/usr/share/perl5/Math/PlanePath/Hypot.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# A000328 Number of points of norm <= n^2 in square lattice.
# 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441, 529, 613, 709, 797
# a(n) = 1 + 4 * sum(j=0, n^2 / 4, n^2 / (4*j+1) - n^2 / (4*j+3) )
# A014200 num points norm <= n^2, excluding 0, divided by 4
#
# A046109 num points norm == n^2
#
# A057655 num points x^2+y^2 <= n
# A014198 = A057655 - 1
#
# A004018 num points x^2+y^2 == n
#
# A057962 hypot count x-1/2,y-1/2 <= n
# is last point of each hypot in points=odd
#
# A057961 hypot count as radius increases
#
# points="square_horiz"
# points="square_vert"
# points="square_centre"
# A199015 square_centred partial sums
#
package Math::PlanePath::Hypot;
use 5.004;
use strict;
use Carp 'croak';
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant parameter_info_array =>
[ { name => 'points',
share_key => 'points_aeo',
display => 'Points',
type => 'enum',
default => 'all',
choices => ['all','even','odd'],
choices_display => ['All','Even','Odd'],
description => 'Which X,Y points visit, either all of them or just X+Y=even or odd.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
{
my %x_negative_at_n = (all => 3,
even => 2,
odd => 2);
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + $x_negative_at_n{$self->{'points'}};
}
}
{
my %y_negative_at_n = (all => 4,
even => 3,
odd => 3);
sub y_negative_at_n {
my ($self) = @_;
return $self->n_start + $y_negative_at_n{$self->{'points'}};
}
}
sub rsquared_minimum {
my ($self) = @_;
return ($self->{'points'} eq 'odd'
? 1 # odd at X=1,Y=0
: 0); # even,all at X=0,Y=0
}
# points=even includes X=Y so abs(X-Y)>=0
# points=odd doesn't include X=Y so abs(X-Y)>=1
*absdiffxy_minimum = \&rsquared_minimum;
*sumabsxy_minimum = \&rsquared_minimum;
use constant turn_any_right => 0; # always left or straight
sub turn_any_straight {
my ($self) = @_;
return ($self->{'points'} ne 'all'); # points=all is left always
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
my $points = ($self->{'points'} ||= 'all');
if ($points eq 'all') {
$self->{'n_to_x'} = [0];
$self->{'n_to_y'} = [0];
$self->{'hypot_to_n'} = [0];
$self->{'y_next_x'} = [1, 1];
$self->{'y_next_hypot'} = [1, 2];
$self->{'x_inc'} = 1;
$self->{'x_inc_factor'} = 2;
$self->{'x_inc_squared'} = 1;
$self->{'y_factor'} = 2;
$self->{'opposite_parity'} = -1;
} elsif ($points eq 'even') {
$self->{'n_to_x'} = [0];
$self->{'n_to_y'} = [0];
$self->{'hypot_to_n'} = [0];
$self->{'y_next_x'} = [2, 1];
$self->{'y_next_hypot'} = [4, 2];
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4;
$self->{'x_inc_squared'} = 4;
$self->{'y_factor'} = 2;
$self->{'opposite_parity'} = 1;
} elsif ($points eq 'odd') {
$self->{'n_to_x'} = [];
$self->{'n_to_y'} = [];
$self->{'hypot_to_n'} = [];
$self->{'y_next_x'} = [1];
$self->{'y_next_hypot'} = [1];
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4;
$self->{'x_inc_squared'} = 4;
$self->{'y_factor'} = 2;
$self->{'opposite_parity'} = 0;
} elsif ($points eq 'square_centred') {
$self->{'n_to_x'} = [];
$self->{'n_to_y'} = [];
$self->{'hypot_to_n'} = [];
$self->{'y_next_x'} = [undef,1];
$self->{'y_next_hypot'} = [undef,2];
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4
$self->{'x_inc_squared'} = 4;
$self->{'y_start'} = 1;
$self->{'y_inc'} = 2;
$self->{'opposite_parity'} = -1;
} else {
croak "Unrecognised points option: ", $points;
}
return $self;
}
sub _extend {
my ($self) = @_;
### _extend() n: scalar(@{$self->{'n_to_x'}})
### y_next_x: $self->{'y_next_x'}
my $n_to_x = $self->{'n_to_x'};
my $n_to_y = $self->{'n_to_y'};
my $hypot_to_n = $self->{'hypot_to_n'};
my $y_next_x = $self->{'y_next_x'};
my $y_next_hypot = $self->{'y_next_hypot'};
my $y_start = $self->{'y_start'} || 0;
my $y_inc = $self->{'y_inc'} || 1;
# set @y to the Y with the smallest $y_next_hypot[$y], and if there's some
# Y's with equal smallest hypot then all those Y's
my @y = ($y_start);
my $hypot = $y_next_hypot->[$y_start] || 99;
for (my $y = $y_start+$y_inc; $y < @$y_next_x; $y += $y_inc) {
if ($hypot == $y_next_hypot->[$y]) {
push @y, $y;
} elsif ($hypot > $y_next_hypot->[$y]) {
@y = ($y);
$hypot = $y_next_hypot->[$y];
