+ +--+--+
| 1| 4| 2|
| +--+--+ |
| 0| 3 |
+-----+-----+
15 | 97 102 123 120 281 286 327 337
14 | 96 101 103 122 124 121 280 285 287 326 325
13 | 99 100 113 118 125 126 283 284 279 321 324
12 | 98 112 117 119 127 282 278 277 320 323
11 | 111 115 116 89 94 263 273 276 274 266
10 | 110 109 114 88 93 95 262 261 272 275 268
9 | 105 108 106 91 92 87 257 260 258 271 269
8 | 104 107 90 86 85 256 259 270 265
7 | 25 30 71 81 84 82 74 43 40
6 | 24 29 31 70 69 80 83 76 75 42 44
5 | 27 28 23 65 68 66 79 77 72 50 45
4 | 26 22 21 64 67 78 73 52 51 47
3 | 7 17 20 18 10 63 55 53 48 34
2 | 6 5 16 19 12 11 62 61 54 49 36
1 | 1 4 2 15 13 8 57 60 58 39 37
Y=0 | 0 3 14 9 56 59 38 33
+------------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
=head2 All
Option C<L_fill =E<gt> "all"> numbers all three points of each "L", as
middle, left then right. With this the path visits all points of the first
quadrant.
7 | 36 38 46 45 105 107 122 126
+-----+ 6 | 37 42 44 47 106 104 120 121
| 9 11| 5 | 41 43 33 35 98 102 103 100
| +--+ 4 | 39 40 34 32 96 97 101 99
|10| 8| 3 | 9 11 26 30 31 28 16 15
+--+ +--+--+ 2 | 10 8 24 25 29 27 19 17
| 2| 6 7| 4| 1 | 2 6 7 4 23 20 18 13
| +--+--+ | Y=0 | 0 1 5 3 21 22 14 12
| 0 1| 5 3| +--------------------------------
+-----+-----+ X=0 1 2 3 4 5 6 7
Along the X=Y leading diagonal N=0,6,24,30,96,etc are triples of the values
from the single-point case, so 3* numbers using digits 0 and 2 in base 4,
which is the same as 2* numbers using 0 and 3 in base 4.
=head2 Level Ranges
For the "middles", "left" or "upper" cases with one N per tile, and taking
the initial N=0 tile as level 0, a replication level is
Nstart = 0
to
Nlevel = 4^level - 1 inclusive
Xmax = Ymax = 2 * 2^level - 1
For example level 2 which is the large tiling shown in the introduction is
N=0 to N=4^2-1=15 and extends to Xmax=Ymax=2*2^2-1=7.
For the "ends" variation there's two points per tile, or for "all" there's
three, in which case the Nlevel increases to
Nlevel_ends = 2 * 4^level - 1
Nlevel_all = 3 * 4^level - 1
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::LTiling-E<gt>new ()>
=item C<$path = Math::PlanePath::LTiling-E<gt>new (L_fill =E<gt> $str)>
Create and return a new path object. The C<L_fill> choices are
"middle" the default
"left"
"upper"
"ends"
"all"
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return
0, 4**$level - 1 middle, left, upper
0, 2*4**$level - 1 ends
0, 3*4**$level - 1 all
There are 4^level L shapes in a level, each containing 1, 2 or 3 points,
numbered starting from 0.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include
=over
L<http://oeis.org/A062880> (etc)
=back
L_fill=middle
A062880 N on X=Y diagonal, base 4 digits 0,2 only
A048647 permutation N at transpose Y,X
base4 digits 1<->3 and 0,2 unchanged
A112539 X+Y+1 mod 2, parity inverted
L_fill=left or upper
A112539 X+Y mod 2, parity
A112539 is a parity of bits at even positions in N, ie. count 1-bits at even
bit positions (least significant is bit position 0), then add 1 and take
mod 2. This works because in the pattern sub-blocks 0 and 2 are unchanged
and 1 and 3 are turned so as to be on opposite X,Y odd/even parity, so a
flip for every even position 1-bit. L_fill=middle starts on a 0 even
parity, and L_fill=left and upper start on 1 odd parity. The latter is the
form in A112539 and L_fill=middle is the bitwise 0E<lt>-E<gt>1 inverse.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::CornerReplicate>,
L<Math::PlanePath::SquareReplicate>,
L<Math::PlanePath::QuintetReplicate>,
L<Math::PlanePath::GosperReplicate>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|