/usr/share/perl5/Math/PlanePath/KochPeaks.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::KochPeaks;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow';
use Math::PlanePath::KochCurve;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
# uncomment this to run the ### lines
#use Devel::Comments;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
use constant x_negative_at_n => 1;
use constant sumabsxy_minimum => 1; # minimum X=1,Y=0
use constant absdiffxy_minimum => 1; # X=Y never occurs
use constant rsquared_minimum => 1; # minimum X=1,Y=0
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1; # never vertical
use constant dsumxy_maximum => 2; # diagonal NE
use constant ddiffxy_maximum => 2; # diagonal NW
use constant dir_maximum_dxdy => (1,-1); # South-East
use constant turn_any_straight => 0; # never straight
#------------------------------------------------------------------------------
# N=1 to 3 3 of, level=0
# N=4 to 12 9 of, level=1
# N=13 to 45 33 of, level=2
#
# N=0.5 to 3.49 diff=3
# N=3.39 to 12.49 diff=9
# N=12.5 to 45.5 diff=33
#
# each length = 2*4^level + 1
#
# Nstart = 1 + 2*4^0 + 1 + 2*4^1 + 1 + ... + 2*4^(level-1) + 1
# = 1 + level + 2*[ 4^0 + 4^1 + ... + 4^(level-1) ]
# = level+1 + 2*[ (4^level - 1)/3 ]
# = level+1 + (2*4^level - 2)/3
# = level + (2*4^level - 2 + 3)/3
# = level + (2*4^level + 1)/3
#
# 3*n = 2*4^level + 1
# 3*n-1 = 2*4^level
# (3*n-1)/2 = 4^level
#
# Nbase = 0.5 + 2*4^0 + 1 + 2*4^1 + 1 + ... + 2*4^(level-1) + 1
# = level + (2*4^level + 1)/3 - 1/2
# = level + 2/3*4^level + 1/3 - 1/2
# = level + 2/3*4^level - 1/6
# = level + 4/6*4^level - 1/6
# = level + (4*4^level - 1)/6
# = level + (4^(level+1) - 1)/6
#
# 6*N = 4^(level+1) - 1
# 6*N + 1 = 4^(level+1)
# level+1 = log4(6*N + 1)
# level = log4(6*N + 1) - 1
#
### loop 1: (2*4**1 + 1)/3
### loop 2: (2*4**2 + 1)/3
### loop 3: (2*4**3 + 1)/3
# sub _n_to_level {
# my ($n) = @_;
# my ($side, $level) = round_down_pow(6*$n + 1, 4);
# my $base = $level + (2*$side + 1)/3 - .5;
# ### $level
# ### $base
# if ($base > $n) {
# $level--;
# $side /= 4;
# $base = $level + (2*$side + 1)/3 - .5;
# ### $level
# ### $base
# }
# return ($level, $base, $side + .5);
# }
# sub _level_to_base {
# my ($level) = @_;
# return $level + (2*$side + 1)/3 - .5;
# }
sub _n_to_side_level_base {
my ($n) = @_;
my ($side, $level) = round_down_pow((3*$n-1)/2, 4);
my $base = $level + (2*$side + 1)/3;
### $level
### $base
if (2*$n+1 < 2*$base) {
$level--;
$side /= 4;
$base = $level + (2*$side + 1)/3;
### $level
### $base
}
return ($side, $level, $base);
}
sub n_to_xy {
my ($self, $n) = @_;
### KochPeaks n_to_xy(): $n
# $n<0.5 no good for Math::BigInt circa Perl 5.12, compare in integers
return if 2*$n < 1;
if (is_infinite($n)) { return ($n,$n); }
my ($side, $level, $base) = _n_to_side_level_base($n);
my $rem = $n - $base;
my $frac;
if ($rem < 0) {
### neg frac
$frac = $rem;
$rem = 0;
} elsif ($rem > 2*$side) {
### excess frac
$frac = $rem - 2*$side;
$rem -= $frac;
} else {
### no frac
$frac = 0;
}
### $frac
### $rem
### $n
### next base would be: ($level+1) + (2*4**($level+1) + 1)/3
### assert: $n-$frac >= $base
### assert: $n-$frac < ($level+1) + (2*4**($level+1) + 1)/3
### assert: $rem>=0
### assert: $rem < 2 * 4 ** $level + 1
### assert: $rem <= 2*$side+1
my $pos = 3**$level;
if ($rem < $side) {
my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy($rem);
### left side: $rem
### flat: "$x,$y"
$x += 2*$frac;
return (($x-3*$y)/2 - $pos, # rotate +60
($x+$y)/2);
} else {
my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy($rem-$side);
### right side: $rem-$side
### flat: "$x,$y"
$x += 2*$frac;
return (($x+3*$y)/2, # rotate -60
($y-$x)/2 + $pos);
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### KochPeaks xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($y < 0 || ! (($x ^ $y) & 1)) {
### neg y or parity...
return undef;
}
my ($len,$level) = round_down_pow ($y+abs($x), 3);
### $level
### $len
if (is_infinite($level)) {
return $level;
}
my $n;
if ($x < 0) {
$x += $len;
($x,$y) = (($x+3*$y)/2, # rotate -60
($y-$x)/2);
$n = 0;
### left rotate -60 to: "x=$x,y=$y n=$n"
} else {
$y -= $len;
($x,$y) = (($x-3*$y)/2, # rotate +60
($x+$y)/2);
$n = 1;
### right rotate +60 to: "x=$x,y=$y n=$n"
}
foreach (1 .. $level) {
$n *= 4;
### at: "level=$level len=$len x=$x,y=$y n=$n"
if ($x < $len) {
$len /= 3;
my $rel = 2*$len;
if ($x < $rel) {
### digit 0
} else {
### digit 1 sub: "$rel to x=".($x-$rel)
$x -= $rel;
($x,$y) = (($x+3*$y)/2, # rotate -60
($y-$x)/2);
$n += 1;
}
} else {
$len /= 3;
$x -= 4*$len;
if ($x < $y) { # before diagonal
### digit 2...
($x,$y) = (($x-3*$y)/2 + 2*$len, # rotate +60
($x+$y)/2);
$n += 2;
} else {
#### digit 3...
$n += 3;
}
}
}
### end at: "x=$x,y=$y n=$n"
if ($x) {
### endmost point
$n += 1;
$x -= 2;
}
if ($x != 0 || $y != 0) {
return undef;
}
return $n + $level + (2*4**$level + 1)/3 + ($x == 2);
}
# level extends to x= +/- 3^level
# y= 0 to 3^level
#
# diagonal X=Y or Y=-X is lowest in a level, so round down abs(X)+Y to pow 3
#
# end of level is 1 before base of level+1
# basenext = (level+1) + (2*4^(level+1) + 1)/3
# basenext-1 = level + (2*4^(level+1) + 1)/3
# = level + (8*4^level + 1)/3
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### KochPeaks rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
### rounded: "$x1,$y1 $x2,$y2"
if ($y1 < 0 && $y2 < 0) {
return (1,0);
}
# can't make use of the len=3**$level returned by round_down_pow()
my ($len, $level) = round_down_pow (max(abs($x1),abs($x2))
+ max($y1, $y2),
3);
### $level
return (1, $level + (8 * 4**$level + 1)/3);
}
# peak Y is at N = Nstart + (count-1)/2
# = level + (2*4^level + 1)/3 + (2*4^level + 1 - 1)/2
# = level + (2*4^level + 1)/3 + (2*4^level)/2
# = level + (2*4^level + 1)/3 + 4^level
# = level + (2*4^level + 1 + 3*4^level)/3
# = level + (5*4^level + 1)/3
#------------------------------------------------------------------------------
sub level_to_n_range {
my ($self, $level) = @_;
my $pow = 4**$level;
return ((2*$pow + 1)/3 + $level,
(8*$pow + 1)/3 + $level);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 1) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
my ($side, $level, $base) = _n_to_side_level_base($n);
return $level;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Math-PlanePath Nlast Xlo Xhi Xlo=-9 Xhi=+9 Ypeak Xlo,Xhi
=head1 NAME
Math::PlanePath::KochPeaks -- Koch curve peaks
=head1 SYNOPSIS
use Math::PlanePath::KochPeaks;
my $path = Math::PlanePath::KochPeaks->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path traces out concentric peaks made from integer versions of the
self-similar C<KochCurve> at successively greater replication levels.
29 9
/ \
27----28 30----31 8
\ /
23 26 32 35 7
/ \ / \ / \
21----22 24----25 33----34 36----37 6
\ /
20 38 5
/ \
19----18 40----39 4
\ /
17 8 41 3
/ / \ \
15----16 6---- 7 9----10 42----43 2
\ \ / /
14 5 2 11 44 1
/ / / \ \ \
13 4 1 3 12 45 <- Y=0
^
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9 ...
The initial figure is the peak N=1,2,3 then for the next level each straight
side expands to 3x longer with a notch in the middle like N=4 through N=8,
*
/ \
*---* becomes *---* *---*
The angle is maintained in each replacement so
*
/
*---*
\
* *
/ becomes /
* *
For example the segment N=1 to N=2 becomes N=4 to N=8, or in the next level
N=5 to N=6 becomes N=17 to N=21.
The X,Y coordinates are arranged as integers on a square grid. The result
is flattened triangular segments with diagonals at a 45 degree angle.
Unlike other triangular grid paths C<KochPeaks> uses the "odd" squares, with
one of X,Y odd and the other even. This means the rotation formulas etc
described in L<Math::PlanePath/Triangular Lattice> don't apply directly.
=head2 Level Ranges
Counting the innermost N=1 to N=3 peak as level 0, each peak is
Nstart = level + (2*4^level + 1)/3
Nend = level + (8*4^level + 1)/3
points = Nend-Nstart+1 = 2*4^level + 1
=for GP-DEFINE Nstart(k) = k + (2*4^k + 1)/3
=for GP-DEFINE Nend(k) = k + (8*4^k + 1)/3
=for GP-DEFINE points(k) = 2*4^k + 1
=for GP-Test vector(20,k,my(k=k-1); Nend(k)-Nstart(k)+1) == vector(20,k,my(k=k-1); points(k))
=for GP-Test 2+(2*4^2+1)/3 == 13
=for GP-Test Nstart(0) == 1
=for GP-Test Nend(0) == 3
=for GP-Test Nstart(2) == 13
=for GP-Test 2+(8*4^2+1)/3 == 45
=for GP-Test Nend(2) == 45
=for GP-Test points(2) == 33
=for GP-Test 2*4^2+1 == 33
=for GP-Test 45-13+1 == 33
For example the outer peak shown above is level 2 starting at
Nstart=2+(2*4^2+1)/3=13 through to Nend=2+(8*4^2+1)/3=45 with
points=2*4^2+1=33 inclusive (45-13+1=33). The X width at a given level is
the endpoints at
Xlo = -(3^level)
Xhi = +(3^level)
For example the level 2 above runs from Xlo=-9 to Xhi=+9. The highest Y is
the centre peak half-way through the level at
Ypeak = 3^level
Npeak = level + (5*4^level + 1)/3
=for GP-DEFINE Npeak(k) = k + (5*4^k + 1)/3
=for GP-Test vector(20,k,my(k=k-1); (Nstart(k) + Nend(k))/2) == vector(20,k,my(k=k-1); Npeak(k))
=for GP-Test 2+(5*4^2+1)/3 == 29
=for GP-Test Npeak(2) == 29
For example the level 2 outer peak above is Ypeak=3^2=9 at
N=2+(5*4^2+1)/3=29. For each level the Xlo,Xhi and Ypeak extents grow by a
factor of 3.
The triangular notches in each segment are not big enough to go past the Xlo
and Xhi end points. The new triangular part can equal the ends, such as N=6
or N=19, but not go beyond.
In general a segment like N=5 to N=6 which is at the Xlo end will expand to
give two such segments and two points at the limit in the next level, as for
example N=5 to N=6 expands to N=19,20 and N=20,21. So the count of points
at Xlo doubles each time,
CountLo = 2^level
CountHi = 2^level same at Xhi
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::KochPeaks-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional C<$n> gives an X,Y position along a straight line between the
integer positions.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return per L</Level Ranges> above,
((2 * 4**$level + 1)/3 + $level,
(8 * 4**$level + 1)/3 + $level)
=back
=head1 FORMULAS
=head2 Rectangle to N Range
The baseline for a given level is along a diagonal X+Y=3^level or
-X+Y=3^level. The containing level can thus be found as
level = floor(log3( Xmax + Ymax ))
with Xmax as maximum absolute value, max(abs(X))
The endpoint in a level is simply 1 before the start of the next, so
Nlast = Nstart(level+1) - 1
= (level+1) + (2*4^(level+1) + 1)/3 - 1
= level + (8*4^level + 1)/3
Using this Nlast is an over-estimate of the N range needed, but an easy
calculation.
It's not too difficult to work down for an exact range, by considering which
parts of the curve might intersect a rectangle. But some backtracking and
level descending is necessary because a rectangle might extend into the
empty part of a notch and so be past its baseline but not intersect any.
There's plenty of room for a rectangle to intersect nothing at all too.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::KochCurve>,
L<Math::PlanePath::KochSnowflakes>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::HilbertCurve>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|