}
}
### chosen y list: @y
# if the endmost of the @$y_next_x, @$y_next_hypot arrays are used then
# extend them by one
if ($y[-1] == $#$y_next_x) {
### grow y_next_x ...
my $y = $#$y_next_x + $y_inc;
my $x = $y + ($self->{'points'} eq 'odd');
$y_next_x->[$y] = $x;
$y_next_hypot->[$y] = $x*$x+$y*$y;
### $y_next_x
### $y_next_hypot
### assert: $y_next_hypot->[$y] == $y**2 + $x*$x
}
# @x is the $y_next_x[$y] for each of the @y smallests, and step those
# selected elements next X and hypot for that new X,Y
my @x = map {
my $y = $_;
my $x = $y_next_x->[$y];
$y_next_x->[$y] += $self->{'x_inc'};
$y_next_hypot->[$y]
+= $self->{'x_inc_factor'} * $x + $self->{'x_inc_squared'};
### assert: $y_next_hypot->[$y] == ($x+$self->{'x_inc'})**2 + $y**2
$x
} @y;
### $hypot
### base octant: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
# transpose X,Y to Y,X
{
my @base_x = @x;
my @base_y = @y;
unless ($y[0]) { # no transpose of x,0
shift @base_x;
shift @base_y;
}
if ($x[-1] == $y[-1]) { # no transpose of x,x
pop @base_x;
pop @base_y;
}
push @x, reverse @base_y;
push @y, reverse @base_x;
}
### with transpose q1: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
# rotate +90 quadrant 1 into quadrant 2
{
my @base_y = @y;
push @y, @x;
push @x, map {-$_} @base_y;
}
### with rotate q2: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
# rotate +180 quadrants 1+2 into quadrants 2+3
push @x, map {-$_} @x;
push @y, map {-$_} @y;
### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
### at n: scalar(@$n_to_x)
### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x)
$hypot_to_n->[$hypot] = scalar(@$n_to_x);
push @$n_to_x, @x;
push @$n_to_y, @y;
# ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#$hypot_to_n)
# my $x = $y_next_x->[0];
#
# $x = $y_next_x->[$y];
# $n_to_x->[$next_n] = $x;
# $n_to_y->[$next_n] = $y;
# $xy_to_n{"$x,$y"} = $next_n++;
#
# $y_next_x->[$y]++;
# $y_next_hypot->[$y] = $y*$y + $y_next_x->[$y]**2;
}
sub n_to_xy {
my ($self, $n) = @_;
### Hypot n_to_xy(): $n
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $int = int($n);
$n -= $int; # fraction part
my $n_to_x = $self->{'n_to_x'};
my $n_to_y = $self->{'n_to_y'};
while ($int >= $#$n_to_x) {
_extend($self);
}
my $x = $n_to_x->[$int];
my $y = $n_to_y->[$int];
return ($x + $n * ($n_to_x->[$int+1] - $x),
$y + $n * ($n_to_y->[$int+1] - $y));
}
sub xy_is_visited {
my ($self, $x, $y) = @_;
if ($self->{'opposite_parity'} >= 0) {
$x = round_nearest ($x);
$y = round_nearest ($y);
if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) {
return 0;
}
}
if ($self->{'points'} eq 'square_centred') {
unless (($y%2) && ($x%2)) {
return 0;
}
}
return 1;
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### Hypot xy_to_n(): "$x, $y"
### hypot_to_n last: $#{$self->{'hypot_to_n'}}
$x = round_nearest ($x);
$y = round_nearest ($y);
if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) {
return undef;
}
if ($self->{'points'} eq 'square_centred') {
unless (($y%2) && ($x%2)) {
return undef;
}
}
my $hypot = $x*$x + $y*$y;
if (is_infinite($hypot)) {
### infinity
return undef;
}
my $n_to_x = $self->{'n_to_x'};
my $n_to_y = $self->{'n_to_y'};
my $hypot_to_n = $self->{'hypot_to_n'};
while ($hypot > $#$hypot_to_n) {
_extend($self);
}
my $n = $hypot_to_n->[$hypot];
for (;;) {
if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) {
return $n + $self->{'n_start'};
}
$n += 1;
if ($n_to_x->[$n]**2 + $n_to_y->[$n]**2 != $hypot) {
### oops, hypot_to_n no good ...
return undef;
}
}
# if ($x < 0 || $y < 0) {
# return undef;
# }
# my $h = $x*$x + $y*$y;
#
# while ($y_next_x[$y] <= $x) {
# _extend($self);
# }
# return $xy_to_n{"$x,$y"};
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = abs (round_nearest ($x1));
$y1 = abs (round_nearest ($y1));
$x2 = abs (round_nearest ($x2));
$y2 = abs (round_nearest ($y2));
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }
# circle area pi*r^2, with r^2 = $x2**2 + $y2**2
return ($self->{'n_start'},
$self->{'n_start'} + int (3.2 * (($x2+1)**2 + ($y2+1)**2)));
}
1;
__END__
# Quadrant style ...
#
# 9 73 75 79 83 85
# 8 58 62 64 67 71 81 ...
# 7 45 48 52 54 61 69 78 86
# 6 35 37 39 43 50 56 65 77 88
# 5 26 28 30 33 41 47 55 68 80
# 4 17 19 22 25 31 40 49 60 70 84
# 3 11 13 15 20 24 32 42 53 66 82
# 2 6 8 9 14 21 29 38 51 63 76
# 1 3 4 7 12 18 27 36 46 59 74
# Y=0 1 2 5 10 16 23 34 44 57 72
#
# X=0 1 2 3 4 5 6 7 8 9 ...
#
# For example N=37 is at X=1,Y=6 which is sqrt(1*1+6*6) = sqrt(37) from the
# origin. The next closest to the origin is X=6,Y=2 at sqrt(40). In general
# it's the sums of two squares X^2+Y^2 taken in order from smallest to biggest.
#
# Points X,Y and swapped Y,X are the same distance from the origin. The one
# with bigger X is taken first, then the swapped Y,X (as long as X!=Y). For
# example N=21 is X=4,Y=2 and N=22 is X=2,Y=4.
=for stopwords Ryde Math-PlanePath ie hypot octant onwards OEIS hypots
=head1 NAME
Math::PlanePath::Hypot -- points in order of hypotenuse distance
=head1 SYNOPSIS
use Math::PlanePath::Hypot;
my $path = Math::PlanePath::Hypot->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path visits integer points X,Y in order of their distance from the
origin 0,0, or anti-clockwise from the X axis among those of equal distance,
=cut
# math-image --expression='i<=89?i:0' --path=Hypot --output=numbers --size=79
=pod
84 73 83 5
74 64 52 47 51 63 72 4
75 59 40 32 27 31 39 58 71 3
65 41 23 16 11 15 22 38 62 2
85 53 33 17 7 3 6 14 30 50 82 1
76 48 28 12 4 1 2 10 26 46 70 <- Y=0
86 54 34 18 8 5 9 21 37 57 89 -1
66 42 24 19 13 20 25 45 69 -2
77 60 43 35 29 36 44 61 81 -3
78 67 55 49 56 68 80 -4
87 79 88 -5
^
-5 -4 -3 -2 -1 X=0 1 2 3 4 5
For example N=58 is at X=4,Y=-1 is sqrt(4*4+1*1) = sqrt(17) from the origin.
The next furthest from the origin is X=3,Y=3 at sqrt(18).
See C<TriangularHypot> for points in order of X^2+3*Y^2, or C<DiamondSpiral>
and C<PyrmaidSides> in order of plain sum X+Y.
=head2 Equal Distances
Points with the same distance are taken in anti-clockwise order around from
the X axis. For example X=3,Y=1 is sqrt(10) from the origin, as are the
swapped X=1,Y=3, and X=-1,Y=3 etc in other quadrants, for a total 8 points
N=30 to N=37 all the same distance.
When one of X or Y is 0 there's no negative, so just four negations like
N=10 to 13 points X=2,Y=0 through X=0,Y=-2. Or on the diagonal X==Y there's
no swap, so just four like N=22 to N=25 points X=3,Y=3 through X=3,Y=-3.
There can be more than one way for the same distance to arise.
A Pythagorean triple like 3^2 + 4^2 == 5^2 has 8 points from the 3,4, then 4
points from the 5,0 giving a total 12 points N=70 to N=81. Other
combinations like 20^2 + 15^2 == 24^2 + 7^2 occur too, and also with more
than two different ways to have the same sum.
=head2 Multiples of 4
The first point of a given distance from the origin is either on the X axis
or somewhere in the first octant. The row Y=1 just above the axis is the
first of its equals from XE<gt>=2 onwards, and similarly further rows for
big enough X.
There's always a multiple of 4 many points with the same distance so the
first point has N=4*k+2, and similarly on the negative X side N=4*j, for
some k or j. If you plot the prime numbers on the path then those even N's
(composites) are gaps just above the positive X axis, and on or just below
the negative X axis.
=head2 Circle Lattice
Gauss's circle lattice problem asks how many integer X,Y points there are
within a circle of radius R.
The points on the X axis N=2,10,26,46, etc are the first for which
X^2+Y^2==R^2 (integer X==R). Adding option C<n_start=E<gt>0> to make them
each 1 less gives the number of points strictly inside, ie. X^2+Y^2 E<lt>
R^2.
The last point satisfying X^2+Y^2==R^2 is either in the octant below the X
axis, or is on the negative Y axis. Those N's are the number of points
X^2+Y^2E<lt>=R^2, Sloane's A000328.
When that A000328 sequence is plotted on the path a straight line can be
seen in the fourth quadrant extending down just above the diagonal. It
arises from multiples of the Pythagorean 3^2 + 4^2, first X=4,Y=-3, then
X=8,Y=-6, etc X=4*k,Y=-3*k. But sometimes the multiple is not the last
among those of that 5*k radius, so there's gaps in the line. For example
20,-15 is not the last since because 24,-7 is also 25 away from the origin.
=head2 Even Points
Option C<points =E<gt> "even"> visits just the even points, meaning the sum
X+Y even, so X,Y both even or both odd.
=cut
# math-image --expression='i<70?i:0' --path=Hypot,points=even --output=numbers --size=79
=pod
points => "even"
52 40 39 51 5
47 32 23 31 46 4
53 27 16 15 26 50 3
33 11 7 10 30 2
41 17 3 2 14 38 1
24 8 1 6 22 <- Y=0
42 18 4 5 21 45 -1
34 12 9 13 37 -2
54 28 19 20 29 57 -3
48 35 25 36 49 -4
55 43 44 56 -5
^
-5 -4 -3 -2 -1 X=0 1 2 3 4 5
Even points can be mapped to all points by a 45 degree rotate and flip.
N=1,6,22,etc on the X axis here is on the X=Y diagonal of all-points. And
conversely N=1,2,10,26,etc on the X=Y diagonal here is the X axis of
all-points.
The sets of points with equal hypotenuse are the same in the even and all,
but the flip takes them in a reversed order.
=head2 Odd Points
Option C<points =E<gt> "odd"> visits just the odd points, meaning sum X+Y
odd, so X,Y one odd the other even.
=cut
# math-image --expression='i<=76?i:0' --path=Hypot,points=odd --output=numbers --size=78x30
=pod
points => "odd"
71 55 54 70 6
63 47 36 46 62 5
64 37 27 26 35 61 4
72 38 19 14 18 34 69 3
48 20 7 6 17 45 2
56 28 8 2 5 25 53 1
39 15 3 + 1 13 33 <- Y=0
57 29 9 4 12 32 60 -1
49 21 10 11 24 52 -2
73 40 22 16 23 44 76 -3
65 41 30 31 43 68 -4
66 50 42 51 67 -5
74 58 59 75 -6
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6
Odd points can be mapped to all points by a 45 degree rotate and a shift
X-1,Y+1 to put N=1 at the origin. The effect of that shift is as if the
hypot measure in "all" points was (X-1/2)^2+(Y-1/2)^2 and for that reason
the sets of points with equal hypots are not the same in odd and all.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::Hypot-E<gt>new ()>
=item C<$path = Math::PlanePath::Hypot-E<gt>new (points =E<gt> $str), n_start =E<gt> $n>
Create and return a new hypot path object. The C<points> option can be
"all" all integer X,Y (the default)
"even" only points with X+Y even
"odd" only points with X+Y odd
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n E<lt> 1> the return is an empty list, it being considered the first
point at X=0,Y=0 is N=1.
Currently it's unspecified what happens if C<$n> is not an integer.
Successive points are a fair way apart, so it may not make much sense to say
give an X,Y position in between the integer C<$n>.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return an integer point number for coordinates C<$x,$y>. Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.
For "even" and "odd" options only every second square in the plane has an N
and if C<$x,$y> is a position not covered then the return is C<undef>.
=back
=head1 FORMULAS
The calculations are not particularly efficient currently. Private arrays
are built similar to what's described for C<HypotOctant>, but with
replication for negative and swapped X,Y.
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A051132> (etc)
=back
points="all", n_start=0
A051132 N on X axis, being count points norm < X^2
points="odd"
A005883 count of points with norm==4*n+1
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::HypotOctant>,
L<Math::PlanePath::TriangularHypot>,
L<Math::PlanePath::PixelRings>,
L<Math::PlanePath::PythagoreanTree>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|