This file is indexed.

/usr/share/perl5/Math/PlanePath/KochPeaks.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::KochPeaks;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow';
use Math::PlanePath::KochCurve;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

# uncomment this to run the ### lines
#use Devel::Comments;


use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
use constant x_negative_at_n => 1;
use constant sumabsxy_minimum  => 1; # minimum X=1,Y=0
use constant absdiffxy_minimum => 1; # X=Y never occurs
use constant rsquared_minimum  => 1; # minimum X=1,Y=0

use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1; # never vertical
use constant dsumxy_maximum => 2; # diagonal NE
use constant ddiffxy_maximum => 2; # diagonal NW
use constant dir_maximum_dxdy => (1,-1); # South-East
use constant turn_any_straight => 0; # never straight


#------------------------------------------------------------------------------

# N=1 to 3      3 of, level=0
# N=4 to 12     9 of, level=1
# N=13 to 45   33 of, level=2
#
# N=0.5 to 3.49     diff=3
# N=3.39 to 12.49   diff=9
# N=12.5 to 45.5    diff=33
#
# each length = 2*4^level + 1
#
#     Nstart = 1 + 2*4^0 + 1 + 2*4^1 + 1 + ... + 2*4^(level-1) + 1
#            = 1 + level + 2*[ 4^0 + 4^1 + ... + 4^(level-1) ]
#            = level+1 + 2*[ (4^level - 1)/3 ]
#            = level+1 + (2*4^level - 2)/3
#            = level + (2*4^level - 2 + 3)/3
#            = level + (2*4^level + 1)/3
#
#     3*n = 2*4^level + 1
#     3*n-1 = 2*4^level
#     (3*n-1)/2 = 4^level
#
# Nbase = 0.5 + 2*4^0 + 1 + 2*4^1 + 1 + ... + 2*4^(level-1) + 1
#       = level + (2*4^level + 1)/3 - 1/2
#       = level + 2/3*4^level + 1/3 - 1/2
#       = level + 2/3*4^level - 1/6
#       = level + 4/6*4^level - 1/6
#       = level + (4*4^level - 1)/6
#       = level + (4^(level+1) - 1)/6
#
#     6*N = 4^(level+1) - 1
#     6*N + 1 = 4^(level+1)
#     level+1 = log4(6*N + 1)
#     level = log4(6*N + 1) - 1
#
### loop 1: (2*4**1 + 1)/3
### loop 2: (2*4**2 + 1)/3
### loop 3: (2*4**3 + 1)/3

# sub _n_to_level {
#   my ($n) = @_;
#   my ($side, $level) = round_down_pow(6*$n + 1, 4);
#   my $base = $level + (2*$side + 1)/3 - .5;
#   ### $level
#   ### $base
#   if ($base > $n) {
#     $level--;
#     $side /= 4;
#     $base = $level + (2*$side + 1)/3 - .5;
#     ### $level
#     ### $base
#   }
#   return ($level, $base, $side + .5);
# }
# sub _level_to_base {
#   my ($level) = @_;
#   return $level + (2*$side + 1)/3 - .5;
# }

sub _n_to_side_level_base {
  my ($n) = @_;
  my ($side, $level) = round_down_pow((3*$n-1)/2, 4);
  my $base = $level + (2*$side + 1)/3;
  ### $level
  ### $base
  if (2*$n+1 < 2*$base) {
    $level--;
    $side /= 4;
    $base = $level + (2*$side + 1)/3;
    ### $level
    ### $base
  }
  return ($side, $level, $base);
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### KochPeaks n_to_xy(): $n

  # $n<0.5 no good for Math::BigInt circa Perl 5.12, compare in integers
  return if 2*$n < 1;

  if (is_infinite($n)) { return ($n,$n); }

  my ($side, $level, $base) = _n_to_side_level_base($n);

  my $rem = $n - $base;
  my $frac;
  if ($rem < 0) {
    ### neg frac
    $frac = $rem;
    $rem = 0;
  } elsif ($rem > 2*$side) {
    ### excess frac
    $frac = $rem - 2*$side;
    $rem -= $frac;
  } else {
    ### no frac
    $frac = 0;
  }
  ### $frac
  ### $rem
  ### $n

  ### next base would be: ($level+1) + (2*4**($level+1) + 1)/3
  ### assert: $n-$frac >= $base
  ### assert: $n-$frac < ($level+1) + (2*4**($level+1) + 1)/3

  ### assert: $rem>=0
  ### assert: $rem < 2 * 4 ** $level + 1
  ### assert: $rem <= 2*$side+1

  my $pos = 3**$level;
  if ($rem < $side) {
    my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy($rem);
    ### left side: $rem
    ### flat: "$x,$y"
    $x += 2*$frac;
    return (($x-3*$y)/2 - $pos,    # rotate +60
            ($x+$y)/2);
  } else {
    my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy($rem-$side);
    ### right side: $rem-$side
    ### flat: "$x,$y"
    $x += 2*$frac;
    return (($x+3*$y)/2,           # rotate -60
            ($y-$x)/2 + $pos);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### KochPeaks xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ($y < 0 || ! (($x ^ $y) & 1)) {
    ### neg y or parity...
    return undef;
  }
  my ($len,$level) = round_down_pow ($y+abs($x), 3);
  ### $level
  ### $len
  if (is_infinite($level)) {
    return $level;
  }

  my $n;
  if ($x < 0) {
    $x += $len;
    ($x,$y) = (($x+3*$y)/2,   # rotate -60
               ($y-$x)/2);
    $n = 0;
    ### left rotate -60 to: "x=$x,y=$y   n=$n"
  } else {
    $y -= $len;
    ($x,$y) = (($x-3*$y)/2,   # rotate +60
               ($x+$y)/2);
    $n = 1;
    ### right rotate +60 to: "x=$x,y=$y   n=$n"
  }

  foreach (1 .. $level) {
    $n *= 4;
    ### at: "level=$level len=$len   x=$x,y=$y  n=$n"
    if ($x < $len) {
      $len /= 3;
      my $rel = 2*$len;
      if ($x < $rel) {
        ### digit 0
      } else {
        ### digit 1 sub: "$rel to x=".($x-$rel)
        $x -= $rel;
        ($x,$y) = (($x+3*$y)/2,   # rotate -60
                   ($y-$x)/2);
        $n += 1;
      }
    } else {
      $len /= 3;
      $x -= 4*$len;
      if ($x < $y) {   # before diagonal
        ### digit 2...
        ($x,$y) = (($x-3*$y)/2 + 2*$len,     # rotate +60
                   ($x+$y)/2);
        $n += 2;
      } else {
        #### digit 3...
        $n += 3;
      }
    }
  }
  ### end at: "x=$x,y=$y   n=$n"
  if ($x) {
    ### endmost point
    $n += 1;
    $x -= 2;
  }
  if ($x != 0 || $y != 0) {
    return undef;
  }
  return $n + $level + (2*4**$level + 1)/3 + ($x == 2);
}


# level extends to x= +/- 3^level
#                  y= 0 to 3^level
#
# diagonal X=Y or Y=-X is lowest in a level, so round down abs(X)+Y to pow 3
#
# end of level is 1 before base of level+1
#     basenext = (level+1) + (2*4^(level+1) + 1)/3
#     basenext-1 = level + (2*4^(level+1) + 1)/3
#                = level + (8*4^level + 1)/3

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### KochPeaks rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  ### rounded: "$x1,$y1  $x2,$y2"

  if ($y1 < 0 && $y2 < 0) {
    return (1,0);
  }

  # can't make use of the len=3**$level returned by round_down_pow()
  my ($len, $level) = round_down_pow (max(abs($x1),abs($x2))
                                      + max($y1, $y2),
                                      3);
  ### $level
  return (1, $level + (8 * 4**$level + 1)/3);
}

# peak Y is at N = Nstart + (count-1)/2
#                = level + (2*4^level + 1)/3 + (2*4^level + 1 - 1)/2
#                = level + (2*4^level + 1)/3 + (2*4^level)/2
#                = level + (2*4^level + 1)/3 + 4^level
#                = level + (2*4^level + 1 + 3*4^level)/3
#                = level + (5*4^level + 1)/3

#------------------------------------------------------------------------------

sub level_to_n_range {
  my ($self, $level) = @_;
  my $pow = 4**$level;
  return ((2*$pow + 1)/3 + $level,
          (8*$pow + 1)/3 + $level);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  my ($side, $level, $base) = _n_to_side_level_base($n);
  return $level;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Math-PlanePath Nlast Xlo Xhi Xlo=-9 Xhi=+9 Ypeak Xlo,Xhi

=head1 NAME

Math::PlanePath::KochPeaks -- Koch curve peaks

=head1 SYNOPSIS

 use Math::PlanePath::KochPeaks;
 my $path = Math::PlanePath::KochPeaks->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path traces out concentric peaks made from integer versions of the
self-similar C<KochCurve> at successively greater replication levels.

                               29                                 9
                              /  \
                      27----28    30----31                        8
                        \              /
             23          26          32          35               7
            /  \        /              \        /  \
    21----22    24----25                33----34    36----37      6
      \                                                  /
       20                                              38         5
      /                                                  \
    19----18                                        40----39      4
            \                                      /
             17                 8                41               3
            /                 /  \                 \
    15----16           6---- 7     9----10          42----43      2
      \                 \              /                 /
       14                 5     2    11                44         1
      /                 /     /  \     \                 \
    13                 4     1    3     12                45  <- Y=0

                                ^
    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9 ...

The initial figure is the peak N=1,2,3 then for the next level each straight
side expands to 3x longer with a notch in the middle like N=4 through N=8,

                                  *
                                 / \
      *---*     becomes     *---*   *---*

The angle is maintained in each replacement so

                                  *
                                 /
                            *---*
                             \
        *                     *
       /        becomes      /
      *                     *

For example the segment N=1 to N=2 becomes N=4 to N=8, or in the next level
N=5 to N=6 becomes N=17 to N=21.

The X,Y coordinates are arranged as integers on a square grid.  The result
is flattened triangular segments with diagonals at a 45 degree angle.

Unlike other triangular grid paths C<KochPeaks> uses the "odd" squares, with
one of X,Y odd and the other even.  This means the rotation formulas etc
described in L<Math::PlanePath/Triangular Lattice> don't apply directly.

=head2 Level Ranges

Counting the innermost N=1 to N=3 peak as level 0, each peak is

    Nstart = level + (2*4^level + 1)/3
    Nend   = level + (8*4^level + 1)/3
    points = Nend-Nstart+1 = 2*4^level + 1

=for GP-DEFINE  Nstart(k) = k + (2*4^k + 1)/3

=for GP-DEFINE  Nend(k) = k + (8*4^k + 1)/3

=for GP-DEFINE  points(k) = 2*4^k + 1

=for GP-Test  vector(20,k,my(k=k-1); Nend(k)-Nstart(k)+1) == vector(20,k,my(k=k-1); points(k))

=for GP-Test  2+(2*4^2+1)/3 == 13

=for GP-Test  Nstart(0) == 1

=for GP-Test  Nend(0) == 3

=for GP-Test  Nstart(2) == 13

=for GP-Test  2+(8*4^2+1)/3 == 45

=for GP-Test  Nend(2) == 45

=for GP-Test  points(2) == 33

=for GP-Test  2*4^2+1 == 33

=for GP-Test  45-13+1 == 33

For example the outer peak shown above is level 2 starting at
Nstart=2+(2*4^2+1)/3=13 through to Nend=2+(8*4^2+1)/3=45 with
points=2*4^2+1=33 inclusive (45-13+1=33).  The X width at a given level is
the endpoints at

    Xlo = -(3^level)
    Xhi = +(3^level)

For example the level 2 above runs from Xlo=-9 to Xhi=+9.  The highest Y is
the centre peak half-way through the level at

    Ypeak = 3^level
    Npeak = level + (5*4^level + 1)/3

=for GP-DEFINE  Npeak(k) = k + (5*4^k + 1)/3

=for GP-Test  vector(20,k,my(k=k-1); (Nstart(k) + Nend(k))/2) == vector(20,k,my(k=k-1); Npeak(k))

=for GP-Test  2+(5*4^2+1)/3 == 29

=for GP-Test  Npeak(2) == 29

For example the level 2 outer peak above is Ypeak=3^2=9 at
N=2+(5*4^2+1)/3=29.  For each level the Xlo,Xhi and Ypeak extents grow by a
factor of 3.

The triangular notches in each segment are not big enough to go past the Xlo
and Xhi end points.  The new triangular part can equal the ends, such as N=6
or N=19, but not go beyond.

In general a segment like N=5 to N=6 which is at the Xlo end will expand to
give two such segments and two points at the limit in the next level, as for
example N=5 to N=6 expands to N=19,20 and N=20,21.  So the count of points
at Xlo doubles each time,

    CountLo = 2^level
    CountHi = 2^level      same at Xhi

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::KochPeaks-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional C<$n> gives an X,Y position along a straight line between the
integer positions.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return per L</Level Ranges> above,

    ((2 * 4**$level + 1)/3 + $level,
     (8 * 4**$level + 1)/3 + $level)

=back

=head1 FORMULAS

=head2 Rectangle to N Range

The baseline for a given level is along a diagonal X+Y=3^level or
-X+Y=3^level.  The containing level can thus be found as

    level = floor(log3( Xmax + Ymax ))
    with Xmax as maximum absolute value, max(abs(X))

The endpoint in a level is simply 1 before the start of the next, so

     Nlast = Nstart(level+1) - 1
           = (level+1) + (2*4^(level+1) + 1)/3 - 1
           = level + (8*4^level + 1)/3

Using this Nlast is an over-estimate of the N range needed, but an easy
calculation.

It's not too difficult to work down for an exact range, by considering which
parts of the curve might intersect a rectangle.  But some backtracking and
level descending is necessary because a rectangle might extend into the
empty part of a notch and so be past its baseline but not intersect any.
There's plenty of room for a rectangle to intersect nothing at all too.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::KochCurve>,
L<Math::PlanePath::KochSnowflakes>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::HilbertCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut