This file is indexed.

/usr/share/perl5/Math/PlanePath/HypotOctant.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# Circle drop splash rings from 
# math-image --path=HypotOctant --values=DigitProductSteps,values_type=count
# math-image --path=Hypot --values=DigitProduct
# math-image --path=Hypot --values=DigitCount
# math-image --path=Hypot --values=Modulo,modulus=1000
# http://stefan.guninski.com/oeisposter/
#
# pi*r^2 - pi*(r-1)^2 = pi*(2r-1)
# octant is 1/8 of that pi*(2x-1)/8
# pi*(2x-1)/8=100k
# 2x-1 = 100k*8/pi
# x = 100*4/pi*k
#
# A000328 Number of points of norm <= n^2 in square lattice.
# 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441, 529, 613, 709, 797
# a(n) = 1 + 4 * sum(j=0, n^2 / 4,    n^2 / (4*j+1) - n^2 / (4*j+3) )
#
# A057655 num points norm <= n in square lattice.
#
# A036702 num points |z=a+bi| <= n with 0<=a, 0<=b<=a, so octant
# A036703 num points n-1 < z <= n, first diffs?



package Math::PlanePath::HypotOctant;
use 5.004;
use strict;
use Carp 'croak';

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'points',
      share_key       => 'points_aeo',
      display         => 'Points',
      type            => 'enum',
      default         => 'all',
      choices         => ['all','even','odd'],
      choices_display => ['All','Even','Odd'],
      description     => 'Which X,Y points visit, either all of them or just X+Y even or X+Y odd.',
    },
  ];

use constant class_x_negative => 0;
use constant class_y_negative => 0;

sub x_minimum {
  my ($self) = @_;
  return ($self->{'points'} eq 'odd'
          ? 1    # odd, line X=Y not included
          : 0);  # octant Y<=X so X-Y>=0
}
# points=odd X=1,Y=0
# otherwise  X=0,Y=0
*sumabsxy_minimum  = \&x_minimum;
*diffxy_minimum    = \&x_minimum;  # X>=Y so X-Y>=0
*absdiffxy_minimum = \&x_minimum;
*rsquared_minimum  = \&x_minimum;

sub absdy_minimum {
  my ($self) = @_;
  return ($self->{'points'} eq 'all'
          ? 0
          : 1);  # never same Y
}

sub dir_minimum_dxdy {
  my ($self) = @_;
  return ($self->{'points'} eq 'all'
          ? (1,0)    # all i=1 to X=1,Y=0
          : (1,1));  # odd,even always at least NE
}
# max direction SE diagonal as anything else is at most tangent to the
# eighth of a circle
use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

# my @n_to_x = (undef, 0);
# my @n_to_y = (undef, 0);
# my @hypot_to_n = (1);
# my @y_next_x = (1, 1);
# my @y_next_hypot = (1, 2);

sub new {
  my $self = shift->SUPER::new(@_);

  my $points = ($self->{'points'} ||= 'all');
  if ($points eq 'all') {
    $self->{'n_to_x'} = [undef];
    $self->{'n_to_y'} = [undef];
    $self->{'hypot_to_n'} = [];
    $self->{'y_next_x'} = [0];
    $self->{'y_next_hypot'} = [0];
    $self->{'x_inc'} = 1;
    $self->{'x_inc_factor'} = 2;
    $self->{'x_inc_squared'} = 1;
    $self->{'opposite_parity'} = -1;

  } elsif ($points eq 'even') {
    $self->{'n_to_x'} = [undef, 0];
    $self->{'n_to_y'} = [undef, 0];
    $self->{'hypot_to_n'} = [1];
    $self->{'y_next_x'} = [2, 1];
    $self->{'y_next_hypot'} = [4, 2];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;
    $self->{'x_inc_squared'} = 4;
    $self->{'opposite_parity'} = 1;

  } elsif ($points eq 'odd') {
    $self->{'n_to_x'} = [undef];
    $self->{'n_to_y'} = [undef];
    $self->{'hypot_to_n'} = [undef];
    $self->{'y_next_x'} = [1];
    $self->{'y_next_hypot'} = [1];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;
    $self->{'x_inc_squared'} = 4;
    $self->{'opposite_parity'} = 0;

  } else {
    croak "Unrecognised points option: ", $points;
  }
  return $self;
}


# at h=x^2+y^2
# step to (x+k)^2+y^2
# is add 2*x*k+k*k

sub _extend {
  my ($self) = @_;
  ### _extend() n: scalar(@{$self->{'n_to_x'}})

  my $n_to_x       = $self->{'n_to_x'};
  my $n_to_y       = $self->{'n_to_y'};
  my $hypot_to_n   = $self->{'hypot_to_n'};
  my $y_next_x     = $self->{'y_next_x'};
  my $y_next_hypot = $self->{'y_next_hypot'};

  my @y = (0);
  my $hypot = $y_next_hypot->[0];
  for (my $i = 1; $i < @$y_next_x; $i++) {
    if ($hypot == $y_next_hypot->[$i]) {
      push @y, $i;
    } elsif ($hypot > $y_next_hypot->[$i]) {
      @y = ($i);
      $hypot = $y_next_hypot->[$i];
    }
  }

  if ($y[-1] == $#$y_next_x) {
    my $y = scalar(@$y_next_x);
    my $x = $y + ($self->{'points'} eq 'odd');
    $y_next_x->[$y] = $x;
    $y_next_hypot->[$y] = $x*$x+$y*$y;
    ### assert: $y_next_hypot->[$y] == $y**2 + $y_next_x->[$y]**2
  }

  ### store: join(' ',map{"$n_to_x->[$_],$n_to_y->[$_]"} 0 .. $#$n_to_x)
  ### at n: scalar(@$n_to_x)
  ### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x)

  $hypot_to_n->[$hypot] = scalar(@$n_to_x);
  push @$n_to_y, @y;
  push @$n_to_x,
    map {
      my $x = $y_next_x->[$_];
      $y_next_x->[$_] += $self->{'x_inc'};
      $y_next_hypot->[$_]
        += $self->{'x_inc_factor'} * $x + $self->{'x_inc_squared'};
      ### assert: $y_next_hypot->[$_] == $_**2 + $y_next_x->[$_]**2
      $x
    } @y;

  # ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#$hypot_to_n)
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### Hypot n_to_xy(): $n

  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
  }

  my $n_to_x = $self->{'n_to_x'};
  my $n_to_y = $self->{'n_to_y'};

  while ($n > $#$n_to_x) {
    _extend($self);
  }

  return ($n_to_x->[$n], $n_to_y->[$n]);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### Hypot xy_to_n(): "$x, $y"
  ### hypot_to_n last: $#{$self->{'hypot_to_n'}}

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) {
    return undef;
  }

  my $hypot = $x*$x + $y*$y;
  if (is_infinite($hypot)) {
    return $hypot;
  }

  if ($x < 0 || $y < 0 || $y > $x) {
    ### outside first octant ...
    return undef;
  }

  my $hypot_to_n = $self->{'hypot_to_n'};
  while ($hypot > $#$hypot_to_n) {
    _extend($self);
  }

  my $n_to_x = $self->{'n_to_x'};
  my $n_to_y = $self->{'n_to_y'};

  my $n = $hypot_to_n->[$hypot];
  for (;;) {
    if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) {
      return $n;
    }
    $n += 1;

    if ($n_to_x->[$n]**2 + $n_to_y->[$n]**2 != $hypot) {
      ### oops, hypot_to_n no good ...
      return undef;
    }
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }

  if ($x2 < 0 || $y2 < 0) {
    return (1, 0);
  }

  # circle area pi*r^2, with r^2 = $x2**2 + $y2**2
  return (1, 1 + int (3.2/8 * (($x2+1)**2 + ($y2+1)**2)));
}

1;
__END__

=for stopwords Ryde Math-PlanePath hypot octant ie OEIS

=head1 NAME

Math::PlanePath::HypotOctant -- octant of points in order of hypotenuse distance

=head1 SYNOPSIS

 use Math::PlanePath::HypotOctant;
 my $path = Math::PlanePath::HypotOctant->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path visits an octant of integer points X,Y in order of their distance
from the origin 0,0.  The points are a rising triangle 0E<lt>=YE<lt>=X,

=cut

# math-image --all --path=HypotOctant --output=numbers --size=60x9

=pod

     8  |                                61
     7  |                            47  54
     6  |                        36  43  49
     5  |                    27  31  38  44
     4  |                18  23  28  34  39
     3  |            12  15  19  24  30  37
     2  |         6   9  13  17  22  29  35
     1  |     3   5   8  11  16  21  26  33
    Y=0 | 1   2   4   7  10  14  20  25  32  ...
        +---------------------------------------
         X=0  1   2   3   4   5   6   7   8


For example N=11 at X=4,Y=1 is sqrt(4*4+1*1) = sqrt(17) from the origin.
The next furthest from the origin is X=3,Y=3 at sqrt(18).

This octant is "primitive" elements X^2+Y^2 in the sense that it excludes
negative X or Y or swapped Y,X.

=head2 Equal Distances

Points with the same distance from the origin are taken in anti-clockwise
order from the X axis, which means by increasing Y.  Points with the same
distance occur when there's more than one way to express a given distance as
the sum of two squares.

Pythagorean triples give a point on the X axis and also above.  For example
5^2 == 4^2 + 3^2 has N=14 at X=5,Y=0 simply as 5^2 = 5^2 + 0 and then N=15
at X=4,Y=3 for the triple.  Both are 5 away from the origin.

Combinations like 20^2 + 15^2 == 24^2 + 7^2 occur too, and also with three
or more different ways to have the same sum distance.

=head2 Even Points

Option C<points =E<gt> "even"> visits just the even points, meaning the sum
X+Y even, so X,Y both even or both odd.

=cut

# math-image --all --path=HypotOctant,points=even --output=numbers --size=60

=pod

    12  |                                    66
    11  |     points => "even"            57
    10  |                              49    58
     9  |                           40    50
     8  |                        32    41    51
     7  |                     25    34    43
     6  |                  20    27    35    45
     5  |               15    21    29    37
     4  |            10    16    22    30    39
     3  |          7    11    17    24    33
     2  |       4     8    13    19    28    38
     1  |    2     5     9    14    23    31
    Y=0 | 1     3     6    12    18    26    36
        +---------------------------------------
        X=0  1  2  3  4  5  6  7  8  9 10 11 12

Even points can be mapped to all points by a 45 degree rotate and flip.
N=1,3,6,12,etc on the X axis here is on the X=Y diagonal of all-points.  And
conversely N=1,2,4,7,10,etc on the X=Y diagonal here is on the X axis of
all-points.

    all_X = (even_X + even_Y) / 2
    all_Y = (even_X - even_Y) / 2

    even_X = (all_X + all_Y)
    even_Y = (all_X - all_Y)

The sets of points with equal hypotenuse are the same in the even and all,
but the flip takes them in reverse order.  The first such reversal occurs at
N=14 and N=15.  In even-points they're at 7,1 and 5,5.  In all-points
they're at 5,0 and 4,3 and those two map 5,5 and 7,1, ie. the opposite way
around.

=head2 Odd Points

Option C<points =E<gt> "odd"> visits just the odd points, meaning sum X+Y
odd, so X,Y one odd the other even.

=cut

# math-image --all --path=HypotOctant,points=odd --output=numbers --size=60

=pod

    12  |                                       66
    11  |        points => "odd"             57
    10  |                                 47    58
     9  |                              39    49
     8  |                           32    41    51
     7  |                        25    33    42
     6  |                     20    26    35    45
     5  |                  14    21    29    37
     4  |               10    16    22    30    40
     3  |             7    11    17    24    34
     2  |          4     8    13    19    28    38
     1  |       2     5     9    15    23    31
    Y=0 |    1     3     6    12    18    27    36
        +------------------------------------------
        X=0  1  2  3  4  5  6  7  8  9 10 11 12 13

The X=Y diagonal is excluded because it has X+Y even.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::HypotOctant-E<gt>new ()>

=item C<$path = Math::PlanePath::HypotOctant-E<gt>new (points =E<gt> $str)>

Create and return a new hypot octant path object.  The C<points> option can be

    "all"         all integer X,Y (the default)
    "even"        only points with X+Y even
    "odd"         only points with X+Y odd

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n E<lt> 1> the return is an empty list, it being considered the first
point at X=0,Y=0 is N=1.

Currently it's unspecified what happens if C<$n> is not an integer.
Successive points are a fair way apart, so it may not make much sense to
give an X,Y position in between the integer C<$n>.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.

=back

=head1 FORMULAS

The calculations are not very efficient currently.  For each Y row a current
X and the corresponding hypotenuse X^2+Y^2 are maintained.  To find the next
furthest a search through those hypotenuses is made seeking the smallest,
including equal smallest, which then become the next N points.

For C<n_to_xy()> an array is built in the object used for repeat
calculations.  For C<xy_to_n()> an array of hypot to N gives a the first N
of given X^2+Y^2 distance.  A search is then made through the next few N for
the case there's more than one X,Y of that hypot.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A024507> (etc)

=back

    points="all"
      A024507   X^2+Y^2 of all points not on X axis or X=Y diagonal
      A024509   X^2+Y^2 of all points not on X axis
                  being integers occurring as sum of two non-zero squares,
                  with repetitions for multiple ways

    points="even"
      A036702   N on X=Y leading Diagonal
                  being count of points norm<=k

    points="odd"
      A057653   X^2+Y^2 values occurring
                  ie. odd numbers which are sum of two squares,
                  without repetitions

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::TriangularHypot>,
L<Math::PlanePath::PixelRings>,
L<Math::PlanePath::PythagoreanTree>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut