/usr/share/perl5/Math/PlanePath/FractionsTree.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# PowerPart has mostly square-free for X/Y > 1/2, then wedge of mostly
# multiple of 4, then mostly multiple of 16, then wedge of higher powers
# of 2. Similar in AYT.
package Math::PlanePath::FractionsTree;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'bit_split_lowtohigh',
'digit_join_lowtohigh';
use Math::PlanePath::RationalsTree;
use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 2;
use constant diffxy_maximum => -1; # upper octant X<=Y-1 so X-Y<=-1
use constant gcdxy_maximum => 1; # no common factor
use constant tree_num_children_list => (2); # complete binary tree
use constant tree_n_to_subheight => undef; # complete tree, all infinity
use constant parameter_info_array =>
[
{ name => 'tree_type',
share_key => 'tree_type_fractionstree',
display => 'Tree Type',
type => 'enum',
default => 'Kepler',
choices => ['Kepler'],
},
];
use constant dir_maximum_dxdy => (-2, -(sqrt(5)+1)); # phi
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'tree_type'} ||= 'Kepler';
$self->{'n_start'} = 1; # for RationalsTree sharing
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### FractionsTree n_to_xy(): "$n"
if ($n < 1) { return; }
if (is_infinite($n)) { return ($n,$n); }
# what to do for fractional $n?
{
my $int = int($n);
if ($n != $int) {
### frac ...
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
### x1,y1: "$x1, $y1"
### x2,y2: "$x2, $y2"
### dx,dy: "$dx, $dy"
### result: ($frac*$dx + $x1).', '.($frac*$dy + $y1)
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
my $zero = ($n * 0); # inherit bignum 0
my $one = $zero + 1; # inherit bignum 1
# my $tree_type = $self->{'tree_type'};
# if ($tree_type eq 'Kepler')
{
### Kepler tree ...
# X/Y
# / \
# X/(X+Y) Y/(X+Y)
#
# (1 0) (x) = ( x ) (a b) (1 0) = (a+b b) digit 0
# (1 1) (y) (x+y) (c d) (1 1) (c+d d)
#
# (0 1) (x) = ( y ) (a b) (0 1) = (b a+b) digit 1
# (1 1) (y) (x+y) (c d) (1 1) (d c+d)
my @bits = bit_split_lowtohigh($n);
pop @bits; # drop high 1 bit
my $a = $one; # initial (1 0)
my $b = $zero; # (0 1)
my $c = $zero;
my $d = $one;
while (@bits) {
### at: "($a $b)"
### at: "($c $d)"
### $digit
if (shift @bits) { # low to high
($a,$b) = ($b, $a+$b);
($c,$d) = ($d, $c+$d);
} else {
$a += $b;
$c += $d;
}
}
### final: "($a $b)"
### final: "($c $d)"
# (a b) (1) = (a+b)
# (c d) (2) (c+d)
return ($a+2*$b, $c+2*$d);
}
}
sub xy_is_visited {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 1 || $y < 2 || $x >= $y || ! _coprime($x,$y)) {
return 0;
}
return 1;
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### FractionsTree xy_to_n(): "$x,$y $self->{'tree_type'}"
if ($x < 1 || $y < 2 || $x >= $y) {
return undef;
}
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
my $zero = $x * 0 * $y; # inherit bignum 0
# X/Y
# / \
# X/(X+Y) Y/(X+Y)
#
# (x,y) <- (x, y-x) nbit 0
# (x,y) <- (y-x, x) nbit 1
#
my @nbits; # low to high
for (;;) {
### at: "$x,$y n=$n"
if ($y <= 2) {
if ($x == 1 && $y == 2) {
push @nbits, 1; # high bit
return digit_join_lowtohigh(\@nbits, 2, $zero);
} else {
return undef;
}
}
($y -= $x) # (X,Y) <- (X, Y-X)
|| return undef; # common factor if had X==Y
if ($x > $y) {
($x,$y) = ($y,$x);
push @nbits, 1;
} else {
push @nbits, 0;
}
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### rect_to_n_range()
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### $x2
### $y2
# | /
# | / x1
# | / +-----y2
# | / |
# |/ +-----
#
if ($x2 < 1 || $y2 < 2 || $x1 >= $y2) {
### no values, rect outside upper octant ...
return (1,0);
}
my $zero = ($x1 * 0 * $y1 * $x2 * $y2); # inherit bignum
### $zero
if ($x2 >= $y2) { $x2 = $y2-1; }
if ($x1 < 1) { $x1 = 1; }
if ($y1 < 2) { $y1 = 2; }
# big x2, small y1
# big y2, small x1
# my $level = _bingcd_max ($y2,$x1);
### $level
my $level = $y2;
return (1, ($zero+2) ** $level);
}
sub _bingcd_max {
my ($x,$y) = @_;
### _bingcd_max(): "$x,$y"
if ($x < $y) { ($x,$y) = ($y,$x) }
### div: int($x/$y)
### bingcd: int($x/$y) + $y
return int($x/$y) + $y + 1;
}
#------------------------------------------------------------------------------
use constant tree_num_roots => 1;
# Same structure as RationalsTree
*tree_n_children = \&Math::PlanePath::RationalsTree::tree_n_children;
*tree_n_num_children = \&Math::PlanePath::RationalsTree::tree_n_num_children;
*tree_n_parent = \&Math::PlanePath::RationalsTree::tree_n_parent;
*tree_n_to_depth = \&Math::PlanePath::RationalsTree::tree_n_to_depth;
*tree_depth_to_n = \&Math::PlanePath::RationalsTree::tree_depth_to_n;
*tree_depth_to_n_end = \&Math::PlanePath::RationalsTree::tree_depth_to_n_end;
*tree_depth_to_n_range=\&Math::PlanePath::RationalsTree::tree_depth_to_n_range;
*tree_depth_to_width = \&Math::PlanePath::RationalsTree::tree_depth_to_width;
1;
__END__
=for stopwords eg Ryde OEIS ie Math-PlanePath coprime Harmonices Mundi octant onwards Aiton
=head1 NAME
Math::PlanePath::FractionsTree -- fractions by tree
=head1 SYNOPSIS
use Math::PlanePath::FractionsTree;
my $path = Math::PlanePath::FractionsTree->new (tree_type => 'Kepler');
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path enumerates fractions X/Y in the range 0 E<lt> X/Y E<lt> 1 and in
reduced form, ie. X and Y having no common factor, using a method by
Johannes Kepler.
Fractions are traversed by rows of a binary tree which effectively
represents a coprime pair X,Y by subtraction steps of a subtraction-only
form of Euclid's greatest common divisor algorithm which would prove X,Y
coprime. The steps left or right are encoded/decoded as an N value.
=head2 Kepler Tree
X<Kepler, Johannes>The default and only tree currently is by Kepler.
=over
Johannes Kepler, "Harmonices Mundi", Book III. Excerpt of translation by
Aiton, Duncan and Field at
L<http://ndirty.cute.fi/~karttu/Kepler/a086592.htm>
=back
In principle similar bit reversal etc variations as in C<RationalsTree>
would be possible.
N=1 1/2
------ ------
N=2 to N=3 1/3 2/3
/ \ / \
N=4 to N=7 1/4 3/4 2/5 3/5
| | | | | | | |
N=8 to N=15 1/5 4/5 3/7 4/7 2/7 5/7 3/8 5/8
A node descends as
X/Y
/ \
X/(X+Y) Y/(X+Y)
Kepler described the tree as starting at 1, ie. 1/1, which descends to two
identical 1/2 and 1/2. For the code here a single copy starting from 1/2 is
used.
Plotting the N values by X,Y is as follows. Since it's only fractions
X/YE<lt>1, ie. XE<lt>Y, all points are above the X=Y diagonal. The unused
X,Y positions are where X and Y have a common factor. For example X=2,Y=6
have common factor 2 so is never reached.
12 | 1024 26 27 1025
11 | 512 48 28 22 34 35 23 29 49 513
10 | 256 20 21 257
9 | 128 24 18 19 25 129
8 | 64 14 15 65
7 | 32 12 10 11 13 33
6 | 16 17
5 | 8 6 7 9
4 | 4 5
3 | 2 3
2 | 1
1 |
Y=0 |
----------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11
The X=1 vertical is the fractions 1/Y at the left end of each tree row,
which is
Nstart=2^level
The diagonal X=Y-1, fraction K/(K+1), is the second in each row, at
N=Nstart+1. That's the maximum X/Y in each level.
The N values in the upper octant, ie. above the line Y=2*X, are even and
those below that line are odd. This arises since XE<lt>Y so the left leg
X/(X+Y) E<lt> 1/2 and the right leg Y/(X+Y) E<gt> 1/2. The left is an even
N and the right an odd N.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over
=item C<$path = Math::PlanePath::FractionsTree-E<gt>new ()>
Create and return a new path object.
=item C<$n = $path-E<gt>n_start()>
Return 1, the first N in the path.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
Return a range of N values which occur in a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>. The range is inclusive.
For reference, C<$n_hi> can be quite large because within each row there's
only one new 1/Y fraction. So if X=1 is included then roughly C<$n_hi =
2**max(x,y)>.
=back
=head2 Tree Methods
X<Complete binary tree>Each point has 2 children, so the path is a complete
binary tree.
=over
=item C<@n_children = $path-E<gt>tree_n_children($n)>
Return the two children of C<$n>, or an empty list if C<$n E<lt> 1>
(before the start of the path).
This is simply C<2*$n, 2*$n+1>. The children are C<$n> with an extra bit
appended, either a 0-bit or a 1-bit.
=item C<$num = $path-E<gt>tree_n_num_children($n)>
Return 2, since every node has two children, or return C<undef> if
C<$nE<lt>1> (before the start of the path).
=item C<$n_parent = $path-E<gt>tree_n_parent($n)>
Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the top of
the tree).
This is simply C<floor($n/2)>, stripping the least significant bit from
C<$n> (undoing what C<tree_n_children()> appends).
=item C<$depth = $path-E<gt>tree_n_to_depth($n)>
Return the depth of node C<$n>, or C<undef> if there's no point C<$n>. The
top of the tree at N=1 is depth=0, then its children depth=1, etc.
The structure of the tree with 2 nodes per point means the depth is simply
floor(log2(N)), so for example N=4 through N=7 are all depth=2.
=back
=head2 Tree Descriptive Methods
=over
=item C<$num = $path-E<gt>tree_num_children_minimum()>
=item C<$num = $path-E<gt>tree_num_children_maximum()>
Return 2 since every node has 2 children, making that both the minimum and
maximum.
=item C<$bool = $path-E<gt>tree_any_leaf()>
Return false, since there are no leaf nodes in the tree.
=back
=head1 OEIS
The trees are in Sloane's Online Encyclopedia of Integer Sequences in the
following forms
=over
L<http://oeis.org/A020651> (etc)
=back
tree_type=Kepler
A020651 - X numerator (RationalsTree AYT denominators)
A086592 - Y denominators
A086593 - X+Y sum, and every second denominator
A020650 - Y-X difference (RationalsTree AYT numerators)
The tree descends as X/(X+Y) and Y/(X+Y) so the denominators are two copies
of X+Y time after the initial 1/2. A086593 is every second, starting at 2,
eliminating the duplication. This is also the sum X+Y, from value 3
onwards, as can be seen by thinking of writing a node as the X+Y which would
be the denominators it descends to.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::PythagoreanTree>
L<Math::NumSeq::SternDiatomic>,
L<Math::ContinuedFraction>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|