/usr/share/perl5/Math/PlanePath/HilbertSides.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | # Copyright 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::HilbertSides;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
# use Smart::Comments;
use Math::PlanePath::HilbertCurve;
my $hilbert_path = Math::PlanePath::HilbertCurve->new;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
#------------------------------------------------------------------------------
# ---3
# |
# state=0 3--2 plain 2
# | |
# 0--1 0--1
#
# state=4 1--2 transpose 1--2--3
# | | | |
# 0 3 0 |
#
# state=8 1--0 rot180 1--0
# | |
# 2--3 2
# |
# 3---
#
# state=12 3 0 rot180 + transpose | 0
# | | | |
# 2--1 3--2--1
#
# generated by tools/hilbert-curve-table.pl
my @next_state = (4,0,0,12, 0,4,4,8, 12,8,8,4, 8,12,12,0);
my @digit_to_x = (0,1,1,0, 0,0,1,1, 1,0,0,1, 1,1,0,0);
my @digit_to_y = (0,0,1,1, 0,1,1,0, 1,1,0,0, 1,0,0,1);
my @state_to_frac = (0,1, undef,undef,
1,0, undef,undef,
0,-1, undef,undef,
-1,0, undef,undef);
sub n_to_xy {
my ($self, $n) = @_;
### HilbertSides n_to_xy(): $n
### hex: sprintf "%#X", $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $int = int($n);
$n -= $int; # fraction part
my @ndigits = digit_split_lowtohigh($int,4);
my $state = ($#ndigits & 1 ? 4 : 0);
my (@xbits, @ybits);
foreach my $i (reverse 0 .. $#ndigits) { # digits high to low
$state += $ndigits[$i];
$xbits[$i] = $digit_to_x[$state];
$ybits[$i] = $digit_to_y[$state];
$state = $next_state[$state];
}
my $zero = ($int * 0); # inherit bigint 0
# print "state $state state $state\n";
my $add = ($state >= 8 ? 1 : 0);
return ($n * $state_to_frac[$state] # frac
+ digit_join_lowtohigh (\@xbits, 2, $zero)
+ $add,
$n * $state_to_frac[$state+1] # frac
+ digit_join_lowtohigh (\@ybits, 2, $zero)
+ $add);
}
sub xy_to_n {
return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
my ($self, $x, $y) = @_;
### HilbertSides xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my @n_list;
foreach my $d (0,1) {
### try: ($x-$d).','.($y-$d)
my $n = $hilbert_path->xy_to_n($x-$d,$y-$d);
### $n
if (defined $n) {
if (my ($gx,$gy) = $self->n_to_xy($n)) {
### is at: "$gx,$gy"
if ($x == $gx && $y == $gy) {
### push: $n
push @n_list, $n;
}
}
}
}
# if (@n_list == 2 && $n_list[0] > $n_list[1]) {
# @n_list = reverse @n_list;
# }
@n_list = sort {$a <=> $b} @n_list;
### @n_list
return @n_list;
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### HilbertSides rect_to_n_range(): "$x1,$y1, $x2,$y2"
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
my ($pow, $exp) = round_down_pow (max(abs($x1),abs($y1), abs($x2),abs($y2)),
2);
return (0, 4*$pow*$pow);
}
1;
__END__
=for stopwords eg Ryde ie HilbertSides Math-PlanePath
=head1 NAME
Math::PlanePath::HilbertSides -- sides of hilbert curve squares
=head1 SYNOPSIS
use Math::PlanePath::HilbertSides;
my $path = Math::PlanePath::HilbertSides->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path is segments along the sides of the Hilbert curve squares as per
=over
F. M. Dekking, "Recurrent Sets", Advances in Mathematics, volume 44, 1982,
pages 79-104, section 4.8 "Hilbert Curve"
=back
The base pattern is N=0 to N=4. That pattern repeats transposed as points
N=0,4,8,12,16, etc.
9 | ...
| |
8 | 64----63 49----48 44----43
| | | | | |
7 | 62 50 47----46----45 42
| | | |
6 | 60----61 56 51----52 40---39,41
| | | | |
5 | 59----58---57,55--54---53,33--34----35 38
| | | |
4 | 32 36,28--37,27
| | | |
3 | 5-----6----7,9---10---11,31--30----29 26
| | | | |
2 | 4-----3 8 13----12 24---23,25
| | | |
1 | 2 14 17----18----19 22
| | | | | |
Y=0 | 0-----1 15----16 20----21
+-------------------------------------------------
X=0 1 2 3 4 5 6 7
If each point of the C<HilbertCurve> path is taken to be a unit square the
effect here is to go along the sides of those squares.
-------3. .
v |
|>
|
2 .
|
|>
^ |
0-------1 .
Some points are visited twice. The first is at X=2,Y=3 which is N=7 and N=9
where the two consecutive segments N=7to8 and N=8to9 overlap.
Non-consecutive segments can overlap too, as for example N=27to28 and
N=36to37 overlap. Double-visited points occur also as corners touching, for
example at X=4,Y=3 the two N=11 N=31 touch without overlapping segments.
The Hilbert curve squares fall within 2^k x 2^k blocks and so likewise the
segments here. The right side 1 to 2 and 2 to 3 don't touch the 2^k side.
This is so of the base figure N=0 to N=4 which doesn't touch X=2 and higher
levels are unrotated replications so for example in the N=0 to N=64 shown
above X=8 is not touched. This creates rectangular columns up from the X
axis. Likewise rectangular rows across from the Y axis, and both columns
and rows inside.
The sides which are N=0 to N=1 and N=3 to N=4 of the base pattern variously
touch in higher levels giving interesting patterns of squares, shapes,
notches, etc.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::HilbertSides-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. If there's nothing at
C<$x,$y> then return C<undef>.
The curve visits an C<$x,$y> twice for various points. The smaller of the
two N values is returned.
=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>
Return a list of N point numbers for coordinates C<$x,$y>. Points may have
up to two Ns for a given C<$x,$y>.
=back
=head1 FORMULAS
=head2 Coordinates
Difference X-Y is the same here as in the C<HilbertCurve>. The base pattern
here has N=3 at 1,2 whereas the HilbertCurve is 0,1 so X-Y is the same. The
two then have the same pattern of rotate 180 and/or transpose in subsequent
replications.
3
|
HilbertSides 2 3----2 HilbertCurve
| |
0----1 0----1
=head2 Abs dX,dY
abs(dY) is 1 for a vertical segment and 0 for a horizontal segment. For the
curve here it is
abs(dY) = count 1-bits of N, mod 2 = Thue-Morse binary parity
abs(dX) = 1 - abs(dY) = opposite
This is so for the base pattern N=0,1,2, and also at N=3 turning towards
N=4. Replication parts 1 and 2 are transposes where there is a single extra
1-bit in N and dX,dY are swapped. Replication part 3 is a 180 degree
rotation where there are two extra 1-bits in N and dX,dY are negated so
abs(dX),abs(dY) unchanged.
=head2 Turn
The path can turn left or right or go forward straight or 180 degree
reverse. Straight,reverse vs left,right is given by
N num trailing 0 bits turn
--------------------- -----------------------
odd straight or 180 reverse (A096268)
even left or right (A035263)
The path goes straight ahead at 2 and reverses 180 at 8 and all subsequent
2*4^k.
=head2 Segments on Axes
The number of line segments on the X and Y axes 0 to 2^k, which is N=0 to
4^k, is
Xsegs[k] = 1/3*2^k + 1/2 + 1/6*(-1)^k
= 1, 1, 2, 3, 6, 11, 22, 43, 86 (A005578)
= Ysegs[k] + 1
Ysegs[k] = 1/3*2^k - 1/2 + 1/6*(-1)^k
= 0, 0, 1, 2, 5, 10, 21, 42, 85,... (A000975)
= binary 101010... k-1 many bits alternating
=for GP-DEFINE Xsegs(k) = 1/3*2^k + 1/2 + 1/6*(-1)^k;
=for GP-DEFINE Ysegs(k) = 1/3*2^k - 1/2 + 1/6*(-1)^k;
=for GP-Test vector(9,k,k--; Xsegs(k)) == [1,1,2,3,6,11,22,43,86]
=for GP-Test vector(9,k,k--; Ysegs(k)) == [0,0,1,2,5,10,21,42,85]
=for GP-DEFINE from_binary_vector(v) = subst(Polrev(v),'x,2);
=for GP-Test from_binary_vector([1,1,0,1]) == 11
=for GP-DEFINE Ysegs_by_binary(k) = from_binary_vector(vector(max(0,k-1),i, (k-i)%2));
=for GP-Test vector(100,k,k--; Ysegs_by_binary(k)) == vector(100,k,k--; Ysegs(k))
These counts can be calculated from the curve sub-parts
k odd k even
+---+ . . . .
R |>T T T
. . . +---+---+
|>T |> R<|
o---+ . o . +
The block at the origin is X and Y segments of the k-1 level. For k odd the
X axis then has a transposed block which means the Y segments of k-1. The Y
axis has a 180 degree rotated block R. The curve is symmetric in mirror
image across its start to end so the count of segments it puts on the Y axis
is the same as Y of level k-1.
Xsegs[k] = Xsegs[k-1] + Ysegs[k-1] for k odd
Ysegs[k] = 2*Ysegs[k-1]
=for GP-Test vector(100,k,k=2*k-1; Xsegs(k)) == vector(100,k,k=2*k-1; Xsegs(k-1) + Ysegs(k-1)) /* k>=1 odd */
=for GP-Test vector(100,k,k=2*k-1; Ysegs(k)) == vector(100,k,k=2*k-1; 2*Ysegs(k-1)) /* k>=1 odd */
Then similarly for k even, but the other way around
the 2*Y.
Xsegs[k] = 2*Xsegs[k-1] for k even
Ysegs[k] = Xsegs[k-1] + Ysegs[k-1]
=for GP-Test vector(100,k,k=2*k; Xsegs(k)) == vector(100,k,k=2*k; 2*Xsegs(k-1)) /* k>=2 even */
=for GP-Test vector(100,k,k=2*k; Ysegs(k)) == vector(100,k,k=2*k; Xsegs(k-1) + Ysegs(k-1)) /* k>=2 even */
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include
=over
L<http://oeis.org/A059285> (etc)
=back
A059285 X-Y
A010059 abs(dX), 1 - Thue-Morse binary parity
A010060 abs(dY), Thue-Morse binary parity
A096268 turn 1=straight or reverse, 0=left or right
A035263 turn 0=straight or reverse, 1=left or right
A062880 N values on diagonal X=Y (digits 0,2 in base 4)
A005578 count segments on X axis, level k
A000975 count segments on Y axis, level k
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::HilbertCurve>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|