This file is indexed.

/usr/share/perl5/Math/PlanePath/HexSpiral.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# Kanga "Number Mosaics" rotated to
#
#                ...-16---15
#                           \
#                  6----5   14
#                 /      \    \
#                7   1    4   13
#               /   /    /    /
#              8   2----3   12
#               \           /
#                9---10---11
#
#
# Could go pointy end with same loop/step, or point to the right
#
#                    13--12--11
#                   /         |
#                 14  4---3  10
#                /  /     |   |
#              15  5  1---2   9
#                \  \         |
#                 16  6---7---8
#                   \             |
#                    17--18--19--20
#


package Math::PlanePath::HexSpiral;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest',
  'xy_is_even';


# uncomment this to run the ### lines
#use Devel::Comments '###';


use Math::PlanePath::SquareSpiral;
*parameter_info_array = \&Math::PlanePath::SquareSpiral::parameter_info_array;

#      2w+3 --- 3w/2+3 -- w+4
#      /                     \
#    2w+4         0 -------- w+3  *
#      \                         /
#      2w+5 ----------------- 3w+7    w=2; 1+3*w+7=14
#                       ^
#                      X=0
sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + ($self->{'wider'} ? 0 : 3);
}
sub y_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 2*$self->{'wider'} + 5;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
  my ($self) = @_;
  return $self->n_start + 3*$self->{'wider'} + 7;
}

sub rsquared_minimum {
  my ($self) = @_;
  return ($self->{'wider'} % 2
          ? 1   # odd "wider" minimum X=1,Y=0
          : 0); # even "wider" includes X=0,Y=0
}
*sumabsxy_minimum = \&rsquared_minimum;

use constant dx_minimum => -2;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;

*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_six;

use constant absdx_minimum => 1;
*absdiffxy_minimum = \&rsquared_minimum;

use constant dsumxy_minimum => -2; # SW diagonal
use constant dsumxy_maximum => 2;  # dX=+2 and diagonal
use constant ddiffxy_minimum => -2; # NW diagonal
use constant ddiffxy_maximum => 2;  # SE diagonal
use constant dir_maximum_dxdy => (1,-1); # South-East

use constant turn_any_right => 0; # only left or straight
sub _UNDOCUMENTED__turn_any_left_at_n {
  my ($self) = @_;
  return $self->n_start + $self->{'wider'} + 1;
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);

  # parameters
  $self->{'wider'} ||= 0;  # default
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }

  return $self;
}

# wider==0
# diagonal down and to the left
#   d = [ 0,  1,  2,  3 ]
#   N = [ 1,  6, 17,  34 ]
#   N = (3*$d**2 + 2*$d + 1)
#   d = -1/3 + sqrt(1/3 * $n + -2/9)
#     = (-1 + sqrt(3*$n - 2)) / 3
#
# wider==1
# diagonal down and to the left
#   d = [ 0,  1,  2,  3 ]
#   N = [ 1,  8, 21,  40 ]
#   N = (3*$d**2 + 4*$d + 1)
#   d = -2/3 + sqrt(1/3 * $n + 1/9)
#     = (-2 + sqrt(3*$n + 1)) / 3
#
# wider==2
# diagonal down and to the left
#   d = [ 0, 1,  2,  3,  4 ]
#   N = [ 1, 10, 25, 46, 73 ]
#   N = (3*$d**2 + 6*$d + 1)
#   d = -1 + sqrt(1/3 * $n + 2/3)
#     = (-3 + sqrt(3*$n + 6)) / 3
#
# N = 3*$d*$d + (2+2*$w)*$d + 1
#   = (3*$d + 2 + 2*$w)*$d + 1
# d = (-1-w + sqrt(3*$n + ($w+2)*$w - 2)) / 3
#   = (sqrt(3*$n + ($w+2)*$w - 2) -1-w) / 3

sub n_to_xy {
  my ($self, $n) = @_;
  #### n_to_xy: "$n   wider=$self->{'wider'}"

  $n = $n - $self->{'n_start'};  # N=0 basis
  if ($n < 0) { return; }
  my $w = $self->{'wider'};

  my $d = int((sqrt(int(3*$n) + ($w+2)*$w + 1) - 1 - $w) / 3);
  #### d frac: (sqrt(int(3*$n) + ($w+2)*$w + 1) - 1 - $w) / 3
  #### $d

  $n += 1; # N=1 basis

  $n -= (3*$d + 2 + 2*$w)*$d + 1;
  #### remainder: $n

  $d = $d + 1; # no warnings if $d==inf
  if ($n <= $d+$w) {
    #### bottom horizontal
    $d = -$d + 1;
    return (2*$n + $d - $w,
            $d);
  }
  $n -= $d+$w;
  if ($n <= $d-1) {
    #### right lower diagonal, being 1 shorter: $n
    return ($n + $d + 1 + $w,
            $n - $d + 1);
  }
  $n -= $d-1;
  if ($n <= $d) {
    #### right upper diagonal: $n
    return (-$n + 2*$d + $w,
            $n);
  }
  $n -= $d;
  if ($n <= $d+$w) {
    #### top horizontal
    return (-2*$n + $d + $w,
            $d);
  }
  $n -= $d+$w;
  if ($n <= $d) {
    #### left upper diagonal
    return (-$n - $d - $w,
            -$n + $d );
  }
  #### left lower diagonal
  $n -= $d;
  return ($n - 2*$d - $w,
          -$n);
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  return xy_is_even($self,$x+$self->{'wider'},$y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  my $w = $self->{'wider'};
  if (($x ^ $y ^ $w) & 1) {
    return undef;  # nothing on odd squares
  }

  my $ay = abs($y);
  my $ax = abs($x) - $w;
  if ($ax > $ay) {
    my $d = ($ax + $ay)/2;  # x+y is even

    if ($x > 0) {
      ### right ends
      ### $d
      return ((3*$d - 2 + 2*$w)*$d - $w  # horizontal to the right
              + $y                       # offset up or down
              + $self->{'n_start'});

    } else {
      ### left ends
      return ((3*$d + 1 + 2*$w)*$d    # horizontal to the left
              - $y                    # offset up or down
              + $self->{'n_start'});
    }

  } else {
    my $d = $ay;

    if ($y > 0) {
      ### top horizontal
      ### $d
      return ((3*$d + 2*$w)*$d      # diagonal up to the left
              + (-$d - $x-$w) / 2   # negative offset rightwards
              + $self->{'n_start'});
    } else {
      ### bottom horizontal, and centre horizontal
      ### $d
      ### offset: $d
      return ((3*$d + 2 + 2*$w)*$d   # diagonal down to the left
              + ($x + $w + $d)/2     # offset rightwards
              + $self->{'n_start'});
    }
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### HexSpiral rect_to_n_range(): $x1,$y1, $x2,$y2
  my $w = $self->{'wider'};

  # symmetric in +/-y, and biggest y is biggest n
  my $y = max (abs($y1), abs($y2));

  # symmetric in +/-x, and biggest x
  my $x = max (abs($x1), abs($x2));
  if ($x >= $w) {
    $x -= $w;
  }

  # in the middle horizontal path parts y determines the loop number
  # in the end parts diagonal distance, 2 apart
  my $d = ($y >= $x
           ? $y                 # middle
           : ($x + $y + 1)/2);  # ends
  $d = int($d) + 1;

  # diagonal downwards bottom left being the end of a revolution
  # s=0
  # s=1  n=7
  # s=2  n=19
  # s=3  n=37
  # s=4  n=61
  # n = 3*$d*$d + 3*$d + 1
  #
  # ### gives: "sum $d is " . (3*$d*$d + 3*$d + 1)

  # ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
  return ($self->{'n_start'},
          (3*$d + 3 + 2*$w)*$d + $self->{'n_start'});
}

1;
__END__

=for stopwords PlanePath Ryde Math-PlanePath ie OEIS

=head1 NAME

Math::PlanePath::HexSpiral -- integer points around a hexagonal spiral

=head1 SYNOPSIS

 use Math::PlanePath::HexSpiral;
 my $path = Math::PlanePath::HexSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes a hexagonal spiral, with points spread out horizontally to
fit on a square grid.

             28 -- 27 -- 26 -- 25                  3
            /                    \
          29    13 -- 12 -- 11    24               2
         /     /              \     \
       30    14     4 --- 3    10    23            1
      /     /     /         \     \    \
    31    15     5     1 --- 2     9    22    <- Y=0
      \     \     \              /     /
       32    16     6 --- 7 --- 8    21           -1
         \     \                    /
          33    17 -- 18 -- 19 -- 20              -2
            \
             34 -- 35 ...                         -3

     ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

Each horizontal gap is 2, so for instance n=1 is at X=0,Y=0 then n=2 is at
X=2,Y=0.  The diagonals are just 1 across, so n=3 is at X=1,Y=1.  Each
alternate row is offset from the one above or below.  The result is a
triangular lattice per L<Math::PlanePath/Triangular Lattice>.

The octagonal numbers 8,21,40,65, etc 3*k^2-2*k fall on a horizontal
straight line at Y=-1.  In general straight lines are 3*k^2 + b*k + c.
A plain 3*k^2 goes diagonally up to the left, then b is a 1/6 turn
anti-clockwise, or clockwise if negative.  So b=1 goes horizontally to the
left, b=2 diagonally down to the left, b=3 diagonally down to the right,
etc.

=head2 Wider

An optional C<wider> parameter makes the path wider, stretched along the top
and bottom horizontals.  For example

    $path = Math::PlanePath::HexSpiral->new (wider => 2);

gives

                                ... 36----35                   3
                                            \
                21----20----19----18----17    34               2
               /                          \     \
             22     8---- 7---- 6---- 5    16    33            1
            /     /                    \     \    \
          23     9     1---- 2---- 3---- 4    15    32    <- Y=0
            \     \                          /     /
             24    10----11----12----13----14    31           -1
               \                               /
                25----26----27----28---29----30               -2

           ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
          -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7

The centre horizontal from N=1 is extended by C<wider> many extra places,
then the path loops around that shape.  The starting point N=1 is shifted to
the left by wider many places to keep the spiral centred on the origin
X=0,Y=0.  Each horizontal gap is still 2.

Each loop is still 6 longer than the previous, since the widening is
basically a constant amount added into each loop.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape etc.  For example
to start at 0,

=cut

# math-image --path=HexSpiral,n_start=0 --all --output=numbers --size=70x9

=pod

    n_start => 0

             27    26    25    24                    3
          28    12    11    10    23                 2
       29    13     3     2     9    22              1
    30    14     4     0     1     8    21      <- Y=0
       31    15     5     6     7    20   ...       -1
          32    16    17    18    19    38          -2
             33    34    35    36    37             -3
                       ^
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

In this numbering the X axis N=0,1,8,21,etc is the octagonal numbers
3*X*(X+1).

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::HexSpiral-E<gt>new ()>

=item C<$path = Math::PlanePath::HexSpiral-E<gt>new (wider =E<gt> $w)>

Create and return a new hex spiral object.  An optional C<wider> parameter
widens the path, it defaults to 0 which is no widening.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n < 1> the return is an empty list, it being considered the path
starts at 1.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each
C<$n> in the path as a square of side 1.

Only every second square in the plane has an N, being those where X,Y both
odd or both even.  If C<$x,$y> is a position without an N, ie. one of X,Y
odd the other even, then the return is C<undef>.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A056105> (etc)

=back

    A056105    N on X axis
    A056106    N on X=Y diagonal
    A056107    N on North-West diagonal
    A056108    N on negative X axis
    A056109    N on South-West diagonal
    A003215    N on South-East diagonal

    A063178    total sum N previous row or diagonal
    A135711    boundary length of N hexagons 
    A135708    grid sticks of N hexagons 

    n_start=0
      A000567    N on X axis, octagonal numbers
      A049451    N on X negative axis
      A049450    N on X=Y diagonal north-east
      A033428    N on north-west diagonal, 3*k^2
      A045944    N on south-west diagonal, octagonal numbers second kind
      A063436    N on WSW slope dX=-3,dY=-1
      A028896    N on south-east diagonal

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::HexSpiralSkewed>,
L<Math::PlanePath::HexArms>,
L<Math::PlanePath::TriangleSpiral>,
L<Math::PlanePath::TriangularHypot>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut