This file is indexed.

/usr/share/perl5/Math/PlanePath/Hypot.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# A000328 Number of points of norm <= n^2 in square lattice.
#   1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441, 529, 613, 709, 797
#   a(n) = 1 + 4 * sum(j=0, n^2 / 4,    n^2 / (4*j+1) - n^2 / (4*j+3) )
# A014200 num points norm <= n^2, excluding 0, divided by 4
#
# A046109 num points norm == n^2
#
# A057655 num points x^2+y^2 <= n
# A014198 = A057655 - 1
#
# A004018 num points x^2+y^2 == n
#
# A057962 hypot count x-1/2,y-1/2 <= n
# is last point of each hypot in points=odd
#
# A057961 hypot count as radius increases
#

# points="square_horiz"
# points="square_vert"
# points="square_centre"
# A199015 square_centred partial sums
# 


package Math::PlanePath::Hypot;
use 5.004;
use strict;
use Carp 'croak';

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'points',
      share_key       => 'points_aeo',
      display         => 'Points',
      type            => 'enum',
      default         => 'all',
      choices         => ['all','even','odd'],
      choices_display => ['All','Even','Odd'],
      description     => 'Which X,Y points visit, either all of them or just X+Y=even or odd.',
    },
    Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

{
  my %x_negative_at_n = (all  => 3,
                         even => 2,
                         odd  => 2);
  sub x_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $x_negative_at_n{$self->{'points'}};
  }
}
{
  my %y_negative_at_n = (all  => 4,
                                        even => 3,
                                        odd  => 3);
  sub y_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $y_negative_at_n{$self->{'points'}};
  }
}
sub rsquared_minimum {
  my ($self) = @_;
  return ($self->{'points'} eq 'odd'
          ? 1     # odd at X=1,Y=0
          : 0);   # even,all at X=0,Y=0
}
# points=even includes X=Y so abs(X-Y)>=0
# points=odd doesn't include X=Y so abs(X-Y)>=1
*absdiffxy_minimum = \&rsquared_minimum;
*sumabsxy_minimum  = \&rsquared_minimum;

use constant turn_any_right => 0; # always left or straight
sub turn_any_straight {
  my ($self) = @_;
  return ($self->{'points'} ne 'all');  # points=all is left always
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);

  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }

  my $points = ($self->{'points'} ||= 'all');
  if ($points eq 'all') {
    $self->{'n_to_x'} = [0];
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];
    $self->{'y_next_x'} = [1, 1];
    $self->{'y_next_hypot'} = [1, 2];
    $self->{'x_inc'} = 1;
    $self->{'x_inc_factor'} = 2;
    $self->{'x_inc_squared'} = 1;
    $self->{'y_factor'} = 2;
    $self->{'opposite_parity'} = -1;

  } elsif ($points eq 'even') {
    $self->{'n_to_x'} = [0];
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];
    $self->{'y_next_x'} = [2, 1];
    $self->{'y_next_hypot'} = [4, 2];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;
    $self->{'x_inc_squared'} = 4;
    $self->{'y_factor'} = 2;
    $self->{'opposite_parity'} = 1;

  } elsif ($points eq 'odd') {
    $self->{'n_to_x'} = [];
    $self->{'n_to_y'} = [];
    $self->{'hypot_to_n'} = [];
    $self->{'y_next_x'} = [1];
    $self->{'y_next_hypot'} = [1];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;
    $self->{'x_inc_squared'} = 4;
    $self->{'y_factor'} = 2;
    $self->{'opposite_parity'} = 0;

  } elsif ($points eq 'square_centred') {
    $self->{'n_to_x'} = [];
    $self->{'n_to_y'} = [];
    $self->{'hypot_to_n'} = [];
    $self->{'y_next_x'} = [undef,1];
    $self->{'y_next_hypot'} = [undef,2];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'y_start'} = 1;
    $self->{'y_inc'} = 2;
    $self->{'opposite_parity'} = -1;

  } else {
    croak "Unrecognised points option: ", $points;
  }
  return $self;
}

sub _extend {
  my ($self) = @_;
  ### _extend() n: scalar(@{$self->{'n_to_x'}})
  ### y_next_x: $self->{'y_next_x'}

  my $n_to_x       = $self->{'n_to_x'};
  my $n_to_y       = $self->{'n_to_y'};
  my $hypot_to_n   = $self->{'hypot_to_n'};
  my $y_next_x     = $self->{'y_next_x'};
  my $y_next_hypot = $self->{'y_next_hypot'};
  my $y_start      = $self->{'y_start'} || 0;
  my $y_inc        = $self->{'y_inc'} || 1;

  # set @y to the Y with the smallest $y_next_hypot[$y], and if there's some
  # Y's with equal smallest hypot then all those Y's
  my @y = ($y_start);
  my $hypot = $y_next_hypot->[$y_start] || 99;
  for (my $y = $y_start+$y_inc; $y < @$y_next_x; $y += $y_inc) {
    if ($hypot == $y_next_hypot->[$y]) {
      push @y, $y;
    } elsif ($hypot > $y_next_hypot->[$y]) {
      @y = ($y);
      $hypot = $y_next_hypot->[$y];
    }
  }

  ### chosen y list: @y

  # if the endmost of the @$y_next_x, @$y_next_hypot arrays are used then
  # extend them by one
  if ($y[-1] == $#$y_next_x) {
    ### grow y_next_x ...
    my $y = $#$y_next_x + $y_inc;
    my $x = $y + ($self->{'points'} eq 'odd');
    $y_next_x->[$y] = $x;
    $y_next_hypot->[$y] = $x*$x+$y*$y;
    ### $y_next_x
    ### $y_next_hypot
    ### assert: $y_next_hypot->[$y] == $y**2 + $x*$x
  }

  # @x is the $y_next_x[$y] for each of the @y smallests, and step those
  # selected elements next X and hypot for that new X,Y
  my @x = map {
    my $y = $_;
    my $x = $y_next_x->[$y];
    $y_next_x->[$y] += $self->{'x_inc'};
    $y_next_hypot->[$y]
      += $self->{'x_inc_factor'} * $x + $self->{'x_inc_squared'};
    ### assert: $y_next_hypot->[$y] == ($x+$self->{'x_inc'})**2 + $y**2
    $x
  } @y;
  ### $hypot
  ### base octant: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)

  # transpose X,Y to Y,X
  {
    my @base_x = @x;
    my @base_y = @y;
    unless ($y[0]) { # no transpose of x,0
      shift @base_x;
      shift @base_y;
    }
    if ($x[-1] == $y[-1]) { # no transpose of x,x
      pop @base_x;
      pop @base_y;
    }
    push @x, reverse @base_y;
    push @y, reverse @base_x;
  }
  ### with transpose q1: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)

  # rotate +90 quadrant 1 into quadrant 2
  {
    my @base_y = @y;
    push @y, @x;
    push @x, map {-$_} @base_y;
  }
  ### with rotate q2: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)

  # rotate +180 quadrants 1+2 into quadrants 2+3
  push @x, map {-$_} @x;
  push @y, map {-$_} @y;

  ### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
  ### at n: scalar(@$n_to_x)
  ### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x)
  $hypot_to_n->[$hypot] = scalar(@$n_to_x);
  push @$n_to_x, @x;
  push @$n_to_y, @y;

  # ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#$hypot_to_n)


  # my $x = $y_next_x->[0];
  #
  # $x = $y_next_x->[$y];
  # $n_to_x->[$next_n] = $x;
  # $n_to_y->[$next_n] = $y;
  # $xy_to_n{"$x,$y"} = $next_n++;
  #
  # $y_next_x->[$y]++;
  # $y_next_hypot->[$y] = $y*$y + $y_next_x->[$y]**2;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### Hypot n_to_xy(): $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $int = int($n);
  $n -= $int;  # fraction part

  my $n_to_x = $self->{'n_to_x'};
  my $n_to_y = $self->{'n_to_y'};

  while ($int >= $#$n_to_x) {
    _extend($self);
  }

  my $x = $n_to_x->[$int];
  my $y = $n_to_y->[$int];
  return ($x + $n * ($n_to_x->[$int+1] - $x),
          $y + $n * ($n_to_y->[$int+1] - $y));
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;

  if ($self->{'opposite_parity'} >= 0) {
    $x = round_nearest ($x);
    $y = round_nearest ($y);
    if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) {
      return 0;
    }
  }
  if ($self->{'points'} eq 'square_centred') {
    unless (($y%2) && ($x%2)) {
      return 0;
    }
  }
  return 1;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### Hypot xy_to_n(): "$x, $y"
  ### hypot_to_n last: $#{$self->{'hypot_to_n'}}

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) {
    return undef;
  }
  if ($self->{'points'} eq 'square_centred') {
    unless (($y%2) && ($x%2)) {
      return undef;
    }
  }

  my $hypot = $x*$x + $y*$y;
  if (is_infinite($hypot)) {
    ### infinity
    return undef;
  }

  my $n_to_x = $self->{'n_to_x'};
  my $n_to_y = $self->{'n_to_y'};

  my $hypot_to_n = $self->{'hypot_to_n'};
  while ($hypot > $#$hypot_to_n) {
    _extend($self);
  }

  my $n = $hypot_to_n->[$hypot];
  for (;;) {
    if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) {
      return $n + $self->{'n_start'};
    }
    $n += 1;

    if ($n_to_x->[$n]**2 + $n_to_y->[$n]**2 != $hypot) {
      ### oops, hypot_to_n no good ...
      return undef;
    }
  }

  # if ($x < 0 || $y < 0) {
  #   return undef;
  # }
  # my $h = $x*$x + $y*$y;
  #
  # while ($y_next_x[$y] <= $x) {
  #   _extend($self);
  # }
  # return $xy_to_n{"$x,$y"};
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = abs (round_nearest ($x1));
  $y1 = abs (round_nearest ($y1));
  $x2 = abs (round_nearest ($x2));
  $y2 = abs (round_nearest ($y2));

  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }

  # circle area pi*r^2, with r^2 = $x2**2 + $y2**2
  return ($self->{'n_start'},
          $self->{'n_start'} + int (3.2 * (($x2+1)**2 + ($y2+1)**2)));
}

1;
__END__




# Quadrant style ...
#
#      9      73  75  79  83  85
#      8      58  62  64  67  71  81  ...
#      7      45  48  52  54  61  69  78  86
#      6      35  37  39  43  50  56  65  77  88
#      5      26  28  30  33  41  47  55  68  80
#      4      17  19  22  25  31  40  49  60  70  84
#      3      11  13  15  20  24  32  42  53  66  82
#      2       6   8   9  14  21  29  38  51  63  76
#      1       3   4   7  12  18  27  36  46  59  74
#     Y=0      1   2   5  10  16  23  34  44  57  72
#
#             X=0  1   2   3   4   5   6   7   8   9  ...
#
# For example N=37 is at X=1,Y=6 which is sqrt(1*1+6*6) = sqrt(37) from the
# origin.  The next closest to the origin is X=6,Y=2 at sqrt(40).  In general
# it's the sums of two squares X^2+Y^2 taken in order from smallest to biggest.
#
# Points X,Y and swapped Y,X are the same distance from the origin.  The one
# with bigger X is taken first, then the swapped Y,X (as long as X!=Y).  For
# example N=21 is X=4,Y=2 and N=22 is X=2,Y=4.



=for stopwords Ryde Math-PlanePath ie hypot octant onwards OEIS hypots

=head1 NAME

Math::PlanePath::Hypot -- points in order of hypotenuse distance

=head1 SYNOPSIS

 use Math::PlanePath::Hypot;
 my $path = Math::PlanePath::Hypot->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path visits integer points X,Y in order of their distance from the
origin 0,0, or anti-clockwise from the X axis among those of equal distance,

=cut

# math-image --expression='i<=89?i:0' --path=Hypot --output=numbers --size=79

=pod

                    84  73  83                         5
            74  64  52  47  51  63  72                 4
        75  59  40  32  27  31  39  58  71             3
        65  41  23  16  11  15  22  38  62             2
    85  53  33  17   7   3   6  14  30  50  82         1
    76  48  28  12   4   1   2  10  26  46  70    <- Y=0
    86  54  34  18   8   5   9  21  37  57  89        -1
        66  42  24  19  13  20  25  45  69            -2
        77  60  43  35  29  36  44  61  81            -3
            78  67  55  49  56  68  80                -4
                    87  79  88                        -5

                         ^
    -5  -4  -3  -2  -1  X=0  1   2   3   4   5

For example N=58 is at X=4,Y=-1 is sqrt(4*4+1*1) = sqrt(17) from the origin.
The next furthest from the origin is X=3,Y=3 at sqrt(18).

See C<TriangularHypot> for points in order of X^2+3*Y^2, or C<DiamondSpiral>
and C<PyrmaidSides> in order of plain sum X+Y.

=head2 Equal Distances

Points with the same distance are taken in anti-clockwise order around from
the X axis.  For example X=3,Y=1 is sqrt(10) from the origin, as are the
swapped X=1,Y=3, and X=-1,Y=3 etc in other quadrants, for a total 8 points
N=30 to N=37 all the same distance.

When one of X or Y is 0 there's no negative, so just four negations like
N=10 to 13 points X=2,Y=0 through X=0,Y=-2.  Or on the diagonal X==Y there's
no swap, so just four like N=22 to N=25 points X=3,Y=3 through X=3,Y=-3.

There can be more than one way for the same distance to arise.
A Pythagorean triple like 3^2 + 4^2 == 5^2 has 8 points from the 3,4, then 4
points from the 5,0 giving a total 12 points N=70 to N=81.  Other
combinations like 20^2 + 15^2 == 24^2 + 7^2 occur too, and also with more
than two different ways to have the same sum.

=head2 Multiples of 4

The first point of a given distance from the origin is either on the X axis
or somewhere in the first octant.  The row Y=1 just above the axis is the
first of its equals from XE<gt>=2 onwards, and similarly further rows for
big enough X.

There's always a multiple of 4 many points with the same distance so the
first point has N=4*k+2, and similarly on the negative X side N=4*j, for
some k or j.  If you plot the prime numbers on the path then those even N's
(composites) are gaps just above the positive X axis, and on or just below
the negative X axis.

=head2 Circle Lattice

Gauss's circle lattice problem asks how many integer X,Y points there are
within a circle of radius R.

The points on the X axis N=2,10,26,46, etc are the first for which
X^2+Y^2==R^2 (integer X==R).  Adding option C<n_start=E<gt>0> to make them
each 1 less gives the number of points strictly inside, ie. X^2+Y^2 E<lt>
R^2.

The last point satisfying X^2+Y^2==R^2 is either in the octant below the X
axis, or is on the negative Y axis.  Those N's are the number of points
X^2+Y^2E<lt>=R^2, Sloane's A000328.

When that A000328 sequence is plotted on the path a straight line can be
seen in the fourth quadrant extending down just above the diagonal.  It
arises from multiples of the Pythagorean 3^2 + 4^2, first X=4,Y=-3, then
X=8,Y=-6, etc X=4*k,Y=-3*k.  But sometimes the multiple is not the last
among those of that 5*k radius, so there's gaps in the line.  For example
20,-15 is not the last since because 24,-7 is also 25 away from the origin.

=head2 Even Points

Option C<points =E<gt> "even"> visits just the even points, meaning the sum
X+Y even, so X,Y both even or both odd.

=cut

# math-image --expression='i<70?i:0' --path=Hypot,points=even --output=numbers --size=79

=pod

    points => "even"

          52    40    39    51             5
       47    32    23    31    46          4
    53    27    16    15    26    50       3
       33    11     7    10    30          2
    41    17     3     2    14    38       1
       24     8     1     6    22     <- Y=0
    42    18     4     5    21    45      -1
       34    12     9    13    37         -2
    54    28    19    20    29    57      -3
       48    35    25    36    49         -4
          55    43    44    56            -5

                    ^
    -5 -4 -3 -2 -1 X=0 1  2  3  4  5

Even points can be mapped to all points by a 45 degree rotate and flip.
N=1,6,22,etc on the X axis here is on the X=Y diagonal of all-points.  And
conversely N=1,2,10,26,etc on the X=Y diagonal here is the X axis of
all-points.

The sets of points with equal hypotenuse are the same in the even and all,
but the flip takes them in a reversed order.

=head2 Odd Points

Option C<points =E<gt> "odd"> visits just the odd points, meaning sum X+Y
odd, so X,Y one odd the other even.

=cut

# math-image --expression='i<=76?i:0' --path=Hypot,points=odd --output=numbers --size=78x30

=pod

    points => "odd"

                                             
             71    55    54    70                6
          63    47    36    46    62             5  
       64    37    27    26    35    61          4  
    72    38    19    14    18    34    69       3  
       48    20     7     6    17    45          2  
    56    28     8     2     5    25    53       1  
       39    15     3  +  1    13    33     <- Y=0  
    57    29     9     4    12    32    60      -1  
       49    21    10    11    24    52         -2  
    73    40    22    16    23    44    76      -3  
       65    41    30    31    43    68         -4  
          66    50    42    51    67            -5  
             74    58    59    75               -6
                                             
                       ^
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

Odd points can be mapped to all points by a 45 degree rotate and a shift
X-1,Y+1 to put N=1 at the origin.  The effect of that shift is as if the
hypot measure in "all" points was (X-1/2)^2+(Y-1/2)^2 and for that reason
the sets of points with equal hypots are not the same in odd and all.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::Hypot-E<gt>new ()>

=item C<$path = Math::PlanePath::Hypot-E<gt>new (points =E<gt> $str), n_start =E<gt> $n>

Create and return a new hypot path object.  The C<points> option can be

    "all"         all integer X,Y (the default)
    "even"        only points with X+Y even
    "odd"         only points with X+Y odd

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n E<lt> 1> the return is an empty list, it being considered the first
point at X=0,Y=0 is N=1.

Currently it's unspecified what happens if C<$n> is not an integer.
Successive points are a fair way apart, so it may not make much sense to say
give an X,Y position in between the integer C<$n>.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.

For "even" and "odd" options only every second square in the plane has an N
and if C<$x,$y> is a position not covered then the return is C<undef>.

=back

=head1 FORMULAS

The calculations are not particularly efficient currently.  Private arrays
are built similar to what's described for C<HypotOctant>, but with
replication for negative and swapped X,Y.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A051132> (etc)

=back

    points="all", n_start=0
      A051132    N on X axis, being count points norm < X^2

    points="odd"
      A005883    count of points with norm==4*n+1

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::HypotOctant>,
L<Math::PlanePath::TriangularHypot>,
L<Math::PlanePath::PixelRings>,
L<Math::PlanePath::PythagoreanTree>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut