/usr/share/perl5/Math/PlanePath/GcdRationals.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# A003989 diagonals from (1,1)
# A109004 0,1,1,2,1,2,3,1,1,3,4,1,2,1,4,5,1,1,1,1
# gcd by diagonals (0,0)=0
# (1,0)=1 (0,1)=1
# (2,0)=2 (1,1)=1 (0,2)=2
# A050873 gcd rows n>=1, k=1..n
# 1,1,2,1,1,3,1,2,1,4,1,1,1,1,5,1,2,3,2,1,6,1,1,1,
# add 0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0 A023532 0 at m(m+3)/2
# IntXY 1,0,2,0,0,3,0,1,0,4,0,0,0,0,5,0,1,2,1,0,6,
# IntXY+1 2,1,3,1,1,4,1,2,1,5,1,1,1,1,6,1,2,3,2,1,7
# diff 1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1 A023531
# A178340 1,2,1,3,1,1,4,1,2,1,5,1,1,1,1,6,1,2,3,2,1,7,1,1 Bernoulli
# T(n,m) = A003989(n-m+1,m) m>=1, except when factor cancels
# diagonals_down even/odd in wedges, and other modulo
# math-image --path=GcdRationals --expression='i<30*31/2?i:0' --text --size=40
# math-image --path=GcdRationals --output=numbers --expression='i<100?i:0'
# math-image --path=GcdRationals --all --output=numbers
# Y = v = j/g
# X = (g-1)*v + u
# = (g-1)*j/g + i/g
# = ((g-1)*j + i)/g
# j=5 11 ...
# j=4 7 8 9 10
# j=3 4 5 6
# j=2 2 3
# j=1 1
#
# N = (1/2 d^2 - 1/2 d + 1)
# = (1/2*$d**2 - 1/2*$d + 1)
# = ((1/2*$d - 1/2)*$d + 1)
# j = 1/2 + sqrt(2 * $n + -7/4)
# = [ 1 + 2*sqrt(2 * $n + -7/4) ] /2
# = [ 1 + sqrt(8*$n -7) ] /2
#
# Primes
# i=3*a,j=3*b
# N=3*a*(3*b-1)/2
package Math::PlanePath::GcdRationals;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
*_divrem = \&Math::PlanePath::_divrem;
use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 1;
use constant gcdxy_maximum => 1; # no common factor
use constant parameter_info_array =>
[ { name => 'pairs_order',
display => 'Pairs Order',
type => 'enum',
default => 'rows',
choices => ['rows','rows_reverse','diagonals_down','diagonals_up'],
choices_display => ['Rows',
'Rows Reverse',
'Diagonals Down',
'Diagonals Up'],
description => 'Order in the i,j pairs.',
} ];
sub absdy_minimum {
my ($self) = @_;
return ($self->{'pairs_order'} eq 'diagonals_down'
? 1
: 0);
}
{
my %dir_minimum_dxdy
= (rows => [1,0], # N=4 to N=5 horiz
rows_reverse => [1,0], # N=1 to N=2 horiz
diagonals_down => [0,1], # N=1 to N=2 vertical, nothing less
diagonals_up => [1,0], # N=4 to N=5 horiz
);
sub dir_minimum_dxdy {
my ($self) = @_;
return @{$dir_minimum_dxdy{$self->{'pairs_order'}}};
}
}
{
my %dir_maximum_dxdy
= (rows => [1,-1], # N=2 to N=3 SE diagonal
rows_reverse => [2,-1], # N=3 to N=4 dX=2,dY=-1
diagonals_down => [1,-1], # N=5 to N=6 SE diagonal
diagonals_up => [2,-1], # N=9 to N=10 dX=2,dY=-1
);
sub dir_maximum_dxdy {
my ($self) = @_;
return @{$dir_maximum_dxdy{$self->{'pairs_order'}}};
}
}
#------------------------------------------------------------------------------
# all rationals X,Y >= 1 no common factor
use Math::PlanePath::DiagonalRationals;
*xy_is_visited = Math::PlanePath::DiagonalRationals->can('xy_is_visited');
sub new {
my $self = shift->SUPER::new(@_);
my $pairs_order = ($self->{'pairs_order'} ||= 'rows');
(($self->{'pairs_order_n_to_xy'}
= $self->can("_pairs_order__${pairs_order}__n_to_xy"))
&& ($self->{'pairs_order_xygr_to_n'}
= $self->can("_pairs_order__${pairs_order}__xygr_to_n")))
or croak "Unrecognised pairs_order: ",$pairs_order;
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### GcdRationals n_to_xy(): "$n"
if ($n < 1) { return; }
if (is_infinite($n)) { return ($n,$n); }
# what to do for fractional $n?
{
my $int = int($n);
if ($n != $int) {
### frac ...
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
my ($x,$y) = $self->{'pairs_order_n_to_xy'}->($n);
# if ($self->{'pairs_order'} eq 'rows'
# || $self->{'pairs_order'} eq 'rows_reverse') {
# $y = int((sqrt(8*$n-7) + 1) / 2);
# $x = $n - ($y - 1)*$y/2;
#
# if ($self->{'pairs_order'} eq 'rows_reverse') {
# $x = $y - ($x-1);
# }
#
# # require Math::PlanePath::PyramidRows;
# # my ($x,$y) = Math::PlanePath::PyramidRows->new(step=>1)->n_to_xy($n);
# # $x+=1;
# # $y+=1;
#
# } else {
# require Math::PlanePath::DiagonalsOctant;
# ($x,$y) = Math::PlanePath::DiagonalsOctant->new->n_to_xy($n);
# if ($self->{'pairs_order'} eq 'diagonals_up') {
# my $d = $x+$y; # top 0,d measure diag down by x
# my $e = int($d/2); # end e,d-e
# ($x,$y) = ($e-$x, $d - ($e-$x));
# }
# $x+=1;
# $y+=1;
# }
### triangle: "$x,$y"
my $gcd = _gcd($x,$y);
$x /= $gcd;
$y /= $gcd;
### $gcd
### reduced: "$x,$y"
### push out to x: $x + ($gcd-1)*$y
return ($x + ($gcd-1)*$y, $y);
}
sub _pairs_order__rows__n_to_xy {
my ($n) = @_;
my $y = int((sqrt(8*$n-7) + 1) / 2);
return ($n - ($y-1)*$y/2,
$y);
}
sub _pairs_order__rows_reverse__n_to_xy {
my ($n) = @_;
my $y = int((sqrt(8*$n-7) + 1) / 2);
return ($y*($y+1)/2 + 1 - $n,
$y);
}
sub _pairs_order__diagonals_down__n_to_xy {
my ($n) = @_;
my $d = int(sqrt($n-1)); # eg. N=10 d=3
$n -= $d*($d+1); # eg. d=3 subtract 12
if ($n > 0) {
return ($n,
2 - $n + 2*$d);
} else {
return ($n + $d,
1 - $n + $d);
}
}
sub _pairs_order__diagonals_up__n_to_xy {
my ($n) = @_;
my $d = int(sqrt($n-1));
$n -= $d*($d+1);
if ($n > 0) {
return (-$n + $d + 2,
$n + $d);
} else {
return (1 - $n,
$n + 2*$d);
}
}
# X=(g-1)*v+u
# Y=v
# u = x % y
# i = u*g
# = (x % y)*g
# = (x % y)*(floor(x/y)+1)
#
# Better:
# g-1 = floor(x/y)
# Y = j/g
# X = ((g-1)*j + i)/g
# j = Y*g
# (g-1)*j + i = X*g
# i = X*g - (g-1)*j
# = X*g - (g-1)*Y*g
# N = i + j*(j-1)/2
# = X*g - (g-1)*Y*g + Y*g*(Y*g-1)/2
# = X*g + Y*g * (-(g-1) + (Y*g-1)/2) # but Y*g-1 may be odd
# = X*g + Y*g * (Y*g-1 - (2g-2))/2
# = X*g + Y*g * (Y*g-1 - 2g + 2))/2
# = X*g + Y*g * (Y*g - 2g + 1))/2
# = X*g + Y*g * ((Y-2)*g + 1) / 2
# = g * [ X + Y*((Y-2)*g + 1) / 2 ]
#
# N = X*g - (g-1)*Y*g + Y*g*(Y*g-1)/2
# = [ 2*X*g - 2*(g-1)*Y*g + Y*g*(Y*g-1) ] / 2
# = [ 2*X - 2*(g-1)*Y + Y*(Y*g-1) ] * g / 2
# = [ 2*X + Y*(- 2*(g-1) + (Y*g-1)) ] * g / 2
# = [ 2*X + Y*(-2g + 2 + Y*g - 1) ] * g / 2
# = [ 2*X + Y*((Y-2)*g + 1) ] * g / 2
# = X*g + [(Y-2)*g + 1]*Y*g/2
#
# if Y and g both odd then (Y-2)*g+1 is odd+1 so even
# q=int(x/y)
# x = qy+r qy=x-r
# r = x % y
# g-1 = q
# g = q+1
# g*y = (q+1)*y
# = q*y + y
# = x-r + y
#
# N = X*g + Y*g * ((Y-2)*g + 1) / 2
# = X*g + (X+Y-r) * ((Y-2)*g + 1) / 2
# = X*g + (X+Y-r) * ((g*Y-2*g + 1) / 2
# = X*g + (X+Y-r) * (((X+Y-r) - 2*g + 1) / 2
# ... not much better
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### GcdRationals xy_to_n(): "$x,$y"
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
if ($x < 1 || $y < 1 || ! _coprime($x,$y)) {
return undef;
}
my ($p,$r) = _divrem ($x,$y);
### $x
### $y
### $p
### $r
return $self->{'pairs_order_xygr_to_n'}->($x,$y,$p+1,$r);
# my $g = int($x/$y) + 1;
# ### g: "$g"
# ### halve: ''.$y*(($y-2)*$g + 1)
# return $self->{'pairs_order_xygr_to_n'}->($x,$y,$g);
}
sub _pairs_order__rows__xygr_to_n {
my ($x,$y,$g,$r) = @_;
### j: $x+$y-$r
### i: $g*$r
$x += $y;
$x -= $r; # j=X+Y-r
return $x*($x-1)/2 + $g*$r; # i=g*r
}
# i = X*g - (g-1)*g*Y
# = X*g - (g-1)*(X+Y-r)
# = X*g - g*(X+Y-r) + *(X+Y-r)
# = X*g - g*X - g*Y + g*r + (X+Y-r)
# = X*g - g*X - (X+Y-r) + g*r + (X+Y-r)
# = g*r
#
# N = j-i+1 + j*(j-1)/2
# = [2j-2i + 2 + $j*($j-1)] / 2
# = [-2i + 2 + 2j+ j*(j-1)] / 2
# = [-2i + 2 + j*(j-1+2)] / 2
# = [-2i + 2 + j*(j+1)] / 2
# = 1-i + j*(j+1)/2
#
sub _pairs_order__rows_reverse__xygr_to_n {
my ($x,$y,$g,$r) = @_;
$y += $x;
$y -= $r; # j = X+Y-r
if ($r == 0) {
# Case r=0 which is Y=1 becomes i=0 and that doesn't reverse to the
# correct place by j-i+1. Can either set $r=1,$g+=1 or leave $r==0
# alone and adjust $y.
$y -= 2;
}
return $y*($y+1)/2 - $r*$g + 1;
}
# d = (i-1)+(j-1)+1
# = i+j-1
# = rg + X+Y-r - 1
# = X+Y + r*(g-1) - 1
# if r==0 Y==1 then r=1 g=X-1
# i = r*g = X-1
# j = X+Y-r = X+1-1 = X-1
# d = i+j-1
# = 2X-2
# N = (d*d - (d%2))/4 + X-1
# = ((2X-2)*(2X-2) - 0)/4 + X-1
# = (X-1)^2 + X-1
#
sub _pairs_order__diagonals_down__xygr_to_n {
my ($x,$y,$g,$r) = @_;
$y += $x + $r*($g-1) - 1; # d=X+Y + r*(g-1) - 1
if ($r == 0) {
$y *= 2; # d=2*g-2
}
return ($y*$y - ($y % 2))/4 + $r*$g;
}
sub _pairs_order__diagonals_up__xygr_to_n {
my ($x,$y,$g,$r) = @_;
$y += $x + $r*($g-1); # d=X+Y + r*(g-1)
if ($r == 0) {
$y = 2*$x - 1;
}
return ($y*$y - ($y % 2))/4 - $r*$g + 1;
}
# increase in rows, so right column
# in column increase within g wedge, then drop
#
# int(x2/y2) is slope of top of the wedge containing x2,y2
# g = int(x2/y2)+1 is the slope of the bottom of that wedge
# yw = floor(x2 / g) is the Y of that bottom
# N at x2,yw,g+1 is the top of the wedge underneath, bigger g smaller y
# or x2,y2,g is the top-right corner
#
# Eg.
# x=19 y=2 to 4
# g=int(19/4)+1=5
# yw=int(19/5)=3
# N(19,3,6)=
#
# at X=Y+1 g=2
# nhi = (y*((y-2)*g + 1) / 2 + x)*g
# = (y*((y-2)*2 + 1) / 2 + y+1)*2
# = (y*(2y-4 + 1) / 2 + y+1)*2
# = (y*(2y-3) / 2 + y+1)*2
# = y*(2y-3) + 2y+2
# = 2y^2 - 3y + 2y + 2
# = 2y^2 - y + 2
# = y*(2y-1) + 2
# 11 12 13 14 47 49 51 53 108 111 114 117 194 198 202 206
# 7 9 30 34 69 75 124 132 195 205
# 4 5 17 19 39 42 70 74 110 115 159 165 217
# 2 8 18 32 50 72 98 128 162 200
# 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190
# 206=20*19/2+16 i=16,j=20 gcd=4
# 19,5 is slope=floor(19/5)=3 so g=4
#
# 205=20*19/2+15 i=15,j=20 gcd=5
# 19,4 is slope=floor(19/4)=4 so g=5
#
# 217=21*20/2 + 7, i=21,j=7 gcd=7
# 19,3 is slope=floor(19/3)=6 so g=7
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### $x2
### $y2
if ($x2 < 1 || $y2 < 1) {
return (1, 0); # outside quadrant
}
if ($x1 < 1) { $x1 = 1; }
if ($y1 < 1) { $y1 = 1; }
if ($self->{'pairs_order'} =~ /^diagonals/) {
my $d = $x2 + max($x2,$y2);
return (1, int($d*($d+($d%2)) / 4)); # N end of diagonal d
}
my $nhi;
{
my $c = max($x2,$y2);
$nhi = _pairs_order__rows__xygr_to_n($c,$c,2,0);
# my $rev = ($self->{'pairs_order'} eq 'rows_reverse');
# my $slope = int($x2/$y2);
# my $g = $slope + 1;
#
# # within top row
# {
# my $x;
# if ($rev) {
# if ($slope > 0) {
# $x = max ($x1, $y2*$slope); # left-most within this wedge
# } else {
# $x = $x1; # top-left corner
# }
# } else {
# # pairs_order=rows
# $x = $x2; # top-right corner
# }
# $nhi = $self->{'pairs_order_xygr_to_n'}->($x, $y2, $g, 0);
#
# ### $slope
# ### $g
# ### x for hi: $x
# ### nhi for x,y2: $nhi
# }
#
# # within x2 column, top of wedge below
# #
# my $yw = int(($x2+$g-1) / $g); # rounded up
# if ($yw >= $y1) {
# $nhi = max ($nhi, $self->{'pairs_order_xygr_to_n'}->($x2,$yw,$g+1,0));
#
# ### $yw
# ### nhi_wedge: $self->{'pairs_order_xygr_to_n'}->($x2,$yw,$g+1,0)
# }
# my $yw = int($x2 / $g) - ($g==1); # below X=Y diagonal when g==1
# if ($yw >= $y1) {
# $g = int($x2/$yw) + 1; # perhaps went across more than one wedge
# $nhi = max ($nhi,
# ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1));
# ### $yw
# ### nhi_wedge: ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1)
# }
}
my $nlo;
{
$nlo = _pairs_order__rows__xygr_to_n(1,$x1, 1, $x1-1);
# my $g = int($x1/$y1) + 1;
# $nlo = $self->{'pairs_order_xygr_to_n'}->($x1,$y1,$g,0);
#
# ### glo: $g
# ### $nlo
#
# if ($g > 1) {
# my $yw = max (int($x1 / $g),
# 1);
# ### $yw
# if ($yw <= $y2) {
# $g = int($x1/$yw); # no +1, and perhaps up across more than one wedge
# $nlo = min ($nlo, $self->{'pairs_order_xygr_to_n'}->($x1,$yw,$g,0));
# ### glo_wedge: $g
# ### nlo_wedge: $self->{'pairs_order_xygr_to_n'}->($x1,$yw,$g,0)
# }
# }
# if ($nlo < 1) {
# $nlo = 1;
# }
}
### $nhi
### $nlo
return ($nlo, $nhi);
}
sub _gcd {
my ($x, $y) = @_;
#### _gcd(): "$x,$y"
# bgcd() available in even the earliest Math::BigInt
if ((ref $x && $x->isa('Math::BigInt'))
|| (ref $y && $y->isa('Math::BigInt'))) {
return Math::BigInt::bgcd($x,$y);
}
$x = abs(int($x));
$y = abs(int($y));
unless ($x > 0) {
return $y; # gcd(0,y)=y for y>=0, giving gcd(0,0)=0
}
if ($y > $x) {
$y %= $x;
}
for (;;) {
### assert: $x >= 1
if ($y <= 1) {
return ($y == 0
? $x # gcd(x,0)=x
: 1); # gcd(x,1)=1
}
($x,$y) = ($y, $x % $y);
}
}
# # old code, rows only ...
# sub rect_to_n_range {
# my ($self, $x1,$y1, $x2,$y2) = @_;
# ### rect_to_n_range(): "$x1,$y1 $x2,$y2"
#
# $x1 = round_nearest ($x1);
# $y1 = round_nearest ($y1);
# $x2 = round_nearest ($x2);
# $y2 = round_nearest ($y2);
#
# ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
# ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
# ### $x2
# ### $y2
#
# if ($x2 < 1 || $y2 < 1) {
# return (1, 0); # outside quadrant
# }
#
# if ($x1 < 1) { $x1 = 1; }
# if ($y1 < 1) { $y1 = 1; }
#
# my $g = int($x2/$y2) + 1;
# my $nhi = ($y2*(($y2-2)*$g + 1) / 2 + $x2)*$g;
# ### ghi: $g
# ### $nhi
#
# my $yw = int($x2 / $g) - ($g==1); # below X=Y diagonal when g==1
# if ($yw >= $y1) {
# $g = int($x2/$yw) + 1; # perhaps went across more than one wedge
# $nhi = max ($nhi,
# ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1));
# ### $yw
# ### nhi_wedge: ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1)
# }
#
# $g = int($x1/$y1) + 1;
# my $nlo = ($y1*(($y1-2)*$g + 1) / 2 + $x1)*$g;
#
# ### glo: $g
# ### $nlo
#
# if ($g > 1) {
# $yw = max (int($x1 / $g),
# 1);
# ### $yw
# if ($yw <= $y2) {
# $g = int($x1/$yw); # no +1, and perhaps up across more than one wedge
# $nlo = min ($nlo,
# ($yw*(($yw-2)*$g + 1) / 2 + $x1)*$g);
# ### glo_wedge: $g
# ### nlo_wedge: ($yw*(($yw-2)*$g + 1) / 2 + $x1)*$g
# }
# }
#
# return ($nlo, $nhi);
# }
1;
__END__
=for stopwords eg Ryde OEIS ie Math-PlanePath GCD gcd gcds gcd/2 gcd-1 j/gcd Fortnow coprime triangulars numberings pronics incrementing
=head1 NAME
Math::PlanePath::GcdRationals -- rationals by triangular GCD
=head1 SYNOPSIS
use Math::PlanePath::GcdRationals;
my $path = Math::PlanePath::GcdRationals->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Fortnow, Lance>This path enumerates X/Y rationals using a method by Lance
Fortnow taking a greatest common divisor out of a triangular position.
=over
L<http://blog.computationalcomplexity.org/2004/03/counting-rationals-quickly.html>
=back
The attraction of this approach is that it's both efficient to calculate and
visits blocks of X/Y rationals using a modest range of N values, roughly a
square N=2*max(num,den)^2 in the default rows style.
13 | 79 80 81 82 83 84 85 86 87 88 89 90
12 | 67 71 73 77 278
11 | 56 57 58 59 60 61 62 63 64 65 233 235
10 | 46 48 52 54 192 196
9 | 37 38 40 41 43 44 155 157 161
8 | 29 31 33 35 122 126 130
7 | 22 23 24 25 26 27 93 95 97 99 101 103
6 | 16 20 68 76 156
5 | 11 12 13 14 47 49 51 53 108 111 114
4 | 7 9 30 34 69 75 124
3 | 4 5 17 19 39 42 70 74 110
2 | 2 8 18 32 50 72 98
1 | 1 3 6 10 15 21 28 36 45 55 66 78 91
Y=0 |
--------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13
The mapping from N to rational is
N = i + j*(j-1)/2 for upper triangle 1 <= i <= j
gcd = GCD(i,j)
rational = i/j + gcd-1
which means X=numerator Y=denominator are
X = (i + j*(gcd-1))/gcd = j + (i-j)/gcd
Y = j/gcd
The i,j position is a numbering of points above the X=Y diagonal by rows in
the style of L<Math::PlanePath::PyramidRows> with step=1, but starting from
i=1,j=1.
j=4 | 7 8 9 10
j=3 | 4 5 6
j=2 | 2 3
j=1 | 1
+-------------
i=1 2 3 4
If GCD(i,j)=1 then X/Y is simply X=i,Y=j unchanged. This means fractions
S<X/Y E<lt> 1> are numbered by rows with increasing numerator, but skipping
positions where i,j have a common factor.
The skipped positions where i,j have a common factor become rationals
S<X/YE<gt>1>, ie. below the X=Y diagonal. The integer part is GCD(i,j)-1 so
S<rational = gcd-1 + i/j>. For example
N=51 is at i=6,j=10 by rows
common factor gcd(6,10)=2
so rational R = 2-1 + 6/10 = 1+3/5 = 8/5
ie. X=8,Y=5
If j is prime then gcd(i,j)=1 and so X=i,Y=j. This means that in rows with
prime Y are numbered by consecutive N across to the X=Y diagonal. For
example in row Y=7 above N=22 to N=27.
=head2 Triangular Numbers
X<Triangular numbers>N=1,3,6,10,etc along the bottom Y=1 row is the
triangular numbers N=k*(k-1)/2. Such an N is at i=k,j=k and has gcd(i,j)=k
which divides out to Y=1.
N=k*(k-1)/2 i=k,j=k
Y = j/gcd
= 1 on the bottom row
X = (i + j*(gcd-1)) / gcd
= (k + k*(k-1)) / k
= k-1 successive points on that bottom row
N=1,2,4,7,11,etc in the column at X=1 immediately follows each of those
bottom row triangulars, ie. N+1.
N in X=1 column = Y*(Y-1)/2 + 1
=head2 Primes
If N is prime then it's above the sloping line X=2*Y. If N is composite
then it might be above or below, but the primes are always above. Here's
the table with dots "..." marking the X=2*Y line.
primes and composites above
|
6 | 16 20 68
| .... X=2*Y
5 | 11 12 13 14 47 49 51 53 ....
| ....
4 | 7 9 30 34 .... 69
| ....
3 | 4 5 17 19 .... 39 42 70 only
| .... composite
2 | 2 8 .... 18 32 50 below
| ....
1 | 1 ..3. 6 10 15 21 28 36 45 55
| ....
Y=0 | ....
---------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
Values below X=2*Y such as 39 and 42 are always composite. Values above
such as 19 and 30 are either prime or composite. Only X=2,Y=1 is exactly on
the line, which is prime N=3 as it happens. The rest of the line X=2*k,Y=k
is not visited since common factor k would mean X/Y is not a rational in
least terms.
This pattern of primes and composites occurs because N is a multiple of
gcd(i,j) when that gcd is odd, or a multiple of gcd/2 when that gcd is even.
N = i + j*(j-1)/2
gcd = gcd(i,j)
N = gcd * (i/gcd + j/gcd * (j-1)/2) when gcd odd
gcd/2 * (2i/gcd + j/gcd * (j-1)) when gcd even
If gcd odd then either j/gcd or j-1 is even, to take the "/2" divisor. If
gcd even then only gcd/2 can come out as a factor since taking out the full
gcd might leave both j/gcd and j-1 odd and so the "/2" not an integer. That
happens for example to N=70
N = 70
i = 4, j = 12 for 4 + 12*11/2 = 70 = N
gcd(i,j) = 4
but N is not a multiple of 4, only of 4/2=2
Of course knowing gcd or gcd/2 is a factor of N is only useful when that
factor is 2 or more, so
odd gcd >= 2 means gcd >= 3
even gcd with gcd/2 >= 2 means gcd >= 4
so N composite when gcd(i,j) >= 3
If gcdE<lt>3 then the "factor" coming out is only 1 and says nothing about
whether N is prime or composite. There are both prime and composite N with
gcdE<lt>3, as can be seen among the values above the X=2*Y line in the table
above.
=head2 Rows Reverse
Option C<pairs_order =E<gt> "rows_reverse"> reverses the order of points
within the rows of i,j pairs,
j=4 | 10 9 8 7
j=3 | 6 5 4
j=2 | 3 2
j=1 | 1
+------------
i=1 2 3 4
The X,Y numbering becomes
=cut
# math-image --path=GcdRationals,pairs_order=rows_reverse --all --output=numbers
=pod
pairs_order => "rows_reverse"
11 | 66 65 64 63 62 61 60 59 58 57
10 | 55 53 49 47 209
9 | 45 44 42 41 39 38 170 168
8 | 36 34 32 30 135 131
7 | 28 27 26 25 24 23 104 102 100 98
6 | 21 17 77 69
5 | 15 14 13 12 54 52 50 48 118
4 | 10 8 35 31 76 70
3 | 6 5 20 18 43 40 75 71
2 | 3 9 19 33 51 73
1 | 1 2 4 7 11 16 22 29 37 46 56
Y=0 |
------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11
The triangular numbers, per L</Triangular Numbers> above, are now in the X=1
column, ie. at the left rather than at the Y=1 bottom row. That bottom row
is now the next after each triangular, ie. T(X)+1.
=head2 Diagonals
Option C<pairs_order =E<gt> "diagonals_down"> takes the i,j pairs by
diagonals down from the Y axis. C<pairs_order =E<gt> "diagonals_up">
likewise but upwards from the X=Y centre up to the Y axis. (These
numberings are in the style of L<Math::PlanePath::DiagonalsOctant>.)
diagonals_down diagonals_up
j=7 | 13 j=7 | 16
j=6 | 10 14 j=6 | 12 15
j=5 | 7 11 15 j=5 | 9 11 14
j=4 | 5 8 12 16 j=4 | 6 8 10 13
j=3 | 3 6 9 j=3 | 4 5 7
j=2 | 2 4 j=2 | 2 3
j=1 | 1 j=1 | 1
+------------ +------------
i=1 2 3 4 i=1 2 3 4
The resulting path becomes
=cut
# math-image --path=GcdRationals,pairs_order=diagonals_down --all --output=numbers --size=40x10
=pod
pairs_order => "diagonals_down"
9 | 21 27 40 47 63 72
8 | 17 28 41 56 74
7 | 13 18 23 29 35 42 58 76
6 | 10 30 44
5 | 7 11 15 20 32 46 62 80
4 | 5 12 22 48 52
3 | 3 6 14 24 33 55
2 | 2 8 19 34 54
1 | 1 4 9 16 25 36 49 64 81
Y=0 |
--------------------------------
X=0 1 2 3 4 5 6 7 8 9
X<Square numbers>The Y=1 bottom row is the perfect squares which are at i=j
in the C<DiagonalsOctant> and have gcd(i,j)=i thus becoming X=i,Y=1.
=cut
# math-image --path=GcdRationals,pairs_order=diagonals_up --all --output=numbers --size=40x10
=pod
pairs_order => "diagonals_up"
9 | 25 29 39 45 58 65
8 | 20 28 38 50 80
7 | 16 19 23 27 32 37 63 78
6 | 12 26 48
5 | 9 11 14 17 35 46 59 74
4 | 6 10 24 44 54
3 | 4 5 15 22 34 51
2 | 2 8 18 33 52
1 | 1 3 7 13 21 31 43 57 73
Y=0 |
--------------------------------
X=0 1 2 3 4 5 6 7 8 9
X<Square numbers>X<Pronic numbers>N=1,2,4,6,9 etc in the X=1 column is the
perfect squares k*k and the pronics k*(k+1) interleaved, also called the
X<Quarter square numbers>quarter-squares. N=2,5,10,17,etc on Y=X+1 above
the leading diagonal are the squares+1, and N=3,8,15,24,etc below on Y=X-1
below the diagonal are the squares-1.
The GCD division moves points downwards and shears them across horizontally.
The effect on diagonal lines of i,j points is as follows
| 1
| 1 gcd=1 slope=-1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| . gcd=2 slope=0
| . 2
| . 2 3 gcd=3 slope=1
| . 2 3 gcd=4 slope=2
| . 2 3 4
| . 3 4 5 gcd=5 slope=3
| . 4 5
| . 4 5
| . 5
+-------------------------------
The line of "1"s is the diagonal with gcd=1 and thus X,Y=i,j unchanged.
The line of "2"s is when gcd=2 so X=(i+j)/2,Y=j/2. Since i+j=d is constant
within the diagonal this makes X=d fixed, ie. vertical.
Then gcd=3 becomes X=(i+2j)/3 which slopes across by +1 for each i, or gcd=4
has X=(i+3j)/4 slope +2, etc.
Of course only some of the points in an i,j diagonal have a given gcd, but
those which do are transformed this way. The effect is that for N up to a
given diagonal row all the "*" points in the following are traversed, plus
extras in wedge shaped arms out to the side.
| *
| * * up to a given diagonal points "*"
| * * * all visited, plus some wedges out
| * * * * to the right
| * * * * *
| * * * * * /
| * * * * * / --
| * * * * * --
| * * * * *--
+--------------
In terms of the rationals X/Y the effect is that up to N=d^2 with diagonal
d=2j the fractions enumerated are
N=d^2
enumerates all num/den where num <= d and num+den <= 2*d
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over
=item C<$path = Math::PlanePath::GcdRationals-E<gt>new ()>
=item C<$path = Math::PlanePath::GcdRationals-E<gt>new (pairs_order =E<gt> $str)>
Create and return a new path object. The C<pairs_order> option can be
"rows" (default)
"rows_reverse"
"diagonals_down"
"diagonals_up"
=back
=head1 FORMULAS
=head2 X,Y to N -- Rows
The defining formula above for X,Y can be inverted to give i,j and N. This
calculation doesn't notice if X,Y have a common factor, so a coprime(X,Y)
test must be made separately if necessary (for C<xy_to_n()> it is).
X/Y = g-1 + (i/g)/(j/g)
The g-1 integer part is recovered by a division X divide Y,
X = quot*Y + rem division by Y rounded towards 0
where 0 <= rem < Y
unless Y=1 in which case use quot=X-1, rem=1
g-1 = quot
g = quot+1
The Y=1 special case can instead be left as the usual kind of division
quot=X,rem=0, so 0E<lt>=remE<lt>Y. This will give i=0 which is outside the
intended 1E<lt>=iE<lt>=j range, but j is 1 bigger and the combination still
gives the correct N. It's as if the i=g,j=g point at the end of a row is
moved to i=0,j=g+1 just before the start of the next row. If only N is of
interest not the i,j then it can be left rem=0.
Equating the denominators in the X/Y formula above gives j by
Y = j/g the definition above
j = g*Y
= (quot+1)*Y
j = X+Y-rem per the division X=quot*Y+rem
And equating the numerators gives i by
X = (g-1)*Y + i/g the definition above
i = X*g - (g-1)*Y*g
= X*g - quot*Y*g
= X*g - (X-rem)*g per the division X=quot*Y+rem
i = rem*g
i = rem*(quot+1)
Then N from i,j by the definition above
N = i + j*(j-1)/2
For example X=11,Y=4 divides X/Y as 11=4*2+3 for quot=2,rem=3 so i=3*(2+1)=9
j=11+4-3=12 and so N=9+12*11/2=75 (as shown in the first table above).
It's possible to use only the quotient p, not the remainder rem, by taking
j=(quot+1)*Y instead of j=X+Y-rem, but usually a division operation gives
the remainder at no extra cost, or a cost small enough that it's worth
swapping a multiply for an add or two.
The gcd g can be recovered by rounding up in the division, instead of
rounding down and then incrementing with g=quot+1.
g = ceil(X/Y)
= cquot for division X=cquot*Y - crem
But division in most programming languages is towards 0 or towards
-infinity, not upwards towards +infinity.
=head2 X,Y to N -- Rows Reverse
For pairs_order="rows_reverse", the horizontal i is reversed to j-i+1. This
can be worked into the triangular part of the N formula as
Nrrev = (j-i+1) + j*(j-1)/2 for 1<=i<=j
= j*(j+1)/2 - i + 1
The Y=1 case described above cannot be left to go through with rem=0 giving
i=0 and j+1 since the reversal j-i+1 is then not correct. Either use rem=1
as described, or if not then compensate at the end,
if r=0 then j -= 2 adjust
Nrrev = j*(j+1)/2 - i + 1 same Nrrev as above
For example X=5,Y=1 is quot=5,rem=0 gives i=0*(5+1)=0 j=5+1-0=6. Without
adjustment it would be Nrrev=6*7/2-0+1=22 which is wrong. But adjusting
j-=2 so that j=6-2=4 gives the desired Nrrev=4*5/2-0+1=11 (per the table in
L</Rows Reverse> above).
=cut
# No, not quite
#
# =head2 Rectangle N Range -- Rows
#
# An over-estimate of the N range can be calculated just from the X,Y to N
# formula above.
#
# Within a row N increases with increasing X, so for a rectangle the minimum
# is in the left column and the maximum in the right column.
#
# Within a column N values increase until reaching the end of a "g" wedge,
# then drop down a bit. So the maximum is either the top-right corner of the
# rectangle, or the top of the next lower wedge, ie. smaller Y but bigger g.
# Conversely the minimum is either the bottom right of the rectangle, or the
# bottom of the next higher wedge, ie. smaller g but bigger Y. (Is that
# right?)
#
# This is an over-estimate because it ignores which X,Y points are coprime and
# thus actually should have N values.
#
# =head2 Rectangle N Range -- Rows Reverse
#
# When row pairs are taken in reverse order increasing X is not increasing N,
# but rather the maximum N of a row is at the left end of the wedge.
=pod
=head1 OEIS
This enumeration of rationals is in Sloane's Online Encyclopedia of Integer
Sequences in the following forms
=over
L<http://oeis.org/A054531> (etc)
=back
pairs_order="rows" (the default)
A226314 X coordinate
A054531 Y coordinate, being N/GCD(i,j)
A000124 N in X=1 column, triangular+1
A050873 ceil(X/Y), gcd by rows
A050873-A023532 floor(X/Y)
gcd by rows and subtract 1 unless i=j
pairs_order="diagonals_down"
A033638 N in X=1 column, quartersquares+1 and pronic+1
A000290 N in Y=1 row, perfect squares
pairs_order="diagonals_up"
A002620 N in X=1 column, squares and pronics
A002061 N in Y=1 row, central polygonals (extra initial 1)
A002522 N at Y=X+1 above leading diagonal, squares+1
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::DiagonalRationals>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::DiagonalsOctant>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|