This file is indexed.

/usr/share/perl5/Math/PlanePath/FractionsTree.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# PowerPart has mostly square-free for X/Y > 1/2, then wedge of mostly
# multiple of 4, then mostly multiple of 16, then wedge of higher powers
# of 2.  Similar in AYT.



package Math::PlanePath::FractionsTree;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'bit_split_lowtohigh',
  'digit_join_lowtohigh';
use Math::PlanePath::RationalsTree;

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 2;
use constant diffxy_maximum => -1; # upper octant X<=Y-1 so X-Y<=-1
use constant gcdxy_maximum => 1;  # no common factor
use constant tree_num_children_list => (2); # complete binary tree
use constant tree_n_to_subheight => undef; # complete tree, all infinity

use constant parameter_info_array =>
  [
   { name       => 'tree_type',
     share_key  => 'tree_type_fractionstree',
     display    => 'Tree Type',
     type       => 'enum',
     default    => 'Kepler',
     choices    => ['Kepler'],
   },
  ];

use constant dir_maximum_dxdy => (-2, -(sqrt(5)+1)); # phi


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'tree_type'} ||= 'Kepler';
  $self->{'n_start'} = 1; # for RationalsTree sharing
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### FractionsTree n_to_xy(): "$n"

  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # what to do for fractional $n?
  {
    my $int = int($n);
    if ($n != $int) {
      ### frac ...
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      ### x1,y1: "$x1, $y1"
      ### x2,y2: "$x2, $y2"
      ### dx,dy: "$dx, $dy"
      ### result: ($frac*$dx + $x1).', '.($frac*$dy + $y1)
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  my $zero = ($n * 0);  # inherit bignum 0
  my $one = $zero + 1;  # inherit bignum 1

  # my $tree_type = $self->{'tree_type'};
  # if ($tree_type eq 'Kepler')

  {
    ### Kepler tree ...

    #       X/Y
    #     /     \
    # X/(X+Y)  Y/(X+Y)
    #
    # (1 0) (x) = ( x )     (a b) (1 0) = (a+b b)   digit 0
    # (1 1) (y)   (x+y)     (c d) (1 1)   (c+d d)
    #
    # (0 1) (x) = ( y )     (a b) (0 1) = (b a+b)   digit 1
    # (1 1) (y)   (x+y)     (c d) (1 1)   (d c+d)

    my @bits = bit_split_lowtohigh($n);
    pop @bits;  # drop high 1 bit

    my $a = $one;     # initial  (1 0)
    my $b = $zero;    #          (0 1)
    my $c = $zero;
    my $d = $one;
    while (@bits) {
      ### at: "($a $b)"
      ### at: "($c $d)"
      ### $digit

      if (shift @bits) {      # low to high
        ($a,$b) = ($b, $a+$b);
        ($c,$d) = ($d, $c+$d);
      } else {
        $a += $b;
        $c += $d;
      }
    }
    ### final: "($a $b)"
    ### final: "($c $d)"

    # (a b) (1) = (a+b)
    # (c d) (2)   (c+d)
    return ($a+2*$b, $c+2*$d);
  }
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x < 1 || $y < 2 || $x >= $y || ! _coprime($x,$y)) {
    return 0;
  }
  return 1;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### FractionsTree xy_to_n(): "$x,$y   $self->{'tree_type'}"

  if ($x < 1 || $y < 2 || $x >= $y) {
    return undef;
  }
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  my $zero = $x * 0 * $y;   # inherit bignum 0

  #       X/Y
  #     /     \
  # X/(X+Y)  Y/(X+Y)
  #
  # (x,y) <- (x, y-x)  nbit 0
  # (x,y) <- (y-x, x)  nbit 1
  #
  my @nbits;   # low to high
  for (;;) {
    ### at: "$x,$y n=$n"

    if ($y <= 2) {
      if ($x == 1 && $y == 2) {
        push @nbits, 1;  # high bit
        return digit_join_lowtohigh(\@nbits, 2, $zero);
      } else {
        return undef;
      }
    }

    ($y -= $x)          # (X,Y) <- (X, Y-X)
      || return undef;  # common factor if had X==Y
    if ($x > $y) {
      ($x,$y) = ($y,$x);
      push @nbits, 1;
    } else {
      push @nbits, 0;
    }
  }
}


# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### rect_to_n_range()

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### $x2
  ### $y2


  #   |    /
  #   |   / x1
  #   |  /  +-----y2
  #   | /   |
  #   |/    +-----
  #
  if ($x2 < 1 || $y2 < 2 || $x1 >= $y2) {
    ### no values, rect outside upper octant ...
    return (1,0);
  }

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum
  ### $zero

  if ($x2 >= $y2) { $x2 = $y2-1; }
  if ($x1 < 1) { $x1 = 1; }
  if ($y1 < 2) { $y1 = 2; }

  # big x2, small y1
  # big y2, small x1
  # my $level = _bingcd_max ($y2,$x1);
  ### $level

  my $level = $y2;
  return (1, ($zero+2) ** $level);
}

sub _bingcd_max {
  my ($x,$y) = @_;
  ### _bingcd_max(): "$x,$y"

  if ($x < $y) { ($x,$y) = ($y,$x) }

  ### div: int($x/$y)
  ### bingcd: int($x/$y) + $y

  return int($x/$y) + $y + 1;
}

#------------------------------------------------------------------------------
use constant tree_num_roots => 1;

# Same structure as RationalsTree
*tree_n_children     = \&Math::PlanePath::RationalsTree::tree_n_children;
*tree_n_num_children = \&Math::PlanePath::RationalsTree::tree_n_num_children;
*tree_n_parent       = \&Math::PlanePath::RationalsTree::tree_n_parent;
*tree_n_to_depth     = \&Math::PlanePath::RationalsTree::tree_n_to_depth;
*tree_depth_to_n     = \&Math::PlanePath::RationalsTree::tree_depth_to_n;
*tree_depth_to_n_end = \&Math::PlanePath::RationalsTree::tree_depth_to_n_end;
*tree_depth_to_n_range=\&Math::PlanePath::RationalsTree::tree_depth_to_n_range;
*tree_depth_to_width = \&Math::PlanePath::RationalsTree::tree_depth_to_width;


1;
__END__

=for stopwords eg Ryde OEIS ie Math-PlanePath coprime Harmonices Mundi octant onwards Aiton

=head1 NAME

Math::PlanePath::FractionsTree -- fractions by tree

=head1 SYNOPSIS

 use Math::PlanePath::FractionsTree;
 my $path = Math::PlanePath::FractionsTree->new (tree_type => 'Kepler');
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path enumerates fractions X/Y in the range 0 E<lt> X/Y E<lt> 1 and in
reduced form, ie. X and Y having no common factor, using a method by
Johannes Kepler.

Fractions are traversed by rows of a binary tree which effectively
represents a coprime pair X,Y by subtraction steps of a subtraction-only
form of Euclid's greatest common divisor algorithm which would prove X,Y
coprime.  The steps left or right are encoded/decoded as an N value.

=head2 Kepler Tree

X<Kepler, Johannes>The default and only tree currently is by Kepler.

=over

Johannes Kepler, "Harmonices Mundi", Book III.  Excerpt of translation by
Aiton, Duncan and Field at
L<http://ndirty.cute.fi/~karttu/Kepler/a086592.htm>

=back

In principle similar bit reversal etc variations as in C<RationalsTree>
would be possible.

    N=1                             1/2
                              ------   ------
    N=2 to N=3             1/3               2/3
                          /    \            /   \
    N=4 to N=7         1/4      3/4      2/5      3/5
                       | |      | |      | |      | |
    N=8 to N=15     1/5  4/5  3/7 4/7  2/7 5/7  3/8 5/8

A node descends as

          X/Y
        /     \
    X/(X+Y)  Y/(X+Y)

Kepler described the tree as starting at 1, ie. 1/1, which descends to two
identical 1/2 and 1/2.  For the code here a single copy starting from 1/2 is
used.

Plotting the N values by X,Y is as follows.  Since it's only fractions
X/YE<lt>1, ie. XE<lt>Y, all points are above the X=Y diagonal.  The unused
X,Y positions are where X and Y have a common factor.  For example X=2,Y=6
have common factor 2 so is never reached.

    12  |    1024                  26        27                1025
    11  |     512   48   28   22   34   35   23   29   49  513     
    10  |     256        20                  21       257          
     9  |     128   24        18   19        25  129               
     8  |      64        14        15        65                    
     7  |      32   12   10   11   13   33                         
     6  |      16                  17                              
     5  |       8    6    7    9                                   
     4  |       4         5                                        
     3  |       2    3                                             
     2  |       1                                                  
     1  |
    Y=0 |   
         ----------------------------------------------------------
          X=0   1    2    3    4    5    6    7    8    9   10   11

The X=1 vertical is the fractions 1/Y at the left end of each tree row,
which is

    Nstart=2^level

The diagonal X=Y-1, fraction K/(K+1), is the second in each row, at
N=Nstart+1.  That's the maximum X/Y in each level.

The N values in the upper octant, ie. above the line Y=2*X, are even and
those below that line are odd.  This arises since XE<lt>Y so the left leg
X/(X+Y) E<lt> 1/2 and the right leg Y/(X+Y) E<gt> 1/2.  The left is an even
N and the right an odd N.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over

=item C<$path = Math::PlanePath::FractionsTree-E<gt>new ()>

Create and return a new path object.

=item C<$n = $path-E<gt>n_start()>

Return 1, the first N in the path.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

Return a range of N values which occur in a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>.  The range is inclusive.

For reference, C<$n_hi> can be quite large because within each row there's
only one new 1/Y fraction.  So if X=1 is included then roughly C<$n_hi =
2**max(x,y)>.

=back

=head2 Tree Methods

X<Complete binary tree>Each point has 2 children, so the path is a complete
binary tree.

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the two children of C<$n>, or an empty list if C<$n E<lt> 1>
(before the start of the path).

This is simply C<2*$n, 2*$n+1>.  The children are C<$n> with an extra bit
appended, either a 0-bit or a 1-bit.

=item C<$num = $path-E<gt>tree_n_num_children($n)>

Return 2, since every node has two children, or return C<undef> if
C<$nE<lt>1> (before the start of the path).

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the top of
the tree).

This is simply C<floor($n/2)>, stripping the least significant bit from
C<$n> (undoing what C<tree_n_children()> appends).

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  The
top of the tree at N=1 is depth=0, then its children depth=1, etc.

The structure of the tree with 2 nodes per point means the depth is simply
floor(log2(N)), so for example N=4 through N=7 are all depth=2.

=back

=head2 Tree Descriptive Methods

=over

=item C<$num = $path-E<gt>tree_num_children_minimum()>

=item C<$num = $path-E<gt>tree_num_children_maximum()>

Return 2 since every node has 2 children, making that both the minimum and
maximum.

=item C<$bool = $path-E<gt>tree_any_leaf()>

Return false, since there are no leaf nodes in the tree.

=back

=head1 OEIS

The trees are in Sloane's Online Encyclopedia of Integer Sequences in the
following forms

=over

L<http://oeis.org/A020651> (etc)

=back

    tree_type=Kepler
      A020651  - X numerator (RationalsTree AYT denominators)
      A086592  - Y denominators
      A086593  - X+Y sum, and every second denominator
      A020650  - Y-X difference (RationalsTree AYT numerators)

The tree descends as X/(X+Y) and Y/(X+Y) so the denominators are two copies
of X+Y time after the initial 1/2.  A086593 is every second, starting at 2,
eliminating the duplication.  This is also the sum X+Y, from value 3
onwards, as can be seen by thinking of writing a node as the X+Y which would
be the denominators it descends to.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::PythagoreanTree>

L<Math::NumSeq::SternDiatomic>,
L<Math::ContinuedFraction>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut