/usr/share/perl5/Math/PlanePath/DragonMidpoint.pm is in libmath-planepath-perl 122-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 | # Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=DragonMidpoint --lines --scale=20
# math-image --path=DragonMidpoint --all --output=numbers_dash
# A006466 contfrac 2*sum( 1/2^(2^n)), 1 and 2 only
# a(5n) recurrence ...
# 1,1,1,1, 2,
# 1,1,1,1,1,1,1, 2,
# 1,1,1,1, 2,
# 1,1,1,1, 2,
# 1, 2,
# 1,1,1,1, 2,
# 1,1,1,1,1,1,1, 2,
# 1,1,1,1, 2,
# 1, 2,
# 1,1,1,1,1,1,1, 2,
# 1,1,1,1, 2,
# 1, 2,
# 1,1,1,1, 2,
# 1,1,1,1, 2,
# 1,1,1,1,1,1,1, 2,
# 1,1,1,1, 2,
# 1, 2,
# 1,1,1,1,1,1,1, 2,
# 1,1,1,1, 2,
# 1,1,1,1, 2,
# 1, 2
# A076214 in decimal
#
# A073097 number of 4s - 6s - 2s - 1 is -1,0,1
# A081769 positions of 2s
# A073088 cumulative total multiples of 4 roughly, hence (4n-3-cum)/2
#
# A088435 (contfrac+1)/2 of sum(k>=1,1/3^(2^k)).
# A007404 in decimal
#
package Math::PlanePath::DragonMidpoint;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'bit_split_lowtohigh',
'digit_join_lowtohigh',
'round_up_pow';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
# uncomment this to run the ### lines
# use Smart::Comments;
# whole plane when arms==4
use Math::PlanePath::DragonCurve;
use constant n_start => 0;
use constant parameter_info_array => [ { name => 'arms',
share_key => 'arms_4',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 4,
default => 1,
width => 1,
description => 'Arms',
} ];
{
my @x_negative_at_n = (undef, 6,5,2,2);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef, 27,19,11,7);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
{
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 9, 9, 5, 3);
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
}
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(4, $self->{'arms'} || 1));
return $self;
}
# sub n_to_xy {
# my ($self, $n) = @_;
# ### DragonMidpoint n_to_xy(): $n
#
# if ($n < 0) { return; }
# if (is_infinite($n)) { return ($n, $n); }
#
# {
# my $int = int($n);
# if ($n != $int) {
# my ($x1,$y1) = $self->n_to_xy($int);
# my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
# my $frac = $n - $int; # inherit possible BigFloat
# my $dx = $x2-$x1;
# my $dy = $y2-$y1;
# return ($frac*$dx + $x1, $frac*$dy + $y1);
# }
# $n = $int; # BigFloat int() gives BigInt, use that
# }
#
# my ($x1,$y1) = Math::PlanePath::DragonCurve->n_to_xy($n);
# my ($x2,$y2) = Math::PlanePath::DragonCurve->n_to_xy($n+1);
#
# my $dx = $x2-$x1;
# my $dy = $y2-$y1;
# return ($x1+$y1 + ($dx+$dy-1)/2,
# $y1-$x1 + ($dy-$dx+1)/2);
# }
sub n_to_xy {
my ($self, $n) = @_;
### DragonMidpoint n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n, $n); }
my $frac;
{
my $int = int($n);
$frac = $n - $int; # inherit possible BigFloat
$n = $int; # BigFloat int() gives BigInt, use that
}
my $zero = ($n * 0); # inherit bignum 0
# arm as initial rotation
my $rot = _divrem_mutate ($n, $self->{'arms'});
### $arms
### rot from arm: $rot
### $n
# ENHANCE-ME: sx,sy just from len,len
my @digits = bit_split_lowtohigh($n);
my @sx;
my @sy;
{
my $sx = $zero + 1;
my $sy = -$sx;
foreach (@digits) {
push @sx, $sx;
push @sy, $sy;
# (sx,sy) + rot+90(sx,sy)
($sx,$sy) = ($sx - $sy,
$sy + $sx);
}
}
### @digits
my $rev = 0;
my $x = $zero;
my $y = $zero;
my $above_low_zero = 0;
for (my $i = $#digits; $i >= 0; $i--) { # high to low
my $digit = $digits[$i];
my $sx = $sx[$i];
my $sy = $sy[$i];
### at: "$x,$y $digit side $sx,$sy"
### $rot
if ($rot & 2) {
$sx = -$sx;
$sy = -$sy;
}
if ($rot & 1) {
($sx,$sy) = (-$sy,$sx);
}
### rotated side: "$sx,$sy"
if ($rev) {
if ($digit) {
$x -= $sy;
$y += $sx;
### rev add to: "$x,$y next is still rev"
} else {
$above_low_zero = $digits[$i+1];
$rot ++;
$rev = 0;
### rev rot, next is no rev ...
}
} else {
if ($digit) {
$rot ++;
$x += $sx;
$y += $sy;
$rev = 1;
### plain add to: "$x,$y next is rev"
} else {
$above_low_zero = $digits[$i+1];
}
}
}
# Digit above the low zero is the direction of the next turn, 0 for left,
# 1 for right.
#
### final: "$x,$y rot=$rot above_low_zero=".($above_low_zero||0)
if ($rot & 2) {
$frac = -$frac; # rotate 180
$x -= 1;
}
if (($rot+1) & 2) {
# rot 1 or 2
$y += 1;
}
if (!($rot & 1) && $above_low_zero) {
$frac = -$frac;
}
$above_low_zero ^= ($rot & 1);
if ($above_low_zero) {
$y = $frac + $y;
} else {
$x = $frac + $x;
}
### rotated return: "$x,$y"
return ($x,$y);
}
# or tables arithmetically,
#
# my $ax = ((($x+1) ^ ($y+1)) >> 1) & 1;
# my $ay = (($x^$y) >> 1) & 1;
# ### assert: $ax == - $yx_adj_x[$y%4]->[$x%4]
# ### assert: $ay == - $yx_adj_y[$y%4]->[$x%4]
#
my @yx_adj_x = ([0,1,1,0],
[1,0,0,1],
[1,0,0,1],
[0,1,1,0]);
my @yx_adj_y = ([0,0,1,1],
[0,0,1,1],
[1,1,0,0],
[1,1,0,0]);
# arm $x $y 2 | 1 Y=1
# 0 0 0 3 | 0 Y=0
# 1 0 1 ----+----
# 2 -1 1 X=-1 X=0
# 3 -1 0
my @xy_to_arm = ([0, # x=0,y=0
1], # x=0,y=1
[3, # x=-1,y=0
2]); # x=-1,y=1
sub xy_to_n {
my ($self, $x, $y) = @_;
### DragonMidpoint xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
{ my $overflow = abs($x)+abs($y)+2;
if (is_infinite($overflow)) { return $overflow; }
}
my $zero = ($x * 0 * $y);
my @nbits; # low to high
while ($x < -1 || $x > 0 || $y < 0 || $y > 1) {
my $y4 = $y % 4;
my $x4 = $x % 4;
my $ax = $yx_adj_x[$y4]->[$x4];
my $ay = $yx_adj_y[$y4]->[$x4];
### at: "$x,$y n=$n axy=$ax,$ay bit=".($ax^$ay)
push @nbits, $ax^$ay;
$x -= $ax;
$y -= $ay;
### assert: ($x+$y)%2 == 0
($x,$y) = (($x+$y)/2, # rotate -45 and divide sqrt(2)
($y-$x)/2);
}
### final: "xy=$x,$y"
my $arm = $xy_to_arm[$x]->[$y];
### $arm
my $arms_count = $self->arms_count;
if ($arm >= $arms_count) {
return undef;
}
if ($arm & 1) {
### flip ...
@nbits = map {$_^1} @nbits;
}
return digit_join_lowtohigh(\@nbits, 2, $zero) * $arms_count + $arm;
}
#------------------------------------------------------------------------------
# xy_is_visited()
sub xy_is_visited {
my ($self, $x, $y) = @_;
return ($self->{'arms'} >= 4
|| _xy_to_arm($x,$y) < $self->{'arms'});
}
# return arm number 0,1,2,3
sub _xy_to_arm {
my ($x, $y) = @_;
### DragonMidpoint _xy_to_arm(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
{ my $overflow = abs($x)+abs($y)+2;
if (is_infinite($overflow)) { return $overflow; }
}
while ($x < -1 || $x > 0 || $y < 0 || $y > 1) {
my $y4 = $y % 4;
my $x4 = $x % 4;
$x -= $yx_adj_x[$y4]->[$x4];
$y -= $yx_adj_y[$y4]->[$x4];
### assert: ($x+$y)%2 == 0
($x,$y) = (($x+$y)/2, # rotate -45 and divide sqrt(2)
($y-$x)/2);
}
return $xy_to_arm[$x]->[$y];
}
#------------------------------------------------------------------------------
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### DragonMidpoint rect_to_n_range(): "$x1,$y1 $x2,$y2 arms=$self->{'arms'}"
$x1 = abs($x1);
$x2 = abs($x2);
$y1 = abs($y1);
$y2 = abs($y2);
my $xmax = int(max($x1,$x2));
my $ymax = int(max($y1,$y2));
return (0,
($xmax*$xmax + $ymax*$ymax + 1) * $self->{'arms'} * 5);
}
# sub rect_to_n_range {
# my ($self, $x1,$y1, $x2,$y2) = @_;
# ### DragonMidpoint rect_to_n_range(): "$x1,$y1 $x2,$y2"
#
# return Math::PlanePath::DragonCurve->rect_to_n_range
# (sqrt(2)*$x1, sqrt(2)*$y1, sqrt(2)*$x2, sqrt(2)*$y2);
# }
#------------------------------------------------------------------------------
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 2**$level * $self->{'arms'} - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_up_pow ($n+1, 2);
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
# wider drawn arms ...
#
#
# ... 36---32 59---63-... 5
# | | | |
# 60 40 28 55 4
# | | | |
# 56---52---48---44 24---20---16 51 3
# | |
# 17---13----9----5 12 47---43---39 2
# | | | |
# 21 6--- 2 1 8 27---31---35 1
# | | | |
# 33---29---25 10 3 0--- 4 23 <- Y=0
# | | | |
# 37---41---45 14 7---11---15---19 -1
# | |
# 49 18---22---26 46---50---54---58 -2
# | | | |
# 53 30 42 62 -3
# | | | |
# ...--61---57 34---38 ... -4
#
#
#
# ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
# -5 -4 -3 -2 -1 X=0 1 2 3 4
# DragonMidpoint abs(dY) is A073089, but that seq has an extra leading 0
#
# --*--+ dy=+/-1 vert and left
# | horiz and right
# *
# |
# |
# *
# |
# +--*-- dy=+/-1
#
# +--*-- dx=+/-1 vert and right
# | horiz and left
# *
# |
# | dx=+/-1
# *
# |
# --*--+
#
# left turn ...01000
# right turn ...11000
# vert ...1
# horiz ...0
# Offset=1 0,0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,
# mod16
# 0 1
# 1 8n+1=4n+1
# 2 0
# 3 1
# 4 1
# 5 1
# 6 0
# 7 0
# 8 1
# 9 8n+1=4n+1
# 10 0
# 11 1
# 12 1
# 13 0
# 14 0
# 15 0
#
# a(1) = a(4n+2) = a(8n+7) = a(16n+13) = 0,
# a(4n) = a(8n+3) = a(16n+5) = 1
# a(8n+1) = a(4n+1)
# N=0 0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,0,0,1,1,
=for stopwords eg Ryde Dragon Math-PlanePath Nlevel Heighway Harter et al bignum Xadj,Yadj lookup OEIS 0b.zz111 0b..zz11 ie tilingsearch Xadj
=head1 NAME
Math::PlanePath::DragonMidpoint -- dragon curve midpoints
=head1 SYNOPSIS
use Math::PlanePath::DragonMidpoint;
my $path = Math::PlanePath::DragonMidpoint->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is the midpoint of each segment of the dragon curve of Heighway,
Harter, et al, per L<Math::PlanePath::DragonCurve>.
17--16 9---8 5
| | | |
18 15 10 7 4
| | | |
19 14--13--12--11 6---5---4 3
| |
20--21--22 3 2
| |
33--32 25--24--23 2 1
| | | |
34 31 26 0---1 <- Y=0
| | |
35 30--29--28--27 -1
|
36--37--38 43--44--45--46 -2
| | |
39 42 49--48--47 -3
| | |
40--41 50 -4
|
51 -5
|
52--53--54 -6
|
..--64 57--56--55 -7
| |
63 58 -8
| |
62--61--60--59 -9
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1
The dragon curve begins as follows. The midpoints of each segment are
numbered starting from 0,
+--8--+ +--4--+
| | | |
9 7 5 3
| | | | |
+-10--+--6--+ +--2--+ rotate 45 degrees |
| | v
11 1
| |
+-12--+ *--0--+ * = Origin
|
...
These midpoints are on fractions X=0.5,Y=0, X=1,Y=0.5, etc. For this
C<DragonMidpoint> path they're turned clockwise 45 degrees and shrunk by
sqrt(2) to be integer X,Y values a unit apart and initial direction to the
right.
The midpoints are distinct X,Y positions because the dragon curve traverses
each edge only once.
The dragon curve is self-similar in 2^level sections due to its unfolding.
This can be seen in the midpoints too as for example above N=0 to N=16 is
the same shape as N=16 to N=32, with the latter rotated 90 degrees and in
reverse.
For reference, Knuth in "Diamonds and Dragons" has a different numbering for
segment midpoints where the dragon orientation is unchanged and instead
multiply by 2 to have midpoints as integers. For example the first dragon
midpoint at X=1/2,Y=0 is doubled out to X=1,Y=0. That can be obtained from
the path here by
KnuthX = X - Y + 1
KnuthY = X + Y
=for GP-Test 0-0 + 1 == 1 /* N=1 */
=for GP-Test 0+0 == 0
=for GP-Test 1-0 + 1 == 2 /* N=1 */
=for GP-Test 1+0 == 1
=for GP-Test 1-1 + 1 == 1 /* N=2 */
=for GP-Test 1+1 == 2
=for GP-Test 1-2 + 1 == 0 /* N=3 */
=for GP-Test 1+2 == 3
=head2 Arms
Like the C<DragonCurve> the midpoints fill a quarter of the plane and four
copies mesh together perfectly when rotated by 90, 180 and 270 degrees. The
C<arms> parameter can choose 1 to 4 curve arms, successively advancing.
For example C<arms =E<gt> 4> begins as follows, with N=0,4,8,12,etc being
the first arm (the same as the plain curve above), N=1,5,9,13 the second,
N=2,6,10,14 the third and N=3,7,11,15 the fourth.
arms => 4
...-107-103 83--79--75--71 6
| | |
68--64 36--32 99 87 59--63--67 5
| | | | | | |
72 60 40 28 95--91 55 4
| | | | |
76 56--52--48--44 24--20--16 51 3
| | |
80--84--88 17--13---9---5 12 47--43--39 ... 2
| | | | | |
100--96--92 21 6---2 1 8 27--31--35 106 1
| | | | | |
104 33--29--25 10 3 0---4 23 94--98-102 <- Y=0
| | | | | |
... 37--41--45 14 7--11--15--19 90--86--82 -1
| | |
49 18--22--26 46--50--54--58 78 -2
| | | | |
53 89--93 30 42 62 74 -3
| | | | | | |
65--61--57 85 97 34--38 66--70 -4
| | |
69--73--77--81 101-105-... -5
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5
With four arms like this every X,Y point is visited exactly once, because
four arms of the C<DragonCurve> traverse every edge exactly once.
=head2 Tiling
Taking pairs of adjacent points N=2k and N=2k+1 gives little rectangles with
the following tiling of the plane repeating in 4x4 blocks.
+---+---+---+-+-+---+-+-+---+
| | | | | | | | | | |
+---+ | +---+ | +---+ | +---+
| | | |9 8| | | | | | |
+-+-+---+-+-+-+-+-+-+-+-+-+-+
| | | | |7| | | | | | |
| | +---+ | +---+ | +---+ | |
| | | | |6|5 4| | | | | |
+---+-+-+-+-+-+-+-+-+-+-+-+-+
| | | | | |3| | | | |
+---+ | +---+ | +---+ | +---+
| | | | | |2| | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | | | |0 1| | | | | | <- Y=0
| | +---+ | +---+ | +---+ | |
| | | | | | | | | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | | | | | | | | |
+---+ | +---+ | +---+ | +---+
| | | | | | | | | | |
+---+-+-+---+-+-+---+-+-+---+
^
X=0
The pairs follow this pattern both for the main curve N=0 etc shown, and
also for the rotated copies per L</Arms> above. This tiling is in the
tilingsearch database as
=over
L<http://tilingsearch.org/HTML/data24/K02A.html>
=back
Taking pairs N=2k+1 and N=2k+2, being each odd N and its successor, gives a
regular pattern too, but this time repeating in blocks of 16x16.
|||--||||||--||--||--||||||--||||||--||||||--||||||--||||||--|||
|||--||||||--||--||--||||||--||||||--||||||--||||||--||||||--|||
-||------||------||------||------||------||------||------||-----
-||------||------||------||------||------||------||------||-----
|||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
|||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
-----||------||------||------||------||------||------||------||-
-----||------||------||------||------||------||------||------||-
-||--||--||--||--||--||||||--||--||--||--||--||--||--||||||--||-
-||--||--||--||--||--||||||--||--||--||--||--||--||--||||||--||-
-||------||------||------||------||------||------||------||-----
-||------||------||------||------||------||------||------||-----
|||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
|||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
-----||------||------||------||------||------||------||------||-
-----||------||------||------||------||------||------||------||-
|||--||||||--||--||--||||||--|| ||--||||||--||--||--||||||--|||
|||--||||||--||--||--||||||--|| ||--||||||--||--||--||||||--|||
-||------||------||------||------||------||------||------||-----
-||------||------||------||------||------||------||------||-----
|||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
|||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
-----||------||------||------||------||------||------||------||-
-----||------||------||------||------||------||------||------||-
-||--||||||--||--||--||--||--||--||--||||||--||--||--||--||--||-
-||--||||||--||--||--||--||--||--||--||||||--||--||--||--||--||-
-||------||------||------||------||------||------||------||-----
-||------||------||------||------||------||------||------||-----
|||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
|||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
-----||------||------||------||------||------||------||------||-
-----||------||------||------||------||------||------||------||-
=head2 Curve from Midpoints
Since the dragon curve always turns left or right, never straight ahead or
reverse, its segments are alternately horizontal and vertical. Rotated -45
degrees for the midpoints here this means alternately "opposite diagonal"
and "leading diagonal". They fall on X,Y alternately even or odd. So the
original dragon curve can be recovered from the midpoints by choosing
leading diagonal or opposite diagonal segment according to X,Y even or odd,
which is the same as N even or odd.
DragonMidpoint dragon segment
-------------- -----------------
"even" N==0 mod 2 opposite diagonal
which is X+Y==0 mod 2 too
"odd" N==1 mod 2 leading diagonal
which is X+Y==1 mod 2 too
/
3 0 at X=0,Y=0 "even", opposite diagonal
/ 1 at X=1,Y=0 "odd", leading diagonal
\ etc
2
\
\ /
0 1
\ /
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::DragonMidpoint-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 2**$level - 1)>, or for multiple arms return C<(0, $arms *
2**$level - 1)>.
There are 2^level segments comprising the dragon, or arms*2^level when
multiple arms, numbered starting from 0.
=back
=head1 FORMULAS
=head2 X,Y to N
An X,Y point is turned into N by dividing out digits of a complex base i+1.
This base is per the doubling of the C<DragonCurve> at each level. In
midpoint coordinates an adjustment subtracting 0 or 1 must be applied to
move an X,Y which is either N=2k or N=2k+1 to the position where dividing
out i+1 gives the N=k X,Y.
The adjustment is in a repeating pattern of 4x4 blocks. Points N=2k and
N=2k+1 both move to the same place corresponding to N=k multiplied by i+1.
The adjustment pattern is a little like the pair tiling shown above, but for
some pairs both the N=2k and N=2k+1 positions must move, it's not enough
just to shift the N=2k+1 to the N=2k.
Xadj Yadj
Ymod4 Ymod4
3 | 0 1 1 0 3 | 1 1 0 0
2 | 1 0 0 1 2 | 1 1 0 0
1 | 1 0 0 1 1 | 0 0 1 1
0 | 0 1 1 0 0 | 0 0 1 1
+-------- +--------
0 1 2 3 0 1 2 3
Xmod4 Xmod4
The same tables work for both the main curve and for the rotated copies per
L</Arms> above.
until -1<=X<=0 and 0<=Y<=1
Xm = X - Xadj(X mod 4, Y mod 4)
Ym = Y - Yadj(X mod 4, Y mod 4)
new X,Y = (Xm+i*Ym) / (i+1)
= (Xm+i*Ym) * (1-i)/2
= (Xm+Ym)/2, (Ym-Xm)/2 # Xm+Ym and Ym-Xm are both even
Nbit = Xadj xor Yadj # bits of N low to high
The X,Y reduction stops at one of the start points for the four arms
X,Y endpoint Arm +---+---+
------------ --- | 2 | 1 | Y=1
0, 0 0 +---+---+
0, 1 1 | 3 | 0 | Y=0
-1, 1 2 +---+---+
-1, 0 3 X=-1 X=0
For arms 1 and 3 the N bits must be flipped 0E<lt>-E<gt>1. The arm number
and hence whether this flip is needed is not known until reaching the
endpoint.
For bignum calculations there's no need to apply the "/2" shift in
newX=(Xm+Ym)/2 and newY=(Ym-Xm)/2. Instead keep a bit position which is the
logical low end and pick out two bits from there for the Xadj,Yadj lookup.
A whole word can be dropped when the bit position becomes a multiple of 32
or 64 or whatever.
=head2 Boundary
Taking unit squares at each point, the boundary MB[k] of the resulting shape
from 0 to N=2^k-1 inclusive can be had from the boundary B[k] of the plain
dragon curve. Taking points N=0 to N=2^k-1 inclusive is the midpoints of
the dragon curve line segments N=0 to N=2^k inclusive.
MB[k] = B[k] + 2
= 4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, 1202, ...
2 + x + 2*x^2
generating function 2 * -------------
1 - x - 2*x^3
=for GP-DEFINE gB(x)=(2 + 2*x^2) / ((1 - x - 2*x^3) * (1-x))
=for GP-DEFINE gMB(x) = (4 + 2*x + 4*x^2) / (1 - x - 2*x^3)
=for GP-Test gMB(x) == 2*(2 + x + 2*x^2)/(1-x-2*x^3)
=for GP-DEFINE gOnes(x)=1/(1-x) /* 1,1,1,1,1,1,etc */
=for GP-Test gMB(x) == gB(x) + 2*gOnes(x)
=for GP-Test Vec(gMB(x) - O(x^12)) == [4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, 1202]
A unit square at the midpoint is a diamond on a dragon line segment
/ \
/ \ midpoint m
*--m--* diamond on dragon curve line segment
\ /
\ /
A boundary segment of the dragon curve has two sides of the diamond which
are boundary. But when the boundary makes a right hand turn two such sides
touch and are therefore not midpoint boundary.
/^\
/ | \ right turn
\ | //\ two diamond sides touch
\|// \
*<----*
\ /
\ /
The dragon curve at N=0 points East and the last segment N=2^k-1 to N=2^k is
North. Since the curve never overlaps itself this means that when going
around the right side of the curve there is 1 more left turn than right
turn,
lefts - rights = 1
The total line segments on the right is the dragon curve R[k] and there are
R[k]-1 turns, so the total turns lefts+rights is
lefts + rights + 1 = R[k]
So the lefts and rights are obtained separately
2*lefts = R[k] adding the two equations
2*rights = R[k] - 2 subtracting the two equations
The result is then
MR[k] = 2*R[k] - 2*rights
= 2*R[k] - 2*(R[k]-2)/2
= R[k] + 2
A similar calculation is made on the left side of the curve. The net turn
is the same and so the same lefts-rights=1 and thus from the dragon curve
L[k] left boundary
ML[k] = 2*L[k] - 2*lefts
= 2*L[k] - 2*(L[k]/2)
= L[k]
The total is then
MB[k] = MR[k] + ML[k]
= R[k]+2 + L[k]
= B[k] + 2 since B[k]=R[k]+L[k]
The generating function can be had from the partial fractions form of the
dragon curve boundary. B[k]+2 means adding 2/(1-x) which cancels out the
-2/(1-x) in gB(x).
=cut
# /\ B[0]=2
# *--* MB[0]=4
# \/
#
# *
# /|\
# /\|/ B[0]=4
# *--* MB[0]=6
# \/
#
# *
# /|\ B[0] = 8
# \|/\ MR[2] = 6
# *--* ML[2] = 4
# \/|\ MB[2] = 10
# /\|/
# *--*
# \/
#
# 4,6,10,18,30,50,86,146,246,418,710,1202,
# 6,8,12,20,32,52,88,148,248,420,712,1204,
=pod
=head1 OEIS
The C<DragonMidpoint> is in Sloane's Online Encyclopedia of Integer
Sequences as
=over
L<http://oeis.org/A073089> (etc)
=back
A073089 abs(dY) of n-1 to n, so 0=horizontal,1=vertical
(extra initial 0)
A077860 Y at N=2^k, being Re(-(i+1)^k + i-1)
A090678 turn=1, straight=0 (extra initial 1,1)
A203175 boundary of unit squares N=0 to N=2^k-1, value 4 onwards
=head2 A073089
For A073089=abs(dY), the midpoint curve is vertical when the C<DragonCurve>
has a vertical followed by a left turn, or horizontal followed by a right
turn. C<DragonCurve> verticals are whenever N is odd, and the turn is the
bit above the lowest 0 in N (per L<Math::PlanePath::DragonCurve/Turn>). So
abs(dY) = lowbit(N) XOR bit-above-lowest-zero(N)
The n in A073089 is offset by 2 from the N numbering of the path here, so
n=N+2. The initial value at n=1 in A073089 has no corresponding N (it would
be N=-1).
The mod-16 definitions in A073089 express combinations of N odd/even and
bit-above-low-0 which are the vertical midpoint segments. The recurrence
a(8n+1)=a(4n+1) acts to strip zeros above a low 1 bit,
n = 0b..uu0001
-> 0b...uu001
In terms of N=n-2 this reduces
N = 0b..vv1111
-> 0b...vv111
which has the effect of seeking a lowest 0 in the range of the mod-16
conditions.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::DragonRounded>
L<Math::PlanePath::AlternatePaperMidpoint>,
L<Math::PlanePath::R5DragonMidpoint>,
L<Math::PlanePath::TerdragonMidpoint>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|