This file is indexed.

/usr/share/perl5/Math/PlanePath/DiamondArms.pm is in libmath-planepath-perl 122-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=DiamondArms --lines --scale=10
# math-image --path=DiamondArms --all --output=numbers_dash
# math-image --path=DiamondArms --values=Polygonal,polygonal=8
#
# RepdigitsAnyBase fall on 14 or 15 lines ...
#

package Math::PlanePath::DiamondArms;
use 5.004;
use strict;
#use List::Util 'min', 'max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 122;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'round_nearest';
use Math::PlanePath::DiamondSpiral;

# uncomment this to run the ### lines
#use Devel::Comments;


use constant arms_count => 4;
use constant xy_is_visited => 1;
use constant x_negative_at_n => 8;
use constant y_negative_at_n => 5;

use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant _UNDOCUMENTED__dxdy_list => (1,1,   # NE  diagonals
                           -1,1,  # NW
                           -1,-1, # SW
                           1,-1); # SE
use constant absdx_minimum => 1;
use constant absdy_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_minimum_dxdy => (1,1);  # North-East
use constant dir_maximum_dxdy => (1,-1); # South-East
use constant turn_any_right => 0; # only left or straight


#------------------------------------------------------------------------------
# 28
# 172 +144
# 444 +272 +128
# 844 +400 +128

# [ 0, 1, 2, 3,],
# [ 0, 1, 3, 6 ],
# N = (1/2 d^2 + 1/2 d)
#   = (1/2*$d**2 + 1/2*$d)
#   = ($d+1)*$d/2
# d = -1/2 + sqrt(2 * $n + 1/4)
#   = (-1 + sqrt(8*$n + 1))/2

sub n_to_xy {
  my ($self, $n) = @_;
  ### DiamondArms n_to_xy(): $n
  if ($n < 1) {
    return;
  }
  $n -= 1;
  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int;
    $n = $int;  # BigFloat int() gives BigInt, use that
  }

  # arm as initial rotation
  my $rot = _divrem_mutate($n,4);
  ### $n

  # if (($rot%4) != 3) {
  #   return;
  # }

  my $d = int ((-1 + sqrt(8*$n + 1)) / 2);
  ### d frac: ((-1 + sqrt(8*$n + 1)) / 2)
  ### $d
  ### base: $d*($d+1)/2

  $n -= $d*($d+1)/2;
  ### remainder: $n
  ### assert: $n <= $d

  my $x = ($frac + $n) - $d;
  my $y = - ($frac + $n);
  ### unrot: "$x,$y"

  $rot = ($rot + $d) % 4;
  ### $rot

  if ($rot == 1) {
    ($x,$y) = (1-$y, $x);    # rotate +90 and right
  } elsif ($rot == 2) {
    ($x,$y) = (1-$x, 1-$y);   # rotate 180 and up+right
  } elsif ($rot == 3) {
    ($x,$y) = ($y, 1-$x);    # rotate +90 and up
  }
  return ($x,$y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### DiamondArms xy_to_n: "$x,$y"

  my $rot = 0;
  # eg. y=2 have (0<=>$y)-$y == -1-2 == -3
  if ($y >= ($x > 0)) {
    ### above horizontal, rot -180 ...
    $rot = 2;
    $x = 1-$x;  # rotate 180 and offset
    $y = 1-$y;
  }
  if ($x > 0) {
    ### right of vertical, rot -90 ...
    $rot++;
    ($x,$y) = ($y,1-$x);       # rotate -90 and offset
  }

  # horizontal negative X axis
  # d = -x + -y
  #     d=0     n=1
  #     d=4    n=41
  #     d=8    n=145
  #     d=12   n=313
  # N = (2 d^2 + 2 d + 1)
  #   = (2*$d**2 + 2*$d + 1)
  #   = ((2*$d + 2)*$d + 1)
  #
  my $d = -$x - $y;
  ### xy: "$x,$y"
  ### $d
  ### $rot
  ### base: ((2*$d + 2)*$d + 1)
  ### offset: -4 * $y
  ### rot d mod: (($rot+$d+2) % 4)
  return ((2*$d + 2)*$d + 1) - 4*$y + (($rot-$d) % 4);
}


# d    = [ 1, 2,   3,  4,  5,   6,   7,   8,   9 ],
# Nmax = [ 9, 25, 49, 81, 121, 169, 225, 289, 361 ]
#   being the N=5 arm one spot before the corner of each run
# N = (4 d^2 + 4 d + 1)
#   = (2d+1)^2
#   = ((4*$d + 4)*$d + 1)
# or for d-1
# N = (4 d^2 - 4 d + 1)
#   = (2d-1)^2
#   = ((4*$d - 4)*$d + 1)
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  my $x = (($x1<0) == ($x2<0) ? min(abs($x1),abs($x2)) : 0);
  my $y = (($y1<0) == ($y2<0) ? min(abs($y1),abs($y2)) : 0);
  my $d = max(0, $x + $y - 2);
  return (((2*$d + 2)*$d + 1),
          max ($self->xy_to_n($x1,$y1),
               $self->xy_to_n($x1,$y2),
               $self->xy_to_n($x2,$y1),
               $self->xy_to_n($x2,$y2)));
}

1;
__END__

      #                25                              4
      #              /    \
      #           29   14   21     ...                 3
      #         /    /    \    \     \
      #     ...   18    7   10   17    32              2
      #         /    /    \    \    \    \
      #      22   11    4    3    6   13   28          1
      #    /    /    /         /    /    /
      # 26   15    8    1    2    9   24           <- Y=0
      #    \    \    \    \    /    /
      #      30   19   12    5   20  ...              -1
      #         \    \    \    /    /
      #         ...    23   16   31                   -2
      #                   \    /
      #                     27                        -3

      #            25                             4
      #           /    \
      #        29  14  21    ...                 3
      #       /   /   \   \    \
      #    ... 18   7  10  17  32              2
      #       /   /   \   \   \   \
      #     22 11   4   3   6  13   28          1
      #   /   /   /       /   /    /
      # 26  15  8   1   2   9  24           <- Y=0
      #   \   \   \   \   /   /
      #     30 19  12   5  20  ...              -1
      #       \   \   \   /   /
      #       ...  23  16  31                   -2
      #                  \   /
      #                   27                        -3


=for stopwords Math-PlanePath Ryde ie

=head1 NAME

Math::PlanePath::DiamondArms -- four spiral arms

=head1 SYNOPSIS

 use Math::PlanePath::DiamondArms;
 my $path = Math::PlanePath::DiamondArms->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path follows four spiral arms, each advancing successively in a diamond
pattern,

                 25   ...                    4
             29  14  21  36                  3
         33  18   7  10  17  32              2
     ... 22  11   4   3   6  13  28          1
     26  15   8   1   2   9  24 ...      <- Y=0
         30  19  12   5  20  35             -1
             34  23  16  31                 -2
               ...   27                     -3

                  ^
     -3  -2  -1  X=0  1   2   3   4

Each arm makes a spiral widening out by 4 each time around, thus leaving
room for four such arms.  Each arm loop is 64 longer than the preceding
loop.  For example N=13 to N=85 below is 84-13=72 points, and the next loop
N=85 to N=221 is 221-85=136 which is an extra 64, ie. 72+64=136.

                 25          ...
                /  \           \
              29  . 21  .  .  . 93
             /        \           \
           33  .  .  . 17  .  .  . 89
          /              \           \
        37  .  .  .  .  . 13  .  .  . 85
       /                 /           /
     41  .  .  .  1  .  9  .  .  . 81
       \           \  /           /
        45  .  .  .  5  .  .  . 77
          \                    /
           49  .  .  .  .  . 73
             \              /
              53  .  .  . 69
                \        /
                 57  . 65
                   \  /
                    61

Each arm is N=4*k+rem for a remainder rem=0,1,2,3, so sequences related to
multiples of 4 or with a modulo 4 pattern may fall on particular arms.

The starts of each arm N=1,2,3,4 are at X=0 or 1 and Y=0 or 1,

               ..
                 \
             4    3  ..          Y=1
           /        /
         ..  1    2           <- Y=0
              \
               ..
             ^    ^
            X=0  X=1

They could be centred around the origin by taking X-1/2,Y-1/2 so for example
N=1 would be at -1/2,-1/2.  But the it's done as N=1 at 0,0 to stay in
integers.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::DiamondArms-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  For C<$n
E<lt> 1> the return is an empty list, as the path starts at 1.

Fractional C<$n> gives a point on the line between C<$n> and C<$n+4>, that
C<$n+4> being the next point on the same spiralling arm.  This is probably
of limited use, but arises fairly naturally from the calculation.

=back

=head2 Descriptive Methods

=over

=item C<$arms = $path-E<gt>arms_count()>

Return 4.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SquareArms>,
L<Math::PlanePath::DiamondSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut